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MINIMAL MODEL PROGRAM FOR EXCELLENT
SURFACES

by Hiromu TANAKA

Abstract. — We establish the minimal model program for log canonical and
Q-factorial surfaces over excellent base schemes.
Résumé. — Nous prouvons les résultats prédits par le programme des mo-

dèles minimaux pour des surfaces log canoniques et Q-factorielles sur des schémas
excellents.

1. Introduction

The Italian school of algebraic geometry in the early 20th century estab-
lished the classification theory for smooth projective surfaces over the field
of complex numbers, which was generalised by Kodaira, Shafarevich and
Bombieri–Mumford. In particular, Shafarevich studied the minimal model
theory for regular surfaces in the classical sense [29]. Kollár and Kovács
proved, in their unpublished preprint [17], that the minimal model pro-
gram holds for log canonical surfaces over algebraically closed fields by the
viewpoint of the higher dimensional minimal model theory. Recently, Fu-
jino and the author established the minimal model program for Q-factorial
surfaces over algebraically closed fields [6, 30].
The purpose of this paper is extending the minimal model program for

surfaces over algebraically closed fields to the one for surfaces over excellent
base schemes. More precisely, we prove the following theorem.

Theorem 1.1 (Theorem 4.5, Theorem 4.15). — Let B be a regular ex-
cellent separated scheme of finite dimension. Let π : X → S be a projective
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346 Hiromu TANAKA

B-morphism from a quasi-projective intergal normal B-schemeX of dimen-
sion two to a quasi-projective B-scheme S. Let ∆ be an effective R-divisor
on X. Assume that one of the following properties holds.
(LC) (X,∆) is log canonical.
(QF) X is Q-factorial and, for the irreducible decomposition ∆ =∑

i∈I δiDi, the inequality 0 6 δi 6 1 holds for any i ∈ I.
Then, there exist a sequence of projective birational S-morphisms

X =: X0
ϕ0→ X1

ϕ1→ . . .
ϕr−1→ Xr =: X†

and R-divisors ∆i and ∆† defined by

∆ =: ∆0, (ϕi)∗(∆i) =: ∆i+1, ∆r =: ∆†

which satisfy the following properties.
(1) Each Xi is a projective intergal normal S-scheme of dimension two.
(2) Each (Xi,∆i) satisfies (LC) or (QF) according as the above as-

sumption.
(3) ρ(Xi+1/S) = ρ(Xi/S)− 1 for any i.
(4) (X†,∆†) satisfies one of the following conditions.

(a) KX†/B + ∆† is nef over S.
(b) There is a projective S-morphism µ : X† → Z to a projec-

tive S-scheme Z such that µ∗OX† = OZ , dimX† > dimZ,
−(KX†/B + ∆†) is µ-ample and ρ(X†/S)− 1 = ρ(Z/S).

If (a) holds, then (X†,∆†) is called a log minimal model over S. If (b)
holds, then µ : X† → Z is called a (KX†/B + ∆†)-Mori fibre space over S.

Many results in minimal model theory depend on the lower dimensional
facts, hence Theorem 1.1 might be applied to establish the three dimen-
sional minimal model program over Spec Z or imperfect fields.

Also, it is useful to treat varieties over excellent base schemes even when
one studies the minimal model theory over an algebraically closed field of
positive characteristic. For instance, a known proof for the fact that 3-
dimensional terminal singularities are isolated depends on the result that
terminal excellent surfaces are regular (cf. [16, Corollary 2.30]).
As applications of Theorem 1.1, we also prove inversion of adjunction

(Theorem 5.1) and the Kollár–Shokurov connectedness theorem (Theo-
rem 5.2) for surfaces over excellent schemes. The former is a direct conse-
quence of the minimal model program, whilst the latter needs some argu-
ments.

Remark 1.2. — It is worth explaining why the schemes that appear in
Theorem 1.1 are assumed to be not only Noetherian but also excellent. We
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MINIMAL MODEL PROGRAM FOR EXCELLENT SURFACES 347

will frequently use the desingularisation theorem by Lipman which holds
for quasi-excellent surfaces [21]. Furthermore, in order to define canoni-
cal divisors, it seems to be necessary to assume that the base scheme B
has a dualising complex. In particular, B needs to be universally catenary
(cf. [10, Ch. III, Section 10]). Moreover, following [16], we restrict ourselves
to treating only regular base schemes.

1.1. Proof of Theorem 1.1

Let us overview some of the ideas of the proof of Theorem 1.1. The
main strategy is to imitate the proof in characteristic zero. To this end,
we establish appropriate vanishing theorems. After that, we prove the base
point free theorem by applying the standard argument called the X-method.
Some of the vanishing theorems we will establish are as follows.

Theorem 1.3 (Theorem 3.3). — Let B be a regular excellent separated
scheme of finite dimension. Let π : X → S be a projective B-morphism
from a two-dimensional quasi-projective klt pair (X,∆) over B to a quasi-
projective B-scheme S. Let D be a Q-Cartier Z-divisor on X such that D−
(KX/B +∆) is π-ample. If dim π(X) > 1, then the equation Riπ∗OX(D) =
0 holds for every i > 0.

Theorem 1.4 (Theorem 3.8). — Let k be a field of characteristic p > 0.
Let (X,∆) be a two-dimensional projective klt pair over k. Let D be a Q-
Cartier Z-divisor on X such that D − (KX + ∆) is ample. Let N be a nef
Cartier divisor on X with N 6≡ 0. Then there exists m0 ∈ Z>0 such that

Hi(X,D +mN) = 0

for any integers i and m satisfying i > 0 and m > m0.

Let us overview how to show the above vanishing theorems. Theorem 1.3
is well-known for the case where dim π(X) = 2 (cf. [16, Theorem 10.4]).
One of the essential properties in this case is that the intersection matrix
of the exceptional locus is negative definite. For the remaining case i.e.
dim π(X) = 1, the intersection matrix of any fibre of π is not negative
definite but semi-negative definite. Hence we can apply an almost paral-
lel argument to the one of [16, Theorem 10.4] after replacing some strict
inequality signs “>” by “>”.
Theorem 1.4 is known if k is algebraically closed ([31, Theorem 2.11]).

The proof of [31, Theorem 2.11] depends on Kawamata’s covering trick,
which unfortunately seems to need the assumption that k is algebraically
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348 Hiromu TANAKA

closed (cf. [12, Lemma 1-1-2]). In order to overcome this technical difficulty,
we make use of the notion of F -singularities. Actually, we first establish a
similar vanishing theorem for strongly F -regular surfaces (Proposition 3.7)
and second extend it to the klt case via log resolutions.

1.2. Related results

On the classification theory for smooth surfaces over algebraically closed
fields, we refer to [2, 1]. Theories of log surfaces and normal surfaces have
been developed by Iitaka, Kawamata, Miyanishi, Sakai and many others
(cf. [24, 25]).

It is worth mentioning on the fact that Theorem 1.1 is known for some
special cases.

(1) B is an algebraically closed field.
(2) X is regular and ∆ = 0.
For the former case (1), Theorem 1.1 is a known result (cf. [6, 8, 30]).

Concerning the latter case (2), let us review that Theorem 1.1 follows from
a combination of known results. Thanks to an analogue of Castelnuovo’s
contractiblity criterion (cf. [16, Theorem 10.5]), we can repeatedly con-
tract a (−1)-curve i.e. the curve E appearing in [16, Theorem 10.5], and
this process will terminate. Since we can make use of the cone theorem
(cf. Subsection 2.4), we deduce from the Riemann–Roch theorem that the
program ends with either a minimal model or a Mori fibre space.
For the general case, we would like a replacement of Castelnuovo’s con-

tractiblity criterion, which is nothing but the base point free theorem es-
tablished by the vanishing theorems mentioned in Subsection 1.1.

Remark 1.5. — Theorem 1.1 was proved under the assumption that
(X,∆) is a log canonical surface over a field k of characteristic p > 0 by
the author in an earlier draft. In [3], Birkar–Chen–Zhang independently
obtained the same result under the assumption that (X,∆) is a klt surface
over k. Both the proofs depend on Keel’s result [13] which differ from ours.
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sor Jungkai Alfred Chen for his generous hospitality. The author would
like to thank Professors Caucher Birkar, Yoshinori Gongyo, Paolo Cascini,
János Kollár, Mircea Mustaţă, Yusuke Nakamura, Yuji Odaka, Shunsuke

ANNALES DE L’INSTITUT FOURIER



MINIMAL MODEL PROGRAM FOR EXCELLENT SURFACES 349

Takagi, Chenyang Xu for very useful comments and discussions. The au-
thor would like to thank the referee for reading manuscript carefully and
for suggesting several improvements. This work was supported by JSPS
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2. Preliminaries

2.1. Notation

In this subsection, we summarise notation used in this paper.
• We will freely use the notation and terminology in [11] and [16].
• A ring A is quasi-excellent if A is a Noetherian G-ring such that for
any finitely generated A-algebra B, its regular locus

{p ∈ Spec B |Bp is a regular local ring}

is an open subset of Spec B (cf. [23, §32]). A ring A is excellent if
A is quasi-excellent and universally catenary.

• We say a scheme X is regular (resp. Gorenstein) if the local ring
OX,x at any point x ∈ X is regular (resp. Gorenstein). We say a
scheme X is excellent if X is quasi-compact and any point x ∈ X
admits an affine open neighbourhood U ' Spec A for some excellent
ring A.

• For a scheme X, its reduced structure Xred is the reduced closed
subscheme of X such that the induced morphism Xred → X is
surjective.

• For an integral scheme X, we define the function field K(X) of X
to be OX,ξ for the generic point ξ of X.

• For a scheme S, we say X is a variety over S or an S-variety if X is
an integral scheme that is separated and of finite type over S. We
say X is a curve over S or an S-curve (resp. a surface over S or an
S-surface) if X is an S-variety of dimension one (resp. two).

• Let ∆ be an R-divisor on a Noetherian normal scheme and let
∆ =

∑
i∈I δi∆i be the irreducible decomposition. Take a real num-

ber a. We write ∆ 6 a if δi 6 a for any i ∈ I. We set ∆6a :=∑
i∈I,δi6a

δi∆i. We define ∆ > a and ∆>a etc, in the same way.
• For a field k, let k be an algebraic closure of k. If k is of characteristic
p > 0, then we set k1/p∞ :=

⋃∞
e=0 k

1/pe =
⋃∞
e=0{x ∈ k |xp

e ∈ k}.
• We say a field k of positive characteristic is F -finite if [k : kp] <∞.

TOME 68 (2018), FASCICULE 1



350 Hiromu TANAKA

• Let f : X → Y be a projective morphism of Noetherian schemes,
where X is an integral normal scheme. For a Cartier divisor L on
X, we say L is f -free if the induced homomorphism f∗f∗OX(L)→
OX(L) is surjective. LetM be an R-Cartier R-divisor on X. We say
M is f -ample (resp. f -semi-ample) if we can writeM =

∑r
i=1 aiMi

for some r > 1, positive real numbers ai and f -ample (resp.
f -free) Cartier divisors Mi. We say M is f -big if we can write
M = A + E for some f -ample R-Cartier R-divisor A and effective
R-divisor E. We can define f -nef R-divisors in the same way as
in [16, Definition 1.4]. We say M is f -numerically-trivial, denoted
by M ≡f 0, if M and −M are f -nef.

2.1.1. Excellent schemes

If B is an excellent scheme, then any scheme X that is of finite type over
B is again excellent (cf. [23, §32]). We can freely use resolution of singu-
larities for excellent surfaces (cf. [21] and Subsection 2.1.7). Also excellent
schemes satisfy reasonable dimension formulas (cf. [22, Section 8.2]).

2.1.2. Base schemes

We basically work over a base scheme B satisfying the following proper-
ties.

Assumption 2.1. — B is a scheme which is excellent, regular, sepa-
rated, and of finite dimension.

2.1.3. Quasi-projective morphisms

Let f : X → S be a morphism of Noetherian schemes. We say f is
projective (resp. quasi-projective) if there exists a closed immersion (resp.
an immersion) X ↪→ PnS over S for some non-negative integer n.

Remark 2.2. — We adopt the definition of projective morphisms by [11].
If there is an ample invertible sheaf on S in the sense of [11, p. 153], then
our definition coincides with the one of Grothendieck (cf. [5, Section 5.5.1]).
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2.1.4. Perturbation of nef and big divisors

We here give two remarks on fundamental properties of divisors, which
is well-known for varieties over fields.

Remark 2.3. — Let f : X → Y be a projective morphism of Noetherian
schemes, where X is an integral normal scheme. Let L be an R-Cartier
R-divisor. Then the following are equivalent.

(1) L is f -ample.
(2) For any closed point y ∈ Y and any integral closed subscheme V of

Xy, it holds that V · LdimV > 0.
Indeed, clearly (1) implies (2), hence it suffices to prove the opposite impli-
cation. If L is Q-Cartier Q-divisor, then it is well-known that (2) implies (1)
(cf. [18, Proposition 1.41]). Let us consider the general case. Assume that
L satisfies (2). We can write L =

∑n
i=1 riLi for real numbers r1, . . . , rn and

Cartier divisors L1, . . . , Ln. Thanks to the Nakai’s criterion for projective
schemes over fields (cf. [19, Theorem 2.3.18]) and openness of amplitude
(cf. [18, Proposition 1.41]), if qi is a rational number sufficiently close to ri
for any i ∈ {1, . . . , n}, then also L′ :=

∑n
i=1 qiLi satisfies (2). Thus, we can

write L =
∑m
j=1 sjL

′
j such that sj ∈ R>0,

∑m
j=1 sj = 1 and L′j is an ample

Q-Cartier Q-divisor. Hence, L satisfies (1).

Remark 2.4. — Let f : X → Y be a projective morphism of Noetherian
schemes, where X is an integral normal scheme. Let M be an f -nef and
f -big R-Cartier R-divisor on X. SinceM is f -big, we can writeM = A+E

for some f -ample R-divisor A and effective R-divisor E. For any ε ∈ R such
that 0 < ε 6 1, we obtain

M = A+ E = (1− ε)M + ε(A+ E) = Aε + εE ,

where Aε := (1−ε)M+εA. SinceM is f -nef and A is f -ample, Remark 2.3
implies that Aε is f -ample. Therefore, M − εE is f -ample for any real
number ε such that 0 < ε 6 1.

2.1.5. Canonical sheaves

Let B be a scheme satisfying Assumption 2.1. LetX be a quasi-projective
normal B-variety, equipped with the structure morphism α : X → B. For
the definition of the canonical sheaf ωX/B , we refer to [16, Definition 1.6].
Note that ωX/B coincides with Hr(α!OB), where α! is defined as in [10,
Ch. III, Theorem 8.7] and r is the integer such that Hr(α!OB)|Xreg 6= 0 for

TOME 68 (2018), FASCICULE 1



352 Hiromu TANAKA

the regular locus Xreg of X. There is a Z-divisor KX/B , called the canon-
ical divisor, such that ωX/B ' OX(KX/B). Note that KX/B is uniquely
determined up to linear equivalences.

Lemma 2.5. — Let α : X β−→ B′
θ−→ B be quasi-projective morphisms of

Noetherian schemes such that
(1) B and B′ satisfy Assumption 2.1, and
(2) X and B′ are normal B-varieties.

Then ωB′/B is an invertible sheaf and there is an isomorphism of OX -
modules: ωX/B ' ωX/B′ ⊗OX

β∗ωB′/B .

Proof. — Since B′ is regular and in particular Gorenstein, it follows that
ωB′/B is an invertible sheaf. We have that

α!OB ' β!θ!OB ' β!(ωB′/B [r]) ' β!OB′ ⊗ β∗ωB′/B [r]

for some integer r, where the first isomorphism holds by [10, Ch. III, Propo-
sition 8.7(2)], the second one follows from [10, Ch. V, Example 2.2 and
Theorem 3.1] and the third one holds by [10, Ch. III, Proposition 8.8(6)].
Taking the s-th cohomology sheaf Hs of the both hand sides for an appro-
priate integer s, we have that

ωX/B ' ωX/B′ ⊗ β∗ωB′/B ,

as desired. �

2.1.6. Singularities of minimal model program

Let B be a scheme satisfying Assumption 2.1. LetX be a quasi-projective
normal B-variety. We say (X,∆) is a log pair over B if ∆ is an effective
R-divisor on X such that KX/B + ∆ is R-Cartier. Although the book [16,
Definition 2.8] gives the definition of terminal, canonical, klt, plt, dlt, log
canonical singularities only for the case where ∆ is a Q-divisor, we can
extend them for the case where ∆ is an R-divisor in the same way. Note
that we always assume that ∆ is effective although [16, Definition 2.8] does
not impose this assumption.

2.1.7. Log resolutions

Let B be a scheme satisfying Assumption 2.1. LetX be a quasi-projective
surface over B. For a closed subset Z of X, we say f : Y → X is a log
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resolution of (X,Z) if f is a projective birational B-morphism from a quasi-
projective B-surface such that f−1(Z)∪Ex(f) is a simple normal crossing
divisor, where we refer to [16, Definition 1.7] for the definition of simple
normal crossing divisors. By [21], there exists a log resolution of (X,Z) for
any quasi-projective B-surface X and any closed subset Z of X. For an R-
divisor ∆, a log resolution of (X,∆) means a log resolution of (X,Supp ∆).

2.1.8. Multiplier ideals

Let B be a scheme satisfying Assumption 2.1. LetX be a quasi-projective
normal surface over B. Let ∆ be an R-divisor such that KX/B + ∆ is R-
Cartier. For a log resolution µ : V → X of (X,∆), we define the multiplier
ideal of (X,∆) by

J∆ := µ∗OV (pKV/B − µ∗(KX/B + ∆)q) .

By the same argument as in [20, Theorem 9.2.18], we can show that the
coherent sheaf J∆ does not depend on the choice of log resolutions. If ∆ is
effective, then it follows that J∆ ⊂ OX .

2.2. Intersection numbers and Riemann–Roch theorem

We recall the definition of intersection numbers (cf. [15, Ch. I, Sections 1
and 2]).

Definition 2.6.
(1) Let C be a projective curve over a field k. Let M be an invertible

sheaf on C. It is well-known that

χ(C,mM) = dimk(H0(C,mM))− dimk(H1(C,mM)) ∈ Z[m]

and the degree of this polynomial is at most one (cf. [15, Ch. I,
Section 1, Theorem in p. 295]). We define the degree of M over k,
denoted by degkM or degM , to be the coefficient of m.

(2) Let B be a scheme satisfying Assumption 2.1. Let X be a quasi-
projective B-scheme, and let C ↪→ X be a closed immersion such
that C is a projective B-curve and the structure morphism C → B

factors through Spec k for a field k. In particular, C is projective
over k (cf. [11, Ch. II, Theorem 7.6]). Let L be an invertible sheaf
on X. We define the intersection number over k, denoted by L ·k C
or L · C, to be degk(L|C).

TOME 68 (2018), FASCICULE 1
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The following is the Riemann–Roch theorem for curves.

Theorem 2.7. — Let k be a field. Let X be a projective curve over k.
(1) If L is a Cartier divisor on X, then

χ(X,L) = degk(L) + χ(X,OX) .

(2) Assume that X is regular. Let D be a Z-divisor and let D =∑
i∈I aiPi be the prime decomposition. Then

degk(D) =
∑
i∈I

ai dimk(k(Pi))

where k(Pi) is the residue field at Pi.

Proof. — The assertion (1) follows from Definition 2.6 (1). The asser-
tion (2) holds by the same argument as the case where k is algebraically
closed (cf. the proof of [11, Ch. IV, Theorem 1.3]). �

As a corollary, we obtain a formula between deg(ωX) and χ(X,OX) for
Gorenstein curves.

Corollary 2.8. — Let k be a field. Let X be a projective Gorenstein
curve over k. Then

degk(ωX) = 2(h1(X,OX)− h0(X,OX)) = −2χ(X,OX) .

Proof. — By Theorem 2.7(1), we obtain χ(X,ωX) = deg(ωX)+χ(X,OX).
By Serre duality, we obtain χ(X,ωX) = −χ(X,OX), which implies the as-
sertion. �

Corollary 2.9. — Let B be a scheme satisfying Assumption 2.1. Let
X be a quasi-projective regular B-surface, and let C ↪→ X be a closed
immersion over B such that C is a projective B-curve and the structure
morphism C → B factors through Spec k for a field k. Then,

(KX/B + C) ·k C = degk ωC/B = degk ωC/k
= 2(dimkH

1(C,OC)− dimkH
0(C,OC)) .

Proof. — The first equality holds by the adjunction formula (cf. [16,
(4.1.3)]), the second by Lemma 2.5, and the third by Corollary 2.8. �

The following is the Riemann–Roch theorem for surfaces.

Theorem 2.10. — Let k be a field. LetX be a projective regular surface
over k. Let D be a Z-divisor on X. Then

χ(X,D) = χ(X,OX) + 1
2D ·k (D −KX) .
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Proof. — We can write D =
∑
iAi −

∑
j Bj , where all Ai and Bj are

prime divisors. Thus, it suffices to prove that if D satisfies the required
equation, so do D + C and D − C for a prime divisor C on X. These can
be checked directly by using Corollary 2.9. �

2.3. Negativity lemma

Lemma 2.11. — Let B be a scheme satisfying Assumption 2.1. Let
f : X → Y be a projective birational B-morphism of quasi-projective
normal B-surfaces. Let −B be an f -nef R-Cartier R-divisor on X. Then
the following hold.

(1) B is effective if and only if f∗B is effective.
(2) Assume that B is effective. For any point y ∈ Y , one of f−1(y) ⊂

SuppB and f−1(y) ∩ SuppB = ∅ holds.

Proof. — We can apply the same argument as in [18, Lemma 3.39] by
using [16, Theorem 10.1]. �

2.4. Cone theorem

Let B be a scheme satisfying Assumption 2.1. Let π : X → S be a
projective B-morphism from a quasi-projective normal B-variety X to a
quasi-projective B-scheme S. Let

Z(X/S)R :=
⊕
C

RC ,

where C runs over the projective B-curves in X such that π(C) is one
point. An element

∑
αCC of Z(X/S)R is called an effective 1-cycle if each

αC is not negative. Let N(X/S)R := Z(X/S)R/ ≡ be the quotient R-vector
space by numerical equivalence, i.e. for Γ1,Γ2 ∈ Z(X/S)R, the numerical
equivalence Γ1 ≡ Γ2 holds if and only if L · Γ1 = L · Γ2 for any invertible
sheaf L on X. For an element Γ ∈ Z(X/S)R, its numerical equivalence
class is denoted by [Γ]. Let NE(X/S) be the subset of N(X/S)R consisting
of the numerical equivalence classes of effective 1-cycles. If N(X/S)R is a
finite dimensional R-vector space, then we set NE(X/S) to be the closure
of NE(X/S) with respect to the Euclidean topology. In this case, we set

NE(X/S)L>0 := {[Γ] ∈ NE(X/S) |L · Γ > 0}

for any R-Cartier R-divisor L on X.

TOME 68 (2018), FASCICULE 1
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Remark 2.12. — For the Stein factorisation π : X → T → S of π, we
have that N(X/S)R = N(X/T )R and NE(X/S) = NE(X/T ).

Lemma 2.13. — Let B be a scheme satisfying Assumption 2.1. Let π :
X → S be a projective B-morphism from a quasi-projective normal B-
surface to a quasi-projective B-scheme. Then the following hold.

(1) If dim π(X) > 1, then there exist finitely many projective B-curves
C1, . . . , Cq such that each π(Ci) is one point and

NE(X/S) =
q∑
i=1

R>0[Ci] .

(2) N(X/S)R is a finite dimensional R-vector space.

Proof. — Replacing π by its Stein factorisation, we may assume that
π∗OX = OS .
We show (1). We only treat the case where dimS = 1 because the proofs

are the same. Since the generic fibre X×SK(S) is geometrically irreducible
(cf. [32, Lemma 2.2]), there is a non-empty open subset S0 of S such that
Xs is an irreducible curve over k(s) for any s ∈ S0. Since S\S0 is a finite set,
NE(X/S) is generated by only finitely many B-curves C1, . . . , Cq. Thus (1)
holds.
We show (2). If dimS > 1, then the assertion holds by (1). If dimS = 0,

then the assertion follows from [15, Ch. IV, Section 1, Proposition 4]. In
any case, (2) holds. �

Theorem 2.14. — Let B be a scheme satisfying Assumption 2.1. Let
π : X → S be a projective B-morphism from a quasi-projective normal
B-surface to a quasi-projective B-scheme. Let A be a π-ample R-Cartier
R-divisor onX and let ∆ be an effective R-divisor onX such thatKX/B+∆
is R-Cartier. Then there exist finitely many projective B-curves C1, . . . , Cr
on X that satisfy the following properties:

(1) π(Ci) is one point for any 1 6 i 6 r, and
(2) NE(X/S) = NE(X/S)KX/B+∆+A>0 +

∑r
i=1 R>0[Ci].

Proof. — Replacing π by its Stein factorisation, we may assume that
π∗OX = OS . If dimS > 1, then the assertion holds by Lemma 2.13. Thus
we may assume that dimS = 0, i.e. S = Spec k where k is a field. If k is
of characteristic p > 0, then the assertion follows from [32, Theorem 7.5].
If k is an algebraically closed field of characteristic zero, then the claim
holds by [6, Theorem 1.1]. If k is a field of characteristic zero (not necessar-
ily algebraically closed), then we can apply the same argument as in [32,
Theorem 7.5] using [6, Theorem 1.1]. We are done. �
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Remark 2.15. — We use the same notation as in the statement of The-
orem 2.14. Assume that (X,∆) is log canonical. If B is the affine spectrum
of an algebraically closed field, then Ci can be chosen to be a curve such
that −(KX + ∆) · Ci 6 3 (cf. [7, Proposition 3.8], [30, Proposition 3.15]).
The author does not know whether a similar result can be formulated in
this generality (cf. [32, Example 7.3]).

3. Vanishing theorems of Kawamata–Viehweg type

3.1. Relative case

A key result in this subsection is Proposition 3.2. As explained in Subsec-
tion 1.1, we can apply the same argument as in [16, Theorem 10.4]. More
specifically, our proofs of Lemma 3.1 and Proposition 3.2 are quite simi-
lar to the ones of [16, Lemma 10.3.3] and [16, Theorem 10.4] respectively.
However we give proofs of them for the sake of completeness.

Lemma 3.1. — Let B be a scheme satisfying Assumption 2.1. Let π :
X → S be a projective B-morphism from a quasi-projective regular B-
surface to a quasi-projective B-curve with π∗OX = OS . Let s ∈ S be a
closed point and let π∗(s) =

∑
16i6n ciCi be the irreducible decomposition

with ci ∈ Z>0. Let D =
∑

16i6n diCi be an R-divisor on X. If D 66 0, then
there exists an integer j such that 1 6 j 6 n, dj > 0 and Cj ·D 6 0.

Proof. — By D 66 0, there exists the maximum real number a ∈ R>0
such that ci − adi > 0 holds for any i ∈ {1, . . . , n}. Then we have that∑

16i6n(ci − adi)Ci > 0 and cj − adj = 0 for some j ∈ {1, . . . , n} with
dj > 0. Therefore, we obtain

−aCj ·D = Cj · (π∗(s)− aD) = Cj ·
∑
i 6=j

(ci − adi)Ci > 0 ,

which implies Cj ·D 6 0. �

Proposition 3.2. — Let B be a scheme satisfying Assumption 2.1. Let
π : X → S be a projective B-morphism from a quasi-projective regular B-
surface X to a quasi-projective B-scheme S. Let ∆ be an R-divisor on X
with 0 6 ∆ < 1 and let L be a Cartier divisor such that L− (KX/B + ∆) is
π-nef and π-big. If dim π(X) > 1, then the equation Riπ∗OX(L) = 0 holds
for every i > 0.
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Proof. — Set KX := KX/B . By perturbing ∆, we may assume ∆ is a
Q-divisor such that L − (KX + ∆) is π-ample (cf. Remark 2.4). We set
A := L− (KX + ∆).
By taking the Stein factorisation of π, we may assume that π∗OX = OS .

If dimS = 2, then the assertion follows from [16, Theorem 10.4]. Thus we
may assume that dimS = 1. Then the assertion is clear for i > 1. We prove
R1π∗OX(L) = 0.

Fix a closed point s ∈ S and let C1, . . . , Cn be the prime divisors on X
contracting to s, that is, Supp(π−1(s)) = Supp(C1 ∪ · · · ∪ Cn). Each Ci
is a projective curve over k(s), hence the intersection number over k(s) of
an R-divisor on X and Ci is defined in Definition 2.6. We set hi(Ci, F ) :=
dimk(s)H

i(Ci, F ) for any coherent sheaf F on Ci. Note that C2
i 6 0 for

any i ∈ {1, . . . , n}. We consider the following:

Claim. — The equation H1(Z,L|Z) = 0 holds for any ri ∈ Z>0 and
Z :=

∑n
i=1 riCi with

∑n
i=1 ri > 1.

If this claim holds, then the assertion in the proposition follows from the
theorem on formal functions [11, Ch. III, Theorem 11.1] . We prove this
claim by the induction on

∑n
i=1 ri.

If
∑n
i=1 ri = 1, that is, Z = Ci holds for some i, then

h1(Ci, L|Ci) = h0(Ci, ωCi ⊗ L−1|Ci) = 0 ,

where the second equation holds by the following calculation

degk(s)(ωCi ⊗ L−1|Ci) = (KX + Ci − L) ·k(s) Ci

= (KX + Ci − (KX + ∆ +A)) ·k(s) Ci

= ((Ci −∆)−A) ·k(s) Ci

< 0 .

Thus we are done for the case where
∑n
i=1 ri = 1.

We assume
∑n
i=1 ri > 1. For every i with ri > 1, we obtain the following

short exact sequence:

0→ OCi
⊗OX

(
− (Z − Ci)

)
→ OZ → OZ−Ci

→ 0 .

Thus, by the induction hypothesis, it is sufficient to find an index j satis-
fying rj > 1 and

h1(Cj ,OX(L− (Z − Cj))|Cj

)
= 0 .

Note that

h1(Cj ,OX(L− (Z − Cj))|Cj

)
= h0(Cj , ωCj

⊗OX(−L+ Z − Cj)|Cj

)
.
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For every i, we see

degk(s)
(
ωCi
⊗OX(−L+ Z − Ci)|Ci

)
= (KX + Ci − L+ Z − Ci) ·k(s) Ci

= (KX − (KX + ∆ +A) + Z) ·k(s) Ci

< (Z −∆) ·k(s) Ci .

Since Z −∆ 66 0, we can apply Lemma 3.1 to D = Z −∆. Then, we can
find an index j satisfying rj > 1 and

(Z −∆) · Cj 6 0 .

This implies h1(Cj ,OX(L− (Z − Cj))|Cj

)
= 0, as desired. �

Theorem 3.3. — Let B be a scheme satisfying Assumption 2.1. Let
π : X → S be a projective B-morphism from a two-dimensional quasi-
projective klt pair (X,∆) over B to a quasi-projective B-scheme. Let D be
a Q-Cartier Z-divisor on X such that D− (KX/B + ∆) is π-nef and π-big.
Assume that one of the following conditions holds.

(1) dim π(X) > 1.
(2) dim π(X) = 0 and for the Stein factorisation π : X → T → S of π,

T is the affine spectrum of a field of characteristic zero.
Then the equation Riπ∗OX(D) = 0 holds for every i > 0.

Proof. — Replacing π by its Stein factorisation, we may assume that
π∗OX = OS . If (2) holds, then the assertion follows from [12, Theorem 1-2-
5] after taking the base change to the algebraic closure. If (1) holds, then we
can apply the same proof as in [12, Theorem 1-2-5] by using Proposition 3.2
instead of [12, Theorem 1-2-3]. �

Theorem 3.4. — Let B be a scheme satisfying Assumption 2.1. Let
π : X → S be a projective B-morphism from a quasi-projective normal
B-surface to a quasi-projective B-scheme. Let ∆ be an R-divisor on X

such that KX/B + ∆ is R-Cartier and let L be a Cartier divisor on X such
that L− (KX/B + ∆) is π-nef and π-big. Assume that one of the following
conditions holds.

(1) dim π(X) > 1.
(2) dim π(X) = 0 and for the Stein factorisation π : X → T → S of π,

T is the affine spectrum of a field of characteristic zero.
Then the equation Riπ∗(OX(L)⊗OX

J∆) = 0 holds for every i > 0.

Proof. — We can apply the same argument as in [31, Theorem 2.10] by
using Theorem 3.3 instead of [31, Corollary 2.7]. �
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3.2. Global case of positive characteristic

In this subsection, we establish a vanishing theorem of Kawamata–
Viehweg type for surfaces of positive characteristic (Theorem 3.8). The
heart of this subsection is Proposition 3.7. For this, we need some auxiliary
results: Lemma 3.5 and Lemma 3.6. Our strategy is similar to but modified
from [31, Section 2].

Lemma 3.5. — Let k be a field. Let X be a projective normal variety
over k. Let M be a coherent sheaf on X and let A be an ample R-Cartier
R-divisor on X. Then there exists a positive integer r(M,A) such that

Hi(X,M ⊗OX
OX(rA+N)) = 0

for any i > 0, any real number r > r(M,A) and any nef R-Cartier R-divisor
N such that rA+N is Cartier.

Proof. — The assertion follows from the same argument as in [31, The-
orem 2.2]. For the Fujita vanishing theorem in our setting, we refer to [14,
Theorem 1.5]. �

Lemma 3.6. — Let k be a field. Let X be a projective normal variety
over k. Let M be a coherent sheaf on X and let N be a nef R-Cartier
R-divisor on X with N 6≡ 0. Then there exists a positive integer r0 such
that

HdimX(X,M ⊗OX
OX(rN +N ′)) = 0

for any real number r > r0 and any nef R-Cartier R-divisor N ′ such that
rN +N ′ is Cartier.

Proof. — We may assume that k is an infinite field by taking the base
change to its algebraic closure if k is a finite field. Since X is projective,
there exists a surjection

⊕`
j=1Mj → M where each Mj is an invertible

sheaf. Thus, we may assume that M is an invertible sheaf. Taking a suffi-
ciently ample hyperplane section H of X, where H is a projective normal
variety ([28, Theorem 7′]), we obtain

0 → OX(M + N ′′) → OX(H + M + N ′′) → OX(H + M + N ′′)|H → 0 .

for any nef Cartier divisor N ′′ on X. By the Fujita vanishing theorem
([14, Theorem 1.5]), we see Hi(X,H +M +N ′′) = 0 for any i > 0 and nef
Cartier divisor N ′′. Thus, it follows that

HdimX(X,M +N ′′) ' HdimX−1(H,OX(H +M +N ′′)|H)

= HdimH(H,OX(H +M +N ′′)|H)
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for any nef Cartier divisor N ′′ on X. Repeating this process for N ′′ :=
rN + N ′, we may assume dimX = 1. Then N is ample. The assertion
follows from Lemma 3.5. �

In the following proposition, we use the notion of F -singularities. For
definitions and basic properties, we refer to [4, Section 2.3] (cf. [26]). Al-
though [4] works over an algebraically closed field of positive characteristic,
the same argument works over F -finite fields.

Proposition 3.7. — Let k be an F -finite field of characteristic p >
0. Let X be a projective normal variety over k. Assume that one of the
following two conditions holds.

(1) (X,∆) is sharply F -pure where ∆ is an effective Q-divisor on X

such that (pe1 − 1)(KX + ∆) is Cartier for some e1 ∈ Z>0.
(2) (X,∆) is strongly F -regular, where ∆ is an effective R-divisor on

X such that (X,∆) is R-Cartier.
Let L be a Cartier divisor on X such that L − (KX + ∆) is ample, and
let N be a nef R-Cartier R-divisor on X with N 6≡ 0. Then there exists a
positive integer r0 such that the equation

Hi(X,L+ rN +N ′) = 0

holds for any i > dimX−1, real number r > r0 and nef R-Cartier R-divisor
such that rN +N ′ is Cartier.

Proof. — By Lemma 3.6, we may assume i = dimX − 1. Thanks to [4,
Lemma 4.1], we may assume that (1) holds. It follows from (1) that we get
an exact sequence (cf. [4, Definition 2.7]):

0→ Be → F e∗ (OX(−(pe − 1)(KX + ∆)))→ OX → 0 ,

where Be is a coherent sheaf depending on e ∈ e1Z>0. For any nef Cartier
divisor N ′′, we obtain the exact sequence:

HdimX−1(X, pe(L+N ′′)− (pe − 1)(KX + ∆))

→ HdimX−1(X,L+N ′′)

→ HdimX(X,Be ⊗OX
OX(L+N ′′)) .

By the Fujita vanishing theorem ([14, Theorem 1.5]), we can find e2 ∈
e1Z>0 such that

HdimX−1(X, pe2(L+N ′′)− (pe2 − 1)(KX + ∆))

= HdimX−1(X, pe2N ′′ + L+ (pe2 − 1)(L− (KX + ∆)))
= 0
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for every nef Cartier divisor N ′′. By Lemma 3.6, we can find an integer
r0 > 0, depending on e2, such that

HdimX(X,Be2 ⊗OX
OX(L+ rN +N ′)) = 0

for every r > r0 and nef R-Cartier R-divisor such that rN +N ′ is Cartier.
We are done by substituting rN +N ′ for N ′′. �

Theorem 3.8. — Let k be a field of characteristic p > 0. Let (X,∆) be
a two-dimensional projective klt pair over k. Let D be a Q-Cartier Z-divisor
on X such that D − (KX + ∆) is nef and big. Let N and M1, . . . ,Mq be
nef R-Cartier R-divisors on X with N 6≡ 0. Then there exists a positive
integer r0 such that

Hi

X,L+ rN +
q∑
j=1

sjMj

 = 0

for any i > 0 and real numbers r, s1, . . . , sq such that r > r0, sj > 0 and
rN +

∑q
j=1 sjMj is Cartier.

Proof. — We treat the following three cases separately.
(1) k is F -finite, X is regular and ∆ is simple normal crossing.
(2) X is regular and ∆ is simple normal crossing.
(3) The case without any additional assumptions.
For the case (1), the assertion in the theorem follows from Proposition 3.7

and the fact that (X,∆) is strongly F -regular (cf. [27, Proposition 6.18]).
Assume that the conditions in (2) hold. Take models over a finitely gen-

erated field over Fp, that is, we can find an intermediate field Fp ⊂ k0 ⊂ k
with k0 finitely generated over Fp and X0,∆0, D0, N0,Mj,0 over k0 whose
base changes and pull-backs are X,∆, D,N,Mj respectively, and these sat-
isfy the same properties as in the statement. Since k0 is F -finite, it follows
from the case (1) that

dimkH
i

X,D + rN +
q∑
j=1

sjMj


= dimk0 H

i

X0, D0 + rN0 +
q∑
j=1

sjMj,0

 = 0

for numbers i, r, sj as in the statement. Thus the assertion in the theorem
follows for the case (2).
For the case (3), we can apply the same proof as in [12, Theorem 1-2-5]

by using the case (2) instead of [12, Theorem 1-2-3]. �
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Theorem 3.9. — Let k be a field of characteristic p > 0. Let X be a
projective normal surface over k and let ∆ be an R-divisor such thatKX+∆
is R-Cartier. Let L be a Cartier divisor on X such that L − (KX + ∆) is
nef and big. Let N and M1, . . . ,Mq be nef R-Cartier R-divisors on X with
N 6≡ 0. Then there exists a positive integer r0 such that

Hi

X,OX
L+ rN +

q∑
j=1

sjMj

⊗OX
J∆

 = 0

for any i > 0 and real numbers r, s1, . . . , sq such that r > r0, sj > 0 and
rN +

∑q
j=1 sjMj is Cartier.

Proof. — We can apply the same argument as in [31, Theorem 2.9]
by using Theorem 3.8 (resp. Theorem 3.3) instead of [31, Theorem 2.6]
(resp. [31, Theorem 2.7]). �

4. Minimal model program

4.1. Base point free theorem

In Section 3, we established some vanishing theorems of Kawamata–
Viehweg type. By applying standard arguments called the X-method, we
show the base point free theorem of Kawamata–Shokurov type (Theo-
rem 4.2). We start with a non-vanishing theorem of Shokurov type.

Theorem 4.1. — Let X be a projective regular variety over a field k

with dimX 6 2. Let ∆ be an R-divisor on X such that x∆y 6 0 and {∆}
is simple normal crossing. Let D be a nef Cartier divisor on X. Assume
that the following conditions hold.

(1) aD − (KX + ∆) is nef and big for some positive real number a.
(2) If k is of positive characteristic and dimX = 2, then D 6≡ 0.

Then there exists a positive integer m0 such that H0(X,mD − x∆y) 6= 0
for any integer m with m > m0.

Proof. — If k is of characteristic zero, then the assertion follows from [12,
Theorem 2-1-1] by taking the base change to its algebraic closure. Thus we
may assume that k is of positive characteristic.
We first treat the case where dimX = 1. If D 6≡ 0, then the assertion

follows from the Serre vanishing theorem. Thus we may assume that D ≡ 0.
We have that

h0(X,mD− x∆y) = χ(X,mD− x∆y) = χ(X,−x∆y) = h0(X,−x∆y) > 1 ,

TOME 68 (2018), FASCICULE 1



364 Hiromu TANAKA

where the second equation follows from the Riemann–Roch theorem
(cf. Theorem 2.7) and the first and third equations hold by the Kodaira
vanishing theorem for curves.
Thus we may assume that dimX = 2. Since D 6≡ 0 and D is nef, it

follows from Serre duality that H2(X,mD − x∆y) = 0 for any m� 0. By
the Riemann–Roch theorem (cf. Theorem 2.10), we have that

h0(X,mD − x∆y) > 1
2(mD − x∆y) · (mD − x∆y−KX) + χ(X,OX)

>
1
2mD · (aD − 2x∆y−KX) + 1

2(−x∆y) · (−x∆y−KX) + χ(X,OX)

for any m � 0. Thus it suffices to show that D · (aD − 2x∆y −KX) > 0,
which holds by

D · (aD − 2x∆y−KX) > D · (aD − (KX + ∆)) > 0 .

We are done. �

Theorem 4.2. — Let B be a scheme satisfying Assumption 2.1. Let
π : X → S be a projective B-morphism from a quasi-projective normal B-
surface to a quasi-projective B-scheme. Assume that there are an effective
R-divisor ∆ on X and a nef Cartier divisor D on X which satisfy the
following properties:

(1) x∆y = 0,
(2) KX/B + ∆ is R-Cartier,
(3) D − (KX/B + ∆) is π-nef and π-big, and
(4) if T is the affine spectrum of a field of positive characteristic for the

Stein factorisation π : X → T → S of π, then D 6≡ 0.

Then there exists a positive integer b0 such that bD is π-free for any integer
b with b > b0.

Proof. — Replacing π by its Stein factorisation, we may assume that
π∗OX = OS . By perturbing ∆, we may assume that ∆ is a Q-divisor such
that KX/B + ∆ is Q-Cartier, and D − (KX/B + ∆) is π-ample.
First we treat the case where dimS = 0, i.e. S = Spec k for a field k. If k

is of characteristic zero, then the assertion follows from [6, Theorem 13.1]
possibly after replacing k by its algebraic closure. If k is of positive char-
acteristic, then the assertion follows from the same argument as in [31,
Theorem 3.2] after replacing [31, Theorem 2.6] and [31, Theorem 2.9] by
Theorem 3.8 and Theorem 3.9, respectively.
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Second we consider the remaining case, i.e. dimS > 1. If (X,∆) is klt,
then we can apply the same argument as in [12, Theorem 3-1-1] after re-
placing [12, Theorem 1-2-3] and [12, the Non-Vanishing Theorem] by Theo-
rem 3.3 and Theorem 4.1, respectively. Thus we may assume that (X,∆) is
not klt. Since the problem is local on S, we may assume that S is affine. It
suffices to show thatOX(bD) is generated by its global sections for any large
integer b, which follows from the same argument as in [31, Theorem 3.2] by
using Theorem 3.3 and Theorem 3.4 instead of [31, Theorem 2.6] and [31,
Theorem 2.9], respectively. �

Remark 4.3. — We can not drop the assumption (4) in the statement
of Theorem 4.2 (cf. [33, Theorem 1.4]).

4.2. Minimal model program for Q-factorial surfaces

The purpose of this subsection is to show the minimal model program for
Q-factorial surfaces (Theorem 4.5). To this end, we establish a contraction
theorem of extremal rays.

Theorem 4.4. — Let B be a scheme satisfying Assumption 2.1. Let
π : X → S be a projective B-morphism from a quasi-projective normal B-
surface X to a quasi-projective B-scheme S. Let ∆ be an R-divisor on X
such that 0 6 ∆ 6 1 and KX/B +∆ is R-Cartier. Let R be an extremal ray
of NE(X/S) which is (KX/B + ∆)-negative. Then there exists a projective
S-morphism f : X → Y to a projective S-scheme Y that satisfies the
following properties.

(1) f∗OX = OY .
(2) For any projective S-curve C on X such that π(C) is one point,

f(C) is one point if and only if [C] ∈ R.
(3) If dimY > 1, then the sequence

0→ Pic Y f∗−→ Pic X ·C−→ Z

is exact for any projective S-curve C on X such that f(C) is one
point.

(4) ρ(Y/S) = ρ(X/S)− 1.
(5) If X is Q-factorial, then Y is Q-factorial and the fibre f−1(y) of

any closed point y ∈ Y is irreducible.

Proof. — First of all, we will show that there exists a morphism f : X →
Y satisfying (1) and (2), and that the properties (3)–(5) hold if dimY = 0.
After that, we will prove that the properties (3)–(5) hold if dimY > 1.
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Replacing π by its Stein factorisation, we may assume that π∗OX =
OS . By perturbing ∆, we may assume that ∆ is a Q-divisor. By the cone
theorem (Theorem 2.14), we can find a π-nef Cartier divisor L on X such
that NE(X/S)∩L⊥ = R and that L−(KX/B+∆) is π-ample. If dimS = 0
(i.e. S = Spec k for some field k) and D ≡ 0, then we can check that the
structure morphism X → Y := Spec k satisfies all the properties (1)–(5).
Otherwise, by Theorem 4.2, there exists a projective S-morphism f : X →
Y that satisfies (1) and (2). From now on, we assume that dimY > 1.
We show (3). Let M be a Cartier divisor on X such that M · C = 0. It

suffices to show that there is a Cartier divisor MY on Y such that M =
f∗MY . We can find a π-nef Cartier divisor L on X such that NE(X/S) ∩
L⊥ = R and that L− (KX/B + ∆) is π-ample. Replacing L by its multiple,
we may assume that L+M is π-nef and L+M − (KX/B + ∆) is π-ample.
Since bL and b(L + M) are π-free for any large integer b, we have that
the divisors bL, (b + 1)L, b(L + M), (b + 1)(L + M) are the pull-backs of
Cartier divisors on Y . Thus also M is the pull-back of a Cartier divisor on
Y , hence (3) holds. The assertion (4) directly follows from (3).
We show (5). Assume that X is Q-factorial. If dimY = 1, then Y is

regular and in particular Q-factorial. If dimY = 2, then we can apply
the same argument as in [18, Corollary 3.18] by using (3) instead of [18,
Corollary 3.7(4)]. In any case, Y is Q-factorial. We prove that any fibre of
f is irreducible. We only treat the case where dimY = 1. Let C1 and C2 be
two curves contained in f−1(y) such that C1 6= C2 and C1 ∩C2 6= ∅. Since
C1 · C2 > 0 and C2

1 < 0, this contradicts ρ(X/Y ) = 1. Thus (5) holds. �

Theorem 4.5. — Theorem 1.1 holds if (X,∆) satisfies the condition
(QF).

Proof. — The assertion follows directly from Theorem 2.14 and Theo-
rem 4.4. �

4.3. Minimal model program for log canonical surfaces

In this subsection, we establish the minimal model program for log canon-
ical surfaces. Since we have already got the cone theorem and the contrac-
tion theorem, it only remains to show that numerically log canonical sur-
faces are log canonical (Theorem 4.13). Actually it is necessary to establish
this result in order to formulate the log canonical minimal model program
without the Q-factorial condition. Such a result is well-known if the base
scheme B is an algebraically closed field ([18, Proposition 4.11]). The proof

ANNALES DE L’INSTITUT FOURIER



MINIMAL MODEL PROGRAM FOR EXCELLENT SURFACES 367

of [18, Proposition 4.11] depends on the classification of log canonical sur-
face singularities, whilst our strategy avoid using it.

Definition 4.6. — Let B be a scheme satisfying Assumption 2.1. Let
X be a quasi-projective normal B-surface and let ∆ is an R-divisor on X.
We say a pair (X,∆) is numerically log canonical if the following properties
hold.

(1) ∆ is effective.
(2) For an arbitrary projective birational morphism f : Y → X and

the f -exceptional R-divisor E uniquely determined by

KY/B + f−1
∗ ∆ + E ≡f 0 ,

the inequality f−1
∗ ∆+E 6 1 holds. Note that E is uniquely defined

since the intersection matrix of the exceptional locus is negative
definite ([16, Theorem 10.1]).

It is obvious that a numerically log canonical pair (X,∆) is log canonical
if and only if (X,∆) is a log pair, i.e. KX/B + ∆ is R-Cartier.

Theorem 4.7. — Let B be a scheme satisfying Assumption 2.1. Let
X be a quasi-projective normal B-surface and let ∆ be an effective R-
divisor on X. For the irreducible decomposition ∆ =

∑
i∈I diDi, we set

∆1 :=
∑
i∈I min{di, 1}Di. Then there exists a projective birational B-

morphism f : Y → X such that
(1) (Y, f−1

∗ ∆1 + E) is a two-dimensional Q-factorial dlt pair over B,
where E is the reduced divisor on X with Supp E = Ex(f),

(2) KY/B + f−1
∗ ∆1 + E is f -nef, and

(3) KY/B + f−1
∗ ∆ + E + E′ ≡f 0 for some f -exceptional effective R-

divisor E′.

A projective birational morphism satisfying the above properties (1)–(3)
is called a dlt blowup of (X,∆).
Proof. — Let ∆2 := ∆ − ∆1. We take a log resolution µ : W → X of

(X,∆). We can write

KW/B + µ−1
∗ ∆1 + EW ≡µ −µ−1

∗ ∆2 + E′W

where EW is the µ-exceptional reduced divisor with SuppEW = Ex(µ) and
E′W is an µ-exceptional R-divisor. We run a (KW/B +µ−1

∗ ∆1 +EW )-MMP
over X (Theorem 4.5), and set f : Y → X to be the end result. Let µY :
W → Y be the induced morphism, E := (µY )∗EW and E′ := −(µY )∗E′W .
Then (1) and (2) hold. By the negativity lemma (Lemma 2.11), we get

KW/B + µ−1
∗ ∆ + EW − E′W = µ∗Y (KY/B + f−1

∗ ∆ + E + E′) ,

TOME 68 (2018), FASCICULE 1



368 Hiromu TANAKA

which impliesKY/B+f−1
∗ ∆1+E ≡f −f−1

∗ ∆2−E′. It follows again from the
negativity lemma (Lemma 2.11) that E′ is effective, hence (3) holds. �

Remark 4.8. — We use the same notation as in Theorem 4.7.
(a) If (X,∆) is a log pair i.e. KX/B + ∆ is R-Cartier, then Theo-

rem 4.7(3) implies that KY/B + f−1
∗ ∆ +E +E′ = f∗(KX/B + ∆).

(b) (X,∆) is numerically log canonical if and only if ∆ = ∆1 and E′
in Theorem 4.7(3) is zero.

Lemma 4.9. — LetB be a scheme satisfying Assumption 2.1. Let (X,∆)
be a numerically log canonical quasi-projective B-surface. Assume that
x ∈ X is a unique non-regular closed point ofX and that (X\{x},∆|X\{x})
is dlt. Then one of the following assertions hold.

(1) X is Q-factorial.
(2) x 6∈ Supp ∆ and there exists a projective birational B-morphism

g : Z → X

from a normal Q-factorial quasi-projective B-surface Z such that
E := Ex(g) is a prime divisor and that (KZ/B+E)·E = 0. Moreover
there exists a dlt blowup f : Y → X of (X,∆) (cf. Theorem 4.7)
that factors through g.

Proof. — Let f : Y → X be a dlt blowup whose existence is guaranteed
in Theorem 4.7. Since (X \ {x},∆|X\{x}) is dlt, possibly after replacing Y
by the scheme obtained by gluingX\{x} and f−1(X0) for sufficiently small
open neighbourhood X0 of x ∈ X, we may assume that f(Ex(f)) = {x}.
For the sum

∑r
i=1Ei of the f -exceptional prime divisors Ei, we can write

as follows (cf. Remark 4.8):

KY/B + f−1
∗ ∆ +

r∑
i=1

Ei ≡f 0 .

Claim. — There exists a projective birational B-morphism g : Z → X

of quasi-projective normal B-surfaces which satisfies the following proper-
ties:

(1) Z is Q-factorial,
(2) E := Ex(g) is a prime divisor,
(3) (KZ/B + g−1

∗ ∆ + E) · E = 0, and
(4) f factors through g.

Proof of Claim. — We run a (KY/B + f−1
∗ ∆ +

∑r
i=2Ei)-MMP over X

(Theorem 4.5). We show that the end result g : Z → X satisfies (1)–(4).
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Let h : Y → Z be the induced birational morphism. It is clear that (1)
and (4) hold. Since KY/B + g−1

∗ ∆ +
∑r
i=2Ei ≡f −E1, each step of this

MMP contracts Ei for some i ∈ {2, . . . , r}. In particular, we get h∗E1 6= 0.
Furthermore, all of E2, . . . , Er are contracted, since h∗E1 6= 0, −h∗E1 is g-
nef and g−1(x) is connected. Therefore, (2) holds and E = h∗E1. It follows
from KY/B + f−1

∗ ∆ +
∑r
i=1Ei ≡f 0 that

KY/B + f−1
∗ ∆ +

r∑
i=1

Ei = h∗(KZ/B + g−1
∗ ∆ + E) .

Thus (3) holds. �

Assuming that x ∈ Supp ∆, it suffices to show that X is Q-factorial.
By (1)–(3), the projective birational morphism g : Z → X is the contraction
of a (KZ/B + 1

2g
−1
∗ ∆ + E)-negative extremal ray of NE(Z/X). It follows

from Theorem 4.4 that X is Q-factorial, as desired. It completes the proof
of Lemma 4.9. �

Remark 4.10. — Since a pair (Z,E), appearing in Lemma 4.9(2), is
numerically log canonical and Z is Q-factorial, (Z,E) is log canonical.

Corollary 4.11. — Let B be a scheme satisfying Assumption 2.1. Let
(X,∆) be a two-dimensional dlt pair over B. Then X is Q-factorial.

Proof. — The assertion directly follows from Lemma 4.9. �

Lemma 4.12. — Let (C,D) be a one-dimensional projective semi log
canonical pair over a field k in the sense of [16, Definition-Lemma 5.10]. If
C is irreducible and KC + D ≡ 0, then there exists a positive integer m
such that OC(m(KC +D)) ' OC .

Proof. — Since C is semi log canonical, the singularities of C is at worst
nodal. In particular C is Gorenstein. If D 6= 0, then ω−1

C is ample and the
assertion follows from [16, Lemma 10.6]. Thus we may assume that D = 0.
Then we get ωC ' OC by

h0(X,ωX) = h1(X,ωX) = h0(X,OX) 6= 0 ,

where the first (resp. second) equation follows from Corollary 2.8 (resp.
Serre duality). �

Theorem 4.13. — Let B be a scheme satisfying Assumption 2.1. Let
(X,∆) be a numerically log canonical quasi-projective B-surface. Then the
following assertions hold.

(1) KX/B and all the irreducible components of ∆ are Q-Cartier. In
particular, (X,∆) is log canonical, that is, KX/B + ∆ is R-Cartier.
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(2) There exists an open subset X0 ⊂ X such that Supp ∆ ⊂ X0 and
that X0 is Q-factorial.

Proof. — By Lemma 4.9, we may assume that ∆ = 0 and x ∈ X is a
unique non-regular point. It suffices to show that KX/B is Q-Cartier. Let

f : Y h−→ Z
g−→ X

be birational morphisms as in Lemma 4.9(2). We have that

KY/B + EY = h∗(KZ/B + E) ≡f 0

where EY is the reduced divisor with SuppEY = Ex(f).

Claim. — There exists a positive integer m such that OZ(m(KZ/B +
E))|E ' OE .

We now show Claim. It follows from [16, Theorem 2.31] that E is nodal
and hence Gorenstein. Let (E,DiffE(0)) be a pair defined in [16, Defi-
nition 4.2]. Since E is nodal and (Z,E) is log canonical (Remark 4.10),
it follows from [16, Lemma 4.8] that (E,DiffE(0)) is semi log canoni-
cal in the sense of [16, Definition-Lemma 5.10]. Then Claim holds by
(KZ/B + E) · E = 0 and Lemma 4.12.
Since there is a natural morphism EY → E, Claim implies that

OY (m(KY/B + EY ))|EY
' OEY

for sufficiently divisible m ∈ Z>0. The
exact sequence:

0→ OY (−EY )→ OY → OEY
→ 0 ,

induces an exact sequence:

f∗OY (m(KY/B + EY ))→ f∗(OY (m(KY/B + EY ))|EY
)

→ R1f∗OY (m(KY/B + EY )− EY ) = 0

where the last equation follows from Theorem 3.3. Thus, KY/B + EY is
f -semi-ample, which implies that there is a Q-Cartier Q-divisor L on X

such that KY/B + EY = f∗L. Taking the push-forward f∗, it follows that
KX/B is Q-Cartier. �

Remark 4.14. — If B is essentially of finite type over a field of charac-
teristic zero then Theorem 4.13 was known to follow from [9, Corollary 1.6].

Theorem 4.15. — Theorem 1.1 holds if (X,∆) satisfies the condi-
tion (LC).

Proof. — The assertion follows directly from Theorem 2.14, Theorem 4.4
and Theorem 4.13. �
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5. Miscellaneous results

In this section, we prove the inversion of adjunction (Theorem 5.1) and
the Kollár–Shokurov connectedness theorem (Theorem 5.2) for surfaces
over excellent schemes.

5.1. Inversion of adjunction

Theorem 5.1. — Let B be a scheme satisfying Assumption 2.1. Let
(X,C + D) be a two-dimensional quasi-projective log pair over B, where
C is a reduced divisor that has no common components with an effective
R-divisor D. Let CN be the normalisation of C and let DCN := DiffCN (D)
(cf. [16, Definition 2.34]). Then the following hold.

(1) (X,C + D) is log canonical around C if and only if (CN , DCN ) is
log canonical.

(2) (X,C +D) is plt around C if and only if (CN , DCN ) is klt.

Proof. — For both of (1) and (2), we only show the if-part since the
opposite implications follow from [16, Lemma 4.8].

Since the problem is local on X, we fix a closed point x ∈ C ⊂ X

around which we work. In particular, we may assume that all the irreducible
components of C + D contain x. Let f : Y → X be a dlt blowup of
(X,∆ := C+D) as in Theorem 4.7 and we use the same notation as there.
Let ∆2 := ∆−∆1. We have that

KY/B + f−1
∗ ∆1 + E = f∗(KX/B + C +D)− (f−1

∗ ∆2 + E′)

is f -nef (cf. Remark 4.8).
We show (1). We may assume that f(Ex(f)) = {x}. Assume that (X,C+

D) is not log canonical around x, which is equivalent to f−1
∗ ∆2 + E′ 6= 0

(Remark 4.8). Since −(f−1
∗ ∆2 + E′) is f -nef, it follows from the negativ-

ity lemma (Lemma 2.11) that Supp E′ contains f−1(x). This implies that
(CN , DCN ) is not log canonical by [16, Proposition 4.5(2)], hence (1) holds.

We show (2). Assume that (CN , DCN ) is klt. It suffices to show that
(X,C + D) is plt. It follows from (1) that (X,C + D) is log canonical,
hence ∆ = ∆1, ∆2 = 0 and E′ = 0.
We now prove that f is an isomorphism. We assume by contradiction that

E 6= 0. Since we work around x, we may assume that f(Ex(f)) = {x}. Since
Theorem 4.7(1) implies SuppE = Ex(f), we have that f−1

∗ C intersects
E. Since E 6= 0, we get xDCN y 6= 0 by [16, Proposition 4.5(6)], which
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contradicts the fact that (CN , DCN ) is klt. Thus f is an isomorphism, as
desired.
Since f is an isomorphism, (X,C+D) is dlt. If xDy 6= 0, then (CN , DCN )

is not klt again by [16, Proposition 4.5(6)]. Thus we get xDy = 0, hence (2)
holds. �

5.2. Connectedness theorem

Theorem 5.2. — Let B be a scheme satisfying Assumption 2.1. Let
π : X → S be a projective B-morphism from a two-dimensional quasi-
projective log pair (X,∆) over B to a quasi-projective B-scheme S with
π∗OX = OS . Let Nklt(X,∆) be the reduced closed subscheme of X con-
sisting of the non-klt points of (X,∆). If −(KX/B + ∆) is π-nef and π-big,
then any fibre of the induced morphism Nklt(X,∆) → S is either empty
or geometrically connected.

Proof. — We divide the proof into three steps.

Step 5.3. — There exists an effective R-divisor ∆′ such that (X,∆′) is
a log pair over B, ∆′ > ∆, Nklt(X,∆) = Nklt(X,∆′), and −(KX/B + ∆′)
is π-ample.

Proof of Step 5.3. — Since N := −(KX/B + ∆) is π-big, we can write

N = A+D

for some π-ample R-Cartier R-divisor A and an effective R-divisor D. Thus
for any rational number 0 < ε < 1, we have that

−(KX/B + ∆) = N = (1− ε)N + εA+ εD ,

where (1− ε)N + εA is π-ample. Thus it suffices to find a rational number
0 < ε < 1 such that Nklt(X,∆) = Nklt(X,∆ + εD). We can find such a
number ε by taking a log resolution of (X,∆ +D). �

Step 5.4. — If dimS > 1, then the assertion in the theorem holds.

Proof of Step 5.4. — By Step 5.3, we may assume that −(KX/B + ∆)
is π-ample. We have an exact sequence

0→ J∆ → OX → OW → 0

where W is the closed subscheme corresponding to the multiplier ideal J∆.
Since the support of W is equal to the non-klt locus of (X,∆), we get
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Wred = Nklt(X,∆). Since −(KX/B + ∆) is π-ample, it follows from Theo-
rem 3.4 that R1π∗J∆ = 0, which implies that the induced homomorphism

ρ : OS = π∗OX → π∗OW

is surjective. Since ρ factors through Oπ(W ), we have that

Oπ(W ) → OV = π∗OW

is surjective, where W → V → π(W ) is the Stein factorisation of W →
π(W ). Thus V → π(W ) is a surjective closed immersion, hence a universal
homeomorphism. In particular, any fibre of W → π(W ) is geometrically
connected. Since a surjective closed immersion Nklt(X,∆) → W is a uni-
versal homeomorphism, it completes the proof of Step 5.4. �

Step 5.5. — If dimS = 0, then the assertion in the theorem holds.

Proof of Step 5.5. — Since dimS = 0, we have that S = Spec k for a field
k. Taking the base change to the separable closure of k, we may assume that
k is separably closed. In particular, it suffices to show that Nklt(X,∆) is
connected. By replacing (X,∆) by its dlt blowup as in Theorem 4.7, we may
assume that (X,∆<1) is klt and Nklt(X,∆) = Supp ∆>1 (cf. Remark 4.8).
Set A := −(KX +∆). By Step 5.3, we may assume that A is ample. We run
a (KX +∆<1 +A)-MMP: f : X → Y . Since −(KX +∆<1 +A) = ∆>1 6= 0,
the program ends with a Mori fibre space ρ : Y → T . We set ∆Y := f∗∆.
We now prove:

Claim. — The following hold.
(1) f(Supp ∆>1) = Supp ∆>1

Y .
(2) If Nklt(Y,∆Y ) is connected, then Nklt(X,∆) is connected.
(3) Nklt(Y,∆Y ) = Supp ∆>1

Y .

Since f is the composition of the extremal contractions, we only prove
Claim under the assumption that E := Ex(f) is irreducible. In particular,
∆>1 is f -ample.
We show (1). The inclusion f(Supp ∆>1) ⊃ Supp ∆>1

Y is clear. It suf-
fices to show that f(E) ∈ Supp ∆>1

Y . Since ∆>1 is f -ample, there is an
irreducible component C of Supp ∆>1 such that C ·E > 0. It follows from
E2 < 0 that C 6= E. Thus, we get f(E) ∈ Supp ∆>1

Y , hence (1) holds.
We show (2). We assume by contradiction that Supp ∆>1

Y is connected
but Supp ∆>1 is not. Thanks to (1), we can find a point y ∈ Supp ∆>1

Y

such that f−1(y) ∩ Supp ∆>1 is not connected. This contradicts Step 5.4.
Thus (2) holds.
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The assertion (3) follows from (1) and the fact that the MMP f : X → Y

can be considered as a (KX + ∆)-MMP, because the ampleness of A is
preserved under the MMP. It completes the proof of Claim.
If dimT = 0, then we have ρ(Y ) = 1, hence Nklt(Y,∆Y ) = Supp ∆>1

Y

is clearly connected. Thus we may assume that dimT = 1. Assuming that
Nklt(Y,∆Y ) is not connected, let us derive a contradiction. Let D1 and D2
be distinct connected components of Nklt(Y,∆Y ). Since ∆>1

Y is ρ-ample,
Nklt(Y,∆Y ) = Supp ∆>1

Y dominates T . In particular, we may assume that
D1 dominates T . On the other hand, Step 5.4 implies that Nklt(Y,∆Y ) ∩
ρ−1(t) is connected for any closed point t ∈ T . In particular, D2 does
not dominate T . Since D2 is connected, we have that D2 ⊂ ρ−1(t0) for
some closed point t0 ∈ T . However, this implies that Nklt(Y,∆Y )∩ρ−1(t0)
has at least two connected components: D2 and a connected component of
D1∩ρ−1(t0). This is a contradiction. It completes the proof of Step 5.5. �

Thus the assertion in Theorem holds by Step 5.4 and Step 5.5. �
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