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HOLOMORPHIC MAPS BETWEEN MODULI SPACES

by Stergios ANTONAKOUDIS,
Javier ARAMAYONA & Juan SOUTO (*)

Abstract. — We prove that every non-constant holomorphic map Mg,p →
Mg′,p′ between moduli spaces of Riemann surfaces is a forgetful map, provided
that g > 6 and g′ 6 2g − 2.
Résumé. — Nous démontrons que toute application non-constante et holo-

morpheMg,p →Mg′,p′ entre deux espaces de modules est une application d’oubli,
à condition que g > 6 et g′ 6 2g − 2.

1.

LetMg,p denote the moduli space of Riemann surfaces of genus g with
p labelled marked points. Moduli space has a natural structure as a com-
plex orbifold. In this paper we study holomorphic maps, in the category of
orbifolds, between distinct moduli spaces. Examples of such maps are the
so-called f orgetful maps [7, 11]: given (i1, . . . , ip′) with ij ∈ {1, . . . , p} and
ij 6= ik for j 6= k, set

(1.1) Mg,p →Mg,p′ , (X,x1, . . . , xp) 7→ (X,xi1 , . . . , xip′ ) .

We prove that under suitable genus bounds, there are no other non-constant
holomorphic maps:

Theorem 1.1. — Suppose that g > 6 and g′ 6 2g − 2. Every non-
constant holomorphic mapMg,p →Mg′,p′ is a forgetful map.

As a direct consequence of Theorem 1.1 we obtain:
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2010 Mathematics Subject Classification: 57M50, 32H02.
(*) The second named author was supported by grants RYC-2013-13008 and MTM2015-
67781.



218 Stergios ANTONAKOUDIS, Javier ARAMAYONA & Juan SOUTO

Corollary 1.2. — Suppose that g > 6 and g′ 6 2g − 2. If there is a
non-constant holomorphic mapMg,p →Mg′,p′ , then g = g′ and p > p′. �
Theorem 1.1 remains true under slightly more generous conditions, com-

pare with the discussion at the end of section 2. We get for instance that,
as long as g > 4, every non-constant holomorphic map Mg,p → Mg,p is
induced by a permutation of marked points, and is hence a biholomorphism
(see Corollary 3.3). On the other hand, some genus bounds are necessary
for Theorem 1.1 to hold. For instance, it follows from [2] that for all g > 2
there are g′ > g and a holomorphic embeddingMg,0 ↪→Mg′,0.
Remark. — Moduli space is not compact, but a natural compactifica-

tion M̂g,p, a projective variety, was constructed in [10] by Deligne and
Mumford. Morphisms between Deligne–Mumford compactifications have
been studied by several authors (see for example [9, 15]). Notice that in
Theorem 1.1 we assume neither that the holomorphic maps in question ex-
tend to the Deligne–Mumford compactification, nor that they are surjective
or have connected fibers.
We sketch briefly the proof of Theorem 1.1. Since we are working in the

category of orbifolds, every continuous map f : Mg,p →Mg′,p′ induces a
homomorphism f∗ : Mapg,p → Mapg′,p′ between the associated mapping
class groups. In [3], the two last authors classified all homomorphisms be-
tween mapping class groups under the genus bounds in Theorem 1.1; it
follows easily from this classification that f is either homotopically trivial
or homotopic to a forgetful map h (Proposition 2.3). The claim then follows
easily from a result asserting that if M is smooth and quasi-projective va-
riety, then any two non-constant homotopic holomorphic maps M →Mg,p

are identical (Proposition 3.2).
In an earlier version of this note, the last two authors had used an argu-

ment due to Eells–Sampson [13] to prove Proposition 3.2 whenM is moduli
space. Later on, the first author and at the time referee of the paper, pointed
out that Proposition 3.2 is in fact a consequence of the particular case when
M is a Riemann surface. This was proved by Imayoshi and Shiga [17] us-
ing tools of classical complex analysis together with some properties of the
asymptotic behaviour of the Teichmüller metric near generic points in the
Bers compactification of Teichmüller space. In the last section of this paper
we give a proof of the Imayoshi–Shiga theorem using the Eells–Sampson
technique.

We would like to end this introduction with the following question [4,
§5.3]. We believe that the methods discussed in this paper offer a good
starting point for addressing this question and suggest a positive answer.
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Question. — Let φ : Mapg,p → Mapg′,p′ be an irreducible(1) homo-
morphism and g > 3. Is there a φ-equivariant holomorphic map f : Tg,p →
Tg′,p′?

It would also be interesting to investigate whether or not Theorem 1.1
remains true for small values of g 6 6. Finally, we would like to refer to the
discussion in [21] for a different perspective on this topic and related ideas.

Acknowledgements. The last two authors thank the first author for
his immense patience. The authors are grateful to the referee for valuable
comments and suggestions.

2.

Throughout this paper we make use of standard facts about Teichmüller
spaces and mapping class groups. We refer to [14, 16, 18, 23] for an extensive
treatment of these subjects, and to [8] for a nice survey.

Let Sg,p be the closed surface of genus g with p distinct labeled marked
points. The mapping class group Mapg,p is the group of isotopy classes of
orientation preserving self-homeomorphisms of Sg,p fixing each individual
marked point. It acts discretely on Teichmüller space and this action pre-
serves the standard complex structure on Tg,p (see [1]). Moduli space is the
complex orbifold

Mg,p = Tg,p/Mapg,p .

In particular, maps and covers are taken in the category of orbifolds. For
instance, for every continuous map f : Mg,p → Mg′,p′ there are a homo-
morphism f∗ : Mapg,p → Mapg′,p′ and a continuous f∗-equivariant map
f̃ : Tg,p → Tg′,p′ such that the following diagram commutes:

Tg,p

��

f̃ // Tg′,p′

��
Mg,p

f //Mg′,p′ .

The homomorphism f∗ and the lift f̃ are unique up to simultaneous conju-
gation by a mapping class. All of this amounts to saying that Teichmüller
space is the (orbifold) universal cover of moduli space. We discuss briefly
the example of forgetful maps:

(1)The homomorphism φ is irreducible if its image in Mapg′,p′ fixes no multicurves.

TOME 68 (2018), FASCICULE 1



220 Stergios ANTONAKOUDIS, Javier ARAMAYONA & Juan SOUTO

Example 2.1. — Let f : Mg,p → Mg,p′ be the forgetful map defined
in (1.1). The lift f̃ : Tg,p → Tg,p′ is given by the same formula, and the
homomorphism f∗ : Mapg,p → Mapg,p′ is the one given by forgetting the
marked points {x1, . . . , xp}\{xi1 , . . . , xip′} [3, 14]. In fact, both f and f̃ are
holomorphic fiber bundles, and the long exact sequence of homotopy groups
corresponding to the fiber bundle f yields the Birman exact sequence for f∗.

Returning to the general setting, note that the homotopy class of the
map f :Mg,p →Mg′,p′ (in the sense of orbifolds) is determined by the ho-
momorphism f∗. This is so because Teichmüller space is a classifying space
for proper actions EMapg,p of the mapping class group [19]. In other words,
Tg,p is contractible, and fixed-point sets of infinite subgroups of Mapg,p are
empty, while those of finite subgroups are non-empty and contractible. To
see the latter property, one may use that any two points in Teichmüller
space Tg,p are connected by a unique Weil–Petersson geodesic segment,
plus the fact that the Weil–Petersson metric on Teichmüller space is in-
duced by a negatively curved and geodesically convex Riemannian metric.
See [16, 18] for background on the Weil–Petersson metric dWP.
Anyways, the importance of the fact that the homotopy class of f be

determined by f∗ arises from the fact that there is a number of rigid-
ity results for homomorphisms between mapping class groups. More con-
cretely, we will need such a rigidity theorem taken from [3]. To be able
to state it precisely, we need to recall some terminology from that pa-
per. Let S and S′ be compact surfaces, possibly with boundary, and P

and P ′ finite sets of marked points in the interior of S and S′ respec-
tively. By an embedding ι : (S, P ) → (S′, P ′) we understand a contin-
uous injective map ιtop : S → S′ with the property that ι−1

top(P ′) ⊂ P .
Every embedding ι : (S, P ) → (S′, P ′) induces a (continuous) homomor-
phism Homeo(S, P )→ Homeo(S′, P ′) between the corresponding groups of
self-homeomorphisms fixing pointwise the boundary and the set of marked
points. In particular, ι induces a homomorphism

ι# : Map(S, P )→ Map(S′, P ′)

between the associated mapping class groups. The main result proved in [3]
asserts that, subject to suitable genus bounds, every non-trivial homomor-
phism between mapping class groups is in fact induced by an embedding.

Theorem 2.2 (Aramayona–Souto). — Suppose that S and S′ are com-
pact surfaces, possibly with boundary, and that P and P ′ are finite sets of
marked points in the interior of S and S′ respectively. If S has genus g > 6

ANNALES DE L’INSTITUT FOURIER
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and S′ has genus g′ 6 2g − 2, then every nontrivial homomorphism

Map(S, P )→ Map(S′, P ′)

is induced by an embedding (S, P )→ (S′, P ′).

Armed with Theorem 2.2, we prove:

Proposition 2.3. — If g > 6 and g′ 6 2g − 2, then every map f :
Mg,p →Mg′,p′ is either homotopically trivial or homotopic to a forgetful
map.

Proof. — Let f∗ : Mapg,p → Mapg′,p′ be the homomorphism associated
to f , let f̃ : Tg,p → Tg′,p′ be an f∗-equivariant lift of f , and recall once
again that the homotopy type of f is determined by f∗. In particular, if
f∗ is trivial, then f is homotopically trivial and we have nothing to prove.
Suppose from now on that this is not the case.
Let (S, P ) and (S′, P ′) be, respectively, closed surfaces of genus g and

g′, with p and p′ marked points. Identifying Map(S, P ) = Mapg,p and
Map(S′, P ′) = Mapg′,p′ , we obtain from Theorem 2.2 that the homomor-
phism f∗ is induced by an embedding

ι : (S, P )→ (S′, P ′) .

Since S and S′ are closed, the underlying injective map ιtop : S → S′ is
a homeomorphism and ιtop(P ) ⊃ P ′. In other words, the embedding ι is
obtained by forgetting marked points.
In the same way that we have identified mapping class groups, we also

identify Teichmüller spaces Tg,p = T (S, P ) and Tg′,p′ = T (S′, P ′). The
embedding ι induces an f∗-equivariant map

h̃ : Tg,p → Tg′,p′

obtained again by forgetting marked points. By construction, h̃ descends
to a forgetful map

h :Mg,p →Mg′,p′ .

Both f̃ and h̃ are homotopic because both of them are f∗-equivariant. �

3.

In this section we prove Theorem 1.1 from the introduction. To do so we
will rely on Proposition 2.3 together with the following results:

TOME 68 (2018), FASCICULE 1
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Lemma 3.1. — Let M be a quasi-projective variety and let f : M →
Mg,q be a holomorphic map. If f is homotopically trivial, then it is con-
stant.

Proof. — If f is homotopically trivial, then we can lift it to a holomor-
phic map f̃ : M → Tg,q. The claim follows since Teichmüller space Tg,p

is a bounded domain and any bounded holomorphic function on a quasi-
projective variety is constant. �

Proposition 3.2. — Let M be a quasi-projective variety and f1, f2 :
M → Mg,q non-constant holomorphic maps. If f1 and f2 are homotopic
(in the category of orbifolds) then f1 = f2.

If M is a Riemann surface, then Proposition 3.2 is due to Imayoshi and
Shiga [17]:

Imayoshi–Shiga theorem. — Let Σ be a Riemann surface of finite
type and f1, f2 : Σ →Mg,q non-constant holomorphic maps. If f1 and f2
are homotopic (in the category of orbifolds) then f1 = f2.

As we just pointed out, the Imayoshi–Shiga theorem is a special case
of Proposition 3.2. Conversely, Proposition 3.2 follows easily from the
Imayoshi–Shiga’s theorem. We will give a logically independent proof of
the Imayoshi–Shiga’s theorem in the next section.

Proof of Proposition 3.2. — We first note that the Imayoshi–Shiga the-
orem holds for arbitrary algebraic curves Σ̃. Indeed, we can apply it to the
Riemann surface Σ obtain from Σ̃ by removing its finite set of singularities,
and use the fact that two holomorphic maps on Σ̃ that agree on a Zariski
dense subset are equal.
It follows that if f1 and f2 are homotopic maps on M , then f1 and f2

agree along every curve Σ̃ ⊂M , unless they are both constant along Σ̃. In
particular, f1 and f2 agree on a generic curve inM , and hence f1 = f2. �
We note that the moduli spaceMg,p admits a finite (orbifold) cover

(3.1) π : N →Mg,q

which is a smooth quasi-projective variety. See [5] for algebraic geometric
properties of the moduli spaceMg,p and for example [20] for the construc-
tion of a cover which is not only smooth, but whose Deligne–Mumford
compactification is smooth as well. In order to avoid any unnecessary tech-
nical difficulties in the proof given below, we will apply Proposition 3.2 to
the smooth quasi-projective variety N from (3.1). We are now ready to
prove:
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Proof of Theorem 1.1. — Suppose that g > 6, g′ 6 2g − 2 and let

f :Mg,p →Mg′,p′

be a non-constant holomorphic map. With π : N → Mg,p is as in (3.1),
consider the composition f ◦π : N →Mg′,p′ . The map f ◦π is not constant,
and hence Lemma 3.1 yields that it cannot be homotopic to a constant map.
It follows thus from Proposition 2.3 that f is homotopic to a forgetful map
h :Mg,p →Mg′,p′ . Now, since both f ◦ π and h ◦ π are holomorphic and
non-constant we get that f ◦ π = h ◦ π from Proposition 3.2. Since π is
a covering, and thus surjective, it follows that f = h, as we needed to
prove. �

Besides Theorem 2.2 cited above, there are many other rigidity results
for homomorphisms between mapping class groups; see for example [4] for
a survey of results in this direction. Combining any such theorem with
Proposition 3.2 one obtains a rigidity result for holomorphic maps between
the corresponding moduli spaces. For instance, the version of Theorem 2.2
proved in [3] covers a few more cases than the ones stated here. From
this more general version, it follows that Theorem 1.1 also holds for maps
Mg,p → M2g−1,p′ with p′ > 1, and for maps Mg,p → Mg,p′ as long as
g > 4. In particular, we have:

Corollary 3.3. — Suppose that g > 4. Every non-constant holomor-
phic map Mg,p → Mg,p is induced by a permutation of marked points,
and is hence a biholomorphism. �

Note that the isomorphism, for g > 2, between the group of biholomor-
phisms of Mg,p and the symmetric group Σp follows also from Royden’s
characterization of the biholomorphism group of Teichmüller space [24, 12].

4.

In this section we give a proof of the Imayoshi–Shiga theorem. Suppose
from now on that f1, f2 : Σ → M are homotopic holomorphic maps from
a Riemann surface of finite type to moduli space M = Mg,p. Suppose
that f1 is not constant. To begin with recall that by a theorem of Roy-
den [24] the Teichmüller metric dT is equal to the Kobayashi metric of
hyperbolic space. In particular, since f1 is assumed to be non-constant, it
follows that Σ admits a conformal hyperbolic metric dΣ. The maps f1, f2
are then 1-Lipschitz with respect to the hyperbolic metric in the domain
and the Teichmüller metric in the target. We will however considerM to

TOME 68 (2018), FASCICULE 1
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be endowed with the Weil–Petersson metric dWP, but this does not change
things much. Indeed, the identity map Id : (Tg,p,dT)→ (Tg,p,dWP) is Lip-
schitz [22, Proposition 2.4]. In particular, when endowing the domain with
the hyperbolic metric and the target with the Weil–Petersson metric we
get that the maps

f1, f2 : (Σ,dΣ)→ (M,dWP)

are L-Lipschitz for some suitable L. Since we are working in the category
of orbifolds we should possibly be a bit more careful: what we mean when
we say that f1, f2 are L-Lipschitz is that the induced maps between the
universal covers are L-Lipschitz. Since the maps in question are smooth
this just means that the norm of their first derivatives is bounded by L at
every point.
Let now F̂ : [1, 2] × Σ → M be a homotopy between f1, f2. Since the

Weil–Petersson metric is negatively curved and geodesically convex, we can
replace F̂ with the straight homotopy

F : [1, 2]× Σ→M, F (t, x) = ft(x)

determined by the fact that t 7→ ft(x) is the dWP-geodesic segment joining
f1(x) and f2(x) in the homotopy class of F̂ ([1, 2]× {x}).

Note that ft is L-Lipschitz for all t because f1 and f2 are. Indeed, for
v ∈ TxΣ the vector field t 7→ d(ft)Xv is a Jacobi field along t 7→ ft(x).
Since the Weil–Peterson metric is negatively curved, the length of Jacobi
fields is a convex function, and hence attains its maximum at t ∈ {1, 2}.
A priori, the map F itself need not be Lipschitz: the norm of dF(t,x)

∂
∂t

is equal to the length of the geodesic arc t 7→ F (t, x), and when Σ is not
compact there is no reason for this to be bounded. However, fixing x0 ∈ Σ
there is a constant k, independent of x, such that the segment t 7→ F (t, x)
has length at most k+2LdΣ(x, x0) because f1, f2 are L-Lipschitz. It follows
that there are constants A,B with

‖ dF(t,x)‖2 6 A · dΣ(x0, x)2 +B

for all (t, x) ∈ [1, 2]× Σ. Here, ‖ dF(t,x)‖ is the operator norm of dF(t,x).
The convexity of Jacobi fields also implies the convexity of the energy

density

t 7→ Ex(ft)
def= 1

2(‖d ft|xv1‖2WP + ‖ d ft|xv2‖2WP)

where v1, v2 is an arbitrary orthonormal basis of TxΣ. This function is
strictly convex if one of df1|x or df2|x has rank at least 2. In particular, if
the holomorphic maps f1, f2 are distinct and one of them is non-constant,
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then the energy
t 7→ E(ft)

def=
∫

Σ
Ex(f)ωΣ

is strictly convex. Here ωΣ is the Riemannian volume form of Σ, and
E(ft) <∞ because ft is L-Lipschitz.

We summarize this discussion in the following lemma:

Lemma 4.1. — Let (Σ,dΣ) be a hyperbolic surface of finite type and

f1, f2 : (Σ,dΣ)→ (M,dWP)

homotopic holomorphic maps. Consider the straight homotopy

F : [1, 2]× Σ→M, F (t, x) = ft(x)

between them. Then:
(1) There is L > 0 such that ft : Σ→M is L-Lipschitz and has finite

energy E(ft) <∞ for all t.
(2) For x0 ∈ Σ, there are A,B > 0 with

‖ dF(t,x)‖2 6 A · dΣ(x0, x)2 +B

for all (t, x) ∈ [1, 2]× Σ.
(3) The energy function t 7→ E(ft) is convex. Moreover, it is strictly

convex unless either f1 = f2 or both are constant. �

At this point we will use that both the hyperbolic metric on Σ and the
Weil–Petersson metric onM are Kähler. This means that the 2-form ω =
〈 · , J · 〉, is closed, where 〈 · , · 〉 is the relevant Riemannian metric and J is
the endomorphism of the tangent bundle given by complex multiplication.
Note that in the case of Σ, the Kähler form is nothing other than the
volume form ωΣ. See [6] for facts on Kähler manifolds and [13] for a proof
of the following key proposition:

Proposition 4.2. — Let f : H2 → (Tg′,p′ , dWP) be a smooth map and
x ∈ H2. We have Ex(f)ωH2 > f∗(ωWP) with equality if and only if f is
holomorphic at x.

We are now ready to prove the Imayoshi–Shiga theorem:
Proof of the Imayoshi–Shiga theorem. — Suppose that f1 is not constant

and f1 6= f2, and let

F : [1, 2]× Σ→M, F (t, x) = ft(x)

be the straight homotopy between them. From Lemma 4.1 we know that
the function t 7→ E(ft) is strictly convex; we may hence assume that

E(ft) < E(f1)
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for all t ∈ (1, 2). We are going to contradict this assertion.
Choose now a sequence {Kn}n∈N of compact subsets of Σ with the fol-

lowing properties:
(1) Σ =

⋃
n∈NKn, and Kn ⊂ Kn+1 for all n,

(2) `Σ(∂Kn) 6 ce−n for all n, and
(3) Kn is contained within distance 1 + n of K0 for all n.

Since Kähler forms are closed, we deduce from Stokes theorem that

0 =
∫

[1,t]×Kn

d (F ∗ωWP) =
∫

∂([1,t]×Kn)
(F ∗ωWP)

=
∫
{t}×Kn

(F ∗ωWP)−
∫
{1}×Kn

(F ∗ωWP) +
∫

[1,t]×∂Kn

(F ∗ωWP)

=
∫

Kn

(f∗t ωWP)−
∫

Kn

(f∗1ωWP) +
∫

[1,t]×∂Kn

(F ∗ωWP) .

Below we will prove:

(4.1) lim
n→∞

∫
[1,t]×∂Kn

(F ∗ωWP) = 0 .

Assuming (4.1), we obtain from the computation above that

lim
n→∞

(∫
Kn

(f∗t ωWP)−
∫

Kn

(f∗1ωWP)
)

= 0 .

Taking into account that ft and f1 are Lipschitz and that Σ has finite
volume, we deduce that∫

Σ
(f∗t ωWP) =

∫
Σ

(f∗1ωWP) .

Now, Proposition 4.2 yields

E(ft) >
∫

Σ
(f∗t ωWP) =

∫
Σ

(f∗1ωWP) = E(f1)

where the last equality holds because f1 is holomorphic. This gives the
desired contradiction to the fact that E(ft) < E(f1). Therefore, it remains
to prove (4.1).
Fix (t, x) ∈ [0, 1] × ∂Kn and let v1, v2 be an orthonormal basis of

T(t,x)([0, 1]× ∂Kn). We have∣∣(F ∗ωWP)(v1, v2)
∣∣ =

∣∣〈dF(t,x)v1, J dF(t,x)v2〉WP
∣∣ 6 ‖dF(t,x)‖2

where ‖dF(t,x)‖ is the operator norm of dF(t,x). Fixing x0 ∈ Σ we get from
Lemma 4.1 that there are A,B > 0 with

‖dF(t,x)‖2 6 A · dΣ(x0, x)2 +B
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for all (t, x) ∈ [1, 2]× Σ. We deduce that∣∣∣∣∣
∫

[0,t]×∂Kn

(F ∗ωWP)

∣∣∣∣∣ 6
∫

[0,t]×∂Kn

‖ dF(t,X)‖2ν[0,t]×∂Kn

6

(
A · max

x∈∂Kn

dΣ(x, x0)2 +B

)
volΣ(∂Kn) .

This last quantity tends to 0 as n → ∞ by points (2) and (3) above.
Having proved (4.1), we are done with the proof of the Imayoshi–Shiga
theorem. �
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