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SPHERICAL SPACES

by Torsten WEDHORN (*)

Abstract. — The notion of a spherical space over an arbitrary base scheme
is introduced as a generalization of a spherical variety over an algebraically closed
field. It is studied how the sphericity condition behaves in families. In particular
it is shown that sphericity of subgroup schemes is an open and closed condition
over arbitrary base schemes generalizing a result by Knop and Röhrle. Moreover
spherical embeddings are classified over arbitrary fields generalizing and simplifying
results by Huruguen.
Résumé. — Dans cet article on introduit la notion d’espace sphérique sur un

schéma arbitraire, généralisant la notion de variété sphérique sur un corps algébri-
quement clos. Nous étudions le comportement de la sphéricité pour les familles.
En particulier, nous démontrons que la condition d’être sphérique pour les sous-
groupes est aussi bien ouverte que fermée, en généralisant un résultat de Knop et
Röhrle. De plus nous classifions les plongements sphériques sur un corps arbitraire,
généralisant et simplifiant des résultats de Huruguen.

Introduction

Spherical varieties over an algebraically closed field are normal varieties
with the action of a reductive group G such that a Borel subgroup of G
acts with an open dense orbit. They generalize several important classes
of varieties: projective homogeneous G-varieties, symmetric varieties, and
toric varieties. In this paper we generalize the notion of a spherical variety
to algebraic spaces over an arbitrary base scheme S. If G is a reductive
group over S, then a spherical G-space over S is a flat separated algebraic
space of finite presentation over S with a G-action such that all geometric
fibers are spherical varieties (see below for precise definitions). A flat and
finitely presented subgroup scheme H of G is called spherical if G/H is a

Keywords: spherical varieties, algebraic spaces.
2010 Mathematics Subject Classification: 14M27, 14L30, 14M17, 20G15.
(*) I am grateful to Jochen Heinloth for useful discussions and to the referee for pointing
out that several results on algebraic spaces needed more detailed explanations.



230 Torsten WEDHORN

spherical G-space. The first main result is the following (Corollary 3.3 and
Theorem 4.3).

Theorem.
(1) The property for a flat finitely presented G-space with normal geo-

metric fibers to be spherical is open and constructible on the base
scheme.

(2) The property for a flat finitely presented subgroup scheme H of G
to be spherical is open and closed on the base scheme.

The second result generalizes a result of Knop and Röhrle ([20, Thm. 3.4])
who considered the case that S is the spectrum of a Dedekind domain and
that G is a split reductive group scheme(1) . It is proved by reducing to this
case and invoking their result.
In the second part of the paper we study spherical spaces over arbitrary

fields. Over an algebraically closed field spherical varieties are classified in
two steps.

(1) One first classifies spherical embeddings of a homogeneous spherical
G-variety by combinatorial objects called colored fans (generalizing
the classification of toric varieties by fans). This is done by the
theory of Luna, Vust, and Knop ([24] in characteristic 0, [18] for
arbitrary characteristic).

(2) Then one classifies spherical subgroups H of G. This classification
is now complete in characteristic 0 by work of Luna [23], Losev [22],
Cupit–Foutou [7], and Bravi and Pezzini [3, 4, 5]. But it is still open
in positive characteristic.

We have nothing new to say for the second point (except for some trivi-
alities about classification of forms in Section 10). Here we generalize the
first classification result to spherical spaces over arbitrary fields. There
are two technical ingredients here. We first show that Knop’s methods of
classification by colored fans over algebraically closed fields can easily be
generalized to the case of separably closed field (Theorem 7.2). Then we use
Galois descent to classify spherical embeddings of a spherical homogeneous
G-space in terms of Galois invariant colored fans (Theorem 9.1). Similar
results have already been obtained by Huruguen in [17]. The results here
are slightly more general as we consider also non-perfect base fields and as
we do not assume that a homogeneous space has a rational point. They are

(1) In [20] Knop and Röhrle state already in a footnote that their result is “surely valid
in greater generality” and here this prediction is shown to be true.
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SPHERICAL SPACES 231

also simplified by working systematically with algebraic spaces instead of
schemes which allows us to get rid of Huruguen’s technical condition (ii).

Notation

Algebraic Spaces. — An algebraic space over a scheme S is an fppf-
sheaf X on the category of S-schemes such that the diagonal X → X×SX
is representable by a morphism of schemes and such that there exists a
surjective étale morphism X̃ → X, where X̃ is an S-scheme.

Hence the notion of algebraic space is the one in the sense of [26,
Def. Tag 025Y]. All occurring algebraic spaces will be quasi-separated over
some scheme and therefore they will be Zariski locally quasi-separated.
Hence they are reasonable (and decent) in the sense of [26, Tag 03I8] by [26,
Tag 03JX].

Moreover all Zariski-local results of references such as [21] or [25], where
algebraic spaces are assumed to be quasi-separated, are still valid.

Fibers and Geometric Fibers. — For each point x of the underlying
topological space of a decent algebraic space X (we simply write x ∈ X)
there exists a field k and a monomorphism Spec(k) → X, and this mono-
morphism is unique up to unique isomorphism ([26, Tag 03K4]). The field
k is called the residue field of x and denoted by κ(x).
If X is an algebraic space over some algebraic space S and T → S is

a morphism of algebraic spaces, then we write XT instead of X ×S T . If
T = Spec(A) is an affine scheme, we also write XA. For s ∈ S we denote
by Xs the fiber Xκ(s).
A geometric point is a morphism Spec k → S, where k is an algebraically

closed field. For s ∈ S we write s̄ = Spec(κ(s)a), where κ(s)a is an algebraic
closure of κ(s). If X → S is an algebraic space over S, then Xs̄ := X ×S s̄
is called geometric fiber of X in s.

Subspaces. — An immersion (resp. an open immersion, resp. a closed
immersion) of algebraic spaces is a morphism of algebraic spaces that is
representable and an immersion (resp. an open immersion, resp. a closed
immersion) ([26, Tag 03HB]). Two immersions whose target is an algebraic
space X define the same subspace of X if each factors through the other
(necessarily uniquely as immersions are monomorphisms in the category
of algebraic spaces). An immersion of algebraic spaces induces a locally
closed embedding on the underlying topological spaces ([26, Tag 04CD]).
Conversely, if X is an algebraic space and T is a locally closed subset of

TOME 68 (2018), FASCICULE 1



232 Torsten WEDHORN

the underlying topological space of X, then there exists a unique reduced
subspace Z ↪→ X whose underlying topological space is T ([26, Tag 06EC]).

Algebraic Groups. — If k is a field, an algebraic group over k is by
definition a group scheme of finite type over k (not necessarily smooth).

1. Spherical varieties

Let k be an algebraically closed field and let G be a reductive algebraic
group over k. A normal connected separated G-scheme X of finite type over
k is called spherical or G-spherical if it satisfies the following equivalent
conditions.

(1) There exists a Borel subgroup B of G which has an open orbit in X.
(2) There exists a Borel subgroup B of G and a point x ∈ X(k) such

that dim StabB(x) = dimB − dimX.
(3) There exists a Borel subgroup B of G such that B acts with finitely

many orbits on X.
The equivalence of (1) and (2) is clear and the equivalence of (1) and (3)
follows from by [19, Cor. 2.6]. As all Borel subgroups are conjugate, all
conditions hold for every Borel subgroup of G if they hold for one Borel
subgroup. Note that we assume that by definition a connected space is
non-empty implying that spherical varieties are non-empty.
We need the fact that “having finitely many orbits” is stable under change

of the base field. Here we will use this fact only for schemes over alge-
braically closed fields (see Corollary 1.4 below). But for later reference this
result is formulated more generally than needed here. We fix the following
notation. Let κ be a field, let H be a smooth algebraic group over κ, and
let X be an algebraic space of finite type over κ with an action of H.

For schemes of finite type over an algebraically closed field with an action
by a smooth algebraic group it is equivalent having finitely many orbits or
having finitely many invariant reduced subschemes. In this case the orbits
are the minimal invariant reduced subspaces in the following sense.

Definition 1.1. — An H-invariant subspace Y of X is called minimal
if there exists no proper non-empty H-invariant subspace of Y .

If Y is any H-invariant subspace, then the underlying reduced subspace
Yred is H-invariant because H is smooth and hence geometrically reduced.
This shows in particular that minimal H-invariant subspaces are reduced.

ANNALES DE L’INSTITUT FOURIER
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Algebraic spaces of finite type over an arbitrary field κ with an action
by a smooth algebraic group might not have any orbit (defined over the
base field) because they might not have κ-rational points. But if they have
a rational point than a minimal H-invariant subspace is the same as an
orbit:

Lemma 1.2. — An H-invariant subspace Y that has a κ-rational point
x is minimal if and only if it is H-equivariantly isomorphic to H/StabH(x).
In particular Y is a smooth scheme over κ in this case.

Proof. — Indeed, the condition is certainly sufficient. Conversely suppose
that Y is minimal. Let f : H → Y be the orbit morphism of κ-spaces given
by h 7→ h·x. Then f is generically flat because Y is reduced ([26, Tag 06QS])
and hence flat by homogenity. Therefore f is open ([26, Tag 042S]). Its
image is an H-invariant subspace of Y , hence f is surjective because of the
minimality of Y . Therefore f is faithfully flat and hence an epimorphism in
the category of fppf-sheaves over κ. The induced morphismH/StabH(x)→
Y is therefore a monomorphism and an epimorphism of fppf-sheaves. Hence
it is an isomorphism. �

We now show that having finitely many minimal invariant subspaces is
invariant under change of base field.

Lemma 1.3. — Let κ be a field, let H be a smooth algebraic group over
κ and let X be an algebraic space over κ of finite type with H-action.
Let K be a field extension of κ. Then X has only finitely many minimal
H-invariant subspaces if and only if XK has only finitely many minimal
HK-invariant subspaces.

Proof. — The condition is clearly sufficient. Hence let us assume that X
has only finitely many munimal H-invariant subspaces. Passing to a finite
extension κ′ of κ and replacing K by a field extension containning both κ′
and K we may assume that every minimal H-invariant subspace Y of X
has a κ-rational point. Then such a subspace Y is isomorphic to a quotient
of H by Lemma 1.2. As the formation of quotients commutes with base
change, such a minimal H-invariant smooth subscheme stays minimal H-
invariant and smooth after the base change κ → K. Therefore there are
only finitely many minimal HK-invariant subspaces of XK . �

Corollary 1.4. — Let K be an algebraically closed extension of the
algebraically closed field k and let X be G-scheme over k. Then X is spher-
ical if and only if XK is spherical.

TOME 68 (2018), FASCICULE 1



234 Torsten WEDHORN

Proof. — Note first that X is of finite type if and only if XK is of fi-
nite type. Moreover, if XK is connected (resp. normal), then clearly X is
connected (resp. normal). The converse holds by [14, (4.5.1) and (6.7.7)].
Hence we are done by Lemma 1.3 applied to a Borel subgroup H of G. �

2. Spherical spaces

Let S be a scheme and let G be a reductive group scheme over S (i.e., G is
a smooth affine group scheme over S whose geometric fibers are connected
reductive groups).

Definition 2.1. — An algebraic space X over S with an action by
G is called spherical or G-spherical if it is flat, separated, and of finite
presentation over S and if for all s ∈ S the geometric fiber Xs̄ is a spherical
Gs̄-variety.

As spherical varieties are by definition non-empty, the structure mor-
phism X → S of a spherical space is always surjective and hence faithfully
flat.

Remark 2.2. — If S = Spec(k) for a field k, then a G-spherical space
over k is an algebraic space X over k with G-action such that XK is a
GK-spherical variety for some (or equivalently by Lemma 1.4) for any alge-
braically closed extension K of k. There exists then a finite separable field
extension k′ such that Xk′ is a scheme ([26, Tag 0B84]).

Remark 2.3. — Let X be an algebraic space over S with G-action. Let
S′ → S be a morphism of schemes.

(1) If X is G-spherical, then the S′-space XS′ is GS′ -spherical.
(2) Let S′ → S be an fpqc-covering and assume that XS′ is GS′ -

spherical. Then X is G-spherical.

Proof. — The property for a morphism of algebraic spaces to be flat
(resp. separated, resp. of finite presentation) is stable under base change
(see [26, Tags 03MO, 03KL, 03XR]) and fpqc local on the base (see [26,
Tags 041W, 0421, 041V]).

Moreover, the geometric fibers ofXS′ are base changes of geometric fibers
of X. If S′ → S is an fpqc-covering, then S′ → S is surjective, and for every
geometric fiber Xs̄ of X there is a geometric fiber of XS′ which is the base
change of Xs̄. Hence we conclude by Corollary 1.4. �
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3. Openness of sphericity

For the next result recall that there is the notion of constructible set in
an arbitrary scheme S.

Definition 3.1. — A subset C of a scheme S such that for every (equiv-
alently, for one) open covering (Ui)i of S by affine subschemes the inter-
sections S ∩ Ui are for all i finite unions of sets of the form Vi ∩ (Ui \Wi),
where Vi,Wi ⊆ Ui are open quasi-compact subsets.

Here we follow the convention of [16, §7] (and not of [13], where a con-
structible set in our sense is called locally constructible). If S is noetherian,
then C ⊆ S is constructible if and only if C is a finite union of locally closed
subsets.

Theorem 3.2. — Let S be a scheme, let X be an algebraic space that is
of finite presentation over S and that has geometrically irreducible fibers.
Let H be a group scheme of finite presentation over S that acts on X.
Define

C := {s ∈ S ; there exists an open dense Hs̄-orbit in Xs̄} .

(1) The subset C is constructible in S.
(2) Suppose in addition that H and X are flat over S. Then C is also

open.

Proof. — Both assertions are Zariski locally on S and hence we may
assume that S is affine. Hence X is quasi-compact and quasi-separated
because the structure morphism π : X → S is of finite presentation. In
particular there exists an étale quasi-compact cover ξ : X̃ → X by an affine
scheme X̃.
Choose an integer N such that all fibers of H and of X in points of S

have dimension 6 N ([12, 14.105] applied to H and X̃ because one has
dim(Xs) = dim(X̃s) for all s ∈ S). For x ∈ X we obtain an action of the
fiber Hπ(x) of H on the fiber Xπ(x) of X and we denote by StabH(x) the
stabilizer of the canonical morphism Specκ(x)→ Xπ(x) in Hπ(x), which is
a closed subgroup scheme of H ×S Spec(κ(x)). Define

(3.1) X0 := {x ∈ X ; dim StabH(x) = dimHπ(x) − dimXπ(x)} .

Then π(X0) = C and hence it suffices by Chevalley’s theorem ([16, (7.2.9)]
if X is a scheme, [21, Thm. 5.9.4] in general) to show that X0 is a con-
structible subset of X.

TOME 68 (2018), FASCICULE 1



236 Torsten WEDHORN

Fix an integer d with d 6 N . Let Ed be the set of x ∈ X such that
dimHπ(x) − dimXπ(x) = d. Denote by Fd the set of x ∈ X such that
dim StabH(x) = d. Then

X0 =
⋃
d6N

(Ed ∩ Fd) .

Hence to show that X0 is constructible it suffices to show that Ed and Fd
are constructible.
Now Ed is constructible by [15, (9.9.1)] (the result generalizes to algebraic

spaces by applying it to X̃ and again using that dim(Xs) = dim(X̃s) for
all s ∈ S). To see that Fd is constructible, we define an algebraic space H
over X by the cartesian diagram

H
g //

��

X

∆
��

H ×S X
f // X ×S X,

where f is the morphism (h, x) 7→ (h · x, x) and where ∆ is the diagonal.
Then StabH(x) is the fiber Hx of g in x. Hence Fd is constructible by [12,
10.96]. Here we again use that this result generalizes to algebraic spaces:
We apply [12, 10.96] to the morphism of schemes H̃ := H×X X̃ → X̃ to see
that F̃d := { x̃ ∈ X̃ ; dim(H̃x̃) = d } is constructible in X̃. As ξ is locally
of finite presentation and quasi-compact, Fd = ξ(F̃d) is constructible by
Chevalley’s theorem.
It remains to show that C is open if H and X satisfy the hypotheses in 2.

As X is flat and locally of finite presentation over S, the morphism π is
open. Hence it suffices to show thatX0 is open. Moreover the additional hy-
potheses on H and X imply that the maps s 7→ dim(Hs) and s 7→ dim(Xs)
are locally constant on S. Hence we may assume that e := dimHs−dimXs

is independent of s. Then X0 is the set, where StabH(x) = Hx has the
minimal possible dimension e. Hence it is open by semi-continuity of fiber
dimension (where we can argue as above by replacingH → X with the mor-
phism of schemes H̃ → X̃ and using that ξ is open because it is étale). �

Corollary 3.3. — Let S be a scheme, let X be an algebraic space
which is separated, flat, and of finite presentation over S with geometrically
normal and geometrically integral fibers. Let G be a reductive group scheme
over S that acts on X. Then there exists an open constructible subscheme
U of S such that a morphism of schemes f : T → S factors through U if
and only if XT is a spherical GT -space.

ANNALES DE L’INSTITUT FOURIER
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Proof. — We have to show that the functor on S-schemes

(f : T → S) 7→
{
{f} , if XT is a spherical GT -space ;
∅ , otherwise

is representable by an open constructible subscheme of S. As this can be
shown locally for the étale topology on S, we may assume that G is a
split reductive group scheme [11, Exp. XXII, Cor. 2.4] and in particular
that there exists a Borel subgroup scheme B of G. Applying Theorem 3.2
with H = B we obtain an open constructible subscheme U of S such that
U = {s ∈ S ; Xs̄ is Gs̄-spherical}.
This represents the functor because being spherical is stable under base

change and local for the fpqc topology. Indeed, if f : T → S factors through
U , then XT = (XU )T is GT -spherical by Remark 2.3(1). Conversely, if f
does not factor through U , then there exists t ∈ T such that f(t) ∈ S \ U .
As Xf(t) is not Gf(t)-spherical, (XT )t = (Xf(t))t is not Gt-spherical by
Remark 2.3(2). Hence XT cannot be GT -spherical. �

Remark 3.4. — Let G be a reductive group over a scheme S and let X
be a spherical G-space. Then the open subspace X0 of X defined in (3.1)
is given by the property that for every s ∈ S the preimage of X0 in the
geometric fiber Xs̄ is the unique open dense Gs̄-orbit. In particular it is
faithfully flat over S and in each geometric fiber schematically dense.

We conclude this section by studying limits of spherical spaces. Let
(Si)i∈I be a filtered projective system of quasi-compact quasi-separated
schemes with affine transition morphism πij : Sj → Si. Let S be its limit
(which exists in the category of schemes). Assume that I contains a small-
est element 0, let G0 be a group scheme of finite presentation over S0 and
set Gi := G0×S0 Si and G := G0×S0 S. We first recall the following general
fact that follows from [26, Tag 07SK].

Remark 3.5. — Let X be an algebraic space of finite presentation over
S with an action by G. Then there exists i ∈ I, an algebraic space Xi over
Si with Gi-action, and a G-equivariant isomorphism α : Xi ×Si

S
∼→ X of

spaces over S.
Moreover, if (i′, X ′i′ , α′) is a second such triple, then there exists a j > i, i′

and a Gj-equivariant isomorphism τj : Xi ×Si
Sj
∼→ X ′i′ ×Si′ Sj such that

α′ ◦ (τj × idS) = α.

Now we deduce from Theorem 3.2 that being spherical is compatible
with filtered limits in the following sense.

TOME 68 (2018), FASCICULE 1



238 Torsten WEDHORN

Corollary 3.6. — Let G0 be reductive and let X0 be an algebraic
space of finite presentation of S0 with a G0-action. Suppose that X :=
X0 ×S0 S is a G-spherical space. Then there exists an i ∈ I such that
Xi := X0 ×S0 Si is a Gi-spherical space.

Proof. — There exists i0 ∈ I such that Xi0 → Si0 is separated and
faithfully flat ([26, Section Tag 084V]). For i > i0 let Ci ⊆ Si be the set of
s ∈ Si such that (Xi)s is geometrically normal and geometrically integral.
Then Ci is constructible in Si by Lemma 3.7 below.
For j > i > i0 one has Cj = π−1

ij (Ci) and the inverse image of Ci in
S is equal to S because X has geometrically normal and geometrically
integral fibers. By [12, 10.57] the set of (open) constructible subsets in S is
the filtered colimit of the sets of (open) constructible subsets of Si. Hence
there exists a i1 > i0 such that Ci1 = Si1 , i.e., Xi1 has geometrically normal
and geometrically integral fibers.
Now we can use the same argument with the spherical locus Ui ⊆ Si of

Xi for i > i1 as given by Corollary 3.3. We find i2 > i1 such that Xi2 is
Gi2 -spherical. �

Lemma 3.7. — Let S be a scheme and let X → S be an algebraic space
of finite presentation over S. Let C(X) be the set of s ∈ S such that
Xs̄ is geometrically normal (resp. geometrically integral). Then C(X) is a
constructible subset of S.

Proof. — Consider the property “geometrically normal”. Let X̃ → X be
an étale surjective morphism where X̃ is a scheme, then C(X) = C(X̃).
Hence C(X) is constructible in S by [15, (9.9.5)].

The constructibility for the property “geometrically integral” is shown
in [25]. �

4. Closedness of sphericity for subgroups

We now consider the special case where X is a quotient of G. Let S be
a scheme, let G be a reductive group scheme over S, and let H be a closed
subgroup scheme of G that is flat and of finite presentation over S. Define
the spherical locus

SphG(H) := {s ∈ S ; Gs̄/Hs̄ is Gs̄-spherical} .

We call H a spherical subgroup of G if SphG(H) = S.

ANNALES DE L’INSTITUT FOURIER
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Proposition 4.1. — In the situation above the following conditions are
equivalent.

(1) The subgroup scheme H is a spherical subgroup of G.
(2) The algebraic space G/H is G-spherical.
(3) The conjugation action of H on the scheme Bor(G) of Borel sub-

groups of G has in all geometric fibers a dense orbit.
Recall that Bor(G) is the smooth projective S-scheme of finite presen-

tation with geometrically integral fibers whose T -valued points for some
S-scheme T is the set of Borel subgroups GT ([11, Exp. XXII 5.8.3]).
Proof. — For all s ∈ S some Borel subgroup B of Gs̄ acts on Gs̄/Hs̄ with

open dense orbit if and only if Hs̄ acts with open dense orbit on Gs̄/B ∼=
Bor(Gs̄). This shows the equivalence of (1) and (3). As the formation of
the quotient G/H commutes with arbitrary base change and in particular
with passage to geometric fibers, it is clear that (2) implies (1).
The converse follows from facts about quotients recalled in the

appendix. �

Remark 4.2. — If S is of characteristic 0 (i.e., a scheme over SpecQ),
then every flat group scheme locally if finite presentation over S is automat-
ically smooth. But in general a spherical subgroup as defined above is not
necessarily smooth over the base scheme. For instance let S be the spectrum
of an algebraically closed field of characteristic p > 0 and let G = Gm,S .
Then the scheme µp of p-th roots of unity is a spherical subgroup of G in
the above sense.
Theorem 4.3. — SphG(H) is open and closed in S.
In particular we see that if S is connected and there exists a point t ∈ S

such that Ht̄ is a spherical subgroup of Gt̄, then Hs̄ is a spherical sub-
group of Gs̄ for all s ∈ S. The theorem generalizes a result of Knop and
Röhrle ([20, Thm. 3.4]) who considered the case that S is the spectrum of
a Dedekind domain and that G is split (i.e., G has a split maximal torus
T ). In fact, we will reduce to this case using Corollary 3.3.
Proof. — To prove Theorem 4.3 we can work locally for the fpqc topology

on S by Remark 2.3(2). Hence we may assume that G is a split reductive
group scheme.
We consider the action of H by conjugation on the scheme of Borel sub-

groups Bor(G), a smooth and projective scheme over S. Then Theorem 3.2
shows that SphG(H) is open and constructible in S(2) .
(2)One could have chosen a Borel subgroup of G (possible because G is split) and then
apply Theorem 3.2 to the B-space G/H.

TOME 68 (2018), FASCICULE 1



240 Torsten WEDHORN

It remains to prove that SphG(H) is closed. We may assume that S =
SpecA is affine. By writing A as a filtered inductive limit of finitely gener-
ated Z-algebras, we may assume by Corollary 3.6 thatA is of finite type over
Z in particular noetherian. Moreover, as we already know that SphG(H) is
constructible, it suffices to show that SphG(H) is stable under specializa-
tion (see e.g. [12, 10.17]).
Let x, y ∈ S be two points such that x is a specialization of y. By [12,

15.7] there exists a discrete valuation ring and a morphism of schemes
g : SpecR → S such that g(s) = x and g(η) = y, where s (resp. η) is the
special (resp. generic) point of SpecR. Hence base change to SpecR allows
us to reduce to the case that S is the spectrum of a discrete valuation
ring and that x is the special point and y is the generic point. This is
the case considered in Theorem 3.4 of [20], which shows that in this case
x ∈ SphG(H) if and only if y ∈ SphG(H). �

5. Spherical embeddings

Let S be a scheme and let G be a smooth group scheme of finite presen-
tation over S.

Definition 5.1. — An algebraic space X with G-action is called a ho-
mogeneous if X is faithfully flat, of finite presentation, and separated over
S with geometrically reduced fibers and if G(κ(s̄)) acts transitively on
X(κ(s̄)) for every geometric point s̄ of S.

Using the same arguments as in Remark 2.3 one sees that if S′ → S is
a morphism of schemes and X is a homogeneous G-space, then XS′ is a
homogeneous GS′-space. The converse holds if S′ → S is a fpqc covering.

Lemma 5.2. — A G-space X over S is homogeneous if and only if there
exists an fppf-covering S′ → S, a closed subgroup scheme H ⊆ GS′ flat and
of finite presentation over S′, and a GS′ -equivariant isomorphism GS′/H

∼→
XS′ of algebraic spaces over S′.

The proof will show that a homogeneous G-space X is of the form G/H

if and only if X has a section over S.
Proof. — If X ∼= G/H for a closed subgroup scheme H of G, then X

is clearly a homogeneous G-space by the facts recalled in the appendix.
Hence the sufficiency follows from descent.
Conversely, let X be a homogeneous G-space. As X is faithfully flat

and of finite presentation over S, it admits locally for the fppf topology a
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section. Hence, we may assume that X has a section x : S → X. Let H be
the stabilizer of this section. By [8, II, §1, Thm. 3.6], H is a closed subgroup
scheme of G. Let π : G→ X, g 7→ g ·x be the orbit morphism corresponding
to x. Then π is surjective, because it is surjective by hypothesis on geometric
fibers. As all geometric fibers of X are reduced, π is generically flat on
geometric fibers. By homogeneity it is faithfully flat on geometric fibers
and hence π itself is flat by the fiber criterion of flatness. Hence π is an
epimorphism for the fppf topology and therefore induces a G-equivariant
isomorphism G/H

∼→ X.
It remains to show that H is flat and of finite presentation over S. Con-

sider the cartesian diagram

G×S H
a //

p

��

G

π

��
G

π // X,

where a is the action of H on G by right multiplication and where p is
the first projection. Now π is of finite presentation over S because G and
X are both of finite presentation over S and flat. Hence p is flat and of
finite presentation. Therefore H → S is flat and of finite presentation by
fpqc-descent via the quasi-compact faithfully flat morphism G→ S. �

Remark 5.3. — As G is smooth over S, any quotient G/H as above
is smooth (see Appendix). As smoothness can be checked fppf-locally, one
sees that a homogeneous G-space is automatically smooth over S.

Over fields every homogeneous space is automatically a scheme:

Lemma 5.4. — Let S = Spec(k) for a field k. Then every homogenous
G-space X is a smooth quasi-projective scheme over k.

Proof. — Let k̄ be an algebraic closure of k. Then Xk̄
∼= Gk̄/H by

Lemma 5.2 for some algebraic subgroup H of Gk̄. In particular Xk̄ is a
smooth quasi-projective scheme over k̄. As Xk̄ is quasi-projective, any fi-
nite set of k̄-valued points is contained in an open affine subscheme. Hence
X is a scheme by [26, Tag 0B88]. It is smooth and quasi-projective by fpqc
descent for field extensions. �

Definition 5.5. — Let S be a scheme, let G be a reductive group
scheme over S and let X0 be a spherical homogeneous G-space. Then a
spherical embedding of X0 is a spherical G-space X over S together with
an open G-equivariant immersion i : X0 → X.
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Let X0 and Y 0 be a spherical homogeneous G-spaces, let (X, i) and
(Y, j) be spherical embeddings of X0 and Y 0, respectively. A morphism
(X0, X, i) → (Y 0, Y, j) of spherical embeddings is a G-equivariant mor-
phism ϕ0 : X0 → Y 0 over S such that there exists a G-equivariant mor-
phism ϕ : X → Y with ϕ ◦ i = j ◦ ϕ0.

Note that ϕ0 is automatically surjective. If (X, i) is a spherical embedding
of X0, then the i(X0) is open and on all geometric fibers schematically
dense in X. As spherical spaces are separated, this shows that ϕ is uniquely
determined by ϕ0 if it exists.

Remark 5.6. — Let X0 be a spherical homogenous G-space over S and
let S′ → S be a morphism of schemes. Then the base change functor ( )S′
yields a functor from the category of G-spherical embeddings of X0 to the
category of GS′ -spherical embeddings of (X0)S′ .

Remark 5.7. — Let G be a reductive group scheme over S and let X be
a spherical G-space. Then there exists a homogenous spherical G-space X0

and a spherical embedding X0 → X. Indeed, let X0 be the open subspace
of X defined in (3.1). Then X0 is G-invariant and a homogeneous spherical
G-space by Remark 3.4.

6. Classification of spherical embeddings over
algebraically closed fields

In the remaining parts of the paper we will give a classification of spheri-
cal embeddings over arbitrary fields by reducing it to the classification over
algebraically closed fields by Knop ([18], see also [24] in characteristic 0).
Hence let us first recall this classification. We follow [18] almost verbatim.
Until the end of this section k will denote an algebraically closed field, G

will be a reductive group over k and X0 will be a homogeneous spherical
G-space (hence the choice of some x ∈ X0(k) would yield a G-equivariant
isomorphism X0 → G/H for some spherical subgroup H ⊆ G).

6.1. Data attached to homogeneous spherical spaces

We choose a Borel subgroup B of G and a maximal torus T of B. Denote
by K(X0)(B) the set of B-eigenvectors in the function field K(X0), i.e. the
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subset of elements 0 6= v ∈ K(X0) such that b · v = χv(b)v for some
character χv of B. This is a subgroup of K(X0)× and

χ : K(X0)(B) → X∗(B) = X∗(T ) , v 7→ χv

is a homomorphism of groups, whereX∗(H) denotes the group of characters
of an algebraic group H. Set

Λ := Λ(G,X0) := Im(χ) ⊆ X∗(B) ,
Q := Q(G,X0) := HomZ(Λ,Q) = Λ∨Q .

Via bi-duality we will consider Λ as a subgroup of Q∨, the dual of the
finite-dimensional Q-vector space Q.
As usual, Λ (and hence Q) do not depend on the choice of (B, T ) up

to unique isomorphism: if (B′, T ′) is a second Borel pair, then there exists
g ∈ G(k) such that B = gBg−1 and T = gTg−1 and conjugation with g

yields an isomorphism X∗(B)→ X∗(B′) that is independent of the choice
of g because for any other choice g′ one has g′ = gt for some t ∈ T (k).
Any Q-valued valuation v on K(X0) that is trivial on k induces a homo-

morphism Λ→ Q and hence an element ρv ∈ Q. Let

V := V(G,X0)

be the set of Q-valued G-invariant valuations on K(X0) that are trivial on
k. Then the map

V → Q , v 7→ ρv

is injective and we identify V with its image in Q.
Let D be a prime divisor on X0, where by a divisor we always mean a

Weil divisor. Then the local ring at the generic point of D is a discrete
valuation ring and we obtain a valuation vD of K(X0) that is trivial on k.
Set

D := D(G,X0) := {B-stable prime divisors in X0} .
This is a finite set. We obtain a map

ρ : D → Q , D 7→ ρvD
.

Again, D and ρ depend on the choice of (B, T ) only up to unique isomor-
phism: if (B′, T ′) = g(B, T )g−1 for some g ∈ G(k) then conjugation with
g yields a bijection between the sets D defined with B and B′ which is
independent of the choice of g.
These constructions are functorial in the following sense. Let X0

1 and
X0

2 be spherical homogeneous G-spaces and let ϕ0 : X0
1 → X0

2 be a G-
equivariant morphism. Then ϕ0 induces an injection Λ(G,X0

2 ) → Λ(G,X0
1 )
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and hence a surjective Q-linear map

ϕ0
∗ : Q(G,X0

1 ) → Q(G,X0
2 )

such that ϕ0
∗(V(G,X0

1 )) = V(G,X0
2 ). Moreover, by sending a divisor to its

schematic image we obtain a map

ϕ0
∗ : Dϕ0 := {D ∈ D(G,X0

1 ) ; ϕ0(D) is not dense in X0
2} → D(G,X0

2 ) .

6.2. Colored Fans

We now recall the notion of a colored cone and a colored fan for the
finite-dimensional Q-vector space Q, the subset V ⊆ Q, the finite set D,
and the map ρ : D → Q.

Definition 6.1. — A colored cone for (G,X0) (or for (Q,V,D, ρ)) is
a pair (C,F ) where C ⊆ Q(G,X0) is a cone (i.e., closed under addition
and multiplication with Q>0) and F ⊆ D(G,X0) is a subset satisfying the
following properties.
(CC1) C is generated as a cone by ρ(F ) and finitely many elements of

V(G,X0).
(CC2) The relative interior C◦ of C (i.e., C minus all proper faces) meets

V(G,X0).
A colored cone (C,F ) is called strictly convex if C is strictly convex (i.e.
C ∩ (−C) = {0}) and 0 /∈ ρ(F ).

Let (C,F ) be a colored cone for (G,X0) and let C0 be a face of C whose
relative interior C◦0 meets V. Set F0 := F ∩ρ−1(C0). Then (C0, F0) is again
a colored cone and such a pair is called a face of (C,F ). If (C,F ) is strictly
convex so is (C0, F0).

Definition 6.2. — A colored fan for (G,X0) (or for (Q,V,D, ρ)) is a
nonempty finite set F of colored cones for (G,X0) satisfying the following
properties.
(CF1) Every face of a colored cone in F is again in F .
(CF2) For every v ∈ V there exists at most one (C,F ) ∈ F with v ∈ C◦.
A colored fan F is called strictly convex if all elements of F are strictly
convex.

We also have the notion of a morphisms of colored fans.
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Definition 6.3. — Let X0
1 and X0

2 be spherical homogeneous G-spaces
and let ϕ0 : X0

1 → X0
2 be a G-equivariant morphism.

(1) Let (C1, F1) and (C2, F2) be colored cones for (G,X0
1 ) and (G,X0

2 ),
respectively. Then ϕ0 is called a morphism (C1, F1) → (C2, F2) of
colored cones if ϕ0

∗(C1) ⊆ C2 and ϕ0(F1 ∩ Dϕ) ⊆ F2.
(2) Let F1 and F2 be colored fans for (G,X0

1 ) and (G,X0
2 ), respec-

tively. Then ϕ0 is called a morphism F1 → F2 of colored fans if
for every (C1, F1) ∈ F1 there exists (C2, F2) ∈ F2 such that ϕ0 is
a morphism (C1, F1)→ (C2, F2) of colored cones.

6.3. Colored fans attached to spherical embeddings

Let (X, i) be a spherical embedding of X0. For every G-orbit Y in X, let
PrimY (X) be the set of prime divisors on X containing Y . Set

BY (X) := {vD ∈ V ; D ∈ PrimY (X) and G-stable},

FY (X) := {D∩X0 ∈ D ; D ∈ PrimY (X) and B-stable but not G-stable},
CY (X) := 〈BY (X), ρ(FY (X))〉,

where the last line means that CY (X) is the cone in Q(G,X0) generated by
BY (X) and ρ(FY (X)). Then

F (X, i) := {(CY (X),FY (X)) ; Y ⊆ X is a G-orbit}

is a strictly convex colored fan. Now the main result of [18] is the following.
Theorem 6.4. — Let G be a reductive group over an algebraically

closed field k and letX0 be a homogeneous sphericalG-space. The construc-
tions above yield an equivalence (X, i) 7→ F (X, i) between the category of
spherical embeddings of X0 and the category of colored fans for (G,X0).
Remark 6.5. — Let G be a reductive group over k. The functoriality

arguments in [18, §4] show that if X0 and Y 0 are homogeneous spherical
G-spaces and (X, i) and (Y, j) are spherical embeddings of X0 and Y 0

respectively, then aG-equivariant morphism ϕ0 : X0 → Y 0 is a morphism of
spherical embeddings (X0, X, i)→ (Y 0, Y, j) if and only if ϕ0 is a morphism
of colored fans F (X, i)→ F (Y, j).

7. Classification of spherical embeddings over separably
closed fields

In this section we show that the classification of spherical embeddings
over algebraically closed fields extends to separably closed fields k. Of
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course we may assume that the characteristic of k is p > 0. Fix an al-
gebraic closure k̄ of k.
By Remark 2.2 every spherical space over a separably closed field is a

scheme. Hence in this section we will work only with schemes.
The field extension k ↪→ k̄ is purely inseparable. Let us first recall some

facts about such extensions.

Remark 7.1. — Let G be a smooth algebraic group over k and let X
be any k-scheme of finite type with G-action. Let π : Xk̄ → X be the
projection morphism.

(1) The morphism π is a universal homeomorphism ([12, 5.46]). In
particular Y 7→ π−1(Y )red yields a bijection between reduced sub-
schemes of X and reduced subschemes of Xk̄. Moreover, Y is closed
(resp. irreducible, resp. a prime Weil divisors) if any only if
π−1(Y )red is. The subscheme Y is G-invariant if and only if
π−1(Y )red is Gk̄-invariant.

(2) If X is geometrically reduced, then X(k) is dense in X ([12, 6.21]).
In particular, every homogeneous G-space over k (Definition 5.1) is
of the form G/H for some algebraic subgroup H of G.

(3) If Y ′ is a Gk̄-orbit in Xk̄. Then by (1) there exists a unique re-
duced G-invariant subscheme Y of X such that π−1(Y )red = Y ′.
This is clearly a minimal G-invariant subscheme and we see that
the bijection in (1) yields a bijection between minimal G-invariant
subschemes of X and Gk̄-orbits of Xk̄.

(4) If X is geometrically integer over k, then K(Xk̄) = K(X) ⊗k k̄
and the extension of function field K(X) ⊆ K(Xk̄) is purely insep-
arable. In particular, any Q-valued valuation v on K(X) extends
uniquely to a Q-valued valuation v̄ on K(Xk̄) ([2, VI §8]). More-
over, v is trivial on k (resp. G-invariant) if and only if v̄ is trivial
on k̄ (resp. Gk̄-invariant).

(5) If G is reductive over k, then G is split ([11, Exp. XXII, Cor. 2.4]).

We now classify spherical embeddings of spherical homogeneous spaces
X0 over the separably closed field k. By Remark 7.1(2) X0 is of the form
G/H for some spherical subgroup H. The following result reduces the clas-
sification over k to the known classification over k̄.

Theorem 7.2. — Let G be a reductive group over a separably closed
field k and let X0 be a homogeneous spherical G-space. Then X 7→ Xk̄

yields a bijection between isomorphism classes of G-spherical embeddings
of X0 and isomorphism classes of Gk̄-spherical embeddings of X0

k̄
.
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The proof is essentially by going through the proof of the classification
of spherical embeddings over algebraically closed fields as explained in [18]
and showing that all arguments work (after possible minor modifications)
over separably closed fields as well.

Proof.

(i). — We first show that all the constructions in Subsection 6.1 and
Subsection 6.3 make also sense over a separably closed field and that one
obtains the same invariants for G and X0 as for Gk̄ and X0

k̄
. Let B be

a Borel subgroup of G and T a maximal torus of B (which exist by Re-
mark 7.1(5)). Then we can identify X∗(B) = X∗(Bk̄). Moreover it fol-
lows from Remark 7.1(4) that K((X0)k̄)(Bk̄) = K(X0)(B) ⊗k k̄ and hence
Λ(G,X0) = Λ(Gk̄,X

0
k̄
). One obtains the Q-vector space Q(G,X0) and one has

Q(G,X0) = Q(Gk̄,X
0
k̄
). One defines V(G,X0), D(G,X0), and the map ρ as in

Subsection 6.1. Then point (4) (resp. (1)) of Remark 7.1 yields an identifi-
cation V(G,X0) = V(Gk̄,X

0
k̄
) (resp. D(G,X0) = D(Gk̄,X

0
k̄
)) such that the map ρ

is the same.
For every G-spherical embeddingX ofX0 and every minimal G-invariant

subscheme Y of X one defines the sets BY (X), FY (X), CY (X) as in Sub-
section 6.3. Then one has with the previous identifications B(Yk̄)red(Xk̄) =
BY (X) and similarly for the other sets.

(ii). — We remark that it suffices to show the theorem for simple spher-
ical embeddings, i.e., for spherical embeddings that have only one closed
minimal G-invariant subscheme. The reason is that the gluing explained
in [18, Thm. 3.3] carries over to the case of a separably closed base field
because of Remark 7.1(1).

(iii). — Let X be a simple spherical embedding of G/H and Y be the
closed minimal G-invariant subscheme of X. Let us show that the colored
cone (CY (X),FY (X)) determines the isomorphism class of X.

The same argument as in [18, Lem. 2.4] shows that BY (X) can be recov-
ered from CY (X) and FY (X). It uses [18, §1] whose arguments go through
for a separably closed base field except for the following modifications.

(1) In [18, Thm. 1.1] one finds f ′ a priori only in k1[X](B) where k1 is
an extension of k in k̄ such that there exists an integer e > 1 with
(k1)pe ⊆ k. Replacing f ′ by (f ′)pe one concludes that Theorem 1.1
also holds over separably closed fields.

(2) In the proof of [18, Cor. 1.7] one uses the fact that for every reduc-
tive group G there exists a reductive group G̃ and a central isogeny

TOME 68 (2018), FASCICULE 1



248 Torsten WEDHORN

G̃ → G such that Pic(G̃) = 1. This holds over abritrary fields for
example by [6, Prop. 3.1].

It remains to show that X is uniquely determined by (BY (X),FY (X)).
This can be proved verbatim as in the proof of [18, Thm. 2.3] again using
that all results of [18, §1] are valid over separably closed base fields.
(iv). — It remains to show that every strictly convex colored cone for

(G,X0) comes from a simple spherical embedding. Here the arguments in
the proof of [18, Thm. 3.1] can be used verbatim. �

Remark 7.3. — The base change functor from the category of spherical
embeddings of X0 to the category of spherical embeddings of X0

k̄
(Re-

mark 5.6) is usually not an equivalence of categories (consider for instance
G = Gm and X0 = Gm with the action by left translation).

Let A = AutG(X0) be the automorphism group scheme of the G-scheme
X0. As A(k) → A(k̄) is injective and as all sets of morphisms between
spherical embeddings of X0 (resp. of X0

k̄
) are by definition subsets of A(k)

(resp. of A(k̄)) one sees that the base change functor is always faithful.
It is an equivalence of categories if A(k)→ A(k̄) is bijective. This is for

instance the case if NormG(H) = H.

On the other hand, by definition of morphisms of spherical embeddings
we obtain the following equivalence of categories as a corollary of the proof
of Theorem 7.2. For this we define the category of colored fans for (G,X0)
over a separably closed field as in Definition 6.3.

Corollary 7.4. — The map (X, i) 7→ F (X, i) := (CY (X),FY (X))Y
(where Y runs through the set of minimal G-invariant subschemes of X) in
the proof of Theorem 7.2 yields an equivalence of the category of spherical
embeddings of X0 and the category of colored fans for (G,X0).

Note that as in Section 6 the colored fan attached to X depends on the
choice of the Borel pair (B, T ) only up to unique isomorphism as for any
two Borel pairs (B, T ) and (B′, T ′) over the separably closed field k there
exists an element g ∈ G(k) with B′ = gBg−1 and T ′ = gTg−1, and g is
unique up to right multiplication with an element in T (k) ([11, Exp. XXVI,
Lem. 1.16]).
Proof. — We have to show that for two spherical embeddings (X, i) and

(Y, j) of X0 a G-equivariant morphism ϕ0 : X0 → X0 extends to X → Y

if and only if ϕ0 is a morphism of the colored fans F (X, i)→ F (Y, j). By
Theorem 6.4 it suffices to show that (ϕ0)k̄ extends to Xk̄ → Yk̄ if and only
if ϕ0 extends to X → Y . But this is clear by faithfully flat descent because
the extension is unique if it exists. �
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8. Galois descent for algebraic spaces with group actions

Before classifying spherical embeddings over arbitrary fields we recall
some facts about Galois descent for algebraic spaces. All of them are prob-
ably well known but we could not find a good reference. Let k be a field,
let k′ be a Galois extension of k, and let Γ := Gal(k′/k). We also view Γ
as a projective limit Γk of finite constant group schemes Gal(k′/k1)k over
k, where k1 runs through finite sub extensions of k ⊆ k′. Moreover we fix
an algebraic group G over k.

If X is an algebraic space over k, X ′ := Xk′ = X ⊗k k′ is an algebraic
space over k′ endowed with a Γ-action aX via the second factor which is
compatible with the action on k′, i.e., for every γ one has an automorphism
γX : X ′ → X ′ making the diagram

X ′
γX //

��

X ′

��
Spec(k′)

γ // Spec(k′)

commutative such that γX ◦ δX = (γδ)X for all γ, δ ∈ Γ. We have the
obvious notion of the category of algebraic spaces over k′ with compatible
Γ-action. Moreover the action aX is continuous, i.e., it yields a morphism of
k-schemes Γk ×Xk′ → Xk′ . The construction X 7→ (Xk′ , aX) is functorial.
Now assume that G acts on X. Then the functoriality shows that the

action aX of Γ on Xk′ is also G-compatible, i.e., for all γ ∈ Γ the diagram

Gk′ ×k′ Xk′
//

γG×X

��

Xk′

γX

��
Gk′ ×k′ Xk′

// Xk′

is commutative, where the horizontal arrows are the action of Gk′ on Xk′ .

Proposition 8.1. — The functor X 7→ (Xk′ , aX) is an equivalence of
the category of algebraic spaces of finite type over k with G-action with the
category of algebraic spaces of finite type over k′ with Gk′ -action endowed
with a compatible and G-compatible continuous Γ-action.

Proof. — By Remark 3.5 we may assume that k′ is a finite Galois ex-
tension of k. Then Spec k′ → Spec k is faithfully flat of finite presentation
and the result follows because fppf-descent data are effective for algebraic
spaces ([26, Tag 0ADV]). �
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As usual one obtains a classification of forms by Galois cohomology
groups: Let X be an algebraic space of finite type over k with G-action. Let
AutG(X)(k′) be the group of Gk′ -equivariant automorphisms Xk′

∼→ Xk′

over k′. Then Γ = Gal(k′/k) acts on AutG(X)(k′) by

(γ, α) 7→ γX ◦ α ◦ γ−1
X , γ ∈ Γ, α ∈ AutG(X)(k′)

and this action factors through a quotient of Γ by an open normal sub-
group. We denote by H1(k′/k,AutG(X)(k′)) its first group cohomology.
Let E(k′/k,X) be the pointed set of isomorphism classes of forms of X,
i.e. of algebraic spacesX1 of finite type over k with G-action such that there
exists a G-equivariant isomorphism Xk′

∼→ (X1)k′ . Then Proposition 8.1
implies:

Corollary 8.2. — There is an isomorphism of pointed sets

E(k′/k,X) ∼= H1(k′/k,AutG(X)(k′)) .

9. Classification of spherical embeddings over arbitrary
fields

In this section let k be an arbitrary field, let ks be a separable closure
of k and let k̄ be an algebraic closure of ks. Let Γ = Gal(ks/k) be the
Galois group of k. Whenever we speak of a continuous action of Γ on a set
X, we endow X with the discrete topology and mean that the action map
Γ × X → X is continuous. If X is finite and or if the action is linear on
some finite-dimensional vector space, then the action is continuous if and
only if it factors through some finite discrete quotient of Γ. Let G be a
reductive group over k.
Recall that every spherical G-space X over k is a spherical embedding of

a spherical homogeneous G-space X0 by Remark 5.7. Moreover, X0 is the
unique open minimal G-invariant subspace X0 of X. It is a smooth and
quasi-projective scheme over k by Lemma 5.4.
Now fix a spherical homogeneous G-space X0 over k. Then the Galois

group Γ acts linearly and continuously on Λ(Gks ,X0
ks ) and hence on the

finite-dimensional Q-vector space Q := Q(Gks ,X0
ks ) continuously and lin-

early. Moreover it acts continuously on V := V(Gks ,X0
ks ) and the map V → Q

is Γ-equivariant. Finally, Γ acts continuously on D := D(Gks ,X0
ks ) and the

map ρ : D → Q is Γ-equivariant. Here we use always that all construction
depend on the choice of Borel pair of Gks

only up to a unique isomorphism.
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We obtain the finite-dimensional Q-vector space Q with a continuous
linear Γ-action, a subset V ⊆ Q that is Γ-stable, a finite set D with a
continuous Γ-action and a Γ-equivariant map ρ : D → Q.
Let γ ∈ Γ. If (C,F ) is a (strictly convex) colored cone for (Gks , X0

ks), then
(γ(C), γ(F )) is again a (strictly convex) colored cone for (Gks , X0

ks). We call
a colored fan F for (Gks , X0

ks) invariant under Γ if for every (C,F ) ∈ F

one has (γ(C), γ(F )) ∈ F for all γ ∈ Γ.
Let (X, i) be a spherical embedding of X0. Then the constructions in

(Xks , iks) yields a Γ-invariant colored fan F (X, i) for (Gks , X0
ks). Moreover

if (X, i) and (X ′, i′) are spherical embeddings of X0 and ϕ0 : X0 → X0 is
a morphism (X, i) → (X ′, i′) (i.e., ϕ0 is G-equivariant and extends to a
morphism X → X ′), then ϕ0

ks is Γ-equivariant morphism of colored fans
F (X, i)→ F (X ′, i′).
Altogether we obtain a functor Φ from the category of spherical embed-

dings of X0 to the category of Γ-invariant colored fans for (Gks , X0
ks).

Theorem 9.1. — Let X0 be a spherical homogeneous G-space over k.
Then the following categories are equivalent.

(1) The category of spherical embeddings of X0 (morphisms are mor-
phisms (X0, X, i)→ (X0, X ′, i′) as defined in Definition 5.5).

(2) The category of Γ-invariant colored fans for (Gks , X0
ks).

Proof. — As explained in Section 8, (X0)ks is naturally endowed with a
continuous, compatible and G-compatible action by Γ. One easily checks
(see also [17, §2]) that Corollary 7.4 induces an equivalence of the following
categories.

(1) The category of Γ-compatible spherical embeddings of (X0)ks , i.e.
the category of pairs (X ′, i′), where X ′ is a Gks -spherical space
over ks endowed with a continuous, compatible and G-compatible
action by Γ and where i : (X0)ks → X ′ is an open Gks-equivariant
and Γ-equivariant open immersion.

(2) The category of Γ-invariant colored fans for (Gks , X0
ks).

Hence the theorem follows from Proposition 8.1. �

Huruguen has given in [17] instructive examples of a reductive group G
over R, a spherical subgroup H ⊆ G and a smooth spherical embedding of
(G/H)C over C whose colored fan is Gal(C/R)-stable but which admits no
R-form as a scheme. Hence the spherical embedding of G/H attached to
this colored fan by Theorem 9.1 will be an algebraic space which is not a
scheme.
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Note that by [26, Tag 0B88] a spherical space over k is a scheme if
any finite set of k̄-rational points of Xk̄ is contained in any open affine
subscheme of Xk̄. This yields Theorem 2.21 and Theorem 2.26 of [17].

10. Classification of forms of spherical varieties

Let k be a field, k̄ an algebraic closure and ks the separable closure of k
in k̄. Let G be a reductive group over k, let X be a G-spherical space over
k, and let X0 be the unique minimal G-invariant open subscheme. As X0

is smooth over k, there exists a Gks
-equivariant isomorphism X0 ∼→ Gks

/H

for some spherical subgroup H of Gks .
The goal is to classify k-forms of X in terms of the Galois cohomology

of the automorphism group of X. We have by Corollary 8.2:

Corollary 10.1. — There exists an isomorphism of pointed sets be-
tween the pointed set of isomorphism classes of ks/k-forms of X over k and
H1(ks/k,AutG(X)(ks)).

We conclude with some remarks on automorphisms of spherical spaces.

Remark 10.2. — LetX0 = G/H and Y 0 = G/K for spherical subgroups
H and K of G such that the projection G(k) → (G/K)(k) is surjective
(for instance if k is an algebraically closed field). Then any G-equivariant
morphism ϕ0 : X0 → Y 0 is induced by right translation with an element
g ∈ G(k) such that H ⊆ gKg−1 and hence

HomG(G/H,G/K) = {g ∈ G(k) ; H ⊆ gKg−1}/K ,

where HomG( · , · ) denotes the set of G-equivariant morphisms.

For every k-scheme T let AutG(X)(T ) be the group of GT -equivariant
automorphisms of XT . As X0 is schematically dense in X and X is sepa-
rated, the natural restriction AutG(X) → AutG(X0) is a monomorphism.
In particular, AutG(X)(ks) will be a subgroup of AutG(X0)(ks).
One has AutG(X0)(ks) = AutG((X0)ks) = (NormGks (H)/H)(ks). In

particular, we see that if H = NormGks (H), then AutG(X)(ks) = 1 and
hence there are no nontrivial k′/k-forms of X.
In [18, Thm. 6.1] it is shown that if k is algebraically closed, then

AutG(X0)red is the extension of a diagonalizable group by a finite p-group.
A simple corollary of the proof of loc. cit. gives the following result.

ANNALES DE L’INSTITUT FOURIER



SPHERICAL SPACES 253

Proposition 10.3. — There exists a largest unipotent subgroup scheme
U of AutG(X0). It is finite, its formation is compatible with passing to field
extensions k ↪→ k′, and one has an exact sequence of algebraic groups

(10.1) 1→ U → AutG(X0)→M → 1 ,

where M is a group of multiplicative type.

If char(k) = 0, then every finite unipotent group is trivial and hence
AutG(X0) = M .

Proof. — By [8, IV, §2, Prop. 3.3] we can assume that k is separably
closed. Then X0 = G/H for a spherical subgroup H. Choose a Borel
subgroup B of G such that BH is open dense in G. Then the argument
in [18, Thm. 6.1] shows that AutG(X0) is a subquotient of B. In particu-
lar AutG(X0) is trigonalizable and hence an extension of a diagonalizable
group by the unique largest unipotent subgroup of AutG(X0). To see that
this largest unipotent subgroup is finite, we can pass to the algebraic closure
of k where we can again use [18, Thm. 6.1]. �

Over an algebraically closed field the sequence (10.1) splits ([10,
Exp. XVII, Thm. 5.1.1]). Hence if k is perfect, Proposition 10.3 shows
that there is an isomorphism of groups with Γ-action

AutG(X0)(ks) ∼= AnM(ks) ,

where A is a finite p-group on which Γ acts.
Note that for arbitrary separably closed fields the exact sequence (10.1)

might not yield an exact sequence on ks-valued points ([10, Exp. XVII,
Counterexample 5.9(c)]).

Appendix A. Reminder on quotients

We recall some results on quotients of group schemes that we use freely.
If G is a group scheme over a scheme S, then a subgroup scheme of G is a
group scheme H over S with a monomorphism of S-group schemes H → G.
If S is the spectrum of a field, then the inclusion H → G is automatically
a closed immersion ([9, Exp. VIA, Prop. 2.5.2]). We will always denote by
G/H the quotient in the category of fppf-sheaves on S. It is representable
by an algebraic space if H is flat and locally of finite presentation over
S ([26, Tag 06PH]). In this case the canonical projection G → G/H is
faithfully flat and locally of finite presentation.
If G is flat (resp. smooth, resp. quasi-compact, resp. quasi-separated,

resp. of finite presentation) over S, so is G/H: the projection π : G→ G/H
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is faithfully flat and locally of finite presentation. Hence G/H is clearly flat,
and even faithfully flat (resp. smooth, resp. quasi-compact), over S, if G has
the same property. If G is quasi-separated (resp. of finite presentation) over
S, then H is quasi-separated (resp. of finite presentation) over S and hence
π has the same property. Hence G/H is quasi-separated over S by [16,
(6.1.9)](3) (resp. of finite presentation over S by [26, Tag 06NB]).

If H is a closed subgroup scheme, then G/H is separated: consider the
2-cartesian diagram of algebraic stacks

H //

��

G

��
S

e // G // [H\G/H] .

As the projectionG→ [H\G/H] is an atlas of the algebraic stack [H\G/H],
we deduce that the lower horizontal map S → [H\G/H] is representable
by a closed immersion. Let µ : G/H ×G/H → [H\G/H] be the morphism
induced by (g1, g2) 7→ g−1

2 g1. Then the 2-cartesian diagram

G/H
∆G/H //

��

G/H ×G/H

µ

��
S // [H\G/H]

shows that ∆G/H is a closed immersion.
If S is locally noetherian of dimension 6 1, G is locally of finite type

and H is closed in G and flat over S, then G/H is representable by an
S-scheme [1, Thm. 4C].
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