
AN

N
A
L
E
S
D
E

L’INSTI
T

U
T
F
O
U
R

IE
R

ANNALES
DE

L’INSTITUT FOURIER

Piotr POKORA, Xavier ROULLEAU & Tomasz SZEMBERG

Bounded negativity, Harbourne constants and transversal arrangements of
curves
Tome 67, no 6 (2017), p. 2719-2735.

<http://aif.cedram.org/item?id=AIF_2017__67_6_2719_0>

© Association des Annales de l’institut Fourier, 2017,
Certains droits réservés.

Cet article est mis à disposition selon les termes de la licence
CREATIVE COMMONS ATTRIBUTION – PAS DE MODIFICATION 3.0 FRANCE.
http://creativecommons.org/licenses/by-nd/3.0/fr/

L’accès aux articles de la revue « Annales de l’institut Fourier »
(http://aif.cedram.org/), implique l’accord avec les conditions générales
d’utilisation (http://aif.cedram.org/legal/).

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://aif.cedram.org/item?id=AIF_2017__67_6_2719_0
http://creativecommons.org/licenses/by-nd/3.0/fr/
http://aif.cedram.org/
http://aif.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/


Ann. Inst. Fourier, Grenoble
67, 6 (2017) 2719-2735

BOUNDED NEGATIVITY, HARBOURNE CONSTANTS
AND TRANSVERSAL ARRANGEMENTS OF CURVES

by Piotr POKORA,
Xavier ROULLEAU & Tomasz SZEMBERG (*)

Abstract. — The Bounded Negativity Conjecture predicts that for every
complex projective surface X there exists a number b(X) such that C2 > −b(X)
holds for all reduced curves C ⊂ X. For birational surfaces f : Y → X there have
been introduced certain invariants (Harbourne constants) relating to the effect the
numbers b(X), b(Y ) and the complexity of the map f . These invariants have been
studied when f is the blowup of all singular points of an arrangement of lines in
P2, of conics and of cubics. In the present note we extend these considerations
to blowups of P2 at singular points of arrangements of curves of arbitrary degree
d. The main result in this direction is stated in Theorem B. We also consider-
ably generalize and modify the approach witnessed so far and study transversal
arrangements of sufficiently positive curves on arbitrary surfaces with the non-
negative Kodaira dimension. The main result obtained in this general setting is
presented in Theorem A.
Résumé. — La conjecture de la négativité bornée prédit que pour toute surface

complexe projective X, il existe un nombre b(X) tel que l’inégalité C2 > −b(X) ait
lieu pour toute courbe réduite C ⊂ X. Pour un morphisme birationnel f : Y → X,
certains invariants (les constantes de Harbourne) ont été introduits afin de relier
les nombres b(X) et b(Y ) à la complexité de f . Ces invariants ont été étudiés
quand f est l’éclatement en tous les points singuliers d’un arrangement de droites,
de coniques et de cubiques. Dans cette note, nous étendons ces considérations
aux éclatements de P2 aux points singuliers d’arrangements de courbes de degré
arbitraire d. Le résultat principal dans cette direction est le théorème B. Ensuite,
nous généralisons considérablement et modifions l’approche usuelle afin d’étudier
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les arrangements transverses de courbes suffisamment positives sur n’importe quelle
surface ayant dimension de Kodaira positive ou nulle. Le principal résulat obtenu
dans ce cadre général est le théorème A.

1. Introduction

In this note we find various estimates on Harbourne constants which were
introduced in [1] in order to capture and measure the bounded negativity on
various birational models of an algebraic surface. Our research is motivated
by Conjecture 1.2 below which is related to the following definition:

Definition 1.1 (Bounded negativity). — Let X be a smooth projective
surface. We say that X has bounded negativity if there exists an integer
b(X) such that the inequality

C2 > −b(X)

holds for every reduced and irreducible curve C ⊂ X.

The bounded negativity conjecture (BNC for short) is one of the most in-
triguing problems in the theory of projective surfaces and attracts currently
a lot of attention, see e.g. [1, 2, 3, 5, 13].

Conjecture 1.2 (BNC). — Every smooth complex projective surface
has bounded negativity.

It is well known that Conjecture 1.2 fails in positive characteristic. Hence
from now on we restrict the attention to complex surfaces.

It has been showed in [2, Proposition 5.1] that no harm is done if one
replaces irreducible curves in Definition 1.1 by arbitrary reduced divisors.
It is clear that in order to obtain interesting, i.e. very negative curves on
the blow up of a given surface one should study singular curves on the orig-
inal surface. Whereas constructing irreducible singular curves encounters a
number of obstacles (see e.g. [4]), reducible singular divisors are relatively
easy to construct and control. In our set up singularities of reduced divi-
sors arise solely as intersection points of irreducible components. In a series
of papers [1, 12, 13] the authors study this situation for configurations of
lines, conics and elliptic curves in P2. The arrangements studied so far were
all modeled on arrangements of lines, in particular all curves were smooth
and were assumed to intersect pairwise transversally. The technical advan-
tage behind this assumption lies in the property that after blowing up all
intersection points just once, we obtain a simple normal crossing divisor.
Also working under this assumption for curves of higher degree seems to
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lead to the most singular divisors. Many singularities of a divisor lead to
its negative arithmetic genus, which forces the divisor to split. Moreover,
transversal arrangements allow to use some combinatorial identities, which
fail when tangencies are allowed. For all these reasons it is reasonable to
keep this assumption.

Definition 1.3 (Transversal arrangement). — Let D =
∑τ
i=1 Ci be a

reduced divisor on a smooth surface X. We say that D is a transversal
arrangement if τ > 2, all curves Ci are smooth and they intersect pairwise
transversally.
We denote by Sing(D) the set of all intersection points of components

of D. The number of points in the set Sing(D) is denoted by s(D) or, if D
is understood, simply by s.

Furthermore we denote by Esing(D) the set of essential singularities
of D, i.e. those where at least 3 components meet.

In the present note we study the bounded negativity and transversal
arrangements on fairly arbitrary surfaces. Our main results are Theorems A
and B.

Theorem A. — Let A be a divisor on a smooth projective surface Y
with Kodaira dimension κ(Y ) > 0, such that for positive integers τ > 2
and d1, . . . , dτ > 1 the following condition is satisfied:

(?) There exist smooth (irreducible) curves C1, . . . , Cτ in linear systems
|d1A|, . . . , |dτA| such that the divisor D =

∑τ
i=1 Ci is a transversal

arrangement.
Let f : Z → Y be the blow-up of Y at Sing(D) and denote by D̃ the

strict transform of D. Then

D̃2 > −9
2s−

(
3
2A

2
τ∑
i=1

d2
i + (KY ·A)

τ∑
i=1

di + 2(3c2(Y )− c2
1(Y ))

)
.

The assumption κ(Y ) > 0 guarantees that any finite branched covering
of Y has also non-negative Kodaira dimension. If we can control the Ko-
daira dimension of a covering of Y in other way, then we can drop this
assumption. This is the case in the next Theorem which addresses rational
surfaces. Recently Dorfmeister [3] has announced a proof of Conjecture 1.2
for surfaces birationally equivalent to ruled surfaces (i.e. in particular for
rational surfaces). This announcement has been taken back in the last days.
Whereas this would be an exciting new development, it would not diminish
the interest in effective bounds on Harbourne constants.
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Theorem B. — Let D ⊂ P2 be a transversal arrangement of τ > 4
curves C1, . . . , Cτ of degree d > 3 such that there are no points in which
all τ curves meet, i.e. the linear series spanned by C1, . . . , Cτ is base point
free. Let f : Xs → P2 be the blowup at Sing(D) and let D̃ be the strict
transform of D. Then we have

D̃2 >
9dτ
2 − 5d2τ

2 − 4s.

This result provides additional evidence for the following effective version
of Conjecture 1.2 which predicts that there are uniform bounds for all blow
ups of P2.

Conjecture 1.4 (Effective BNC for blowups of P2). — Let f : Xs →
P2 the blow up of P2 in s arbitrary points. Let D ⊂ P2 be a reduced divisor
and let D̃ be the strict transform of D under f . Then one has D̃2 > −4 · s.

Our strategy is an extension of Hirzerbuch’s results [7] for line configura-
tions on the plane. The starting point is that (under some conditions) one
can construct an abelian coverW of the studied surface branched along the
chosen configurations of curves. If the singularities of these configurations
are reasonable (simple crossings), the Chern numbers of that abelian cover
(or rather its minimal resolution X) can be explicitly computed, and it
turns out that these Chern numbers can be read off directly from combi-
natorics of the given configuration. Moreover, under some additional mild
assumptions on multiplicities of singular points of the configuration, the
surface X is of general type. The last step is made by the Miyaoka–Yau
inequality K2

X 6 3e(X), which gives us the inequalities of Theorems A
and B.

2. General preliminaries

We begin by introducing some invariants of transversal arrangements
and pointing out their properties relevant for our purposes in this note.

Definition 2.1 (Combinatorial invariants of transversal arrangements).
Let D =

∑τ
i=1 Ci be a transversal arrangement on a smooth surface X.

We say that a point P is an r-fold point of the arrangement D if there
are exactly r components Ci passing through P . We say also that D has
multiplicity kP = r at P .
For r > 2 we set the numbers tr = tr(D) to be the number of r-fold

points in D. Thus s(D) =
∑τ
r=2 tr(D).

ANNALES DE L’INSTITUT FOURIER
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These numbers are subject to the following useful equality, which follows
by counting incidences in a transversal arrangement in two ways.

(2.1)
∑
i<j

(Ci · Cj) =
∑
r>2

(
r

2

)
tr .

It is also convenient to introduce the following numbers

fi = fi(D) =
∑
r>2

ritr .

In particular f0 = s(D) is the number of points in Sing(D).
Now we turn to Harbourne constants. They were first discussed at the

Negative Curves on Algebraic Surfaces workshop in Oberwolfach in spring
2014 and were introduced in the literature as Hadean constants in [1].
In the present note we are interested in Harbourne constants attached to
transversal arrangements. They can be viewed as a way to measure the
average negativity coming from singular points in the arrangement.

Definition 2.2 (Harbourne constants of a transversal arrangement).
Let X be a smooth projective surface. Let D =

∑τ
i=1 Ci be a transversal

arrangement of curves on X with s = s(D). The rational number

(2.2) h(X;D) = h(D) = 1
s

D2 −
∑

P∈Sing(D)

k2
P


is the Harbourne constant of the transversal arrangement D ⊂ X.

The connection between Harbourne constants and the BNC is established
by the following observation. If the Harbourne constants h(X;D) (here we
mean Harbourne constants for all curve configurations) on the fixed surface
X are uniformly bounded from below by a number H, then BNC holds for
all birational models Y = BlSing(D)X obtained from X by blowing up
singular points of transversal arrangements D with b(Y ) = H · s(D). The
reverse implication might fail, i.e. it might happen that there is no uniform
lower bound but nevertheless BNC may hold on any single model of X.

In case of the projective plane it is convenient to work with a more specific
variant of Definition 2.2. In [1, Definition 3.1] the authors introduced the
linear Harbourne constant as the infimum of quotients in (2.2), where one
considers only divisors D splitting totally into lines. In [12] the conical
Harbourne constant has been studied and in [13] the cubical Harbourne
constant has been considered. Here we follow this line of investigation and
introduce the following notion.

TOME 67 (2017), FASCICULE 6
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Definition 2.3 (Degree d Harbourne constant). — The degree d global
Harbourne constant of P2 is the infimum

Hd(P2) := inf
D
h(P2;D) ,

taken over all transversal arrangements D of degree d curves in P2.

We will show in Section 4 bounds on the degree d Harbourne constants
Hd(P2) for arbitrary d > 3. The available bounds on the numbers Hd(P2)
are presented in Table 2.1.

d lower bound on Hd(P2) least known value of Hd(P2)
1 −4 −225/67
2 −4.5 −225/68

Table 2.1. Degree d global Harbourne constants

In the article [13] there is studied a series of configurations of smooth
elliptic plane curves with Harbourne constants tending to −4. These config-
urations are not transversal (there are always 12 points where configuration
curves are pairwise tangential). The following result is derived from Theo-
rem B and, to the best of our knowledge, this is the first effective estimate
on degree d Harbourne constants.

Corollary 2.4 (Degree d Harbourne constants). — For any d > 3 we
have

Hd(P2) > 9
2d−

5
2d

2 − 4 .

Remark 2.5. — Whereas the particular numbers appearing in Corol-
lary 2.4 are rather high and leave space for improvements, the main interest
of the Corollary lies in the conclusion that they are finite (which is by no
means a priori obvious) and can be estimated effectively.

3. Bounded negativity and transversal arrangements on
surfaces with Kodaira dimension κ > 0

In this section we will prove Theorem A. In fact, we will prove slightly
more. We establish first the notation. Let Y be a smooth projective surface
and let A be a semi-ample divisor on Y . We assume moreover that the
following hypothesis holds for A and for integers d1, . . . , dτ ∈ N, τ > 1 :

ANNALES DE L’INSTITUT FOURIER
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• There exist smooth (irreducible) curves C1, . . . , Cτ in linear systems
|d1A|, . . . , |dτA| such that the divisor D =

∑τ
i=1 Ci is a transversal

arrangement.
• We assume moreover that either all numbers di are even, or there

exist at least two odd numbers among them.
It is convenient to write now the equality (2.1) in the following form

(3.1) A2
(∑

di

)2
−A2

∑
d2
i = f2 − f1 .

As a consequence we get

(3.2) D2 = A2

∑ d2
i + 2

∑
j<k

djdk

 = A2
(∑

d2
i + f2 − f1

)
.

Theorem 3.1. — Let Y be a smooth projective surface with Kodaira
dimension κ > 0. Let A be a divisor on Y satisfying above assumptions
and let D =

∑τ
i=1 Ci be a transversal arrangement as above. Then

H(Y ;D) > −9
2 + 1

f0

(
2t2 + 9

8 t3 + 1
2 t4
)

− 1
f0

(
3
2A

2
∑

d2
i − (KY ·A)

∑
di − 2(3c2(Y )− c2

1(Y ))
)
.

Our strategy for proving this statement will be to apply the refined
Miyaoka inequality to a certain branched covering X, of Y . In order to
prove that this branched covering does in fact exist, we need to recall some
result of Namba: Let M be a manifold, let D1, . . . , Ds be irreducible re-
duced divisors on M and let n1, . . . , ns be positive integers. We denote
by D the divisor D =

∑
niDi. Let Div(M,D) be the sub-group of the

Q-divisors generated by the entire divisors and:
1
n1
D1, . . . ,

1
ns
Ds .

Let ∼ be the linear equivalence in Div(M,D), where G ∼ G′ if and only
if G−G′ is an entire principal divisor. Let Div(M,D)/ ∼ be the quotient
and let Div0(M,D)/ ∼ be the kernel of the Chern class map

Div(M,D)/ ∼ −→ H1,1(M,R)
G −→ c1(G) .

Theorem 3.2 (Namba, [11, Theorem 2.3.20]). — There exists a finite
Abelian cover which branches at D with index ni over Di for all i = 1, . . . , s
if and only if for every j = 1, . . . , s there exists an element of finite order

TOME 67 (2017), FASCICULE 6
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vj =
∑ aij

ni
Di + Ej of Div0(M,D)/ ∼ (where Ej is an entire divisor and

aij ∈ Z) such that ajj is coprime to nj .
Then the subgroup in Div0(M,D)/ ∼ generated by the vj is isomorphic

to the Galois group of such an Abelian cover.

Let us now recall the following combination of results due to Miyaoka [9]
and Sakai [14] which was formulated in this form for the first time by
Hirzebruch.

Theorem 3.3 (Miyaoka–Sakai refined inequality [8, p. 144]). — Let X
be a smooth surface of non-negative Kodaira dimension and let E1, . . . , Ek
be configurations (disjoint to each other) of rational curves on X (arising
from quotient singularities) and let C1, . . . , Cp be smooth elliptic curves
(disjoint to each other and disjoint to the Ei). Let c2

1(X), c2(X) be the
Chern numbers of X. Then

3c2(X)− c2
1(X) >

p∑
j=1

(−C2
j ) +

k∑
i=1

m(Ei) ,

where the number m(Ei) depends on the configuration. For example, if Ei
is a single (−2)-curve, then m(Ei) = 9

2 by [6].

Proof of Theorem 3.1. — Let be δ = 0 if all the di’s are even, and
δ = 1 otherwise. We apply Theorem 3.2, to the Q-divisors 1

2 (Ci − Cj) for
di, dj odd and 1

2Cj for dj even) : there exists a (Z/2Z)τ−δ abelian cover
σ : W → Y ramified over D with order 2. We denote by ρ : X → W its
minimal desingularization. We follow the ideas of Hirzebruch [7] for the
computations of the Chern numbers of X.
For a singularity point P of D, let kP be its multiplicity. Let π : Z → Y

be the blowup at the f0−t2 =
∑
k>3 tk singularities of D with multiplicities

k > 3. Let D̃ =
∑
C̃i be the strict transform of D in Z and let EP be the

exceptional divisor over the point P . There exists a degree 2τ−δ map

f : X → Z

ramified over Z with the divisor D̃ as the branch locus of order 2.
These constructions are summarized in the diagram in Figure 3.1.
There are 2τ−δ−kP copies of a smooth curve FP ⊂ X over EP ⊂ Z.

The curve FP is a (Z/2Z)kP−1-cover of EP ramified with index 2 at kP
intersection points of EP with D̃. Thus

e(FP ) = 2kP−1(2− kP ) + kP 2kP−2 = 2kP−2(4− kP ) .

Since the Galois group of f permutes these curves, we have (FP )2 =
−nkP−2. If a singularity P of D is a double point, then X is smooth over P

ANNALES DE L’INSTITUT FOURIER



BOUNDED NEGATIVITY 2727

X
ρ //

f

��

W

σ

��
Z

π
// Y

Figure 3.1. Maps used in the proof of Theorem 3.1.

and the fiber of π ◦ f above P has nτ−δ−2 points. Following Miyaoka [10,
point G, p. 408], we define the genus g = g(C) by

(3.3) g − 1 =
τ∑
i=1

(gi − 1) ,

where gi is the genus of the irreducible component Ci of D, hence

2gi − 2 = A2d2
i + (A ·KY )di .

Summing up over i we have

(3.4) 2g − 2 = A2
τ∑
i=1

d2
i + (A ·KY )

τ∑
i=1

di .

Similarly, using the additivity of the topological Euler numbers and (3.3)
we have

e(D) = 2− 2g + f0 − f1

and consequently

(3.5)
e(D \ Sing(D)) = 2− 2g − f1 ,

e(Y \D) = e(Y )− e(D) = e(Y ) + 2g − 2 + f1 − f0 .

Using that if U → V is a degree n étale map one has e(U) = ne(V ), we
obtain

e

X \ ⋃
P∈Esing(D)

f−1EP


= 2τ−δe(Y \D) + 2τ−δ−1e(D \ Sing(D)) + 2τ−δ−2t2 .

Combining this with (3.5) we get

1
2τ−δ−2 e

X \ ⋃
P∈Esing(D)

f−1EP


= 4 (e(Y ) + 2g − 2 + f1 − f0) + 2 (2− 2g − f1) + t2 .

TOME 67 (2017), FASCICULE 6
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Since in X over each exceptional divisor EP in Z, there are 2τ−δ−kP curves
with Euler number e(FP ), we get

e(X) = e

X \ ⋃
P∈Esing(D)

f−1EP

+
∑
k>3

2τ−δ−2(4− k)tk

= e

X \ ⋃
P∈Esing(D)

f−1EP

+ 2τ−δ−2(4f0 − f1 − 2t2) .

Thus

(3.6) 1
2τ−δ−2 · e(X) = 4e(Y ) + 4g − 4 + f1 − t2 .

Our purpose now is to calculate the other Chern number c2
1(X) = K2

X . The
canonical divisor KX satisfies KX = f∗K for the divisor K on Z defined
as

K := π∗KY +
∑

EP + 1
2

(∑
EP + π∗D −

∑
kPEP

)
=
∑ 3− kP

2 EP + 1
2π
∗D + π∗KY ,

with the summation taken over all points P ∈ Esing(D). We have

K2 = −1
4
∑
k>3

(3− k)2tk + 1
4

(∑
di

)2
A2 + (KY ·A)

∑
di +K2

Y .

Using (3.1) we get

K2 = −1
4 (9f0 − 6f1 + f2 − t2) + 1

4

(∑
di

)2
A2 + (KY ·A)

∑
di +K2

Y .

Thus

(3.7) 1
2τ−δ−2K

2
X = −9f0 + 6f1 − f2 + t2

+
(∑

di

)2
A2 + 4(KY ·A)

∑
di + 4K2

Y .

Combining (3.6) and (3.7) we obtain

1
2τ−δ−2 (3c2(X)− c2

1(X))

= 4(3c2(Y )− c2
1(Y )) + 12(g − 1) + f2 − 3f1 + 9f0

− 4t2 − 4(KY ·A)
∑

di −
(∑

di

)2
A2 .

ANNALES DE L’INSTITUT FOURIER
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The surface X contains 2τ−δ−3t3 disjoint (−2)-curves (above the 3-points)
and it contains 2τ−δ−4t4 elliptic curves (above the 4-points), each of self-
intersection −4. Since the Kodaira dimension of Y is non-negative, so is
that of X. We can then apply the Miyaoka–Sakai refined inequality and
we obtain that:

1
2τ−δ−2

(
3c2(X)− c2

1(X)
)
>

9
4 t3 + t4 .

This gives

4(3c2(Y )−K2
Y ) + 12(g − 1) + f2 − 3f1 + 9f0

− 4t2 − 4(KY ·A)
∑

di −A2
(∑

di

)2
>

9
4 t3 + t4 .

Using (3.1) and (3.4) we arrive finally to the following Hirzebruch-type
inequality :

(3.8) 5A2
∑

d2
i + 2(KY ·A)

∑
di + 4(3c2(Y )− c2

1(Y ))− 2f1 + 9f0

> 4t2 + 9
4 t3 + t4 .

Since h(Y ;D) = 1
f0

(
A2(

∑
di)2 − f2

)
= 1

f0
(A2∑ d2

i − f1), we obtain:

(3.9) h(Y ;D)

> −9
2 + 1

f0

(
2t2 + 9

8 t3 + 1
2 t4
)

− 1
f0

(
3
2A

2
∑

d2
i − (KY ·A)

∑
di − 2(3c2(Y )− c2

1(Y ))
)
. �

The statement in Theorem A is now an easy corollary. Indeed, note that
f0 = s, D̃2 = s · h(Y ;D) and we can drop on the right hand side of (3.9)
all summands of which we know that they are non-negative.
Sometimes it is more convenient to work with the following version of

the inequality in (3.9), which we record for future reference.

Remark 3.4. — For any transversal arrangement D we have the follow-
ing inequality:

−2f1 + 9f0 =
∑
k>2

(9− 2k)tk

6 5t2 + 3t3 + t4 +
∑
k>5

(4− k)tk = 3t2 + 2t3 + t4 + 4f0 − f1 .

TOME 67 (2017), FASCICULE 6
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This yields

h(Y ;D) = A2∑ d2
i − f1

f0

> −4 + 1
f0

(
t2 + 1

4 t3
)

+ 1
f0

(
−4A2

∑
d2
i − 2(KY ·A)

∑
di − (3c2(Y )− c2

1(Y ))
)
.

4. Configurations of degree d plane curves

In this part in order to abbreviate the notation it is convenient to work
with the following modification of Definition 1.3.

Definition 4.1. — A d-arrangement is a transversal arrangement of
smooth plane curves of degree d.

For a d-arrangement D, the equality in (2.1) has now the following form

(4.1) d2
(
τ

2

)
=
∑
r>2

(
r

2

)
tr .

where τ is the number of irreducible components of D.
Theorem B follows from the following, slightly more precise statement.

Theorem 4.2. — For a d-arrangement D =
∑
Ci ⊂ P2 of τ > 4 plane

curves of degree d > 3 such that tτ = 0 we have

h(P2, D) > −4 +
− 5

2d
2τ + 9

2dτ

s
.

Proof. — We mimic the argumentation of Hirzebruch [7]. There exists a
(Z/nZ)τ−1-cover W of P2 branched with order n along the d-arrangement
D. We keep the same notations as in the proof of Theorem 3.1. In particular
all maps and varieties defined in the diagram in Figure 3.1 remain the same
with Y = P2. We compute first c2(X) = e(X). Note that

e

X \ ⋃
P∈Esing(D)

f−1EP


= nτ−1 (e(P2)− e(D)

)
+ nτ−2 (e(D)− e(Sing(D)) + nτ−3t2 .
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Simple computations lead to

e

X \ ⋃
P∈Esing(D)

f−1EP


= nτ−1(3 + (2g − 2)τ + f1 − f0) + nτ−2 ((2− 2g)τ − f1) + nτ−3t2 ,

where g denotes the genus of an irreducible component of D, i.e., g =
(d− 1)(d− 2)/2. Using

∑
r>3

nτ−1−rtre(FP ) = nτ−2

∑
r>3

2tr −
∑
r>3

rtr

+ nτ−3
∑
r>3

rtr

we obtain

c2(X)/nτ−3 = n2(3+(2g−2)τ+f1−f0)+2n ((1− g)τ + f0 − f1)+(f1−t2) .

Now we compute c2
1(X) = K2

X . From the diagram in Figure 3.1 with
Y = P2 we read off that KX = f∗K, where

(4.2) K = π∗(KP2) +
∑

P∈Esing(D)

EP

+ n− 1
n

 ∑
P∈Esing(D)

EP + π∗(D)−
∑

P∈Esing(D)

kPEP

.
We have

K = π∗(KP2) + n− 1
n

π∗(D) +
∑

P∈Esing(D)

(
1 + n− 1

n
(1− kP )

)
EP .

Since K2
X = nτ−1(K)2, we obtain

c2
1(X)/nτ−3 = n2(K)2

= 9n2 + d2τ2(n− 1)2 − 6dτn(n− 1)

−
∑
r>3

tr
(
n2 + (n− 1)2(1− r)2 + 2n(n− 1)(1− r)

)
.

We postpone the proof that X is a surface of general type until Lem-
ma 4.4. Taking this for granted and fixing n = 3 we apply on X the
Miyaoka–Yau inequality which gives

36(g − 1)τ + 36dτ − 4d2τ + 16f0 − 4f1 − 4t2 > 0 .

Here a side comment is due. Our choice of n = 3 is a little bit ambiguous.
In fact one could work with different values of n and obtain mutations
of inequalities (4.3) and (4.4). These inequalities obtained with various
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values of n are hard to compare. Our choice seems asymptotically right
and certainly sufficient in order to derive Corollary 2.4, so that we do not
dwell further on this issue.
Coming back to the main course of the proof and expressing g in terms of

d, we obtain the following Hirzebruch-type inequality for d-arrangements

(4.3) 9
2(d2 − 3d)τ + 9dτ − d2τ − t2 = 7

2d
2τ − 9

2dτ − t2 >
∑
r>2

(r − 4)tr .

For h(P2;D) we have

h(P2;D) =
d2τ2 −

∑
r>2 r

2tr

f0
= d2τ2 − f2

f0
= d2τ − f1

f0
,

where the last equality follows from d2τ2 − d2τ = f2 − f1. From (4.3) we
derive that

−f1 > −4f0 −
7
2d

2τ + 9
2dτ + t2

and then

(4.4)
h(P2;D) > −4 + −(5/2)d2τ + (9/2)dτ + t2

f0

> −4 + −(5/2)d2τ + (9/2)dτ
f0

,

which completes the proof. �

In order to pass to degree d Harbourne constants, we need to get rid of
τ and f0 in (4.4).

Lemma 4.3 (The number of singular points in a d-arrangement). — Let
D =

∑
Ci be a transversal arrangement of τ > 2 degree d curves Ci in P2

such that tτ = 0. Then s = s(D) > τ .

Proof. — First we claim that each curve Ci contains at least d2 + 1
intersection points with other curves in the arrangement. Indeed, if not,
then by the transversality assumption it contains exactly d2 intersection
points. But this implies that all τ curves Cj meet exactly in these d2 points
contradicting the assumption tτ = 0. Let f : Y → P2 be the blow up of
all s singular points of D. Then the Picard number of Y is s + 1. On the
other hand, the proper transforms C̃1, . . . , C̃τ are disjoint curves of self-
intersection less or equal to d2 − (d2 + 1) = −1 on Y . By the Hodge Index
Theorem we have then s > τ as asserted. �

Now we are in the position to prove Corollary 2.4.
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Proof. — It is easy to observe that in order to find a lower bound for (4.4)
one needs to find an effective bound for f0 and then by Lemma 4.3 we get
the desired inequality. �

We conclude this section with the following Lemma.

Lemma 4.4 (The Kodaira dimension of the divisor K). — For d > 3,
n > 2, τ > 4 and tτ = 0 the divisor K defined in (4.2) is big and nef.

Proof. — We argue along the lines of [15, Section 2.3]. We want first to
show that there is a way to write K as an effective Q-divisor. From (4.2)
we have

(4.5) K = π∗
(
−1
d

(C1 + C2 + C3)
)

+ 2n− 1
n

∑
EP + n− 1

n

∑
C̃i ,

where C̃i = π∗Ci −
∑

P∈(Ci∩Esing(D))
EP is the proper transform of Ci under

π. This divisor can be written as

K =
∑

aiC̃i +
∑

bPEP

with positive coefficients

ai >
n− 1
n
− 1
d
> 0 and bP >

2n− 1
n

− 3
d
> 0 .

Thus in order to check that K is nef it suffices to check its intersection with
curves in its support. For EP we have from (4.5)

K.EP = −2n− 1
n

+ n− 1
n

kP >
n− 2
n
> 0 .

For the intersection with C̃ := C̃i for some i ∈ {1, . . . , τ} it is more conve-
nient to pass to the numerical equivalence classes:

K ≡
(
τd
n− 1
n
− 3
)
H +

∑(
2n− 1
n

− kP
n− 1
n

)
EP

and
C̃ ≡ dH −

∑
P∈(C∩Esing(D))

EP ,

where H = π∗(OP2(1)). We obtain

(4.6) K.C̃ = τd2n− 1
n
− 3d+

∑
P∈(C∩Esing(D))

(
1 + n− 1

n
(1− kP )

)
.

Now, the last summand can be written as

# {Esing(D) ∩ C} − n− 1
n

∑
P∈(C∩Esing(D))

(kP − 1) .
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Recalling the following equality coming from counting incidences with the
component C in two ways

(4.7)
∑

P∈(C∩Sing(D))

(kP − 1) = d2(τ − 1)

and plugging it into (4.6) we obtain

K.C̃ = n− 1
n

d2 + n− 1
n

# {P ∈ C : kP = 2}+ # {P ∈ C : kP > 3} − 3d.

Now, as in the proof of Lemma 4.3 we have # {P ∈ C : kP > 2} > (d2 +1)
so that the last two summand can be bounded from below by n−1

n (d2 + 1).
Rearranging the terms we get finally

K.C̃ >
2n− 2
n

d2 − 3d+ n− 1
n

.

The expression on the right is positive for d > 3 and n > 2. This finishes
the proof that K is nef.
In order to show that K is also big it suffices to check that its self-

intersection is positive. We omit an easy calculation. �
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