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NODAL SEPARATORS OF HOLOMORPHIC
FOLIATIONS

by Rudy ROSAS

Abstract. — We study a special kind of local invariant sets of singular holo-
morphic foliations called nodal separators. We define notions of equisingularity and
topological equivalence for nodal separators as intrinsic objects and, in analogy with
the celebrated theorem of Zariski for analytic curves, we prove the equivalence of
these notions. We give some applications in the study of topological equivalences
of holomorphic foliations. In particular, we show that the nodal singularities and
its eigenvalues in the resolution of a generalized curve are topological invariants.
Résumé. — Nous étudions un type particulier d’ensembles invariants locaux de

feuilletages holomorphes singuliers appelés séparateurs nodaux. Nous définissons
des notions d’équisingularité et d’équivalence topologique pour les séparateurs no-
daux comme des objets intrinsèques et, par analogie avec le célèbre théorème de
Zariski pour les courbes analytiques, nous prouvons l’équivalence de ces notions.
Nous donnons quelques applications à l’étude des équivalences topologiques de
feuilletages holomorphes. En particulier, nous montrons que les singularités no-
dales et ses valeurs propres dans la résolution d’une courbe généralisée sont des
invariants topologiques.

1. Introduction

We consider a one-dimensional holomorphic foliation F on a complex
smooth surface V , with an isolated singularity at p ∈ V . In local coordinates
(C2, 0) ' (V, p) the foliation is generated by a holomorphic vector field Z
with an isolated singularity at 0 ∈ C2. The singularity at p ∈ V is called
reduced if the linear part of Z has eigenvalues λ1, λ2 ∈ C with λ1 6= 0
and such that λ = λ2

λ1
is not a rational positive number. This last number

will be called the eigenvalue of the singularity p ∈ V . The singularity p is
hyperbolic if λ ∈ C\R, it is a saddle if λ < 0, it is a node if λ ∈ (0,∞)\Q,

Keywords: Holomorphic foliation, topological equivalence, equisingularity.
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512 Rudy ROSAS

and it is a saddle-node if λ = 0. When the singularity of F at p ∈ V is
a node we have a particular kind of local invariant sets: In this case there
are suitable local coordinates such that the foliation near p ∈ V is given
by the holomorphic vector field x ∂

∂x + λy ∂
∂y and we have the multi-valued

first integral yx−λ. Then the closure of any leaf other than the separatrices
is a set of type |y| = c|x|λ (c > 0) which is called a nodal separator [3].
More precisely, we say that a set S is a nodal separator for a node, if in
linearizing coordinates as above we have S = {(x, y) : |y| = c|x|λ} ∩ B,
c > 0, where B is an open ball centered at the singularity. Clearly S is
invariant by the foliation restricted to B. In general, if the singularity at
p ∈ V is not necessarily reduced, we say that a set S ⊂ V is a nodal
separator at p if there is a neighborhood U of p in V such that the strict
transform of S∩U in the resolution of F is a nodal separator for some node
in the resolution. The nodal separators and the separatrices are the minimal
dynamical blocks at a singularity, as the following theorem asserts [2].

Theorem 1.1. — Let F be a germ of holomorphic foliation with an
isolated singularity at 0 ∈ C2. Let I be a closed connected invariant set
such that {0} ( I. Then I contains either a separatrix or a nodal separator
at 0 ∈ C2. In particular, if L is a local leaf of F such that 0 ∈ L, then L
contains either a separatrix or a nodal separator at 0 ∈ C2.

In this paper, we study some properties of nodal separators at (C2, 0) as
intrinsic objects, that is, not necessarily linked to a holomorphic foliation
at (C2, 0). The nodal separators have a good behavior under complex blow
ups: these object has well defined iterated tangents and so, in an infinitesi-
mal viewpoint, they look like curves, although the information given by the
sequence of infinitely near points in the case of nodal separators is essen-
tially infinite. However, in analogy with the case of curves, in Section 2 we
establish the concept of equisingularity for nodal separators. On the other
hand, also in Section 2 we give a notion of topological equivalence for nodal
separators: roughly speaking, we say that two nodal separators S and S′ at
(C2, 0) are topologically equivalent if there is a local homeomorphism of the
ambient space taking S to S′ and preserving the “Levi foliations” defined
on S and S′. The following theorem, which is one of the main results of this
work, is analogous to a well known theorem for curves due to Zariski [5].

Theorem 1.2. — Two nodal separators are equisingular if and only if
they are topologically equivalent.
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NODAL SEPARATORS 513

The proof of this theorem is organized as follows. In Section 3 we prove
the first part of Theorem 1.2: equisingularity implies topological equiva-
lence. In Section 4 we reduce the second part of Theorem 1.2 to Propo-
sition 4.1. We begin the proof of Proposition 4.1 in Section 5 with the
construction of a “nice” topological equivalence (Proposition 5.2). Finally,
we end the proof of Proposition 4.1 in Section 6.

In the context of holomorphic foliations at (C2, 0), in Section 8 we prove
the following theorem.

Theorem 1.3. — Let F and F̃ be holomorphic foliations with isolated
singularities at 0 ∈ C2. Let h : U→ Ũ, h(0) = 0 be a topological equivalence
between F and F̃ . Then there is a bijection h∗ between the setN of nodes in
the resolution of F with the set Ñ of nodes in the resolution of F̃ such that:
the nodal separators issuing from a node n ∈ N are mapped to the nodal
separators issuing from the node h∗(n) ∈ Ñ. In particular, the number of
nodes in the resolution of a foliation is a topological invariant.

Observe that this theorem does not need any hypothesis on the foliations.
In particular, the foliations could have saddle-nodes in its resolutions, so
Theorem 1.3 is really new outside the class of generalized curves [1]. In
the case of Generic General Type foliations, Theorem 1.3 is a consequence
of the work of Marín and Mattei [3] (Generic General Type foliations are
generalized curves with an additional generic dynamical property which
guarantees that the conjugation h is transversely holomorphic). In fact,
in [3] the authors prove much more: if F is of Generic General Type and F̃
is any foliation topologically equivalent to F , then there exists a topological
equivalence between F and F̃ extending to the exceptional divisor after the
resolutions of F and F̃ . On the other hand, if F is a generalized curve not
necessarily of Generic General Type, in [4] is proved that always exists
a topological equivalence between F and F̃ extending after resolution to
a neighborhood of each linearizable or resonant singularity which is not
a corner. In particular, this topological equivalence extends to each nodal
singularity which is not a corner. The goal of the last theorem of this paper,
proved in Section 8, is to construct a topological equivalence extending also
to the nodal singularities in the corners of the resolution:

Theorem 1.4. — Let F and F̃ be topological equivalent holomorphic
foliations at (C2, 0). Suppose that F is a generalized curve. Then there
exists a topological equivalence between F and F̃ which, after resolution,
extends as a homeomorphism to a neighborhood of each linearizable or
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514 Rudy ROSAS

resonant non-corner singularity and each nodal corner singularity. In par-
ticular, the eigenvalue of each nodal singularity in the resolution of F is a
topological invariant.

A key step in the proof of this theorem is to establish a correspondence,
after resolution, between the singularities of F and F̃ . When a singularity
p in the resolution of F is not a corner, we can use the separatrix issu-
ing from p to define the corresponding singularity p̃ in the resolution of
F̃ . Moreover, By Zariski’s Theorem [5], the singularities p and p̃ are in
“isomorphic positions” in their corresponding exceptional divisors. If the
singularity p is a corner, we have no separatrix issuing from p and this is
the main difficulty when we deal with corner singularities (recall that F
is not necessarily of Generic General Type, so the techniques of [3] does
not work). However, if the corner singularity p is a node, we can overcome
this difficulty by using a nodal separator issuing from p and Theorem 1.3
to define the singularity p̃ corresponding to p in the resolution of F̃ . More-
over, Theorem 1.2 guarantees that p and p̃ are in “isomorphic positions” in
their corresponding exceptional divisors. From this point the construction
of a topological equivalence extending to p follows some ideas already used
in [4].

2. Nodal separators

Let V be a complex surface and let p ∈ V be a regular point.

Definition 2.1. — A set S ⊂ V will be called a nodal separator at
p ∈ V if there exist

(1) a complex surface M ;
(2) a map π : M → V , which is a finite composition of blow ups at

points equal or infinitely near to p ∈ V ; and
(3) a germ of nodal foliation F at some point q ∈ π−1(p)

such that the strict transform of S by π is a nodal separator of F at q ∈M .
By simplicity, we will denote the strict transform of S by π also by S, so
we can say that S is a nodal separator of F at q ∈M .

Remark 2.2. — In the definition above, by performing additional blow
ups at q if necessary, we can assume the following additional properties:

(1) the point q is the intersection of two irreducible components E1 and
E2 of the exceptional divisor π−1(p);

(2) E1 and E2 are the separatrices of the nodal foliation F at q ∈M .

ANNALES DE L’INSTITUT FOURIER
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Remark 2.3. — Let S be a nodal separator at p ∈ V . Restricted to some
neighborhood of p, the nodal separator S has the following properties:

(1) S is a real surface of dimension three with an isolated singularity
at p ∈ S;

(2) the Levi distribution on S\{p} is integrable, so we have a Levi
foliation on S\{p};

(3) the Levi foliation on S\{p} is minimal, that is, its leaves are dense
in S.

At this point, the following question become interesting: do there exist
other examples of real surfaces satisfying the properties (1), (2) and (3)
above? We can easily construct examples which are, essentially, immersed
nodal separators: Let S be a nodal separator at p ∈ V and let ψ : S → V ,
ψ(p) = p be continuous, injective and holomorphic on a neighborhood of
S\{p}; then ψ(S) satisfies properties (1), (2) and (3) above. Does there
exist an essentially different example?

As in the case of germs of curves, we will define a notion of equisingularity
for nodal separators. Let S be a nodal separator at p ∈ V . We denote by
Np(S) the set of points equal or infinitely near to p that lie on S.

Definition 2.4. — Let V and Ṽ be smooth surfaces and let S and S̃ be
two nodal separators at p ∈ V and at p̃ ∈ Ṽ , respectively. We say that S and
S̃ are equisingular if there exists a bijection φ : Np(S)→ Np̃(S̃) preserving
the natural ordering and proximity of infinitely near points, that is: ζ1 is
infinitely near (resp. proximate) to ζ2 if and only if φ(ζ1) is infinitely near
(resp. proximate) to φ(ζ2).

It is easy to see that, after a blow up at p ∈ V , the nodal separator S
intersects the exceptional divisor at exactly one point; clearly this property
holds after successively blow ups. In other words, there is a single point on
S in each infinitesimal neighborhood of p. Therefore the points in Np(S)
are sequentially ordered by the natural ordering of infinitely near points.

Proposition 2.5. — Let S and S̃ be nodal separators associated to
nodal singularities at p ∈ V and p̃ ∈ Ṽ of eigenvalues λ and λ̃ in (1,+∞)\Q,
respectively. Then, S and S̃ are equisingular if and only if λ = λ̃.

Remark 2.6. — Clearly, by taking the multiplicative inverse if necessary,
we can assume that the eigenvalue of a node belongs to (1,+∞)\Q.

Proof. — If λ = λ̃, in linearizing coordinates we have that S and S̃ are
both nodal separators associated to the node x ∂

∂x +λy ∂
∂y . This implies the

TOME 68 (2018), FASCICULE 2
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equisingularity of S and S̃. Suppose now that S and S̃ are equisingular.
Again, in linearizing coordinates S is a nodal separator of the node x ∂

∂x +
λy ∂

∂y , so S is given by {|y| = c|x|λ} for some c > 0. Moreover, after the
linear change of coordinates (x, y) 7→ (x, ry), for some r > 0, we can assume
that c = 1. Let p1, p2, . . . be the points infinitely near to p ∈ V that lie on
S, that is:

• p1 is the only point in the exceptional divisor E1 of the blow up at
p ∈ V , that lies in S;

• pj is the only point in the exceptional divisor Ej of the blow up at
pj−1, that lies in S (j > 2).

All the strict transforms of Ej by subsequent blow ups are also denoted by
Ej . Define the sequence n1, n2, . . . of natural numbers as follows:

• Let n1 ∈ N be such that p1, . . . , pn1 ∈ E1 and pn1+1 /∈ E1. It is not
difficult to see that n1 = [ λ

λ−1 ], so λ
λ−1 = n1 + 1

λ1
for some λ1 > 1.

• Let n2 ∈ N be such that pn1+1, . . . , pn1+n2 ∈ En1+1 and pn1+n2+1 /∈
En1+1. In this case we have n2 = [λ1] and therefore λ

λ−1 = n1 +
1

n2+ 1
λ2

for some λ2 > 1.
• Let n3 ∈ N be such that pn1+n2+1, . . . , pn1+n2+n3 ∈ En1+n2+1 and
pn1+n2+n3+1 /∈ En1+n2+1. Then λ

λ−1 = n1 + 1
n2+ 1

n3+ 1
λ3

for some

λ3 > 1.
• etc.

Therefore [n1, n2, . . .] is the representation of λ
λ−1 as a continued fraction.

On the other hand, let p̃1, p̃2, . . . be the points infinitely near to p̃ that lies
in S̃:

• p̃1 is the only point in the exceptional divisor Ẽ1 of the blow up at
p̃, that lies in S̃,

• p̃j is the only point in the exceptional divisor Ẽj of the blow up at
p̃j−1, that lies in S̃ (j > 2).

Since the nodal separators S and S̃ are equisingular, clearly we have that

• p̃1, . . . , p̃n1 ∈ Ẽ1 and p̃n1+1 /∈ Ẽ1. So λ̃
λ̃−1 = n1+ 1

λ̃1
for some λ̃1 > 1.

• p̃n1+1, . . . , p̃n1+n2 ∈ Ẽn1+1 and p̃n1+n2+1 /∈ Ẽn1+1. So λ̃
λ̃−1 = n1 +

1
n2+ 1

λ̃2

for some λ̃2 > 1.
• etc.

From this we conclude that [n1, n2, . . .] is also the representation of λ̃
λ̃−1 as

a continued fraction, so λ̃ = λ. �

ANNALES DE L’INSTITUT FOURIER
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As in the case of curves, we can establish a notion of topological equiv-
alence for nodal separators.

Definition 2.7. — Let V and Ṽ be smooth surfaces and let S and
S̃ be two nodal separators at p ∈ V and at p̃ ∈ Ṽ , respectively. We say
that S and S̃ are topological equivalent if there is an orientation preserving
homeomorphism h : U→ Ũ, h(p) = p̃ between neighborhoods of p ∈ V and
p̃ ∈ Ṽ , such that:

(1) h(S ∩ U) = S̃ ∩ Ũ;
(2) h conjugates the Levi foliations of S and S̃.

The homeomorphism h will be called a topological equivalence between the
nodal separators S and S̃.

Example 2.8. — Two nodal separators of x ∂
∂x + λy ∂

∂y , λ ∈ (0,+∞)\Q
are topologically equivalent by a biholomorphism of the form (x, y) 7→
(x, ry), r > 0. Thus, given a nodal separator S of a nodal singularity,
after a holomorphic change of coordinates we can always assume that S =
{|y| = |x|λ}.

3. Equisingularity implies topological equivalence

In this section we prove the first part of Theorem 1.2: equisingularity
implies topological equivalence. Then, we assume that the nodal separators
S at p ∈ V and S̃ at p̃ ∈ Ṽ are equisingular. Let p1, p2, . . . be the points
infinitely near to p that lie on S:

• p1 is the only point in the exceptional divisor E1 of the blow up at
p, that lies in S;

• pj is the only point in the exceptional divisor Ej of the blow up at
pj−1, that lies in S (j > 2).

All the strict transforms of Ej by subsequent blow ups are also denoted by
Ej . Analogously, let p̃1 ∈ Ẽ1, p̃2 ∈ Ẽ2, . . . be the points infinitely near to p̃
that lie on S̃. There exists k ∈ N such that S and S̃ are nodal separators
issuing from nodal foliations at pk and p̃k respectively. By Remark 2.2, if
we take k large enough we can assume the following properties:

• pk is the intersection of Ek with El for some l < k;
• p̃k is the intersection of Ẽk with Ẽ

l̃
for some l̃ < k;

• Ek and El are the separatrices of the nodal foliation generating S;
• Ẽk and Ẽ

l̃
are the separatrices of the nodal foliation generating S̃.

TOME 68 (2018), FASCICULE 2
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By the equisingularity of S and S̃ we have in fact that l̃ = l. From exam-
ple 2.8, we can take local holomorphic coordinates (x, y) at pk and (x̃, ỹ)
at p̃k such that:

• El = {y = 0}, Ek = {x = 0};
• Ẽl = {ỹ = 0}, Ẽk = {x̃ = 0};
• S = {|y| = |x|λ};
• S̃ = {|ỹ| = |x̃|λ̃}.

Observe that pk+1 ∈ El if and only if λ > 1. On the other hand, by
the equisingularity of S and S̃ we have that pk+1 ∈ El if and only if
p̃k+1 ∈ Ẽl. Then we deduce that λ > 1 if and only if λ̃ > 1. Without loss
of generality we can assume that λ and λ̃ are both greater than one. Then,
since the nodal separators S at pk and S̃ at p̃k are also equisingular, from
Proposition 2.5 we conclude that λ = λ̃. Let M and M̃ be the manifolds
obtained by performing the k successively blow ups at p, p1, . . . , pk−1 and
at p̃, p̃1, . . . , p̃k−1, respectively. Obviously, the homeomorphism h from a
neighborhood of pk to a neighborhood of p̃k given by h(x, y) = (x, y) is a
topological equivalence between the nodal separators S at pk and S̃ at p̃k.
This homeomorphism extends as a homeomorphism of a neighborhood of
E1 ∪ . . .∪Ek in M to a neighborhood of Ẽ1 ∪ . . .∪ Ẽk in M̃ . Therefore the
nodal separators S at p ∈ V and S̃ at p̃ ∈ Ṽ are topologically equivalent.

4. Topological equivalence implies equisingularity

In this section we reduce the proof of Theorem 1.2 to the proof of Propo-
sition 4.1 stated below. Naturally, we assume that the nodal separators S
and S̃ are topologically equivalent.
Let p1, p2, . . . the points infinitely near to p that lie on S, that is:
• p1 is the only point in the exceptional divisor E1 of the blow up at
p, that lies in S;

• pj is the only point in the exceptional divisor Ej of the blow up at
pj−1, that lies in S (j > 2).

In the same way, we consider the sequence p̃1 ∈ Ẽ1, p̃2 ∈ Ẽ2, . . . of points
infinitely near to p̃ that lie on S̃.

Proposition 4.1. — Given k ∈ N, there exist two germs of analytic
irreducible curves C at p and C̃ at p̃ such that:

(1) C and C̃ are topologically equivalent as inmersed curves;
(2) the points p1, . . . , pk lies in C;

ANNALES DE L’INSTITUT FOURIER
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(3) the points p̃1, . . . , p̃k lies in C̃.

Since topological equivalence implies equisingularity in the case of curves,
it is easy to see that Proposition 4.1 implies that the nodal separators S
and S̃ are equisingular, which will finish the proof of Theorem 1.2.

5. Constructing a better topological equivalence

In this section we begin with the proof of Proposition 4.1. Concretely, this
section is devoted to prove Proposition 5.2, which permit us to construct,
given a topological equivalence of nodal separators, another topological
equivalence with “nice” properties.

Let p, p̃, pj , p̃j , Ej , Ẽj be as in Section 4. Clearly, it is sufficient to prove
Proposition 4.1 for k ∈ N large enough. Thus, from now on we assume
k ∈ N large enough such that:

• pk is the intersection of Ek with El for some l < k;
• p̃k is the intersection of Ẽk with Ẽ

l̃
for some l̃ < k;

• Ek and El are the separatrices of the nodal foliation generating S;
• Ẽk and Ẽ

l̃
are the separatrices of the nodal foliation generating S̃.

Denote byM the complex surface obtained by performing the k successively
blow ups at p, p1,. . . , pk−1. Set

E :=
k⋃
j=1

Ej

and let
π : (M,E)→ (V, p)

be the natural map. In the same way define M̃ , Ẽ and the natural map

π̃ : (M̃, Ẽ)→ (Ṽ , p̃).

Let h : U→ Ũ be a topological equivalence between the nodal separators S
at p and S̃ at p̃. Set U = π−1(U), Ũ = π̃−1(Ũ) and

h = π̃−1 ◦ h ◦ π : U\E → Ũ\Ẽ.

Clearly the following properties hold:
(1) h is a homeomorphism;
(2) h(ζ) → Ẽ as ζ → E, that is, d̃(h(ζ), Ẽ) → 0 as d(ζ, E) → 0 for

some metrics d and d̃ on M and M̃ respectively;
(3) h(S ∩ U\{pk}) = S̃ ∩ Ũ\{p̃k};

TOME 68 (2018), FASCICULE 2
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(4) the leaves of the Levi foliation of S ∩ U are mapped by h onto the
leaves of the Levi foliation of S̃ ∩ Ũ .

The following proposition is inmediate:

Proposition 5.1. — If a map h : U\E → Ũ\Ẽ satisfies the proper-
ties (1), (2), (3) and (4) above, then the map

h : U→ Ũ,

h = π̃ ◦ h ◦ π−1 on U\{0},
h(0) = 0

defines a topological equivalence between the nodal separators S at p and
S̃ at p̃.

Thus, in order to construct a topological equivalence between the nodal
separators S at p and S̃ at p̃ will be sufficient to construct a map h satisfying
the properties (1), (2), (3) and (4) above. Furthermore, if no confusion arise
we can identify both maps h and h. Then, from now on it will be convenient
to denote h also by h.

Proposition 5.2. — Let h : U → Ũ be a topological equivalence be-
tween the nodal separators S and S̃. Then there exist:

• another topological equivalence h1 between S and S̃;
• local holomorphic coordinates (x, y) at pk ∈M ;
• local holomorphic coordinates (x̃, ỹ) at p̃k ∈ M̃ ;
• a matrix

(
a b
c d

)
in SL(2,Z);

• real irrational numbers λ, λ̃ > 0; and
• complex numbers µ0, ν0 ∈ ∂D

such that:
(1) El = {y = 0}, Ek = {x = 0};
(2) Ẽ

l̃
= {ỹ = 0}, Ẽk = {x̃ = 0};

(3) S = {|y| = |x|λ};
(4) S̃ = {|ỹ| = |x̃|λ̃};
(5) λ̃ = c+dλ

a+bλ ;
(6) h1 maps {|y| = |x|λ, |x| 6 1} onto {|ỹ| = |x̃|λ, |x̃| 6 1} by the rule

h1(tη, tλξ) = (tµ0η
aξb, tλ̃ν0η

cξd); η, ξ ∈ ∂D, t ∈ [0, 1].

Remark 5.3. — Observe that the irrational numbers λ, λ̃ actually de-
pend on the natural number k, which we have previously fixed taking into
account the properties in the beginning of Section 5 (see Remark 2.2). In
order to prove Proposition 4.1 we will approximate the nodal separators
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S and S̃ by curves of type y = x
m
n and ỹ = x̃

m̃
ñ for rational numbers m

n

and m̃
ñ close to λ and λ̃ respectively. If we consider k ∈ N fixed, a first

option to obtain a satisfactory approximation to the infinitesimal behavior
of S is to take m

n very close to λ. Nevertheless, will be more convenient
for us to think in the following different way: for each k we can choose
m
n “moderately” close to λ = λ(k), then y = x

m
n will give an arbitrarily

satisfactory approximation to the infinitesimal behavior of S whenever we
take k large enough. The precise mean of the word “moderately” above will
be established in Section 6.

We begin with the proof of Proposition 5.2.
Let B′ be a small diffeomorphic compact ball centered at p ∈ V and

contained in U. There exist holomorphic coordinates (x, y) at pk such that
the foliation associated to S is given by the holomorphic vector field x ∂

∂x +
λy ∂

∂y for some irrational number λ > 0. We can assume that the nodal
separator S is given by {|y| = |x|λ} at pk. Take some ε > 0 and consider, for
each s ∈ [−1, 1], the nodal separator Ss at p ∈ V given in the infinitesimal
coordinates (x, y) by

Ss = {|y| = (1 + sε)|x|λ}.

Set Ss = Ss ∩B′ and Λ =
⋃
s∈[−1,1] Ss.

B′ and ε can be taken such that the following properties hold:

• ∂B′ is transverse to each Ss;
• in the infinitesimal coordinates (x, y), each intersection T ′s = ∂B′ ∩
Ss is given by

{|y| = (1 + sε)|x|λ, |x| = r′s},

for some r′s > 0;
• the set Λ\{p} is diffeomorphic to (S0\{p}) × [−1, 1] in such way
that
– (Ss\{p}) ' (S0\{p})× {s}, and
– the Levi foliation on (Ss\{p}) ' (S0\{p})×{s} coincides with

the Levi foliation on (S0\{p}).

It is easy to construct a continuous map f on the closure of B′\Λ with
the following properties:

• f maps B′\Λ homeomorphically onto B′\S0;
• for σ ∈ {1,−1}, we have that f maps Sσ ' S0 × {σ} homeomor-
phically onto S0 by the rule (ζ, σ) 7→ ζ.
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Now, we proceed in an analogous way at p̃ ∈ Ṽ : let B̃ be a diffeomorphic
compact ball centered at p̃ ∈ Ṽ and contained in Ũ. Let (x̃, ỹ) be holomor-
phic coordinates at p̃k such that the foliation associated to S̃ is given by
the holomorphic vector field x̃ ∂

∂x̃
+ λ̃ỹ ∂

∂ỹ
. We can assume that the nodal

separator S̃ is given by {|ỹ| = |x̃|λ̃} at p̃k. Take some ε̃ > 0 and consider, for
each s ∈ [−1, 1], the nodal separator S̃s at p̃ ∈ Ṽ given in the infinitesimal
coordinates (x̃, ỹ) by

S̃s = {|ỹ| = (1 + sε̃)|x̃|λ̃}.

Set S̃s = S̃s ∩ B̃ and Λ̃ =
⋃
s∈[−1,1] S̃s.

We can take B̃ and ε̃ such that the following properties hold:
• ∂B̃ is transverse to each S̃s;
• in the infinitesimal coordinates (x̃, ỹ), each intersection T̃s = ∂B̃∩S̃s
is given by

{|ỹ| = (1 + sε̃)|x̃|λ̃, |x̃| = r̃s},

for some r̃s > 0:
• the set Λ̃\{p̃} is diffeomorphic to (S̃0\{p̃}) × [−1, 1] in such way
that
– (S̃s\{p̃}) ' (S̃0\{p̃})× {s}, and
– the Levi foliation on (S̃s\{p̃}) ' (S̃0\{p̃})×{s} coincides with

the Levi foliation on (S̃0\{p̃}).
We construct a continuous map f̃ on the closure of B̃\Λ̃ with the follow-

ing properties:
• f̃ maps B̃\Λ̃ homeomorphically onto B̃\S̃0;
• for σ ∈ {1,−1}, we have that f̃ maps S̃σ ' S̃0 × {σ} homeomor-
phically onto S̃0 by the rule (ζ, σ) 7→ ζ.

Clearly we can assume B′ small enough such that h(B′) is contained in
the interior of B̃. Then we can define the map h0 = f̃−1 ◦ h ◦ f on B′\Λ.
On

(Λ\{p}) ' (S0\{p})× [−1, 1]
define

h0(ζ, s) = (h(ζ), s) ∈ (S̃0\{p̃})× [−1, 1] ' (Λ̃\{p̃})
and set h0(p) = p̃. It is easy to verify the following properties:

• h0 maps B′ homeomorphically into B̃;
• if s ∈ [−1, 1], then h0 maps Ss homeomorphically into S̃s conjugat-
ing the Levi foliations.
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Let B be a diffeomorphic compact ball, centered at p ∈ V and such that:
• B is contained U;
• B′ is contained in the interior of B;
• in the infinitesimal coordinates (x, y), the intersection of each Ss
with B\B′ is given by

{|y| = (1 + sε)|x|λ, r′s 6 |x| 6 rs},

for some rs > r′s.
Set:

• Cs = Ss ∩B\B′;
• C =

⋃
s∈[−1,1] Cs;

• T ′ = C ∩ ∂B′ = {(x, y) ∈ C : |x| = r′s};
• T = C ∩ ∂B = {(x, y) ∈ C : |x| = rs}.

Clearly C is foliated by the restrictions to C of the leaves of the foliations
of each Ss; in fact, this foliation on C is generated by the vector field
x ∂
∂x +λy ∂

∂y in the infinitesimal coordinates (x, y). Given z = (xz, yz) ∈ T ′,
let Lz be the leave in C passing through z. Consider the path γz : [0, 1]→
Lz, γz(t) = (x(t), y(t)) such that γz(0) = z and x(t) = (1 − t + t rsr′

s
)xz.

Clearly we have the following properties:
• γz(1) ∈ T ;
• z 7→ γz(1) defines a homeomorphism between T ′ and T ;
• γz((0, 1)) is contained in the interior of Lz;
• the sets Iz = γz([0, 1]), z ∈ T ′ define a 1-dimensional foliation of C.

Set:
• C̃s = S̃s ∩ B̃\h0(B′);
• C̃ =

⋃
s∈[−1,1] C̃s;

• Ts = Ss ∩ ∂B;
• T̃ =

⋃
s∈[−1,1] T̃s = C̃ ∩ B̃.

Lemma 5.4. — There exist µs, νs ∈ ∂D depending continuously on s ∈
[−1, 1] and a matrix

(
a b
c d

)
in SL(2,Z) such that the homeomorphism h̄ :

T → T̃ defined by

h̄(rsη, (1 + sε)rsλξ) = (r̃sµsηaξb, (1 + sε̃)r̃λ̃s νsηcξd); η, ξ ∈ ∂D, s ∈ [−1, 1]

has the following properties:
(1) h̄ conjugates the foliations in T and T̃ ;
(2) for all z ∈ T ′, the points h0(z) and h̄(γz(1)) are contained in the

same leaf of x̃ ∂
∂x̃ + λ̃ỹ ∂

∂ỹ .
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Before proceeding with the proof of Lemma 5.4, we need to establish the
following dynamical lemma.

Lemma 5.5. — Suppose that the maps H,A : R2 → R2 satisfy the fol-
lowing hypothesis:

• H is continuous and A is a linear isomorphism;
• H(u+m, v + n) = H(u, v) + A(m,n), for all (u, v) ∈ R2, (m,n) ∈
Z2;

• there exist irrational numbers λ, λ̃ ∈ R such that H maps leaves of
the foliation dv−λdu = 0 into leaves of the foliation dv− λ̃du = 0.

Then we have the following properties:
(1) λ and λ̃ are related by

λ̃ = c+ dλ

a+ bλ
;

(2) there exists a continuous function κ : R2 → R such that

H(u, v) = H(0, 0) +A(u, v) + κ(u, v) · (1, λ̃).

Proof. — (1). — Since λ is irrational, given k ∈ N there existmk, nk ∈ Z
tending to infinite such that

δk := mkλ− nk → 0 as k →∞.

Since (mk, λmk) and (0, 0) belong to the line v − λu = 0 and this line is
mapped into a leaf of the foliation dv − λ̃du = 0, there exists rk ∈ R such
that

(5.1) H(mk, λmk)−H(0, 0) = rk(1, λ̃).

On the other hand we have

H(mk, λmk) = H(mk, δk + nk) = H(0, δk) +A(mk, nk)
= H(0, δk) +A(mk,mkλ− δk)
= H(0, δk) +mkA(1, λ)−A(0, δk).

From this and from Equation 5.1 we obtain

A(1, λ) = 1
mk

H(0, 0)− 1
mk

H(0, δk) + 1
mk

A(0, δk) + rk
mk

(1, λ̃).

Then, if k →∞ in last equation we deduce that A(1, λ) = c(1, λ̃) for some
c ∈ R. Then, since A is an isomorphism and therefore c 6= 0, we conclude
that

λ̃ = c+ dλ

a+ bλ
.
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(2). — Fix (u0, v0) ∈ R2. Given k ∈ N we now take mk, nk ∈ Z tending to
infinite such that

δk := mkλ− nk + v0 − u0λ→ 0 as k →∞.

Since (u0, v0) and (mk, δk + nk) belong the line v − λu = v0 − λu0, there
exists rk ∈ R such that

rk(1, λ̃) = H(mk, δk + nk)−H(u0, v0)
= H(0, δk) +A(mk, nk)−H(u0, v0)
= H(0, δk)−H(u0, v0) +A

(
u0 +mk − u0,mkλ− δk + v0 − u0λ

)
= H(0, δk)−H(u0, v0) +A(u0, v0)−A(0, δk) + (mk − u0)A(1, λ)

= H(0, δk)−H(u0, v0) +A(u0, v0)−A(0, δk) + (mk − u0)c(1, λ̃)

and therefore we have

H(u0, v0)−H(0, δk)−A(u0, v0) = (mkc− u0c− rk)(1, λ̃)−A(0, δk).

Then, if k →∞ we deduce that there exists κ(u0, v0) ∈ R such that

H(u0, v0)−H(0, 0)−A(u0, v0) = κ(u0, v0)(1, λ̃).

Clearly κ is necessarily continuous, so the proof of Lemma 5.5 is com-
plete. �

Proof of Lemma 5.4. — Consider the real flow φ associated to the vector
field x̃ ∂

∂x̃
+ λ̃ỹ ∂

∂ỹ
. Given ζ ∈ S̃s\{0}, let ρ(ζ) ∈ T̃s be the intersection

between T̃s and the orbit of φ through ζ. Define the map hs : Ts → T̃s
as follows. Given w ∈ Ts, let z ∈ T ′ be such that γz(1) = w and put
hs(w) = ρ(h0(z)). Let Gs and G̃s be the one dimensional real foliations
induced by the Levi foliations on Ts and T̃s, respectively. It is easy to
verify the following properties:

• hs maps leaves of Gs to leaves of G̃s;
• Although hs is not necessarily a homeomorphism, it induces an
isomorphism h∗s : π1(Ts)→ π1(T̃s).

Recall that

Ts = {(rsη, (1 + sε)rλs ξ) : η, ξ ∈ ∂D}

and

T̃s = {(r̃sη, (1 + sε̃)r̃λ̃s ξ) : η, ξ ∈ ∂D}.

TOME 68 (2018), FASCICULE 2



526 Rudy ROSAS

Consider the bases {αs, βs} of π1(Ts) and {α̃s, β̃s} of π1(T̃s) given by the
positively oriented loops

αs = rs∂D× {(1 + sε)rλs };(5.2)

βs = {rs} × (1 + sε)rλs ∂D;(5.3)

α̃s = r̃s∂D× {(1 + sε̃)r̃λ̃s };(5.4)

β̃s = {r̃s} × (1 + sε̃)r̃λ̃s ∂D.(5.5)

Let As be the matrix in SL(2,Z) representing the isomorphism h∗s respect
to the bases above. In fact, it is easy to see that As does not depend on
s ∈ [−1, 1], so we have

As = A =
(
a b

c d

)
∈ SL(2,Z).

Consider the coverings

(u, v) ∈ R2 7→ (rs e2πiu, (1 + sε)rλs e2πiv) ∈ Ts;

(ũ, ṽ) ∈ R2 7→ (r̃s e2πiũ(1 + sε̃)r̃λ̃s e2πiṽ) ∈ T̃s.

and let Hs : R2 → R2 be a lift of hs. The pullbacks of Gs and G̃s in the
planes (u, v) and (ũ, ṽ) define the foliations dv−λdu = 0 and dṽ− λ̃dũ = 0,
respectively. It is easy to see the following:

• Hs(u+m, v+n) = Hs(u, v)+A(m,n), for all (u, v) ∈ R2, (m,n) ∈
Z2;

• Hs maps leaves of dv − λdu = 0 into leaves of dṽ − λ̃dũ = 0.
By Lemma 5.5 there exists a continuous function κs : R2 → R such that

(5.6) Hs(u, v) = Hs(0, 0) +A(u, v) + κs(u, v)(1, λ̃)

and we have the equality λ̃ = c+dλ
a+bλ . Consider the homeomorphism

Hs(u, v) = Hs(0, 0) +A(u, v)

and let h̄s : Ts → T̃s be the corresponding induced homeomorphism.
Clearly Hs conjugates the foliations defined by dv − λdu = 0 and dṽ −
λ̃dũ = 0, so h̄s conjugates Gs with G̃s. Let Hs(0, 0) = (us, vs) and define
µs = expe2πius and νs = e2πivs . Then it is easy to see that

h̄s(rsη, (1 + sε)rλs ξ) = (r̃sµsηaξb, (1 + sε̃)r̃λ̃s νsηcξd), for all η, ξ ∈ ∂D.

Since h̄s = h̄|Ts for all s ∈ [−1, 1], item (1) of Lemma 5.4 is easily obtained.
From (5.6) it is easy to see that, for each W ∈ R2, s ∈ [−1, 1], the points
Hs(W ) and Hs(W ) are in the same leaf of dṽ − λ̃dũ = 0. Therefore, for
each w ∈ Ts, s ∈ [−1, 1], the points hs(w) and h̄s(w) are in the same leaf of
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G̃s. Since hs(w) = ρ(h0(z)) provided w = γz(1), we have that ρ(h0(z)) and
h̄s(γz(1)) are in the same leaf of G̃s. Moreover, since ρ preserves the leaves
of x̃ ∂

∂x̃ + λ̃ỹ ∂
∂ỹ , we have that h0(z) and h̄s(γz(1)) are in the same leaf of

x̃ ∂
∂x̃ + λ̃ỹ ∂

∂ỹ . This proves item (2) of Lemma 5.4. �

Given z ∈ T ′, let sz ∈ [−1, 1] be such that z ∈ Ssz and let Hz be the leaf
of the Levi foliation of Ssz containing z. We know that Ssz is mapped by h0
into S̃sz . Moreover, h0(Hz) is contained in the interior of a leave H̃z of the
Levi foliation of S̃sz . Let L̃z be the closure of H̃z\h0(Hz). The interior of
L̃z is holomorphically equivalent to a disc, so we can consider the Poincaré
metric in the interior of L̃z. Let γ̃z : R→ L̃z be a geodesic such that

γ̃z(−∞) := lim
s→−∞

γ̃z(s) = h0(z)

γ̃z(+∞) := lim
s→+∞

γ̃z(s) = h̄(z)

and set Ĩz = γ̃z(R ∪ ±∞). We have the following properties:
• although the parameterized geodesic γ̃z is not uniquely defined, the
set Ĩz is well defined and depends continuously on z ∈ T ′;

• the sets Ĩz, z ∈ T ′ defines a partition of C̃.
In order to choose γ̃z depending continuously on z ∈ T ′ it suffices to

define the value γ̃z(0) depending continuously on z ∈ T ′. Observe the
following facts:

• L̃z is diffeomorphic to a closed band and ∂1L̃z := L̃z ∩ B̃ is a
component of its boundary;

• Since ∂B̃ is smooth, the boundary ∂1L̃z depends smoothly on z.
Observe that we can assume ∂B̃ to be real analytic near T̃ .

Then, it is not difficult to prove that, for each z, the euclidean length
of γ̃z is finite. Moreover, it is easy to see that there is δ > 0 such that
the euclidean length of γz is greater than δ for all z ∈ T ′. Then we can
define γ̃z(0) such that the euclidean length of γ̃z|[0,+∞) is equal to δ. It
is not difficult to see that γ̃z(0) depends continuously on z ∈ T ′. Fix an
increasing diffeomorphism φ : (0, 1) → R and define the homeomorphism
hz : Iz → Ĩz by

hz(γz(s)) = γ̃z(φ(s)), if s ∈ (0, 1);
hz(z) = h0(z);

hz(γz(1)) = h̄(γ̃z(1)).

Now, we can extend the map h0 to C by putting h0 = hz on Iz. The
extended h0 has the following properties:
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• h0 is a homeomorphism between B′ ∪ C and h0(B′) ∪ C̃;
• h0 maps the nodal separator

{|y| = (1 + sε)|x|λ, |x| 6 rs}

onto the nodal separator

{|ỹ| = (1 + sε̃)|x̃|λ̃, |x̃| 6 r̃s}.

• h0 maps Ts onto T̃s by the rule

h0(rsη, (1 + sε)rsλξ) = (r̃sµsηaξb, (1 + sε̃)r̃λ̃sµsηcξd); η, ξ ∈ ∂D, s ∈ [−1, 1].

Put h0(x, y) = (f(x, y), g(x, y)) and define

h1 : B′ ∪ C → h0(B′) ∪ C̃

as follows:

h1(tx, tλy) =
(
|s|f

(
t

|s|
x,

(
t

|s|

)λ
y

)
, |s|λ̃g

(
t

|s|
x,

(
t

|s|

)λ
y

))
,

for (x, y) ∈ Ts, 0 < t < |s|, 0 < |s| 6 1;

h1(tx, tλy) =
(
tf(x, y), tλ̃g(x, y)

)
,

for (x, y) ∈ Ts, |s| 6 t 6 1, |s| 6 1; and
h1 = h0 otherwise.

It is easy to see that h1 has the following properties:
• h1 is a homeomorphism between B′ ∪ C and h0(B′) ∪ C̃;
• h1 maps the nodal separator

{|y| = |x|λ, |x| 6 r0}

onto the nodal separator

{|ỹ| = |x̃|λ̃, |x̃| 6 r̃0}

by the rule

h1(tr0η, t
λr0

λξ) = (tr̃0µ0η
aξb, tλ̃r̃λ̃0 ν0η

cξd); η, ξ ∈ ∂D, t ∈ [0, 1].

Clearly we can extend h1 to a neighborhood of

{|y| = |x|λ, |x| 6 r0}.

Moreover, by a linear change of coordinates we can assume that r0 = r̃0 = 1,
so the proof of Proposition 5.2 is complete.
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6. Proof of Proposition 4.1

By simplicity, we can assume that h : U → Ũ satisfies the properties (1)
to (6) in Proposition 5.2.
Consider (α, β) ∈ R+ × R+ fixed. It is easy to see that the family of

real curves (tαη, tβξ), t ∈ [0, 1] indexed by (η, ξ) ∈ ∂(D × D) defines a 1-
dimensional foliation on D×D topologically equivalent to the standard real
radial foliation. In particular, any (x, y) ∈ (D × D)\{0} can be expressed
in a unique way as

(x, y) = (tαη, tβξ)
for a some (η, ξ) ∈ ∂(D× D), t ∈ (0, 1]. We will need the following lemma.

Lemma 6.1. — Given m,n ∈ N define f : D × D → D × D as follows.
Firstly, define f(0, 0) = (0, 0). Secondly, if (x, y) 6= 0, from the considera-
tions above we have

(x, y) = (tmη, tnξ)
for a some (η, ξ) ∈ ∂(D× D), t ∈ (0, 1], so we can define

f(x, y) = (tη, tλξ).

Then we have the following properties:
(1) f is a homeomorphism;
(2) f maps {|y| = |x| nm , |x| 6 1} onto {|y| = |x|λ, |x| 6 1};
(3) f = id on ∂(D× D).

Remark 6.2. — Observe that for any (η, ξ) ∈ ∂(D× D) we can write

f(tmη, tnξ) = (tη, tλξ)

even if t = 0. So we can consider that f is defined by the unique expression

f(tmη, tnξ) = (tη, tλξ)

for any (η, ξ) ∈ ∂(D× D), t ∈ [0, 1].

Proof of Lemma 6.1. — (1). — For the first assertion it is sufficient to
see that f defines a topological equivalence between the topologically radial
foliations defined by the pairs (m,n) and (1, λ).

(2). — Given (x, y) such that |y| = |x| nm , |x| 6 1, we easily see that
(x, y) = (tmη, tnξ) with |η| = |ξ| = 1, t ∈ [0, 1]. Then

(x′, y′) := f(x, y) = (tη, tλξ)

clearly satisfies |y′| = |x′|λ. On the other hand, any (x′, y′) such that |y′| =
|x′|λ, |x′| 6 1 can be expressed as (x′, y′) = (tη, tλξ) with |η| = |ξ| = 1,
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t ∈ [0, 1]. Then (x′, y′) = f(tmη, tnξ), where (x, y) = (tmη, tnξ) obviously
satisfies |y| = |x| nm , |x| 6 1. This proves the second assertion.

(3). — For the third assertion it is sufficient to see that (x, y) =
(tmη, tnξ) ∈ ∂(D× D) implies t = 1, so f(x, y) = f(η, ξ) = (η, ξ). �

We see from Proposition 5.2 that
c+ dλ

a+ bλ
> 0;

hence
• a+ bλ > 0 and c+ dλ > 0; or
• a+ bλ < 0 and c+ dλ < 0.

Take m,n ∈ N with n/m irreducible and close enough to λ such that:
• am+ bn > 0 and cm+ dn > 0; or
• am+ bn < 0 and cm+ dn < 0.

Let f be as in Lemma 6.1. Then f defines a homeomorphism of the neigh-
borhood D× D of pk ∈M with itself. If we put f = id on M\D× D, from
item (3) of Lemma 6.1 we have the following properties:

• f is a homeomorphism of M with itself;
• f(E) = E;
• f maps {|y| = |x| nm , |x| 6 1} onto {|y| = |x|λ, |x| 6 1} by the rule

f(tmη, tnξ) = (tη, tλξ); (η, ξ) ∈ ∂(D× D), t ∈ [0, 1].

If we set

m̃ = |am+ bn|,
ñ = |cm+ dn|

and apply Lemma 6.1 to a neighborhood of p̃k in M̃ , we can construct as
above a map f̃ such that:

• f̃ is a homeomorphism of M̃ with itself;
• f̃(Ẽ) = Ẽ;

• f̃ maps {|ỹ| = |x̃|
ñ

m̃ , |x̃| 6 1} onto {|ỹ| = |x̃|λ̃, |x̃| 6 1} by the rule

f̃(tm̃η, tñξ) = (tη, tλ̃ξ); (η, ξ) ∈ ∂(D× D), t ∈ [0, 1].

If we consider the map h1 := f̃−1 ◦ h ◦ f , clearly we have the following
properties:

• h1 maps the complement of E in a neighborhood of M onto the
complement of Ẽ in a neighborhood of M̃ ;

• h(ζ)→ Ẽ as ζ → E.
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Moreover, from item (6) of Proposition 5.2 we obtain an explicit expres-
sion of h1 on {|y| = |x| nm , |x| 6 1} as follows. If (x, y) belongs to {|y| =
|x| nm , |x| 6 1}, as we have seen in the proof of Lemma 6.1 we have (x, y) =
(tmη, tnξ) with |η| = |ξ| = 1, t ∈ [0, 1] and therefore:

h1(x, y) = f̃−1 ◦ h ◦ f(tmη, tnξ) = f̃−1 ◦ h(tη, tλξ)

= f̃−1(tµ0η
aξb, tλ̃ν0η

cξd) = (tm̃µ0η
aξb, tñν0η

cξd)

= (t|am+bn|µ0η
aξb, t|cm+dn|ν0η

cξd).

Here we have to cases. In the first case we have |am+ bn| = am+ bn and
|cm+ dn| = cm+ dn and therefore:

h1(x, y) = (tam+bnµ0η
aξb, tcm+dnν0η

cξd)

= (µ0(tmη)a(tnξ)b, ν0(tmη)c(tnξ)d)

= (µ0x
ayb, ν0x

cyd).

In the other case we have

h1(x, y) = (t−am−bnµ0η
aξb, t−cm−dnν0η

cξd)

= (µ0(tmη−1)−a(tnξ−1)−b, ν0(tmη−1)−c(tnξ−1)−d)

= (µ0x
−ay−b, ν0x

−cy−d).

In any case, it is easy to see that h1 maps the curve

{(zm, zn) : |z| < 1} at pk ∈M

to the curve
{(µ0z

m̃, ν0z
ñ) : |z| < 1} at p̃k ∈ M̃.

Clearly these curves define two curves C at p and C̃ at p̃ satisfying the
properties (1), (2) and (3) of Proposition 4.1.

7. Topological invariance of the eigenvalue

Let V and Ṽ be smooth complex surfaces and let S and S̃ be nodal sep-
arators at p ∈ V and at p̃ ∈ Ṽ , respectively. We know that, after a finite
sequence of blow ups at p, the nodal separator S is generated by a nodal
foliation with an irrational positive eigenvalue λ. Clearly this eigenvalue
depends on the number of iterated blow ups realized at p, but next the-
orem shows that, taking into consideration this number of blow ups, the
eigenvalue is a topological invariant of the nodal separator. Moreover, next
theorem also show that there are only to possibilities for the map induced
by a topological equivalence between S\{p} and S̃\{p̃} at homology level.
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Proposition 7.1. — Let h : U → Ũ be a topological equivalence be-
tween the nodal separators S and S̃. Let pj , p̃j , Ej , Ẽj (j ∈ N) be as in
Section 4. Let k ∈ N be such that

• pk is the intersection of Ek with El for some l < k;
• p̃k is the intersection of Ẽk with Ẽl̃ for some l̃ < k;
• S at p is generated by a nodal foliation whose separatrices are con-
tained in Ek and El;

• S̃ at p̃ is generated by a nodal foliation whose separatrices are con-
tained in Ẽk and Ẽl̃.

Let (x, y) and (x̃, ỹ) be holomorphic coordinates at pk and at p̃k, respec-
tively, such that

• p ' (0, 0), p̃ ' (0, 0);
• El = {y = 0}, Ek = {x = 0}, Ẽl̃ = {ỹ = 0}, Ẽk = {x̃ = 0};
• S at p is given by {|y| = |x|λ} for some irrational number λ > 0;
• S̃ at p̃ is given by {|ỹ| = |x̃|λ̃} for some irrational number λ̃ > 0.

Let h∗ be the map from H1(S\{pk}) to H1(S̃\{p̃k}) induced by h at ho-
mology level. Clearly these groups can be naturally identified if we think
(x, y) ' (x̃, ỹ), so we can think that h∗ is an isomorphism of Z2. Then, we
have the following properties:

(1) l̃ = l;
(2) λ̃ = λ;
(3) the map h∗ is the identity or the inversion isomorphism according

to h preserves or reverses the natural orientations of Levi foliations
leaves.

Proof. — Item (1) follows directly from the equisingularity of S and S̃.
We return to the ideas and notations of Section 6. From the final of the
proof of Proposition 4.1 we deduce that the curves

{(zm, zn) : |z| < 1} at pk ∈M

and

{(µ0z
m̃, ν0z

ñ) : |z| < 1} at p̃k ∈ M̃

are equisingular. But this can happen only if we have ñ
m̃ = n

m or ñ
m̃ = m

n , so

cm+ dn

am+ bn
= n

m
or cm+ dn

am+ bn
= m

n
,

cm2 − bn2 + (d− a)mn = 0 or dn2 − am2 + (c− b)mn = 0.
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Since n
m is any irreducible fraction close enough to λ, we conclude that

c = b = 0, a = d or a = d = 0, c = b. Thus,

λ̃ = c+ dλ

a+ bλ
∈
{
λ,

1
λ

}
.

By the equisingularity of S and S̃ we have that S is tangent to El if and
only if S̃ is tangent to Ẽl, so we have λ > 1 if and only if λ̃ > 1. Therefore
λ̃ = λ and (

a b

c d

)
= ± id .

From the construction of the map h1 given by Proposition 5.2 it is easy to
see that

• h1 induces the same map h∗;
• h1 preserves the orientation of Levi leaves if and only if h do.

From the proof of Lemma 5.4 we see that the map h∗ is given by the matrix(
a b
c d

)
, so h∗ = ± id. Finally it is easy to see from item (6) of Proposition 5.2

that h1 preserves the orientation of the leaves if
(
a b
c d

)
= id and reverses

them if
(
a b
c d

)
= − id. �

8. Topological equivalence of holomorphic foliations and
invariance of nodal separators

Let F and F̃ be holomorphic foliations with isolated singularities at
0 ∈ C2. Suppose that F and F̃ are topologically equivalent (at 0 ∈ C2),
that is, there is an orientation preserving homeomorphism h : U → Ũ,
h(0) = 0 between neighborhoods of 0 ∈ C2, taking leaves of F to leaves of
F̃ . Such a homeomorphism is called a topological equivalence between F
and F̃ .

Theorem 8.1. — Let h : U→ Ũ, h(0) = 0 be a topological equivalence
between F and F̃ . Let S be a nodal separator of F at 0 ∈ C2. Then h(S)
is a nodal separator of F̃ at 0 ∈ C2.

Proof. — From Theorem 1.1 we deduce that h(S) contains a nodal sep-
arator S̃ of F̃ at 0 ∈ C2.There are infinitesimal coordinates (x̃, ỹ) such
that

S̃ =
{
|ỹ| = |x̃|λ̃ : |x̃| < 1

}
.

It is sufficient to prove that there is some neighborhood Ũ0 of 0 ∈ C2 such
that h(S) ∩ Ũ0 is contained in S̃. Take a neighborhood Ũ0 of 0 ∈ C2 with
the following properties:
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(1) S̃0 := S̃ ∩ Ũ0 ⊂ {|ỹ| = |x̃|λ̃ : |x̃| < 1/2};
(2) in infinitesimal coordinates (x, y), we have

S0 := S ∩ h−1(Ũ0) = {|y| = |x|λ : |x| < 1}.

Take a point p ∈ S0 such that p̃ := h(p) is contained in S̃0. Let L be the
leaf of F|S0 through p. Since h(S) ∩ Ũ0 = h(S0) and L is dense in S0, it is
sufficient to prove that h(L) is contained in S̃. Let L̃ be the leaf of F̃ |

S̃0

through p̃. By item (1) above we deduce that L̃ is also the leaf of F̃ |
Ũ0

through p̃. Since h(L) is contained in Ũ0, then it is contained in the leaf of
F̃ |

Ũ0
through p̃, so h(L) ⊂ L̃. Therefore h(L) ⊂ S̃. �

Theorem 8.2. — Let h : U→ Ũ, h(0) = 0 be a topological equivalence
between F and F̃ . Let S1 and S2 be nodal separators of F at 0 ∈ C2 issuing
from the same node in the resolution of F . Then h(S1) and h(S2) are nodal
separators issuing from the same node in the resolution of F̃ .

Proof. — Let S be any nodal separator of F . Denote by n(S) the node
in the resolution of F̃ associated to the nodal separator h(S). It is easy to
see that, if S′ is a nodal separator close enough to S, then h(S′) is close
to h(S) and contains a nodal separator also issuing from n(S). Therefore,
from Theorem 8.1 we deduce that n(S′) = n(S). Thus, the map n is locally
constant and the theorem follows by an argument of connectedness. �

Proof of Theorem 1.3. — It is a direct consequence of Theorem 8.2. �

Proof of Theorem 1.4. — By [4] there exists a topological equivalence
h between F and F̃ which, after resolution, extends as a homeomorphism
to a neighborhood of each linearizable or resonant singularity which is not
a corner. We denote by E and Ẽ the exceptional divisors in the resolutions
of F and F̃ , respectively. We use the same notation F for the foliation
at (C2, 0) an its strict transform by the resolution map. Let p be a nodal
corner point of F and let p̃ its corresponding nodal point in F̃ according to
Theorem 1.3. By Theorem 1.2, the nodal separators at p and at p̃ are equi-
singular, so p and p̃ have the same eigenvalue λ > 0. There are holomorphic
coordinates (x, y) at p and (x̃, ỹ) at p̃ with the following properties:

• p ' (0, 0), p̃ ' (0, 0);
• {x = 0} and {y = 0} are contained in different components of E ;
• {x̃ = 0} and {ỹ = 0} are contained in different components of Ẽ ;
• F is defined by the vector field x ∂

∂x + λy ∂
∂y ;

• F̃ is defined by the vector field x̃ ∂
∂x̃ + λỹ ∂

∂ỹ .
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We denote by E1 and E2 the connected components of E containing {y = 0}
and {x = 0}, respectively. Analogously define Ẽ1 and Ẽ2. We will use the
ideas used in [4] to construct the topological equivalence near a nodal non
corner point. We will think for a moment that p is not a corner: think that
{x = 0} is a separatrix and that the exceptional divisor is reduced to E1.
The fact that {x = 0} is a separatrix mapped into {x̃ = 0} is only used to
remove the homological obstruction to the extension of h, as we explain in
the sequel. Set

T = {0 < |x| 6 ε, 0 < |y| 6 ε}

and
T̃ = {0 < |x̃| 6 ε, 0 < |ỹ| 6 ε}

for some ε > 0. The map h induces an isomorphism h∗ between H1(T ) and
H1(T̃ ). In a natural way we can think that H1(T ) = H1(T̃ ). Then, the fact
that {x = 0} is a separatrix is used in [4] to prove that the isomorphism
h∗ is the identity or the inversion isomorphism according to h preserves or
reverses the natural orientation of the leaves. In our case we already have
this property, by Proposition 7.1. Then, given ε > 0, as in [4, Theorem 7
and Section 7] we find some numbers a1, b1, ã1, b̃1 ∈ (0, ε) and construct a
homeomorphism h1 with the following properties:

• h1 is defined on

V1 = W1\
(
{|x| < a1, |y| < b1} ∪ E1

)
,

where W1 is a neighborhood of E1;
• h1 maps V1 onto

W̃1\
(
{|x̃| < ã1, |ỹ| < b̃1}) ∪ Ẽ1

)
,

where W̃1 is a neighborhood of Ẽ1;
• h1 maps leaves of F to leaves of F̃ ;
• h1(ζ) tends to Ẽ1 as ζ tends to E1;
• h1 maps the set

R1 = {|x| = a1, 0 < |y| 6 b1}

onto the set

R̃1 = {|x̃| = ã1, 0 < |ỹ| 6 b̃1}

conjugating the one dimensional foliations induced by F and F̃ on
R1 and R̃1;
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• h1 maps each punctured disc

{x = u, 0 < |y| 6 b1}, |u| = a1

onto a punctured disc

{x̃ = ũ, 0 < |ỹ| 6 b̃1}, |ũ| = ã1,

so h1 extends to R1;
• close to the divisor and outside

{|x| 6 ε, |y| 6 ε} ∪ h−1({|x̃| 6 ε, |ỹ| 6 ε})
we have h1 = h;

• h1 induces the same map h∗.
In the same way, we find numbers a1, b1, ã1, b̃1 ∈ (0, ε) and construct a

homeomorphism h2 with the following properties:
• h2 is defined on

V2 = W2\
(
{|x| < a2, |y| < b2} ∪ E2

)
,

where W2 is a neighborhood of E2;
• h2 maps V2 onto

W̃2\
(
{|x̃| < ã2, |ỹ| < b̃2}) ∪ Ẽ2

)
,

where W̃2 is a neighborhood of Ẽ2;
• h2 maps leaves of F to leaves of F̃ ;
• h2(ζ) tends to Ẽ2 as ζ tends to E2;
• h2 maps the set

R2 = {|y| = b2, 0 < |x| 6 a2}

onto the set

R̃2 = {|ỹ| = b̃2, 0 < |x̃| 6 ã2}

conjugating the one dimensional foliations induced by F and F̃ on
R2 and R̃2;

• h2 maps each punctured disc

{y = u, 0 < |x| 6 a2}, |u| = b2

onto a punctured disc

{ỹ = ũ, 0 < |x̃| 6 ã2}, |ũ| = b̃2,

so h2 extends to R2;
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• close to the divisor and outside

{|x| 6 ε, |y| 6 ε} ∪ h−1({|x̃| 6 ε, |ỹ| 6 ε})
we have h2 = h;

• h2 induces the same map h∗.
In fact, the numbers aj , bj , ãj , b̃j are arbitrary whenever they are small
enough, so we can suppose that b2 = b1 and b̃2 = b̃1. By reducing W2 and
a2 if necessary we can assume the following additional properties:

• a2 < a1, ã2 < ã1;
• V1 and V2 are disjoint;
• h1(V1), h2(V2) and {|x| < ã1, |y| < b̃1} are pairwise disjoint.

For all s ∈ [0, 1], set αs = (1 − s)a1 + sa2, α̃s = (1 − s)ã1 + sã2 and
consider the sets

Ts = {|x| = αs, |y| = b1};

T̃s = {|x̃| = α̃s, |ỹ| = b̃1}.

Clearly we have the following:
• h1 conjugates the one-dimensional foliations on T0 and T̃0;
• h2 conjugates the one-dimensional foliations on T1 and T̃1. �

Lemma 8.3. — There exist a continuous family of homeomorphisms

hs : Ts → T̃s, s ∈ [0, 1]

with h0 = h1, h1 = h2 and such that, for each s ∈ [0, 1], the homeomorphism
hs conjugates the one dimensional foliation induced by F on Ts with the
one dimensional foliation induced by F̃ on T̃s.

Proof. — Of course, define h0 = h1 and h1 = h2. Each Ts can be identi-
fied with the torus ∂D× ∂D by the map(

αse
2πiu, b1e

2πiv) 7→ (e2πiu, e2πiv); u, v ∈ R.

Then we can think that h0 and h1 are in the class H of homeomorphisms
of ∂D × ∂D preserving the foliation dv − λdu = 0. Clearly it is sufficient
to prove that h0 and h1 are included in a continuous family {hs}s∈[0,1]
of homeomorphisms in H. We know that h0 and h1 lift to some homeo-
morphisms H1, H2 : R2 → R2, respectively. On the other hand, recall that
h0 = h1 and h1 = h2 induce the same map h∗ at homology level and let us
define A(u, v) = (u, v) or A(u, v) = (−u,−v) according to h∗ is the identity
or the inversion map. Then there exist continuous functions κ0, κ1 : R2 → R
such that (see Lemma 5.5)

Hj = Hj(0, 0) +A(u, v) + κj(u, v) · (1, λ); j = 0, 1.
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Now, it is not difficult to see that

Hs = (1− s)H0 + sH1; s ∈ [0, 1]

induce a continuous family in H. �

Set D = {|x| 6 a1, |y| 6 b1} and D̃ = {|x̃| 6 ã1, |ỹ| 6 b̃1} and define
h0 : ∂D → ∂D̃ as

h0 = h1, on {|x| = a1, |y| 6 b1};
h0 = h2, on {|x| 6 a2, |y| = b1};
h0 = hs, on Ts, s ∈ [0, 1].

It is easy to see that h0 is a homeomorphism conjugating the one-dimen-
sional foliations induced by F on ∂D and F̃ on ∂D̃. Then, by the conical
structure of nodal singularities we can extend h0 as a homeomorphism
between D and D̃ mapping leaves of F to leaves of F̃ . Finally, it is easy to
see that the map h̄ defined as

h̄ = h1, on V1,

h̄ = h2, on V2, and

h̄ = h0, on D

defines a topological equivalence between F and F̃ extending to the nodal
corner singularity p. Moreover, close to the divisor and outside

{|x| 6 ε, |y| 6 ε} ∪ h−1({|x̃| 6 ε, |ỹ| 6 ε})

we have h̄ = h. This last property permit us to repeat finitely many times
the construction above to obtain a topological equivalence satisfying the
requirements of Theorem 1.4.
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