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THE TEICHMÜLLER SPACE OF THE HIRSCH
FOLIATION

by Sébastien ALVAREZ & Pablo LESSA

Abstract. — We prove that the Teichmüller space of the Hirsch foliation (a
minimal foliation of a closed 3-manifold by non-compact hyperbolic surfaces) is
homeomorphic to the space of closed curves in the plane. This allows us to show
that the space of hyperbolic metrics on the foliation is a trivial principal fiber
bundle. And that the structure group of this bundle, the arc-connected component
of the identity in the group of homeomorphisms which are smooth on each leaf
and vary continuously in the smooth topology in the transverse direction of the
foliation, is contractible.
Résumé. — Nous prouvons que l’espace de Teichmüller du feuilletage de Hirsch

(un feuilletage minimal d’une 3-variété fermée par surfaces hyperboliques non com-
pactes) est homéomorphe à l’espace des courbes fermées du plan. Cela nous permet
de prouver que l’espace des métriques hyperboliques sur le feuilletage est un fibré
principal trivial. De plus, le groupe structural de ce fibré, i.e. la composante neutre
du groupe des homéomorphismes qui sont lisses le long des feuilles et varient trans-
versalement continûment dans la topologie lisse, est contractile.

Introduction

The Teichmüller space of compact surfaces is deeply related to the struc-
ture of the group of self-diffeomorphims of such surfaces. For example,
in [21] and [22], it is shown that the identity component of the group of
self-diffeomorphisms of a compact hyperbolic surface is contractible. The
proof proceeds in three steps. First, one shows that the Teichmüller space
is contractible. From this one obtains that the space of hyperbolic metrics
is a trivial principal fiber bundle over the Teichmüller space whose struc-
ture group is the identity component of the diffeomorphism group. Finally,
since the space of hyperbolic metrics is also contractible (as can be seen via
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2 Sébastien ALVAREZ & Pablo LESSA

identification with Beltrami coefficients), one obtains that the fiber must
be as well.
In this work we extend the above line of reasoning to the Hirsch foliation

F which is a well known foliation of a closed 3-manifoldM by non-compact,
non-simply connected, hyperbolic surfaces. We will let H(M,F) denote
the set of hyperbolic metrics of the Hirsch foliation and DiffId(M,F), the
arc-connected component of the identity in the group of homeomorphisms
that preserve M and which are smooth on each leaf and vary continuously
in the smooth topology in the transverse direction of the foliation. The
Teichmüller space H(M,F)/DiffId(M,F) will be denoted by T (M,F). We
prove the following results.

Theorem A. — The Teichmüller space T (M,F) of the Hirsch foliation
is homeomorphic to the space C(S1,R∗+ × R) of continuous closed curves
in the open half-plane.

Theorem B. — The space H(M,F) endowed with the projection to
T (M,F) is a trivial principal DiffId(M,F)-bundle.

Theorem C. — The space DiffId(M,F) is contractible.

Theorem A provides an infinite dimensional analogue of Fenchel–Nielsen
coordinates for hyperbolic metrics for the Hirsch foliations. The two func-
tions λ : S1→R∗+ and τ : S1→R on the unit circle parametrizing each
equivalence class of hyperbolic metrics under the action of DiffId(M,F)
can be interpreted as length and twist parameters associated to a certain
family of disjoint closed geodesics on the leaves of the foliation.

Teichmüller theory of laminations. The Teichmüller theory of non-
compact surfaces encounters several technical difficulties. In particular, for
surfaces of infinite topological type, Teichmüller space can be defined, using
either pants decompositions, complex structures, or length-spectrum. But
these definitions may yield different spaces as shown in [6, 5] and [4].
Another way to generalize the concept of closed surface is to consider

laminations of compact spaces by surfaces. See [25] for a discussion of the
extent to which the basic theorems for Riemann surfaces, such as the Uni-
formization, Gauss–Bonnet, or the existence of meromorphic functions, can
be extended to this general laminated context.

The Teichmüller space of a hyperbolic surface lamination (where the total
space of the lamination is compact even though the leaves may not be) was
first introduced by Sullivan in [38] and later on in more detail in [39]. He
defined it as the set of transversally continuous conformal structures on
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THE TEICHMÜLLER SPACE OF THE HIRSCH FOLIATION 3

the leaves up to conformal isotopies of the identity tangent to the leaves.
This space seems more amenable to study than the Teichmüller spaces of
general non-compact surfaces. For example it can also be defined in terms
of complex structures on the laminations as shown in [34, p. 232].
A hyperbolic structure on a lamination by Riemann surfaces is a transver-

sally continuous family of hyperbolic metrics on the leaves (see §1.2). Can-
del’s version of the uniformization theorem (see [16]) establishes that there
is a unique hyperbolic structure for each conformal structure on a lamina-
tion by hyperbolic leaves. Hence Teichmüller space can also be defined in
terms of the set of hyperbolic structures up to isometric isotopies of the
identity tangent to the leaves: this will be the point of view of the present
paper, which we shall develop in §1.2.

Previous works. Prior to this work, there are only two cases in which
one understands the Teichmüller space of a concrete surface lamination in
any depth.
The first case is a certain family of laminations which can be associated

to the expanding maps z 7→ zd (d > 1) on the unit circle. One can show
that the Teichmüller space of such a lamination is in bijection with the C1

conjugacy classes of expanding maps of the same degree, see [39] and [25].
The second family of laminations are the so-called solenoids obtained as

the inverse limit of the space of finite coverings of a closed hyperbolic sur-
face (these are a special type of the solenoidal manifolds discussed in [40]
and [41]). The structure of this Teichmüller space is very rich, and certain
natural problems on finite coverings such as the Ehrenpreis conjecture (re-
cently proven in [32]), can be rephrased in terms of the Teichmüller space
of the corresponding lamination (see [35] and [36]).

Besides Candel’s work there is, as far as the authors are aware, only
one general result on Teichmüller spaces of hyperbolic surface laminations.
This is the fact, established by Deroin in [18], that the Teichmüller space
of such a lamination containing a simply connected leaf is always infinite
dimensional.

Hirsch foliations. In this work we investigate the Teichmüller theory
of the Hirsch foliation. We recall that the Hirsch foliation was introduced
in [28] as an example of a foliation which is stable under C1 perturbations
of its tangent field, and has an exceptional minimal set (i.e. a compact
closed set which is a union of more than one leaf and is not the entire
ambient manifold).

TOME 68 (2018), FASCICULE 1



4 Sébastien ALVAREZ & Pablo LESSA

We will study a variant (also considered by Ghys for example in [24]) of
his construction which is minimal (the difference with Hirsch’s construction
amounts to a different choice of degree 2 map of the circle, we will use
z 7→ z2 while he used a mapping with a single attracting periodic orbit).
The total space of the foliation can be defined as the orbit space of the
wandering set of the domain of attraction of a solenoid mapping of the
solid torus, and the foliation itself corresponds to the projection of the
stable foliation of the attractor.
This actually describes a family of foliations which appear for example

in the study of complex Hénon maps (see [29]). Our arguments apply to
all of them and we will spend some time in the first section describing the
different Hirsch foliations explicitly.

Hirsch foliations have also been used to produce examples of minimal
foliations which are not uniquely ergodic (in the sense that they admit
more than one harmonic measure, see [19]).

We believe that Hirsch foliations are of interest for the theory of Teich-
müller spaces of hyperbolic surface laminations for the following reasons:
First, the previous laminations for which Teichmüller spaces are known all
contain simply connected leaves and none of them contains complicated
leaves (e.g. leaves whose fundamental group is infinitely generated). Sec-
ond, Sullivan solenoids are transversally Cantor and it is therefore easier
to “globalize” local constructions on them. Third, minimal surface lamina-
tions with an essential holonomy-free loop are Hirsch-like in a precise sense,
e.g. all leaves are obtained by pasting together elements from the same fi-
nite set of compact surfaces with boundary (see [3, Theorem 2]). Fourth,
since the ambient space of the Hirsch foliation is a closed 3-manifold there
may be deeper links between its Teichmüller theory and the dynamics and
geometry of the manifold.

The Hirsch foliation we work with are constructed from a solenoidal
mapping of degree 2. It seems possible to generalize our construction of
Teichmüller space to solenoidal mapping of degree d with the additional
condition that they are unbraided. Following [29], this means that it sends
a solid torus inside itself as a (d, 1) (unknotted) torus. in other words, the
fundamental domain is diffeomorphic to the suspension of a d+1-connected
plane domain by a rotation of angle 2π/d.

Dynamical motivations. The idea to associate a natural manifold to a
dynamical system proved to be useful in problems of classification. In [11]
the authors give a complete topological invariant of gradient-like diffeo-
morphisms of compact 3-dimensional manifolds. This invariant is a closed

ANNALES DE L’INSTITUT FOURIER
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3-dimensional manifold constructed in a way similar to the Hirsch folia-
tion, as the orbit space of the diffeomorphism in the complement of one
dimensional stable and unstable manifolds of periodic orbits. The topology
of such a space is studied in detail in [12].

It occurs that in §1.3 we prove that the Hirsch foliation is a complete
topological invariant of solenoids of degree 2, giving another proof of the
classification of [29]. It seems likely that our proof applies to give the topo-
logical classification of solenoids of arbitrary degree, whether the image of
the solid torus is unbraided (which is a theorem of [29]), or braided (which
is a priori open).
Now, the solenoidal endomorphisms of S1 ×C used to define the Hirsch

foliation are known to be C1 structurally stable when extended to S1 × Ĉ
where Ĉ is the Riemann sphere, see [30]. Hence the C0 conjugacy class
of any such map contains a C1 neighborhood of the map (see also [29,
Section 3] where the restrictions of the endomorphisms to a solid torus
where they are injective are considered). Therefore, finding C1-conjucacy
classes of solenoidal maps seems an interesting problem.
In view of Sullivan’s result relating C1-conjugacy classes of expanding

maps of the circle and the Teichmüller space of a suitable lamination, one
might think that our results are related to the problem of finding C1-
conjugacy classes of solenoids. The answer to the following question would
be a nice dynamical application of Teichmüller theory of Riemann surface
foliations.

Question. — What can be said about the C1-conjugacy classes of
solenoid mappings? In particular, is there a natural way of associating
each such class to an element of the Teichmüller space of the associated
Hirsch foliation?

It seems interesting to study the application of our result to the study of
complex Hénon maps. Bonnot gives in [13] topological models for some
complex Hénon maps of the form Ha,c(x, y) = (Pc(x) − ay, x), where
Pc(z) = z2 + c has an attractive fixed point. Such a model is a map
g : Y →Y of the complement in R4 of a cone over a solenoid in the 3-
sphere. It is given in spherical coordinates by g(r, θ) = (r2, f(θ)) where f
is a solenoid of degree 2. We hope that our result might be useful in the
study of such maps.

Outline of the paper. The main technical issue which was solved in
order to construct hyperbolic metrics on the Hirsch foliation was obtaining
a global continuous section of the Teichmüller space of a pair of pants with

TOME 68 (2018), FASCICULE 1



6 Sébastien ALVAREZ & Pablo LESSA

several specific properties. For proving that all metrics on the foliation are
equivalent to a “model metric” we needed on the one hand a procedure for
deforming metrics on the pair pants to metrics with the aforementioned
special properties, and on the other hand a procedure for deforming a
general metric on the Hirsch foliation so that it admits a specific set of
closed curves as geodesics. The most important tools we have used are
geometric flows, in particular we use the flow on circle diffeomorphisms
defined by Schwartz in [37], and the curve shortening flow on a hyperbolic
surface (see [26]); as well as standard tools from Teichmüller theory such
as the Beltrami equation (see for example [2]).
We now review the structure of this paper.
In Section 1 we construct the Hirsch foliation we will be working on and

its Teichmüller space. We also classify the different non-equivalent Hirsch
foliations which arise from this type of construction. Finally, we introduce
a technique for deforming a hyperbolic metric defined on a neighborhood
of a circle in the plane using a smooth isotopy of the identity in order to
make it conformal and rotationally symmetric.

In Section 2 we construct a global continuous section of the Teichmüller
space of a planar pair of pants with several special properties, the first
of which is that the metrics in the section are conformal and rotationally
symmetric around each boundary component. Also, if one exchanges the
length parameters for two “legs” of the pair of pants then the corresponding
metrics given by the section differ by the rotation of angle π (in particular
if the two lengths are equal then the rotation is an isometry for the metric).
These properties are important in order to construct metrics on the Hirsch
foliation which glue together smoothly under the identifications defining
the foliation.
In Section 3 we use the preceeding global section to construct a family

of hyperbolic metrics on the Hirsch foliation parametrized by a length pa-
rameter λ : S1→R∗+ and a twist parameter µ : S1→R. We also show that
no two such metrics are Teichmüller equivalent.
In Section 4 we prove that any hyperbolic metric on the foliation can be

deformed (using a leaf-preserving isotopy which is leafwise smooth) to one
of the model metrics. This is done in two cases. In the first one we assume
that the given metric already has a certain distinguished family of curves
as geodesics so one can operate separately on each pair of pants. We then
show how to deform a general metric to this case using the curve-shortening
flow.

ANNALES DE L’INSTITUT FOURIER
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This concludes the proof of Theorem A. In Section 5 we show how to
obtain Theorems B and C.

1. Preliminaries

1.1. The Hirsch foliation

Smale’s Solenoid. Consider the smooth endomorphism f of S1 × C
(where S1 = {z ∈ C : |z| = 1}) defined by

f(eit, z) =
(
ei2t,

1
2e

it + 1
4z
)
.

Let T = S1 × D (where D is the open unit disk). The closed solid torus
T is mapped diffeomorphically into T by f . In fact, f restricted to T is
the well known solenoid map and the compact set K0 =

⋂
n>0 f

n(T) is a
hyperbolic attractor which is locally homeomorphic to R times a Cantor
set.

The Hirsch foliation. Let K be the union of preimages of K0. The
quotient M = ((S1 × C) \ K)/f (where two points x, y are equivalent if
they belong to the same complete orbit, i.e. if fn(x) = fm(y) for some
n,m > 0) is a compact boundaryless smooth manifold and the foliation of
(S1×C)\K by leaves of the form {eit}×C\K descends toM . The resulting
foliated compact boundaryless 3-manifold (where both the manifold and
the leaves of the foliation are smooth) is what we will call from now on the
Hirsch foliation (M,F).

Topology of the leaves. One can verify that each complete f -orbit
intersects the setM0 = T\f(T) (which is a 3-manifold with two boundary
components which are 2-dimensional tori) at exactly one interior point or
at one point on each boundary component: M0 is a fundamental domain of
f . Hence M is obtained by pasting the two boundaries of M0 using f . The
sets of the form Pt = M0∩{eit}×C are pairs of pants, and the partition of
M0 into these pants when pasted using f yields the Hirsch foliation. With
this description it is simple to see that the leaves of the Hirsch foliation
are homeomorphic to either the two-dimensional torus minus a Cantor set
or the two-dimensional sphere minus a Cantor set (depending on whether
the leaf contains a pair of pants Pt such that eit is periodic under iterated
squaring or not).

TOME 68 (2018), FASCICULE 1



8 Sébastien ALVAREZ & Pablo LESSA

1.2. Hyperbolic metrics and Teichmüller space

Hyperbolic metrics. By a hyperbolic metric on the Hirsch foliation
we mean an assignment of a hyperbolic Riemannian metric to each leaf
which varies continuously transversally in local charts with respect to the
topology of local smooth convergence. The space of such metrics, endowed
with the topology of locally uniform smooth convergence, will be denoted
by H(M,F).
An isotopy of the identity of the Hirsch foliation (sometimes we will

just say leaf isotopy, or leaf-preserving isotopy) is a continuous function
I : [0, 1] ×M→M such that I(0, · ) is the identity, and I(s, · ) is a self-
diffeomorphism when restricted to any leaf. Furthermore one demands that
in local foliated charts I varies continuously in the smooth topology with
respect to the transverse parameter.
Two hyperbolic metrics g, g′ ∈ H(M,F) are said to be equivalent if there

exists an isotopy of the identity I such that when I(1, · ) is restricted to
any leaf it is an isometry between g and g′. In other words the metric g′ is
the pushforward of g with respect to I(1, · ).

Teichmüller space. The Teichmüller space T (M,F) of the Hirsch foli-
ation is by definition the space of equivalence classes of Riemannian metrics
under leaf-preserving isotopies of the identity.
In our special case these definitions can be given much more explicitly.

Any hyperbolic metric on the Hirsch foliation can always be lifted to (S1×
C) \K yielding a 2π-periodic family of metrics gt, where gt is defined on
({eit} × C) \K.

Defining Kt ⊂ C so that ({eit} × C) \ K = {eit} × (C \ Kt) one may
identify each gt with a metric defined on C \Kt.
The transverse continuity of the hyperbolic metric translates as follows.

If z ∈ C \ Kt and sn→ t then there exists a compact neighborhood U of
z such that all metrics gsn

with n large enough are defined in U and can
be written as andx2 + 2bndxdy + cndy2 where the functions an, bn and cn
(the coefficients of gsn) converge in the smooth (i.e. C∞) topology to the
corresponding coefficients for gt on U .
The definition of convergence in the space of hyperbolic metrics can be

similarly written in these terms. A sequence of metrics gn converges to
a metric g if and only if taking gnt and gt as their lifts there exists for
each z /∈ Kt a closed interval I containing t in its interior and a compact
neighborhood U of z such that all metrics gns are defined on U for all s ∈ I

ANNALES DE L’INSTITUT FOURIER



THE TEICHMÜLLER SPACE OF THE HIRSCH FOLIATION 9

and converge to gs on U in the smooth topology uniformly with respect to
s ∈ I.

1.3. General Hirsch foliations

The Hirsch foliation we described before is a very concrete algebraic
model. Hirsch’s original construction [28] is more topological. We wish to
prove here that the space of metrics we will describe below does not depend
on the algebraic model we chose.

The sequel seems folklore and must be well known to the specialist. But
even though the Hirsch foliation has been studied for some time now (see for
example [17, 19, 24]), it has been difficult to locate a careful construction of
the different Hirsch foliations. Hence we found it useful to give a topological
discussion about it. For basic 3-manifold theory we refer to [27].

1.3.1. Seifert bundle over the pair of pants

A suspended manifold. Here a pair of pants P will be a surface with
three boundary components which is diffeomorphic to the symmetric planar
pair of pants {z ∈ C : |z| 6 1, |z ± 1/2| > 1/4}.
Consider φ : P →P an orientation preserving diffeomorphism which:
• leaves invariant one of the boundary components, which we call the
outer component;

• exchanges the other two boundary components, which we will call
the inner components;

• has a unique fixed point in P denoted by p0;
• is of order two.

In the symmetric case, just consider the rotation of angle π. Suspend
this diffeomorphism to construct the following manifold:

M0 = P × R/{(x, t) ∼ (φ(x), t+ 1)}.

This manifold fibers over the circle, with a P -fiber. From now on we will
refer to the boundary components of the P -fibers of M0 as meridians.

The manifold M0 is a solid torus with an inner solid torus drilled out
which winds around twice longitudinally while winding once meridianally.
It has two boundary components which are tori, we will call the outer
boundary torus Tout and inner one Tinn respectively. The discussion below
is again valid with any equivalent pant bundle over the circle which is
equivalent to M0.

TOME 68 (2018), FASCICULE 1



10 Sébastien ALVAREZ & Pablo LESSA

We recall that a surface S embedded in a 3-manifoldM0 is incompressible
if the morphism π1(S)→π1(M0) induced by the inclusion is injective.

Lemma 1.1. — The boundary components of M0 are incompressible.

Proof. — The fundamental group of M0 is given by a semi-direct prod-
uct π1(M0) = F2 oφ∗ Z, where F2 = π1(P ) denotes the free group with two
generators (corresponding for example to the two inner boundary compo-
nents of P ), and φ∗ is the morphism of F2 induced by φ: it permutes the
two generators of F2.
A meridian of Tout represents a non trivial element of the F2 factor (the

product of the two generators). As for the Z factor, it can be represented
by the longitud of T . Hence, the inclusion Tout ↪→M0 induces an injection
π1(Tout)→π1(M0): Tout is incompressible. The same argument provides
the incompressibility of Tinn. �

Structure of Seifert bundle. The suspension flow on M0 defines a
structure of Seifert bundle over P with a unique exceptional fiber of type
(1, 2) [27], which corresponds to the fixed point x0 of φ. We will denote this
exceptional fiber by S0.
Remember that a 3-manifold is said to be irreducible if every embed-

ded 2-sphere bounds a 3-dimensional ball. By Proposition 1.12 of [27], the
manifold M0 is irreducible (it is clearly not one of the exceptions listed in
this proposition).

Lemma 1.2. — Every diffeomorphism of M0 is homotopic to a Seifert
fiber preserving diffeomorphism.

Proof. — See the classification of Seifert bundles given in Theorem 2.3
of [27]. �

The orientations of the pair of pants and of S1 provide a natural orien-
tation on M0. With this orientation, the inner (resp. outer) Seifert fiber
and the meridian provide two homology classes αinn (resp. αout) and βinn
(resp. βout) of Tinn (resp. Tout), and they have intersection number 1
(resp. 2).

Lemma 1.3. — Let P be a foliation ofM0 by pants which are transversal
to the Seifert fibration. Then there exists and integer d such that the outer
boundary component of all pairs of pants in P are in the homology class
dαout+βout on Tout and the inner boundaries of all such pants are the class
dαinn + βinn on Tinn.

Proof. — The manifoldM0 is naturally a circle bundle over the 2-orbifold
Σ0 obtained by quotienting P by φ, which is homeomorphic to an annulus.

ANNALES DE L’INSTITUT FOURIER
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Consider an arc c in Σ0 linking the boundaries, and lift it toM0. We obtain
an annulus A everywhere transverse to the fibration (Pt)t∈S . The boundary
components of this annulus are by definition outer and inner Seifert fibers.
Now, note that Σ = Σ0 \ c is simply connected, in such a way that the

restriction of the fiber bundle to M0 \A is a trivial circle fibration over the
simply connected manifold with boundary, which, topologically, is a closed
band. The boundary of M0 \A is therefore the union of four annuli, two of
which, denoted by A1 and A2, are copies of A.
In particular, since the base Σ0 \c is simply connected, any foliation such

as described in the statement of the lemma provides a foliation of M0 \ A
which is isotopic along the fibers to the trivial product foliation. The gluing
of A1 and A2 determines the type of foliations.

Now, such a gluing is determined by Dehn twists along A (since any
class of isotopy of diffeomorphisms of the annulus is represented by a Dehn
twist). Since boundary components of A are Seifert fibers, we can conclude
the proof of the lemma. �

1.3.2. Gluing the boundary components

The Hirsch foliation. Consider an orientation preserving diffeomor-
phism f : Tout→Tinn which sends meridians onto meridians, and consider
the manifold Mf obtained by gluing the two boundary components of M0
using f .
The manifoldM0 is foliated by pairs of pants, which induce two foliations

of the boundary components by circles (the two meridian foliations). By
definition, f sends the first meridian foliation onto the second meridian
foliation. The gluing by f then provides a foliation of Mf by surfaces that
we denote by F and that we call the Hirsch foliation associated to f .
The circle S0 yields naturally a circle S in Mf which is transverse to all

leaves of F . Hence the foliation is taut in the sense of [15].

The graph manifold. The manifold Mf possesses a natural torus T ,
that as we prove later, is canonical in the sense that it is the unique JSJ
torus of Mf . The resulting manifold is called a graph manifold, and is not
a Seifert bundle itself.

Lemma 1.4. — Let f : Tout→Tinn be an orientation preserving diffeo-
morphism that preserves the meridians. Then Mf is not a Seifert bundle.

Proof. — We are going to work inside M0. M0 possesses a unique struc-
ture of Seifert manifold (see Lemma 1.2), so it is enough to see that f does
not send the Seifert fibers of Tout onto those of Tinn.

TOME 68 (2018), FASCICULE 1



12 Sébastien ALVAREZ & Pablo LESSA

A Seifert fiber of Tout intersects each meridian twice, and a Seifert fiber
of Tinn intersects each meridian only once. Since f sends diffeomorphically
meridians of Tout onto meridians of Tinn, it implies that f cannot preserve
the Seifert fibers. This concludes the proof. �

Lemma 1.5. — Let f : Tout→Tinn be an orientation diffeomorphism
that preserves the meridians. Then Mf is irreducible and the torus T is
incompressible.

Proof. — Let us prove first that T is incompressible. We will use the
Loop Theorem [27]: let D⊂Mf be an embedded closed 2-disc such that
D ∩ T = ∂D is an embedded circle in T . We have to prove that ∂D is null
homotopic in T . The interior of D does not meet T : there is an embedded
copy D0 of D \ ∂D inside M0 such that ∂D0 is included in one of the
two boundary components Tout or Tinn. It is enough to prove that ∂D0
is null homotopic inside this component. But this is true since M0 has an
incompressible boundary.
Now let us prove that Mf is irreducible. Notice that Mf has an incom-

pressible torus: in particular its fundamental group possesses a copy of Z2

and is not finitely covered by S2×S1. Moreover it possesses a taut foliation,
so by Novikov’s theorem (see [15, Theorem 4.35]), it is irreducible. �

The JSJ torus. We show now that inside the manifold Mf , the torus
T is canonical.
Recall that any compact and irreducible 3-manifold can be canonically

decomposed into pieces that are either Seifert or atoroidal (any incom-
pressible torus is isotopic to a boundary component) and acylindrical (any
properly embedded annulus is isotopic, fixing the boundary, to a subannulus
of a boundary component) by cutting along a collection of incompressible
tori. Such a collection of tori is unique up to isotopy. This decomposition
is called the JSJ decomposition, and decomposition tori are called JSJ tori
(see [27]).

Lemma 1.6. — T is, up to isotopy, the only incompressible torus ofMf .

Proof. — By Lemma 1.5 Mf is irreducible and T is incompressible. On
the other hand, Mf is not a Seifert bundle (Lemma 1.4), while Mf \ T is:
hence, T is the unique JSJ torus of M . �
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Uniqueness of the Hirsch foliation. Now we intend to prove that
the Hirsch foliation is unique. To see this, imagine that there is another
fibration by pairs of pants of M0, that we denote by (P ′t )t∈S0 which is ev-
erywhere transverse to the Seifert bundle and is f -invariant in the following
sense.
The boundaries of the pairs of pants P ′t determine two foliations of Tout

and Tinn that we call P ′-meridians (usual meridians will also be called P -
meridians) which are everywhere transverse to the Seifert fibers. We say
the family (P ′t )t∈S0 is f -invariant if f preserves the P ′-meridians. Note
that in that case the boundary components of P ′t and those of Pt are freely
homotopic: this comes from Lemma 1.3 and from the fact that f does
not preserve the Seifert fibers. Then gluing Tout and Tinn by f provides
another foliation F ′ onMf . The next lemma implies that this new foliation
is isotopic to F .

Lemma 1.7 (Uniqueness of the Hirsch foliation). — The Hirsch foliation
ofMf is unique. More precisely, consider another fibration (P ′t )t∈S0 in pairs
of pants transverse to the Seifert bundle, which is f -invariant. Then there
exists an isotopy Φs : M0→M0 such that for every t ∈ S0, Φ1(P ′t ) = Pt
and which commutes with f : Φs ◦ f = f ◦ Φs in Tout.

Proof. — Let (P ′t )t∈S0 be a fibration of M0 in pairs of pants everywhere
transverse to the Seifert bundle, which is f -invariant. As we noted before,
P and P ′-meridians are freely homotopic. Hence if one lifts the fibration
to P × R, the P ′-meridians lift as simple closed curves (they are freely
homotopic to the lifts of P -meridians).

By hypothesis, all the pairs of pants P ′t are everywhere transverse to the
lines {x} ×R: P ′t may be seen as a graph of a smooth function ϕt : P →R
satisfying the equivariance relation ϕt+1 = ϕt + 1.

In particular, the lifts of the outer P ′-meridians are graphs over those
of outer P -meridians. Using the vertical flow and the function ϕt above, it
is possible to isotope P ′-meridians to corresponding P -meridians. Pushing
this isotopy by f shows how to isotope the inner P ′-meridians onto inner P -
meridians. These isotopies may be extended to neighborhoods of Tinn and
Tout in order to isotope (P ′t )t∈S0 to a family (P ′′t )t∈S0 sharing the same
properties, and coinciding moreover with (Pt)t∈S0 near the boundary, via
an isotopy which commutes with f .
Using one more time the function ϕt in P × R enables us to glue the

isotopy above with an isotopy which sends the interior of P ′′t to those of
Pt. The resulting isotopy stays f -invariant. �
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1.3.3. A homological invariant

The twisting number. Define df as the intersection number, inside
Tinn, of the homology classes αinn and f∗αout.

Lemma 1.8. — The intersection number df is always odd.

Proof. — First, in a natural basis of integer homology of Tout, αout can
be written as (1, 2). In particular, it is not the power of some homology
class.
Inside Tinn, we have a natural basis of the homology defined by αinn and

β (their intersection number is 1). Since f sends meridian onto meridian
(and preserves the orientation), and the representation of f∗αout in this
basis is (df , 2). Since this is not the power of some homology class (the
action of f∗ on the homology is invertible), df has to be odd. �

A topological invariant. We now prove the main result of this section.

Theorem 1.9. — Let f, f ′ : Tout→Tinn be two meridian preserving
diffeomorphisms. Then the following properties are equivalent.

(1) df = df ′ .
(2) Mf and Mf ′ are diffeomorphic.
(3) There exists a diffeomorphism H : M0→M0 which conjugates f

and f ′.
(4) The Hirsch foliations corersponding to f and f ′are conjugate.

Proof. — First, note that the third and fourth assertion clearly imply
the second one.

Assume that df = df ′ . Then since f and f ′ send diffeomorphically merid-
ian on meridian, we see that they induce the same action in the first homol-
ogy of the 2-torus. Hence they have the same isotopy type, and the glued
manifolds Mf and Mf ′ are diffeomorphic.

Now, assume that Mf and Mf ′ are diffeomorphic: denote by H a dif-
feomorphism between them. Since H is a diffeomorphism, H(Tf ) is incom-
pressible: it is isotopic to Tf ′ . After performing an isotopy, one can ask that
H(Tf ) = Tf ′ .
This implies that H induces a diffeomorphism ofM0, still denoted by H,

such that the commutation relation f ′ ◦H = H ◦ f holds in restriction to
Tout. By Lemma 1.2 H is homotopic to a fiber preserving diffeomorphism.
Hence, H preserves the homology classes αinn and αout. Since it conjugates
f and f ′, we deduce that df = df ′ .

We want to prove that in that case, the corresponding Hirsch foliations
are conjugate. The image byH of the fibration (Pt)t∈S0 provides a family of
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pairs of pants which is transverse to the Seifert bundle (sinceH preserves it)
and is f ′-invariant (since H conjugates the actions of f and f ′). Lemma 1.7
provides an isotopy from (P ′t )t∈S0 to (Pt)t∈S0 which is f ′-invariant. In other
terms, the two Hirsch foliations are conjugate.
The other implications are obvious. �

This homological invariant df will be referred to as the twisting number
of the corresponding Hirsch foliation.

1.3.4. Algebraic models

The solenoid. We have already met Smale’s solenoid f : S1 × C→
S1 × C:

f(eit, z) =
(
e2it,

1
2e

it + 1
4z
)
.

Identify M0 and a fundamental domain of f given by T \ f(T). Then,
f clearly induces a diffeomorphism (still denoted by f) from Tout to Tinn
which preserves the meridians, and satisfies df = 1.
Hence every Hirsch foliation with same twisting number 1 is conjugate

to this model, which we will study in detail in what follows.

Twisted model. It is easily shown that if in M0, we compose the dif-
feomorphism with a positive Dehn twist of Tinn, the twisting number is in-
creased by 2. Hence these diffeomorphisms provide models of the Hirsch fo-
liation for every odd integer df . Algebraic models exist, and appear in [29].
They are defined by maps fk : S1 × C→S1 × C given by the formula:

fk(eit, z) =
(
e2it,

1
2e

it + ekit

4 z

)
.

1.4. Massage of an annulus

The goal of this paragraph is to describe a procedure for deforming hy-
perbolic metrics around a geodesic circle C via an isotopy of the identity.
This procedure can later be applied around each boundary component of
P (via the affine maps z 7→ z/4 ± 1/2 for the left and right boundaries)
to construct the homotopy of Theorem 2.7. However, we will also use the
procedure directly later on for deforming hyperbolic metrics on the Hirsch
foliation (see the proof of Lemma 4.1).
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1.4.1. Standard hyperbolic annuli

Standard hyperbolic annuli. For each positive length ` there is a
unique conformal metric σ` on the annulus A` = {z ∈ C : e−π2/` < |z| <
eπ

2/`} in C which is hyperbolic, rotationally invariant, and such that the
unit circle r = 1 is a geodesic of length `.

In order to see this consider the strip model of the hyperbolic plane.
That is, consider the metric

ds2 = 1
cos(y)2 (dx2 + dy2)

on the strip {x + iy ∈ C : −π/2 < y < π/2} (this is obtained from
the usual upper half plane model by pullback under the conformal map
z 7→ exp(−iz)).
The metric σ` is the pushforward of the above metric via the conformal

covering map z 7→ exp(2πiz/`).
The pairs (A`, σ`) will be referred to as the standard hyperbolic annuli.

Standard hyperbolic metrics. Suppose that g is a hyperbolic Rie-
mannian metric defined on some region in the plane for which a Euclidean
circle C is a closed geodesic of length `. We say g is standard around C if
it coincides, on some neighborhood of C, with the pushforward of σ` under
a conformal map of the form z 7→ az + b taking the unit circle to C.

1.4.2. The Massage Lemma

Consider an annulus A = {z ∈ C : 0.9 < |z| < 1.1} and denote by
H(A) the set of hyperbolic metrics on A with the unit circle as a geodesic.
Consider R : C→C the rotation of angle π, i.e. R(z) = −z. We will prove
the following:

Theorem 1.10 (Massage Lemma). — For each g ∈ H(A) there exists
an isotopy of the identity Fs,g : A→A such that:

(1) Each diffeomorphism Fs,g preserves the unit circle and is the iden-
tity outside the annulus defined by A′ = {z ∈ C : 0.91 < |z| <
1.09}.

(2) The pullback metric (F1,g)∗g is standard around C.
(3) If A(s, g) = (Fs,g)∗g, then we have for every s ∈ [0, 1], R∗A(s, g) =

A(s,R∗g).
(4) For each s ∈ [0, 1] the map g 7→ Fs,g is continuous in the smooth

topology.
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The deformation will follow four steps. At each step of this procedure,
we shall check that Properties (1), (3) and (4) are satisfied.

(1) Deformation of the unit tangent bundle. We perform an isotopy of
the identity for the circle C to be geodesic when parametrized by
Euclidean arc length. In other words, after this step the Euclidean
unit tangent vector field to the circle is parallel for the metric.

(2) Deformation of the normal bundle. We perform an isotopy of the
identity so that the Euclidean normal vector field to C is also per-
pendicular to C for the deformed metric.

(3) Conformality on the circle. We perform an isotopy in order to make
the metric conformal to the Euclidean metric on the circle C.

(4) Standardness around the circle. We perform an isotopy to make the
metric standard around C. At this point (and only at this point)
some standard metrics may be deformed to other equivalent stan-
dard metrics.

1.4.3. Auxiliary functions

We fix from now on a bump function, i.e. a smooth map ρ : R→R which
is 1 on [0.99, 1.01] and 0 on (−∞, 0.91] ∪ [1.09,+∞).
For each λ > 0 we will also need to fix a smooth increasing diffeomor-

phism fλ : R→R which is the identity outside of the interval [0.9, 1.1] and
has derivative λ at 1. We further suppose that fλ(x) is smooth with respect
to both λ > 0 and x ∈ [0, 1] and that f1 is the identity map.

1.4.4. Deformation of the tangent bundle

Parametrize the geodesic. Until the end of the proof of the Massage
Lemma (Theorem 1.10), we fix a metric g ∈ H(A). Let ` be the g-length
of the geodesic C. In order to simplify the presentation, we will assume, in
this paragraph only, that ` = 2π.

Consider an arc length parametrization of C, that is an orientation pre-
serving diffeomorphism γ ∈ Diff∞+ (S1) such that g = γ∗dθ2 where by def-
inition dθ2 is the Euclidean metric on C. Such a diffeomorphism is well
defined up to precomposition by a rotation.
There is a continuous section g 7→ γg, which is characterized by the

condition γg(1) = 1.
We will denote by Möb(C), the group of Möbius transforms leaving C

invariant, by Rot the group of rotations of C, z 7→ eitz, and by Trans,
the group of translations of R/2πZ. These groups are conjugate by the
exponential map E : R/2πZ→S1, t 7→ eit.
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A bi-equivariant deformation retract. We want to find a continu-
ous path of metrics from g to a metric for which C is a geodesic when
parametrized by the Euclidean length of arc. And we want these paths to
be equivariant for the action of R. A first step is to modify in an equivari-
ant way the parametrization of C. In order to do this, we will use a strong
deformation retract from Diff∞+ (C) to Rot, which is bi-equivariant for the
action of Rot. This requires a construction due to Schwartz [37].

Theorem 1.11 (Bi-equivariant deformation retract). — There exists a
deformation retract Φ : [0, 1]×Diff∞+ (C)→Rot which is bi-equivariant for
the action of Rot, i.e. for every (R1, γ, R2) ∈ Rot×Diff∞+ (C) × Rot, and
s ∈ [0, 1],

Φs(R1 ◦ γ ◦R2) = R1 ◦ Φs(γ) ◦R2 .

Proof. — In [37], Schwartz constructs a deformation retract Φ0 from
Diff∞+ (C) to Möb(C) which is left-equivariant for the action of Möb(C): for
every γ ∈ Diff∞+ (C), T ∈ Möb(C), and s ∈ [0, 1], Φ0

s(T ◦ γ) = T ◦Φ0
s(γ). It

occurs that this deformation retract is also right-equivariant by the action
of Rot: for every γ ∈ Diff∞+ (C), Q ∈ Rot, and every s ∈ [0, 1], we have
Φ0
s(γ ◦Q) = Φ0

s(γ) ◦Q.
Indeed, in order to construct the deformation retract, Schwartz considers

smooth maps Γ : [0,∞) × R/2πZ→C, with Γ(t, · ) ∈ Diff∞+ (R/2πZ;C),
evolving according to the following PDE:

(1.1) ∂tΓ(t, x) = −∂x(S(Γ)(t, x))∂xΓ(t, x) ,

where S denotes the Schwarzian derivative. We recall that S(T ) = 0 for
every T ∈ Möb(C), and that S satisfies the following cocycle relation:

S(γ1 ◦ γ2) = (γ′2)2S(γ1) ◦ γ2 + S(γ2) ,

in such a way that for every (T, γ, τ) ∈ Möb(C)×Diff∞+ (R/2πZ;C)×Trans,
we have:

(1.2) S(T ◦ γ) = S(γ) and S(γ ◦ τ) = S(γ) ◦ τ .

Schwartz showed that the problem of finding Γ satisfying the PDE (1.1)
with a prescribed initial condition Γ(0, · ) = γ has a unique solution, and
that moreover this solution approaches in the C∞-topology as t→∞ a
unique function of the form ργ ◦ E, where ργ is Möbius transform and
we recall that E(t) = eit denotes the exponential map. By the Invariance
Relations (1.2), and the uniqueness of the solution of the Cauchy problem,
it comes that for every (T, γ, τ) ∈ Möb(C) × Diff∞+ (C) × Rot and every
t ∈ [0,∞), Γ(t, T ◦ γ ◦ τ) = T ◦ Γ(t, γ) ◦ Q. In particular ρT◦γ◦τ ◦ E =
T ◦ ργ ◦ E ◦ τ .
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By conjugating this flow by the exponential map, Schwartz gets a de-
formation retract from Diff∞+ (C) to Möb(C) which is shown to be bi-
equivariant for the action of Rot. Recall that there is an identification
C ' RP1 which identifies Möb(C) with PSL2(R) and Rot with PSO(2).
Now the polar decomposition provides a deformation retract from Möb(C)
to Rot which is also bi-equivariant.

Recall that for a matrix A ∈ SL2(R), there is a unique pair of matrices
(Q,S) such as A = QS, where Q ∈ SO(2) and S is a positive definite
symmetric matrix with determinant 1. By the Spectral Theorem, such a
matrix can be written ΩT diag(λ, λ−1)Ω, for a matrix Ω ∈ SO(2), and
a positive number λ > 1 (we use the notation diag(a1, a2) for the 2 × 2
diagonal matrix with entries a1, a2). We have naturally a retraction sending
A to Q, defined by Φ̃1

s(A) = QΩT diag(λ1−s, λs−1)Ω.
This retraction is clearly bi-equivariant by the action of SO(2), and thus

passes to the quotient by A 7→ −A: it gives a retraction Φ1 : [0, 1] ×
PSL2(R)→PSO(2) which is bi-equivariant for the action of PSO(2). From
this, we deduce the desired bi-equivariant retraction from Möb(C) to Rot.

Concatenating these two retractions, we get a bi-equivariant deformation
retract from Diff∞+ (C) to Rot. �

Remark 1.12. — Michele Triestino told us an alternative proof of The-
orem 1.11 that does not use Schwartz’s flow. We sketch it below. Con-
sider the convex set K of left-equivariant deformation reracts Ψ : [0, 1] ×
Diff∞+ (C)→Rot. It is non-empty: for example the deformation retract given
by Ψ(s, h) = (1− s)h+ s(Id + h(0)) is left-equivariant under the action of
Rot. We find a right-equivariant element of K by letting the compact group
Rot act on K by Ψ.R(s, h) = Ψ(s, h ◦ R) ◦ R−1. This action must have a
fixed point, which is the desired bi-equivariant deformation.

Deformation of the tangent bundle. We can now use the deforma-
tion retract in order to get our continuous symmetric path of metrics.
Consider γ = γg ∈ Diff∞+ (C) the arc length parametrization defined

with γ(1) = 1. Denote by Rγ = Φ1(γ). Define the isotopy on A in polar
coordinates by

ϕs(reit) = rΦ(1−s)ρ(r)(γ) ◦R−1
γ (eit) .

where s ∈ [0, 1] and ρ is the bump function defined in Paragraph 1.4.3.
Note that this isotopy is independent of the choice of a given arc length

parametrization, and depends only on the metric g. Indeed, another arc
length parametrization has the form γ1 = γ ◦ Q for some rotation Q. It
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is enough to note that by the equivariance property of Φ, we have that
Rγ1 = Rγ ◦Q and Φ(1−s)ρ(r)(γ1) = Φ(1−s)ρ(r)(γ) ◦Q.

Note moreover that each ϕs preserves the circles {r = constant}.

Lemma 1.13. — The parametrization of C by Euclidean arc length is
geodesic for the pullback metric g1 = ϕ∗1g. Moreover, if we set A1(s, g) =
ϕ∗sg for s ∈ [0, 1], we have R∗A1(s, g) = A1(s,R∗g) for every s ∈ [0, 1].

Proof. — The first part is a direct consequence of the definition of the
function ϕs above. It remains to prove the symmetry property.

Consider the metric R∗g: any length of arc parametrization of R∗g can
be written R ◦ γ ◦Q, where Q is some rotation. Now notice that:

R ◦ ϕs(reiθ) = rR ◦ Φρ(r)(1−s)(γ) ◦R−1
γ (eiθ)

= rΦρ(r)(1−s)(R ◦ γ ◦Q) ◦ (RRγQ)−1(Reiθ)

= ϕ′s ◦R(reiθ) ,

where ϕ′s is the homotopy corresponding to R∗g. We conclude that the
symmetry property holds. �

Remark 1.14. — The isotopy ϕs described above depends continuously
on γg. In particular it varies continuously with respect to g ∈ H(A) in the
smooth topology.

Remark 1.15. — If the metric g is standard around C then γg is the
identity, and the isotopy is trivial (i.e. ϕs is the identity for all s). In
particular g1 = g in this case.

1.4.5. Deformation of the normal bundle

The next step is to perform a twist isotopy on the hyperbolic metric g1
in order to render the Euclidean normal vector field to C perpendicular to
C with respect to our deformed hyperbolic metric.

The isotopy. Consider N : C→R2 the unit inward normal vector field
for the metric g1 and let a, b : C→R be such that

N(z) = −a(z)z + b(z)iz

for all z ∈ C. Notice that a is never equal to zero since N is everywhere
orthogonal to the vector field z 7→ iz.

Let β : R × C→C be the flow of the vector field X(z) = b(z)
a(z) iz. We

define an isotopy of the identity on A in polar coordinates by

χs(reit) = rβsρ(r)(1−r)(eit)
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where ρ is as in the previous subsection, and s ∈ [0, 1].

Lemma 1.16. — Let g2 = χ∗1g1 be the pullback metric. Then the Eu-
clidean normal vector field to C is orthogonal to C with respect to g2 and
the parametrization of C by Euclidean arc length is a geodesic for g2.

Proof. — The second claim follows because χs is the identity on C for
all s.
Notice that χ1(reit) = rβ1−r(eit) on some neighborhood of C. Hence the

radial derivative of χ1 at a point z ∈ C is

∂rχ1(z) = z −X(z) = a(z)z − b(z)iz
a(z) = − 1

a(z)N(z) .

The first claim follows because the right hand side is normal to C with
respect to g1. �

Remark 1.17. — The isotopy χs depends only on the normal vector of
g1 and hence depends continuously on g1 in the smooth topology.

Remark 1.18. — If the metric g1 is standard in a neighborhood of C
then one has b(z) = 0 so that β is the trivial flow. Hence the isotopy just
described leaves g1 invariant in this case.

Symmetry of the procedure. It remains to prove that the isotopy we
described is symmetric. This is the content of the following lemma:

Lemma 1.19. — If we set for s ∈ [0, 1], A2(s, g1) = (χs)∗g1, then we
have that R∗A2(s, g1) = A2(s,R∗g1) for every s ∈ [0, 1].

Proof. — Denote by N ′, X ′, β′ the objects associated to R∗g1. First, note
that R preserves the circles centered at the origin. Hence, it is enough to
prove that one has: R ◦ βs = β′s ◦R.

But we see quite easily that the relation β′s = R ◦ βs ◦ R holds, first
because R2 = Id, and then because by definition N ′ = R∗N = −N ◦ R.
Hence, it comes that X ′ = −X ◦ R = R∗X: we deduce that R conjugates
the two flows. �

1.4.6. Conformality

The g2-norm of any unit Euclidean tangent vector to C is `/2π where `
is the length of C with respect to g2. However the g2-norm of a Euclidean
normal vector to C varies from point to point. The purpose of this subsec-
tion is to deform g2 to a metric g3 such that both Euclidean normal and
tangent vectors have the same g3-norm.
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The isotopy. For this purpose let N : C→R2 be the inward pointing
vector field which has norm `/2π and is orthogonal to C with respect to
g2. Fix λ : C→(0,∞) so that N(z) = −λ(z)z and define a smooth isotopy
of the identity on A in polar coordinates by

ψs(reit) = fsλ(eit)(r)eit ,

where fλ is the push diffeomorphism defined in Paragraph 1.4.3.

Lemma 1.20. — The pullback metric g3 = ψ∗1g2 is conformal with re-
spect to the Euclidean metric on C.

Proof. — Since ψ1 is the identity on C one obtains that the Euclidean
unit tangent vector to C has g3-norm `/2π.
On the other hand the image of the Euclidean unit normal vector to C

at any point z ∈ C is exactly N(z) which has g2-norm equal to `/2π and
is perpendicular to C with respect to g2. This establishes the claim. �

Remark 1.21. — The isotopy ψs depends smoothly on the metric g2.

Remark 1.22. — If g2 is standard on a neighborhood of C then λ is
constant and equal to 1, hence the isotopy is the identity in this case.

Symmetry of the procedure. It remains to prove that the procedure
we described is symmetric.

Lemma 1.23. — If we set for s ∈ [0, 1], A3(s, g2) = (ψs)∗g2, then we
have that R∗A3(s, g2) = A3(s,R∗g2) for every s ∈ [0, 1].

Proof. — Denote byN ′, λ′, ψ′s the objects associated toR∗g2. Here again,
it is enough to prove that R ◦ ψs = ψ′s ◦ R. By definition, we have N ′ =
R∗N = −N ◦R, in such a way that λ′ = λ◦R: this is enough to ensure the
conjugacy formula. �

1.4.7. Standardness

Collar Lemma and Fermi coordinates. Consider the standard met-
ric σ = σ` around C (where ` is the length of C with respect to g3) and
notice that g3 coincides with σ on C. Define the collar function as:

(1.3) ω(`) = sinh−1

(
1

sinh( `2 )

)
.

The Collar Lemma (see [14]) asserts that the function f that we will
describe below is well defined on the round annulus Ng3 formed by the
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points z of the standard hyperbolic annulus A` with σ-distance to C less
than dg3 = Min(ω(`), δg3), where δg3 is the distance between ∂A and
the geodesic C. Note that this function dg3 varies continuously with the
metric g3.

The function f : Ng3→A is defined as follows. The circle C is mapped
onto itself by the identity (here we use that the arc length parametrization
of C by g3 is Euclidean: in the general case, we would have to use a more
general differomorphism). Given z ∈ Ng3 ∩ C±, where C± = {z ∈ C :
|z|±1 > 1}, let d(z) be the σ-distance between z and z/|z|. Then f(z) is
the point of C± which is at g3-distance d(z) along the g3-geodesic passing
through z/|z| perpendicular to C. We just described the so-called Fermi
coordinates [14].
Note that a priori the Fermi coordinates depend on the choice of an arc

length parametrization of C by a rotation. Since σ is rotationally invariant,
the definition of g as F∗σ is coherent.

Interpolation between the identity and the Fermi coordinates.
Let κ be the maximum of the first order derivatives of the coefficients of
the metric g3 on A. The constants εi below can be chosen to be continuous
functions of ` and κ.

Let ε2 < ε1 < 1/10 be positive and such that the following properties
hold.

(1) The metrics σ and g3 are bi-Lipschitz equivalent with Lipschitz
constant less than or equal to 2 on the annulus A1 = {1 − ε1 6
|z| 6 1 + ε1} (use here that the two metrics coincide in C). In
particular σ is defined on this annulus.

(2) The σ distance between the two boundaries of A2 = {1− ε2 6 |z| 6
1 + ε2} is less than or equal to half of the corresponding distance
between the boundaries of A1.

(3) The σ distance between the two boundaries of A2 is less than or
equal to ω(`) in such a way that f is well defined on A2.

Notice that f is the identity on C and furthermore, because σ and g3
coincide on C, one has that the differential Df is the identity map at all
points of C. Furthermore f is an isometry between σ restricted to A2 and
g3 restricted to f(A2) ⊂ A1 (see the first two items).
For some ε < ε2 to be chosen later we define:

ρε(r) = ρ

(
1 + r − 1

ε

)
,
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where ρ is the bump function of Paragraph 1.4.3. Note that z 7→ ρε(|z|)
is 1 in a neighborhood of the unit circle and is 0 outside Aε = {z ∈ C :
1−0.09 ε < |z| < 1 + 0.09 ε}. We will assume that ε is small enough in such
a way that the ε-neighborhood of Aε is included in A.
Define for s ∈ [0, 1] the following map A→C.

Ωs(z) = z + sρε(|z|)(f(z)− z) .

Outside of A2 the function f might be undefined, but ρε(|z|) = 0, so it is
understood that Ωs(z) = z at these points for all s ∈ [0, 1].

The 1-jets of f and of the identity coincide on C, thus |f(z) − z| is
controlled by some quantity of order ε2 on Aε (the precise constants de-
pending on κ). In particular, when ε is small enough, the segment [z, f(z)]
is included in the ε-neighborhood of Aε and Ωs defines a map A→A.

Properties of the interpolation. Using again that g3 is confomal at
C, we can show that each step of the interpolation yields a diffeomorphism
between A and its image.

Lemma 1.24. — For every s ∈ [0, 1], Ωs : A→C is a diffeomorphism
onto its image.

Proof. — Let κ2 be an upper bound for the derivative of ρ and notice that
the differential of z 7→ ρε(|z|) is bounded by κ2/ε. Using again that |f(z)−z|
is of the order of ε2 on Aε, we see that we may choose ε (continuously
depending on `,κ and κ2) so that for all z ∈ A:

|DΩs(z)− Id| 6 κ2|f(z)− z|+ ρε(z)|Df(z)− Id| 6 1/2 .

For this value of ε one obtains that DΩs is everywhere invertible for all
s. Since Ωs is the identity in C, it must have degree 1 and therefore is a
diffeomorphism for all s. �

Lemma 1.25. — The pullback metric g4 = Ω∗1g3 is standard around C.

Proof. — The claim amounts to the fact that Ω1 coincides with f on a
neighborhood of C. �

Remark 1.26. — The isotopy Ωs depends smoothly on the metric g3
through the constants ` and κ.

Remark 1.27. — Even if g3 is standard on a neighborhood of C it may
be the case that Ωs is not the identity map for all s (and even Ω1 may
not be the identity). However, in this case, Ωs will be the identity on a
neighborhood of C for all s ∈ [0, 1].
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Lemma 1.28. — If we set for s ∈ [0, 1], A4(s, g3) = (Ωs)∗g3, then we
have that R∗A4(s, g3) = A4(s,R∗g3) for every s ∈ [0, 1].

Proof. — Let f ′, and Ω′s be the objects associated to R∗g3. The definition
of Fermi coordinates implies that R conjugates f and f ′, hence it conjugates
the homotopies Ωs and Ω′s. Finally, the equality R∗A4(s, g3) = A4(s,R∗g3)
has to hold. �

2. Hyperbolic metrics on planar pairs of pants

2.1. Hyperbolic metrics and conformal structures

Planar pairs of pants. A planar pair of pants is an ordered triple of
open Euclidean disks (Dout, Dleft, Dright) such that the closures of Dleft

and Dright are disjoint and are both contained in the interior of Dout. We
sometimes identify a planar pair of pants with the subset of the plane de-
fined by Dout \ (Dleft∪Dright) where the overline denotes closure (however
it is important for us to keep track of which of the interior disks is the
“left” one and which is the “right”).

Lemma 2.1. — Let P and Q be planar pairs of pants and f : P →Q be
a conformal mapping between them. Then f is the restriction of a Möbius
transformation.

Proof. — Let GP be the group generated by inversions with respect to
the boundary components of P and GQ the corresponding group for the
pair of pants Q. If we let KP and KQ be the limit sets of GP and GQ
respectively there is a unique extension f to a map F : Ĉ \KP → Ĉ \KQ

satisfying F ◦ I = I ′ ◦ F for each inversion I with respect to a boundary
component of P , where I ′ is the inversion with respect to the image under
f of this component.

Because F conjugates the actions of GP and GQ it extends continuously
in a unique way to KP yielding a homeomorphism of the Riemann sphere
which is conformal outside of KP .
However, since KP has zero one dimensional Hausdorff measure one ob-

tains that F extends conformally to the entire Riemann sphere by Painlevé’s
theorem (e.g. see [20, Theorem 2.7]). Therefore f : P →Q is the restriction
of a Möbius transformation. �
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Beltrami coefficients. Let H(P ) be the space of smooth hyperbolic
Riemannian metrics on P with the property that all three boundary circles
are geodesics. The space is endowed with the topology of smooth con-
vergence. Using complex notation (i.e. writing dz = 1/2(dx + idy) and
dz̄ = 1/2(dx− idy): see [1]), each such Riemannian metric g can be written
in the form:

ds2 = λ|dz + µdz|2

for a unique pair λ and µ of smooth functions from P to C satisfying λ ∈ R∗+
and |µ| < 1 at all points. The functions λ and µ are smooth functions on
the coefficients of g.
The smooth function µ is called the Beltrami coefficient of the metric

g. We denote the space of smooth Beltrami coefficients (i.e. smooth com-
plex valued functions with modulus strictly less than 1) endowed with the
topology of smooth convergence by B(P ). Each Beltrami coefficient can be
interpreted as a conformal structure on P via the formula ds2 = |dz+µdz|2.
Notice that while B(P ) is convex it is not self-evident that H(P ) is even

arc-connected (how does one interpolate between two hyperbolic metrics
with geodesic boundary while preserving these properties?). The following
theorem allows one to construct continuous paths of hyperbolic metrics
with geodesic boundary components on P by going through B(P ).

Theorem 2.2 (Equivalence of conformal structures and hyperbolic
metrics). — The map g 7→ µ associating to each hyperbolic metric inH(P )
its Beltrami coefficient in B(P ) is a homeomorphism.

Proof. — The result amounts to establishing that there is a unique hy-
perbolic metric with geodesic boundary in the conformal equivalence class
determined by each Beltrami coefficient.

For compact surfaces without boundary the equivalence between Bel-
trami coefficients and conformal equivalence classes of Riemannian metrics
is established for example in [31, Theorem 1.8]. The uniformization theorem
implies that each conformal class of Riemannian metrics contains exactly
one hyperbolic metric (see for example [10]).

For the pair of pants P one way to proceed is to adapt Berger’s PDE
argument (adding a Neumann boundary condition) to establish that there
is exactly one hyperbolic metric with geodesic boundary in each conformal
equivalence class.
Another approach is to extend the Beltrami coefficient smoothly to the

plane and solve the Beltrami equation (see [1]). This maps the given con-
formal structure on P to the Euclidean structure on some domain in C with
smooth boundary. Applying Koebe’s theorem this domain can be mapped
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conformally to a domain whose boundary curves are circles. At this point
one can “double” the surface by using inversions with respect to the three
boundary circles. After this is done the result is reduced to the case of
a compact surface without boundary (the only warning being that if the
given conformal structure possesses a conformal symmetry then that sym-
metry is an isometry for the hyperbolic metric given by the uniformization
theorem). �

A conformal metric on a planar pair of pants P is a smooth Riemannian
metric with Beltrami coefficient equal to 0 (i.e. the metric is conformal to
the Euclidean metric on C). We will need the following corollary of the
theorem above:

Corollary 2.3. — Every planar pair of pants P admits a unique con-
formal hyperbolic metric gP with geodesic boundary.

2.2. Diffeomorphisms between hyperbolic metrics

The Teichmüller space. From now on we let P be the particular planar
pair of pants with Dout = {|z| < 1}, Dleft = {|z+1/2| < 1/4} and Dright =
{|z− 1/2| < 1/4}. We call the boundaries of the three disks, the outer, left
and right boundaries respectively.
The space DiffId(P ) of smooth self-diffeomorphisms of P which are

smoothly isotopic to the identity (endowed with the topology of smooth
convergence) acts continuously on both B(P ) and H(P ) by pushforward
and, in fact, coincides with the space of diffeomorphisms which leave each
boundary component invariant. See [1] for the definition of the action of
diffeomorphisms on Beltrami coefficients. The actions on B(P ) and H(P )
are conjugate by the homeomorphism of Theorem 2.2.
We say that two metrics in H(P ) are equivalent if one is a pushforward

of the other via a diffeomorphism in DiffId(P ). The space of equivalence
classes H(P )/DiffId(P ) is by definition the Teichmüller space T (P ) of the
pair of pants P .

Product structure. Given a metric g ∈ H(P ) let L(g) = (`out(g),
`left(g), `right(g)) be the triple of lengths (with respect to g) of the outer,
left, and right boundaries respectively. Notice that pushing forward g via a
boundary preserving diffeomorphism f does not change the value of L (i.e.
L(f∗g) = L(g)) and hence L is a well defined function on T (P ). In fact L is
a homeomorphism between T (P ) and (R∗+)3 and furthermore we have the
following theorem (see [22, Section 4, Corollaries 1 and 2]):
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Theorem 2.4 (Product structure of the space of hyperbolic metrics).
There exists a homeomorphism ϕ : H(P )→(R∗+)3 × DiffId(P ) satisfying
the following two properties:

(1) For all g ∈ H(P ) and f ∈ DiffId(P ) one has ϕ(f∗g) = (L(g), f ◦ h)
where ϕ(g) = (L(g), h).

(2) The following diagram commutes:

H(P ) (R∗+)3 ×DiffId(P )

T (P ) (R∗+)3

ϕ

π π1

L

The proof of the theorem relies on a continuity theorem for the solution
of the Beltrami equation with respect to the coefficient, which itself is based
on the Ahlfors–Bers theorem [2]. We will need the following consequence
of the above theorem:

Corollary 2.5 (Canonical diffeomorphisms between equivalent met-
rics). — If g, g′ ∈ H(P ) are equivalent then there exists a unique diffeo-
morphism f(g,g′) ∈ DiffId(P ) such that f(g,g′)∗g = g′. Furthermore the
function (g, g′) 7→ f(g,g′) is continuous.

We will use the diffeomorphisms above to construct isotopies from paths
between equivalent metrics in the following way.

Corollary 2.6 (Paths of equivalent metrics yield isotopies). — If t 7→
gt is a continuous path of equivalent metrics then t 7→ f(g0,gt) = ft is the
unique isotopy of the identity with ft∗g0 = gt for all t.

2.3. Boundary admissible hyperbolic metrics

We say that a metric g ∈ H(P ) on the pair of pants P is boundary
admissible (or just admissible) if it is standard around each boundary of P .

Using the Massage procedure described in Section 1.4 near the boundary
of P , it is possible to deform any hyperbolic metric in P with geodesic
boundary to an admissible one.

Theorem 2.7. — There exists a continuous function F : [0, 1]×H(P )→
H(P ) such that

(1) For all g ∈ H(P ) one has that F (0, g) = g, F (1, g) ∈ A(P ), and
F (t, g) is equivalent to g for all t ∈ [0, 1].

(2) If g ∈ A(P ) then F (t, g) ∈ A(P ) for all t ∈ [0, 1].
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(3) It is symmetric: for all g ∈ H(P ), we have R∗F (t, g) = F (t, R∗g).

Proof. — This theorem follows directly from the Massage Lemma (see
Theorem 1.10). Indeed, recall that we set A = {z ∈ C : 0.9 < |z| < 1.1}.
The constants have been chosen in such a way that A and its images by the
affine maps h± : z 7→ z/4± 1/2 (which transform the outer boundary of P
in the other boundary components) of A form three disjoint neighborhoods
of the boundary components of P .
Now since the isotopy constructed in Theorem 1.10 preserves the unit

circle, it also preserves the two semi-annuli A+ = {z ∈ A : |z| > 1}
and A− = {z ∈ A : |z| 6 1}. Hence, we can perform the isotopy in the
semi-annuli around the boundary components, in order to get the desired
function F .
It remains to check that the procedure we described is symmetric. The

metric g yields one hyperbolic metric in A−, and two on A+ that we denote
by gout, gleft and gright (the last two correspond respectively to the pullback
by h− and h+ of g near the left, right leg).
Note that R ◦ h− = h+ ◦R: it comes that the corresponding objects for

R∗g are R∗gout, R∗gright and R∗gleft.
Using the symmetry of the maps A(s, · ) (see Theorem 1.10), we get the

symmetry of the procedure. �

2.4. Admissible and symmetric sections of Teichmüller space

Global sections of Teichmüller space. By a continuous global section
of T (P ) we mean a continuous mapping from (R∗+)3 to H(P ) associating to
each triple one of its preimages with respect to L◦π (where π is the quotient
projection from H(P ) to T (P )). The existence of continuous global sections
follows immediately from Theorem 2.4.

Corollary 2.8 (Continuous global sections). — There exists a contin-
uous global section of T (P ).

Symmetric sections. We will need to improve the above result. Let
R : P →P be the rotation of angle π (i.e. R(z) = −z), we say that a
section ` = (`out, `left, `right) 7→ g` is symmetric if g` = R∗gσ(`) for all `,
where we define σ(`out, `left, `right) = (`out, `right, `left) for all ` ∈ (R∗+)3.
In particular for a symmetric section ` 7→ g` each metric of the form

g(`out,t,t) must have R as a self-isometry.

Theorem 2.9 (Continuous symmetric global section). — There exists
a continuous symmetric global section of T (P ).
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Proof. — Let H(P )R be the subset of H(P ) consisting of metrics for
which R is an isometry, T (P )R be the subset of T (P ) consisting of met-
rics which have an isometry isotopic to R, and DiffId(P )R be the sub-
set of DiffId(P ) consisting of diffeomorphisms which commute with R.
By [22, Theorems 5B, 5C, and 5D] when endowed with the projection
π : H(P )R→T (P )R the space H(P )R is a principal DiffId(P )R fiber bun-
dle.
Any principal bundle over a contractible base is trivial. Hence, it suffices

to show that T (P )R is homeomorphic via L to S = {(`out, `left, `right) ⊂
(R∗+)3 : `left = `right} to conclude that L ◦π : H(P )R 7→ S admits a global
continuous section.
Clearly the image of T (P )R under L is included in the subspace S. To see

that in fact L(T (P )R) = S one must construct for each triple ` = (`out, t, t)
a hyperbolic metric g on P with L(π(g)) = ` and such that R is an isometry
for g. We postpone this until Lemma 2.10.
Given a global section (`out, t, t) 7→ g(`out,t,t) of T (P )R one can use the

homeomorphism of Theorem 2.4 to identify it with a continuous function
from S to DiffId(P ). Any such function can be extended continuously to
the half space {`left > `right} ⊂ (R∗+)3 by composing it with a retrac-
tion (e.g. the orthogonal projection) from the half space to S. After this,
one may extend it continuously to all of (R∗+)3 by symmetry (i.e. defining
g(`out,`left,`right) = R∗g(`out,`right,`left)) thus obtaining a continuous sym-
metric global section. �

Construction of symmetric metrics. We now show how to construct
symmetric metrics on P for each Teichmüller class which might admit one.

Lemma 2.10. — For each ` = (`out, t, t) ∈ (R∗+)3 there exist a metric
g ∈ H(P ) with L(π(g)) = ` and such that R is an isometry for g.

Proof. — Let g ∈ H(P ) be any preimage of ` and let µ be its Beltrami
coefficient. By solving the Beltrami equation ∂z̄f = µ∂zf for any smooth
extension of µ to the entire plane one can map P endowed with the con-
formal structure given by µ conformally onto a planar domain Ω bounded
by smooth curves with the conformal structure coming from C. Koebe’s
theorem implies that Ω can be mapped conformally onto a planar pair of
pants Q.

Hence we have obtained a diffeomorphism f : P →Q which is an isometry
between (P, g) and a planar pair of pants Q. Since, by Corollary 2.3, Q
admits a unique conformal hyperbolic metric with geodesic boundary gQ it
must be the case that f∗g = gQ. Composing with a Möbius transformation
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we can assume that Q is defined by Dout = {|z| < 1}, Dleft = {|z+x| < r1}
and Dright = {|z − x| < r2} for some x ∈ (0, 1) and r1, r2 < 1.
We claim that r1 = r2. Notice that the metric g on P is equivalent to

its pushforward R∗g under the rotation of angle π. Hence (P, g) admits a
self isometry which exchanges the left and right boundaries. This in turn,
implies that there is a conformal self-mapping of Q which exchanges the
left and right boundaries. But by Lemma 2.1 this self-mapping must be a
Möbius transformation of the unit disk and the only way this is possible is
if r1 = r2 and the conformal self mapping is R(z) = −z.
It is possible to construct a boundary preserving diffeomorphism f :

Q→P which commutes with R. To see this notice that it is clearly possible
to define an isotopy on the boundary circle of Q centered at x with radius
r deforming it to the boundary circle of P centered at 1/2 with radius 1/4.
We assume such an isotopy has been chosen so that the image of the initial
circle never leaves the region {(u, v) ∈ R2 : u > min(x−r, 1/4)/2, |u+ iv| 6
(max(x + r, 3/4) + 1)/2}. Using the isotopy extension theorem one can
extend this to an isotopy of the right half plane which is the identity outside
of the previously defined region. This istopy can then be extended to the
left half plane in such a way that the resulting isometry commutes with R.
The endpoint of the isotopy is the required diffeomorphism.
Given any such diffeomorphism the pushforward metric f∗gQ is isomet-

ric to g via a boundary preserving (and hence isotopic to the identity)
diffeomorphism and is R-invariant. �

Admissible and symmetric sections. A section of T (P ) is said to
be admissible if it only takes values in the set A(P ) of admissible metrics.
Using the procedure described in Theorem 2.7, the following result follows:

Theorem 2.11. — There exists a continuous admissible and symmetric
global section of T (P ).

2.5. Homotopy to an admissible and symmetric section

Our final task in this section is to establish the existence of a special sec-
tion of Teichmüller space, which is not only admissible and symmetric, but
comes with a procedure for deforming any given metric on P to an equiv-
alent metric in the section. The deformation procedure respects symmetry
under R and is continuous with respect to the initial metric.
This special section of T (P ) will be useful both for the construction of a

large family of “model hyperbolic metrics” on the Hirsch foliation (which we
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will carry out in the next section), and for deforming any given hyperbolic
metric in the foliation to a model metric (at least in certain special cases).

Theorem 2.12. — There exists a continuous homotopy H : [0, 1] ×
H(P )→H(P ) starting at the identity and satisfying the following proper-
ties:

(1) For all t ∈ [0, 1] and g ∈ H(P ) the metric H(t, g) is equivalent to g.
(2) For all t ∈ [0, 1] and g ∈ H(P ) one has R∗H(t, g) = H(t, R∗g). In

particular if g is invariant under R then so is H(t, g) for all t.
(3) If g is boundary admissible then so is H(t, g) for all t ∈ [0, 1].
(4) If g, g′ ∈ H(P ) are equivalent then H(1, g) = H(1, g′).
(5) The section of Teichmüller space associating to each class its image

under H(1, · ) is continuous admissible and symmetric.

The proof of this theorem consists in three steps. We first construct
symmetric paths of metrics to the unique conformally Euclidean hyper-
bolic metric on P , gP (the ending point of these paths is independent of
the starting point). In particular, such a path does not preserve Teichmüller
classes. Note that giving a continuous path in H(P ) is the same thing as
giving a continuous path in DiffId(P ) × T (P ). Using the previous family
of paths, as well as the symmetric section given by Theorem 2.11, we find
continuous paths of diffeomorphisms, which give paths of equivalent met-
rics. We show that these paths are again symmetric and that the time 1
of the paths induces a symmetric section of the Teichmüller space that we
characterize. Finally, projecting the paths via F provides paths of metrics
preserving admissible metrics while keeping the other properties.

2.5.1. Symmetry

Given a metric g ∈ H(P ) let µ be its corresponding Beltrami coefficient
and define the continuous path h : [0, 1] ×H(P )→H(P ) so that the Bel-
trami coefficient corresponding to h(t, g) is exactly (1− t)µ (this is possible
by Theorem 2.2).
Since R is holomorphic with ∂zR = −1, the Beltrami coefficient associ-

ated toR∗g is µ◦R for every g ∈ H(P ). Hence both the Beltrami coefficients
of R∗h(t, g) and h(t, R∗g) are (1− t)µ ◦ R. Using again Theorem 2.2, this
implies that the two metrics R∗h(t, g) and h(t, R∗g) coincide: the path h is
symmetric.
However boundary admissibility is not preserved by h and neither are

Teichmüller equivalence classes. In fact one has h(1, g) = gP for all g, where
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gP is the unique hyperbolic conformal metric with geodesic boundary on
P given by Corollary 2.3.

2.5.2. Preservation of Teichmüller classes

We will first modify h so that it preserves Teichmüller equivalence classes
(while preserving its symmetry under R).

To do this let ` 7→ g` be a continuous symmetric global section of T (P )
(such an object exists by Theorem 2.11). Recall that the map g 7→ (L(g), f)
is a homeomorphism between H(P ) and (R∗+)3 ×DiffId(P ), where L(g) =
(`out(g), `left(g), `right(g)) and f is the unique element of DiffId(P ) such
that g = f∗gL(g) (see Theorem 2.4).
Given g ∈ H(P ) let gt = h(t, g), `t = L(gt), and ft ∈ DiffId(P ) be the

unique diffeomorphism such that gt = ft∗g`t .
We define h′(t, g) = ft∗g`0 . It is clear that h′(t, g) is equivalent to g for

all t ∈ [0, 1]. We will show that h′(t, R∗g) = R∗h
′(t, g) for all t ∈ [0, 1] as

well.
Notice that L(R∗g) = σ(`t) where σ exchanges the “left” and “right”

lengths of each triple. By definition h′(t, R∗g) = f ′t∗gσ(`0) where f ′t is the
unique diffeomorphism in DiffId(P ) satisfying f ′t∗gσ(`t) = h(t, R∗g).
We claim that f ′t = R ◦ ft ◦R.
Indeed, using the symmetry of the section ` 7→ g` and of h we obtain:

(R ◦ f ′t ◦R)∗g`t
= R∗f

′
t∗gσ(`t) = R∗h(t, R∗g) = h(t, g) .

By uniqueness of ft, we must have ft = R◦f ′t ◦R. Putting all this together
we obtain:

h′(t, R∗g) = (R ◦ ft ◦R)∗gσ(`0) = R∗ft∗g`0 = R∗h
′(t, g) ,

as desired.
Finally, h′(1, g) = f1∗g`(g) where f1 is characterized by f1∗g`(gP ) = gP .

In particular, h′(1, g) depends only on the Teichmüller class of g.

2.5.3. Preservation of admissibility

So far, we have defined a homotopy h′ : [0, 1]×H(P )→H(P ) satisfying
all the desired properties except that h′(t, g) need not be admissible even if
g is, and in particular the section given by h′(1, · ) is not admissible (though
it is symmetric).
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To fix this problem we use the homotopy F : [0, 1]×H(P )→H(P ) given
by Theorem 2.7. Consider the continuous map h′′ : [0, 1] ×H(P )→H(P )
defined by

h′′(t, g) = F (1, h′(t, g)) .

This map provides a path between F (1, g) and F (1, h′(t, g)). The con-
catenation of F and h′′ provides the desired homotopy H : [0, 1]×H(P )→
H(P ).

It follows from the properties of h′ and F that H(t, g) is equivalent to g
for all t ∈ [0, 1].
Remember that F is symmetric: for every (t, g) ∈ [0, 1] × H(P ), we

have R∗F (t, g) = F (t, R∗g). Hence since h′ is symmetric, we get that h′′
is symmetric as well. Finally, we obtain R∗H(t, g) = H(t, R∗g) for every
(t, g) ∈ [0, 1]×H(P )
The fact that if g is admissible then H(t, g) is too for all t ∈ [0, 1] follows

from Property (2) of F in the statement of Theorem 2.7.
We had previously verified that h′(1, g) depended only on the Teichmüller

class of g (equivalently only on L(g)): this property is again satisfied by H.
The fact that the section of Teichmüller space given byH(1, · ) is admissi-

ble follows from the properties of F , and symmetry is because R∗H(1, g) =
H(1, R∗g) for all g. This concludes the proof.

3. Model hyperbolic metrics on the Hirsch foliation

3.1. Construction of model metrics

We will now use the notation given in Section 1.1 which for the reader’s
convenience we recall briefly. The Hirsch foliation was constructed by tak-
ing an explicit endomorphism f : S1 × C→S1 × C which had a solenoid
attractor inside a solid torus T = S1 × D and considering the quotient
manifold M = (T \ f(T))/f . The Hirsch foliation is the projection of the
foliation on S1 × C by sets of the form {eit} × C and the leaves contains
a family of pair of pants defined by Pt = T \ f(T)

⋂
{eit} × C. One has

Pt = Pt+2π and one can identify each Pt with the standard pair of pants
P by projection onto C followed by the rotation z 7→ e−it/2z. However, it
is important to note that the identification one obtains for Pt and Pt+2π
differ by a rotation R of angle π.
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Metrics in a fundamental domain. Given a continuous length func-
tion λ : S1→R∗+ and a continuous twist function τ : S1→R we will con-
struct a hyperbolic metric on the Hirsch foliation. For this purpose we fix
for what remains of the article, a homotopy H : [0, 1] × H(P )→H(P )
and a continous symmetric admissible section ` 7→ g` of T (P ) given by
Theorem 2.12.
Using the identification of each Pt with the standard pair of pants P ,

we consider the metric Pt coming from the global section ` 7→ g` such that
the outer boundary (the one corresponding to S1 under the identification
with P ) has length λ(eit) and the other two have lengths λ(eit/2) and
λ(ei(t+2π)/2) according to whether their preimages under f belong to Pt/2
or P(t+2π)/2. Let gt be the thus chosen metric on Pt. Notice that because
the section we have chosen is symmetric one has gt = gt+2π so the metric
is defined unambiguously.

Extension with a twist function. We now use the continuous twist
function τ : S1→R. Consider the twisted solenoid fτ : S1 × C→S1 × C
defined by:

(3.1) fτ (eit, z) =
(
ei2t,

1
2e

it + eiτ(eit)

4 z

)
.

Because the metric gt is admissible, its pushforward under fτ (which is
defined on a subset of {ei2t}×C contained in one of the “holes” of the pair
of pants P2t) coincides with g2t where both are defined. Furthermore, both
metrics are standard around the circle where they intersect and therefore
glue together smoothly. Hence one may extend the family gt to a unique
maximal fτ -invariant family of metrics on (S1×C)\Kτ whereKτ is defined
analogously to K replacing f by fτ .
The map fτ depends on the twist parameter τ only up to multiples

of 2π. However we will choose a conjugating homeomorphism hτ which
depends on the actual values of τ . The homeomorphism hτ is defined as
the homeomorphism satisfying the following properties:

(1) The map is of the form hτ (eit, z) = (eit, hτ,t(z)).
(2) For each t the map hτ,t coincides with z 7→ e−iρ(|z|)τ(eit)z on the

pair of pants Pt, where ρ is the bump function of Section 1.4.3.
(3) One has f ◦ hτ = hτ ◦ fτ on all of S1 × C.
Pushing forward the metrics gs using hτ one obtains an f invariant family

of metrics on (S1 × C) \ K and hence a hyperbolic metric on the Hirsch
foliation gλ,τ .
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Remark 3.1. — Let us emphasize that one should be careful with the in-
terpretation of the twist function. When we glue pairs of pants via Smale’s
solenoid, there is naturally a twist in such a way that if t > t′ are close,
Pt and Pt′ are respectively glued to P2t and P2t′ with twist parameters
whose ratio is ei(t−t′). This twist can’t be undone for a topological reason:
the quotient manifold M is not Seifert. Hence our function τ has to be
seen as an additional twist by that imposed by the dynamics of the foli-
ation. Hence, even if we put a null twist function with a constant length
function, the leaves won’t be pairwise isometric (they are not even pairwise
diffeomorphic).

3.2. Non-equivalence of model metrics

We now show that the construction we have given yields infinitely many
non-equivalent hyperbolic metrics. The principal difficulty is of course to
prove that two metrics corresponding to the same length functions, and
to twist functions which differ from a multiple of 2π are not equivalent.
Here this is more difficult than in the compact case where in order to prove
that a Dehn twist is not isotopic to the identity, one chooses a transverse
curve to that around which one perform the Dehn twist. Then one uses
homology theory to show that the action of the Dehn twist on this curve is
non-trivial. In the case of noncompact leaves, where we don’t have a priori
a transverse closed geodesic, this argument does not work: here the idea is
to use the action of the twisting on those leaves with non-trivial holonomy,
in order to reduce the problem in a compact region.

Theorem 3.2. — If gλ,τ belongs to the same Teichmüller equivalence
class as gλ′,τ ′ then λ = λ′ and τ = τ ′.

Proof. — Let gt and g′t be the family of metrics on the sets Ct = ({eit}×
C) \K obtained by lifting gλ,τ and gλ′,τ ′ to (S1 × C) \K.

Suppose there is a leaf preserving isotopy of the identity taking gλ,τ to
gλ′,τ ′ . Then lifting it one obtains an isotopy of the identity F : [0, 1] ×
(S1 × C) \ K→(S1 × C) \ K which preserves each Ct and such that F1
sends gt to g′t.

Since the outer boundary Ct of the pair of pants Pt is the unique closed
geodesic in its isotopy class on its leaf for both gt and g′t, one must have
F1(Ct) = Ct. This implies that the length of Ct is the same for both gt and
g′t and since this is valid for all t one obtains λ = λ′.
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To show that τ = τ ′ we first observe that any hyperbolic pair of pants
with geodesic boundary components can be split in a unique way into two
congruent hyperbolic right-angled hexagons. This gives us a canonically de-
fined pair of points which split each geodesic boundary comoponent in two.
If gλ,τ and gλ,τ ′ are equivalent then the angle between the thus obtained
pairs of points on the boundaries of two neighboring pairs of pants in the
foliation must coincide for both metrics. This yields that there must exist
an integer n such that τ(eit)− τ ′(eit) = 2πn for all t.
To conclude the proof we will show that n = 0. To see this consider the

leaf containing the pair of pants P1 = {1} × P .
Notice that P1 projects to a torus minus a disk S in the foliation and

that both metrics coincide on S. Since fτ = fτ+2πn = fτ ′ one obtains
that the map h = h−1

τ ′ ◦ hτ commutes with f and hence projects to a leaf
preserving homeomorphism H of the Hirsch foliation. If τ 6= τ ′ then H is a
Dehn twist of angle 2πn around a meridian of S. On the other hand H is
an isometry between the hyperbolic metrics gλ,τ and gλ,τ ′ on S. Because
both metrics coincide one has that H is an self-isometry of S endowed with
either one of them and hence, since S is compact, H has finite order. But it
is impossible if n 6= 0: the action of H on a closed geodesic in S transverse
to the meridian has infinite order. This shows that n = 0 as claimed. �

4. Deforming hyperbolic metrics to model metrics

In this section we will prove that any hyperbolic metric on the Hirsch
foliation can be deformed via an isotopy of the identity (which preserves
and is smooth on each leaf) to one of the model metrics constructed in the
previous section.

The proof will be carried out in two cases. First, we show how to deform
metrics for which the meridians (i.e. the outer boundaries of the pairs of
pants Pt) are already geodesics. Second we show how to deform a general
hyperbolic metric to one with geodesic meridians.

4.1. Metrics with geodesic meridians

Let gλ,τ be the family of metrics depending on two continuous functions
from S1 to R∗+ and R respectively, constructed in the previous section.
Recall that the meridians of the Hirsch foliation are the projections of the
curves {eit} × S1 ⊂ S1 × C. Notice that for the metrics gλ,τ all meridians
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are geodesics. In this subsection we will consider only metrics for which
this is the case, proving the following:

Proposition 4.1. — Let g be a hyperbolic metric on the Hirsch folia-
tion for which all meridians are geodesics. Then g is equivalent to gλ,τ for
a unique choice of λ : S1→R∗+ and τ : S1→R.

Proof. — The uniqueness claim follows immediately from Theorem 3.2.

Making the metrics admissible near the meridians. — Let gt be the
lift of the given hyperbolic metric to {eit} × C. By hypothesis the circle
{eit} × S1 is a geodesic for gt. We will first show that g can be deformed
to a metric whose lift is standard around each of these geodesics.
For this purpose we identify each annulus At = {eit}× {0.9 < |z| < 1.1}

with A = {0.9 < |z| < 1.1} by projection. Using this identification, the
Massage Lemma (i.e. Lemma 1.10) yields a continuous family of isotopies
supported in each At and which deform each metric gt to a standard metric
around the unit circle. Since each annulus At projects to the Hirsch foli-
ation diffeomorphically this yields a well defined, leaf-preserving, isotopy
of the identity on the Hirsch foliation. After applying this isotopy one ob-
tains a metric on the Hirsch foliation whose lift is standard around each
meridian circle {eit} × S1. Notice that (since the family of metrics gt is f -
invariant) this implies that one may assume from now on that each metric
gt is admissible on the pair of pants Pt.

Deformation in a fundamental domain. — Assuming that each metric
gt is admissible on Pt we will now show how to deform g to a model metric.
There is only one possible definition of the parameter λ(eit) for the model
metric, namely the length of the outer boundary of Pt for the metric gt.

To identify the twist parameter we first recall that each pair of pants
Pt is identified with the standard pair of pants P via projection onto the
second coordinate composed with the rotation z 7→ e−itz. And recall, once
again, that Pt = Pt+2π but the identifications with P differ by a rotation
R of angle π.
Consider the homotopy H : [0, 1]×H(P )→H(P ) given by Theorem 2.12

which was also used to construct the model metrics in the previous section.
Because of the symmetry property of H the continuous curve of metrics
s 7→ H(s, gt), s ∈ [0, 1] is well defined on Pt.

Looking for the twist function. — Let fs,t : Pt→Pt be the unique
diffeomorphism isotopic to the identity such that fs,t∗gt = H(s, gt) (see
Corollary 2.6). This family of diffeomorphisms on Pt cannot in general be
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extended f -invariantly and hence do not define a leaf-preserving isotopy of
the Hirsch foliation.

However, notice that since both gt and H(s, gt) are boundary admis-
sible, fs,t coincides with a Euclidean rotation on a neighborhood of each
boundary component of Pt.
Let τs(eit) be the difference between the angle of rotation of the outer

boundary of Pt under fs,t and that of its image under fs,2t (there is a unique
continuous way to choose τs starting with τ0 = 0). For each s ∈ [0, 1] the
family of diffeomorphisms fs,t can be extended continuously and uniquely
in a fτs -invariant manner, where fτs is the twisted solenoid map as defined
for the construction of model metrics given in Section 3.1. This implies
that the diffeomorphisms defined on each Pt by hτs ◦ fs,t (where hτs is
the homeomorphism which conjugates f and fτs

used for the construction
of model metrics in Section 3.1) can be extended to a diffeomorphism of
(S1×C)\K in a unique f -invariant manner. This defines a leaf preserving
isotopy of the identity on the Hirsch foliation.
To conclude, notice that the metric obtained by pushing gt forward by the

time 1 of the isotopy we just defined is defined on Pt has hτ1(eit)∗fs,t∗gt =
hτ1(eit)∗H(1, gt). Hence it coincides with the model metric gλ,τ for τ = τ1
and λ(eit) defined above. This concludes the proof. �

4.2. Deforming general hyperbolic metrics

The goal here is to prove the following proposition:

Proposition 4.2. — Let g′ be a hyperbolic metric for the Hirsch fo-
liation. Then there is an isotopy of the identity on the Hirsch foliation
H : M × [0, 1]→M such that the meridians are geodesics of g = H∗g

′.

Recall that the manifold M is obtained by gluing via Smale’s solenoid f
the boundary components of the fundamental domain M0 = T \ f(T). As
we have already seen, this gluing operation determines a torus in M that
we will denote T through this section, which intersects the leaves according
to the meridians. Note that the exceptional fiber of M0 provides a circle
S transverse to every leaf and enables us to parametrize the torus by the
meridians, i.e. to write:

T =
⋃
s∈S

γs ,

where the γs are the meridians of F . For this reason, we call T the meridian
torus of F . We recall that inside the manifold M , it is canonical in the
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sense that it is the unique incompressible torus up to isotopy. However,
constructing an isotopy from another incompressible torus to T which is
leaf preserving is much more delicate. We propose to show below how to
treat this difficulty.

4.2.1. The geodesic torus

Until the end of the paper, we fix a hyperbolic metric g′ for the Hirsch
foliation (M,F).

Tubular neighborhoods. Fixing a smooth vector field X transverse to
F identifies the normal bundle TM/TF with the subbundle NF generated
by X. The projection along the flow lines of X provides a smooth sub-
mersion Π of a tubular neighborhood of uniform size δ of the zero section,
denoted by NFδ .
By shrinking the size of the neighborhood, we may assume that Π induces

a local diffeomorphism on the restriction of the normal bundle to any leaf L
of F . Hence F̂ = Π−1(F) is a smooth local foliation of NFδ which induces
F in the zero section.

Reeb’s stability and geodesic torus. Let o ∈ S. The surface (Lo, g′Lo
)

is hyperbolic and does not have any cusp: as a consequence there exists a
unique geodesic γ′o in the free homotopy class of γo.
Consider now a small collar neighborhood U ⊂Lo of γ′o. The foliation F̂

induces a foliation of the tubular neighborhood NFδ (U). The generator of
π1(U) is without holonomy since it is freely homotopic to a meridian. Hence,
the Reeb stability theorem states that in a small tubular neighborhood NU
of U , the foliation F induces a trivial foliation.
Parametrize the foliation of NU by coordinates A × (−1, 1), where A is

an annulus and U is sent on to A × {0}: the metric g induces a family
of hyperbolic metrics on the A × {s} which varies continuously with s. In
A × {0}, we have a copy of γ′o which is a geodesic, denoted by c0. Since
the geodesic in a given free homotopy class varies continuously with the
hyperbolic metric (this is due to the persistence of periodic orbits of the
geodesic flow on a hyperbolic surface, which are normally hyperbolic), there
exists a small δ′ such that for all s ∈ [−δ′, δ′], there is a unique geodesic cs of
A×{s} in the non-trivial free homotopy class and that s 7→ cs is continuous
in the smooth topology. This gives sense to the following property:

Lemma 4.3. — The map s 7→ γ′s is continuous in the C∞-topology. In
particular, T ′ =

⋃
s∈S γ

′
s forms a topological torus called the geodesic torus.
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Our goal is to show that this geodesic torus can be leaf-isotoped to
the meridian torus. By a foliated version of the theorem of extension of
isotopies, it will be possible to construct the isotopy of the Hirsch foliation
(M,F) that we look for.

Proposition 4.4. — Let g′ be a hyperbolic metric on the Hirsch fo-
liation. Let T ′ be the associated geodesic torus. Then there exists a leaf
isotopy (φt)t∈[0,1] from T ′ to the meridian torus T .

Baer’s work [9] implies that two freely homotopic curves on a surface
are always isotopic ( see also Epstein [23]). However, this theorem will be
of little help for our purpose, since we want to isotope curves all together,
in a continuous way, without creating self-intersection of the torus. Our
approach will be to use the properties of the curve shortening flow in order
to construct the desired isotopy.

Dealing with close tori. It will be convenient in what follows to con-
sider on (M,F) the metric g1,0 associated to a length function (resp. twist
function) which is identically 1 (resp. 0). Remark in particular that for such
a metric, all the meridians are geodesics. We first show that the conclusion
of Proposition 4.4 holds when the two tori are very close.

Lemma 4.5. — There exists ε > 0 such that if for every s ∈ S, γs and
γ′s are ε-close in the C1-topology, then the conclusion of Proposition 4.4
holds.

Proof. — Consider the annulus A = S1× (−1, 1) endowed, say, with the
usual Euclidean metric. Then there exists ε0 > 0 such that every curve γ
which is ε0 close to S1×{0} in the C1 topology can be written as the graph
of a function f : S1→(−1, 1). This is just because if ε0 is small enough,
any such curve has to remain uniformly transverse to the normal direction.
Now, consider the “collar neighborhood” N of the meridian torus: that

is to say the union of the collar neighborhoods of the meridians (see Sec-
tion 1.4.7). By compactness of S and continuity of the collar function, there
exists an embedding σ of A×S whose image is preciselyN , and which sends
every slice A×{s} on the collar neighborhood of γs with a uniform Lipschitz
constant. Of course, we ask that for every s ∈ S, σ( · , 0, s) = γs.
The above shows that there exists a uniform ε > 0 such that any

curve ε-close to γs can be parametrized as γ(p) = σ(p, f(p), s), where
f : S1→(−1, 1) is a smooth function.
Now assume that the geodesic torus T ′ is ε-close to the meridian torus

T in the sense that for every s ∈ S, the curve γ′s is ε-close to the meridian
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γs in the C1-topology. Then there is smooth function f : S1 × S→(−1, 1)
such that for every s ∈ S, γ′s is parametrized as σ(p, f(p, s), s).
Now the map (p, s, t) ∈ S1 × S × [0, 1] 7→ σ(p, (1 − t)f(s, p), s) provides

the desired isotopy. �

4.2.2. The curve shortening flow

Definition. In order to isotope the geodesic torus on the meridian torus,
it will be convenient to let the geodesics of g′ evolve along curve shortening
flow.
More precisely, we are interested in the following problem. Let L be

one of the leaf of F endowed with the metric induced by g0,1. Consider a
smooth family of immersions of the circle C( · , t) : S1→L which solves the
following system of PDE:

(4.1)
{
∂tC(p, t) = k(p, t)N(p, t)
C( · , 0) = γ′o

where k(p, t) is the curvature of C(p, t) and N(p, t) the unit normal vector.

Properties. We will use the following result, which is a general theorem
about the short-time existence and uniqueness of solutions of the curve
shortening problem. Let us emphasize the fact that continuity with respect
to the parameters (in particular with respect to the initial curve and the
metric) is fundamental in our proof. At the end of this section, we will dis-
cuss in details how to get the following theorem from the classical existence
theorems (see [7, 8] and also [33]).

Theorem 4.6. — Let (L, g) be a Riemannian surface, and γ′o : S1→L

be a smooth immersion. Then there exists a unique smooth solution to
Problem (4.1) in some positive time interval.
Moreover the solution C depends continuously on the initial immersion

as well as on the metric g.

Let us come back to our situation where L is a leaf of the Hirsch foliation
endowed with the metric induced by g0,1. As a Riemannian surface, the leaf
is convex at infinity in the sense of Grayson [26]: we can apply its results
to the curves γ′s.

Theorem 4.7 (Grayson). — Let L be a leaf of the Hirsch foliation en-
dowed with the metric induced by g0,1. Let γ′o be a smooth simple closed
curve which is freely homotopic to a meridian γo. Then:
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(1) the solution of Problem (4.1) exists for every t ∈ [0,∞);
(2) the curves C(t) = C(S1, t) stay embedded and converge to C(∞) =

γo in the smooth topology;
(3) if γ′s is disjoint from γ′o and freely homotopic to another meridian

γs, then C ′(t) and C(t) stay disjoint for all time, where C ′ is the
solution of (4.1) with C ′(0) = γ′s.

Combining these two results, i.e. the existence of solutions of the curva-
ture shortening flow for all times, and the local continuity with respect to
the parameters, we obtain the following consequence.

Proposition 4.8. — Let L be a leaf of the Hirsch foliation endowed
with the metric induced by g0,1. Let γ′o be a smooth simple closed curve
which is freely homotopic to a meridian γo. Let C be the solution of Prob-
lem (4.1).
Then for every τ > 0, the function p ∈ S1 7→ C(p, τ) varies continuously

in the C∞-topology with respect to the metric and to the initial curve γ′o.

Leaf isotopy of the geodesic torus. We are now going to use the
curve shortening flow in order to get the desired leaf isotopy of the two
tori.

Lemma 4.9. — Let T ′ be the geodesic torus associated to some hyper-
bolic metric g′ on the Hirsch foliation (M,F).
Endow (M,F) with the model metric g0,1. Let ε > 0 be the number

given by Lemma 4.5. Denote, for every s ∈ S, by Cs the solution of (4.1)
with Cs( · , 0) = γ′s. Then:

(1) there exists a time τ > 0 such that for every s ∈ S, Cs( · , τ) is
ε-close to γs in the C1-topology;

(2) the function (p, s, t) ∈ S1×S×[0, τ ] ' T ′×[0, τ ] 7→ Cs(p, t) provides
a leaf isotopy between T ′ and some torus T τ .

Before we give the proof of this lemma, let us note that, together with
Lemma 4.5, it implies Proposition 4.4. One just has to let run the curve
shortening flow until all curves γ′s become ε-close to the corresponding
meridian γs in the C1-topology, and then we isotope the resulting torus on
T thanks to the isotopy provided by Lemma 4.5.

Proof of Lemma 4.9. Consider the geodesic torus T ′ =
⋃
s∈S γ

′
s associ-

ated to the hyperbolic metric g′, and consider for every s ∈ S, the solution
Cs( · , t) of Problem (4.1) with C( · , 0) = γ′s. We have fixed a smooth vector
field X transverse to F .
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Note first that by Grayson’s theorem, all Cs( · , t), s ∈ S, t > 0, are
disjoint embeddings of S1. We want to prove the continuity of these em-
beddings with the transverse parameter.
For s ∈ S, consider the setK0

s =
⋃
t∈[0,∞)Cs(t)⊂Ls. Its ε1-neighborhood

Ks is a cylinder if ε1 is small enough. Note in particular that γ′s and γs
have images included in Ks.
Using once again the Reeb stability theorem in a sufficiently small tubu-

lar neighborhood provides a neighborhood of Ko of the form N =
⋃
s∈I Ks,

where I ⊂S is a small neighborhood of o and Ks⊂Ls is a cylinder whose
fundamental group is generated by the meridian γ′s.

Shrinking I if necessary, we can assume that the projection under the
flow lines of X induces a smooth map

πs,s′ : K0
s →Ks′

which is a diffeomorphism on its image.
Given s ∈ I, consider on πs,o(K0

s )⊂Ko the metric (πs,o)∗gLs . When
s converges to o in I, the metric converges to gLo

: this is another way
to express the continuity of the metric of the leaves with respect to the
transverse parameter. We also have, by Lemma 4.3, that πs,o(γ′s) converges
to γ′o in the C∞-topology.
Remark that the family of curves πs,o(Cs( · , t))⊂Lo are solution of the

curve shortening problem for the metric (πs,o)∗gL0 , with initial condition
πs,o(Cs( · , t)).

We can now use Lemma 4.6: the solution at time τ of the curve shortening
problems is continuous with respect to the initial curve, as well as with
the metric. This gives sense to the following sentence: “the time t of the
curve shortening problem with initial condition γs varies continuously with
respect to the transverse parameter s”. In particular, for every τ > 0, the
function (p, s, t) ∈ S1 × S × [0, τ ] ' T × [0, τ ] 7→ Cs(p, t) provides a leaf
isotopy between T ′ and some torus T τ .
Using the compactness of S, as well as item 2 of Grayson’s theorem 4.7,

we immediately get that for some uniform τ > 0, all embeddings Cs( · , τ)
are ε-close to the corresponding meridian γs in the C1-topology, concluding
the proof of Lemma 4.9 and, thus, that of Proposition 4.4.

4.2.3. Foliated isotopy extension

To conclude the proof of Proposition 4.2 it is enough to show how to
extend the leaf isotopy φt from T ′ to T to a leaf isotopy of (M,F). Denote
T t = φt(T ′) for t ∈ [0, 1] and γts = φt(γ′s), for s ∈ S.
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Lemma 4.10. — There exists a leaf isotopy Φt of the Hirsch foliation
(M,F) which coincides with φt on T .

Proof. — It is the same thing to ask for a leaf isotopy, or a continuous
vector field X = (H, 1) on M × [0, 1] such that:

(1) H is tangent to F (we call this vector field the horizontal part ofX);
(2) H is smooth in the leaves of F ;
(3) H varies continuously in the C∞-topology with the transverse pa-

rameter.
The isotopy φs allows us to construct such a vector field X̄ in T =⋃
t∈[0,1] T

t × {t}. An argument of compactness, provides a number ε > 0
such that for every t ∈ [0, 1] if γts and γts′ belong to the same leaf, they are
distant of at least ε.
For s ∈ S, t ∈ [0, 1], denote by νts the ε-neighborhood of γts in the

corresponding leaf. The union N of the νts × {t} is a neighborhood of T
inside M × [0, 1].
Use a bump function in order to extend X̄ to a vector field X = (H, 1)

with support in N with a horizontal part which satisfies the desired prop-
erty. �

4.2.4. Continuity of the solutions of the curve shortening flow with
respect to the initial data

The first step in proving Therorem 4.6 is to note that there is a geo-
metric invariance of the solutions of the curve shortening problem under
tangential reparametrization. This essentially means that any family of im-
mersions of the circle satisfying 〈∂tC(p, t)|N(p, t)〉g = k(p, t) can be globally
reparametrized to a solution of (4.1) without changing γ′o: see for example
Proposition 1.3.4 and Corollary 1.3.5 of [33].
Using the exponential map, for example, it is possible to extend the

immersion γ′o : S1→L to a smooth immersion of the cylinder σ : S1 ×
(−1, 1)→L, such that σ|{0}×S1 = γ′o. Then, any immersion C : S1→L

close enough to γ′o can be parametrized as C(p) = σ(p, u(p)), where u :
S1→(−1, 1) is a smooth function.
Hence, proving the existence of local solutions for the curve shortening

problem reduces to looking for smooth functions u : S1 × [0, T ]→(−1, 1)
which satisfy:

(4.2)
{
〈∂tσ(p, u(p, t))|N(p, t)〉g = k(p, t)
u(0, · ) = 0 .
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The next step in proving the existence theorem, is to note that Prob-
lem (4.2) reduces to a quasilinear equation on the function u which is of
the form:

(4.3)
{
∂tu = F (p, u, ∂pu, ∂2

pu) = α(p, u, ∂pu)∂2
pu+ β(p, u, ∂pu)

u(0, · ) = 0 ,

where α, β are smooth functions and α > 0, i.e.

∂ξF (p, u, ζ, ξ) > 0 .

We refer to Section 3 of [8] for the derivation of this equation (the same
computation is also performed in Section 1.5 of [33]). One checks that F
depends only on the 2-jet of g, and that it varies continuously with g in
the C∞-topology.

Now the approach of [7] shows the uniquness, the existence, and which is
of interest for our purpose, the continuous dependence on the parameters.

Let us sketch Angenent’s approach. Consider the Hölder spaces E0 =
hα(S1) and E1 = h2+α(S1) where hβ(S1) is defined as the completion of
C∞(S1) for the usual Hölder norm of exponent β. They are Banach spaces.

Considering the open set O1⊂E1 formed by the functions u ∈ E1 of
modulus < 1, we have a quasilinear operator

F : u ∈ O1 7→ F (p, u, ∂pu, ∂2
pu) ∈ E0 .

Problem (4.3) is then equivalent to the problem ∂tu = F(u), u(0) = 0,
which is precisely the one studied in [7]. It is proven that the Fréchet
derivative DF(u) : E1→E0 satisfies the hypothesis of Theorem 2.7 of [7],
which relies on a fixed point argument in order to prove the existence
and uniqueness of the equation (inside E1) in some positive interval time.
Theorem 2.8 of [7] then appeals to the implicit function theorem in order
to prove the continuity with respect to the parameters.
Finally, Angenent shows in ([8, p. 460]) how this construction immediatly

implies the smoothing effect of the equation. This shows that the local
solution of the quasilinear problem F (4.3) is, as u, of class C∞, and that the
variation with the initial conditions is continuous in the smooth topology.
This ends the proof of Theorem 4.6.
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5. Contractibility of the space of foliation diffeomorphisms

In the preceding sections we have completed the proof of Theorem A,
establishing that the Teichmüller space of the Hirsch foliation is homeo-
morphic to the space of continuous closed curves on the plane. Notice that
in particular the Teichmüller space is contractible.

5.1. Product structure of the space of hyperbolic metrics: proof
of Theorem B

We will now prove Theorem B which states that projection onto Teich-
müller space gives the space of hyperbolic metrics on the Hirsch foliation the
structure of a trivial DiffId(M,F) principal bundle. In particular H(M,F)
is homeomorphic to the product DiffId(M,F)× T (M,F).
Proof of Theorem B. — We have already constructed a global continu-

ous section (i.e. the model metrics of Section 3) of the projection from the
space of hyperbolic metrics H(M,F) to the Teichmüller space T (M,F).
Hence, all that remains is to show that the action of the space of diffeo-
morphisms DiffId(M,F) is free and that the bundle is trivial.

To establish the first point (that the action is free) consider a diffeomor-
phism f ∈ DiffId(M,F) fixing a hyperbolic metric g on the foliation. We
will show that f must be the identity map.
To see this notice that, by definition, there is a leaf preserving isotopy

F : [0, 1]×M→M with F0 equal to the identity and F1 = f . Pick any leaf
L in the foliation and consider a locally isometric cover π : D→L from the
Poincaré disk (with the usual hyperbolic metric 4/(1 − |z|2)2|dz|2). One
may lift the isotopy F (restricted to L) to the disk via π obtaining an
isotopy ϕ : [0, 1]× D→D starting at the identity. Since M is compact one
obtains that the hyperbolic distance between ϕ0(z) and ϕ1(z) is uniformly
bounded. This implies that ϕ1 extends continuously to the boundary of D
as the identity. However ϕ1 is a lift of f restricted to L and hence is an
isometry of the Poincaré metric on D. This implies that f is the identity on
the leaf L and, by the same argument, on all leaves of the Hirsch foliation.
This concludes the proof that the projection from H(M,F) to T (M,F)

gives the former the structure of a DiffId(M,F) principal fiber bundle.
Since the base of the fiber bundle T (M,F) is contractible one con-

cludes that the bundle is trivial and in particular that the space of metrics
H(M,F) is homeomorphic to the product T (M,F)×DiffId(M,F). �
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5.2. Contractibility : proof of Theorem C

To conclude, we will show that the space of hyperbolic metrics is con-
tractible which implies (combined with Theorems A and B) that the iden-
tity component of the space of leaf preserving diffeomorphisms of the Hirsch
foliation must be contractible as well, i.e. Theorem C.

Proof of Theorem C. — In view of Theorems A and B it suffices to
show that H(M,F) is contractible to conclude that DiffId(M,F) must be
as well.
To see this fix a reference hyperbolic metric g on the Hirsch foliation and

an orientation (constant in any local foliated chart) for each leaf. Following
Sullivan (see [39, Section 5]) we consider the unit tangent bundle T of
the foliation with respect to g and the function π : T × D→M such that
for each v ∈ T the map πv is the unique locally isometric orientation
preserving cover from D (with the Poincaré metric) to the leaf containing
v which sends the unit tangent vector at 0 pointing towards the positive
real axis to v.
Hence T has been identified with the space of locally isometric orienta-

tion preserving covers from D into (M,F). As noted by Sullivan, under this
identification, there is a natural action of the group Isom+(D) of orienta-
tion preserving isometries of D on T × D where the action of an isometry
γ on a pair (v, z) is defined as (v′, γ(z)) where v′ satisfies πv′ = πv ◦ γ−1.
Given any hyperbolic metric g′ on the Hirsch foliation and a vector v ∈ T

one may lift g′ to D using the map πv to obtain a hyperbolic metric whose
Beltrami coefficient we denote by µv. This family of coefficients is invariant
under the action of Isom+(D) on T × D.

We define a path of hyperbolic metrics gt : t ∈ [0, 1] from g to g′ by
letting gt be the unique hyperbolic metric on the foliation whose family
of Beltrami coefficients on T × D (defined as in the previous paragraph)
is tµv.
To see that for each t the Beltrami coefficients tµv really come from a

conformal structure on the Hirsch foliation, notice that the pullback f∗µ
of a Beltrami coefficient µ under a conformal map f satisfies f∗µ(z) =
f ′(z)µ(f(z))/f ′(z), and equality is preserved if one multiplies both sides
by a factor t.
The fact that the metric gt exists for each t is a consequence of Candel’s

work (in particular [16, Corollary 4.2]). The fact that it varies continu-
ously with respect to t and the initial metric g′ follows from the continuity
of the solutions of the Beltrami equation with respect to the coefficient
(see [2]). �
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