
AN

N
A
L
E
S
D
E

L’INSTI
T

U
T
F
O
U
R

IE
R

ANNALES
DE

L’INSTITUT FOURIER

Henning KRAUSE

Highest weight categories and recollements
Tome 67, no 6 (2017), p. 2679-2701.

<http://aif.cedram.org/item?id=AIF_2017__67_6_2679_0>

© Association des Annales de l’institut Fourier, 2017,
Certains droits réservés.

Cet article est mis à disposition selon les termes de la licence
CREATIVE COMMONS ATTRIBUTION – PAS DE MODIFICATION 3.0 FRANCE.
http://creativecommons.org/licenses/by-nd/3.0/fr/

L’accès aux articles de la revue « Annales de l’institut Fourier »
(http://aif.cedram.org/), implique l’accord avec les conditions générales
d’utilisation (http://aif.cedram.org/legal/).

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://aif.cedram.org/item?id=AIF_2017__67_6_2679_0
http://creativecommons.org/licenses/by-nd/3.0/fr/
http://aif.cedram.org/
http://aif.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/


Ann. Inst. Fourier, Grenoble
67, 6 (2017) 2679-2701

HIGHEST WEIGHT CATEGORIES AND
RECOLLEMENTS

by Henning KRAUSE

Abstract. — We provide several equivalent descriptions of a highest weight
category using recollements of abelian categories. Also, we explain the connection
between sequences of standard and exceptional objects.
Résumé. — Nous donnons plusieurs descriptions équivalentes des catégories

de plus haut poids au moyen de recollements de catégories abéliennes. En outre,
nous expliquons la relation entre suites d’objets standards et exceptionnels.

1. Introduction

Highest weight categories and quasi-hereditary algebras arise naturally
in representation theory and were introduced in a series of papers by Cline,
Parshall, and Scott [5, 21, 25]; see also the work of Dlab and Ringel [6, 7].
The intimate connection between highest weight categories and recolle-
ments of derived categories was noticed right from the beginning. In this
note we characterise highest weight categories in terms of recollements of
abelian categories; see Theorem 3.4.
A highest weight category is determined by its standard objects (usually

denoted by ∆i, where the index i refers to the weight). An efficient way to
formulate this for a module category is given by the following result, which
is a variation of a result of Dlab and Ringel [7].

Theorem 1.1. — Let A be the category of finitely generated modules
over an artin algebra. Then A is a highest weight category if and only if

Keywords: Highest weight category, quasi-hereditary algebra, recollement, exceptional
sequence, derived category.
2010 Mathematics Subject Classification: 16G10, 16D90, 16E65, 18E30.



2680 Henning KRAUSE

there are objects ∆1, . . . ,∆n having the following properties:
(1) EndA(∆i) is a division ring for all i.
(2) HomA(∆i,∆j) = 0 for all i > j.
(3) Ext1

A(∆i,∆j) = 0 for all i > j.
(4) A projective generator of Filt(∆1, . . . ,∆n) is also one for A.

This description of a highest weight category via its sequence of stan-
dard objects suggests a close connection with the concept of an exceptional
sequence, as introduced in the study of vector bundles [3, 13, 14, 24]. We
make this connection precise in Theorem 5.2 and claim that both concepts
are basically equivalent, even though their origins are quite different. A spe-
cial instance of this theorem for vector bundles on rational surfaces is due
to Hille and Perling [16]. For further examples of this connection, relating
derived categories of Grassmannians and modular representation theory,
see [4, 8].

The crucial issue for understanding the concept of a highest weight cat-
egory is to find out when a recollement of abelian categories extends to a
recollement of their derived categories. We address this problem explicitly
in an appendix and provide a necessary and sufficient criterion. This is not
used in the main part of the paper but serves as an illustration for some of
the key arguments and might be of independent interest.

This paper is organised as follows. In §2 we recall definitions and basic
facts about recollements of abelian and triangulated categories. The charac-
terisation of highest weight categories via recollements is given in §3. Then
we explain in §4 the equivalent concept of a quasi-hereditary ring and
provide a method for constructing quasi-hereditary endomorphism rings
in abelian categories. The final §5 is devoted to the connection between
sequences of standard and exceptional objects.

Polynomial representations of general linear groups provide interesting
examples of highest weight categories. In that case it is appropriate to work
with k-linear highest weight categories over an arbitrary commutative base
ring k, and we refer to [20] for a detailed exposition.

2. Recollements

Recollements of abelian and triangulated categories

We recall the definition of a recollement using the standard notation [2,
1.4]. In fact, any recollement is built from two diagrams involving “locali-
sation” [9] and “colocalisation” [26].

ANNALES DE L’INSTITUT FOURIER



HIGHEST WEIGHT CATEGORIES AND RECOLLEMENTS 2681

Definition 2.1. — A localisation sequence of abelian (triangulated)
categories is a diagram of functors

(2.1) A′ A A′′
i!

i!

j∗

j∗

satisfying the following conditions:
(1) i! and j∗ are exact functors of abelian (triangulated) categories.
(2) (i!, i!) and (j∗, j∗) are adjoint pairs.
(3) i! and j∗ are fully faithful functors.
(4) An object in A is annihilated by j∗ iff it is in the essential image

of i!.

Note that condition (3) admits an equivalent formulation; see [11, I.1.3].
In the presence of (2), the functor i! is fully faithful iff the unit idA′ →
i!i! is an isomorphism. Also, the functor j∗ is fully faithful iff the counit
j∗j∗ → idA′′ is an isomorphism.

Definition 2.2. — A colocalisation sequence of abelian (triangulated)
categories is a diagram of functors

(2.2) A′ A A′′
i∗

i∗

j!

j!

satisfying the following conditions:
(1) i∗ and j! are exact functors of abelian (triangulated) categories.
(2) (i∗, i∗) and (j!, j!) are adjoint pairs.
(3) i∗ and j! are fully faithful functors.
(4) An object in A is annihilated by j! iff it is in the essential image

of i∗.

Definition 2.3. — A recollement of abelian (triangulated) categories
is a diagram of functors

(2.3) A′ A A′′i∗=i!

i!

i∗

j!=j∗

j∗

j!

such that the subdiagram (2.1) is a localisation sequence and the subdia-
gram (2.2) is a colocalisation sequence.
The recollement is called homological if the functor i∗ induces for all

X,Y ∈ A′ and p > 0 isomorphisms

ExtpA′(X,Y ) ∼−→ ExtpA(i∗(X), i∗(Y )) .

The terminology follows that used in [22], where i∗ is called homological
embedding.

TOME 67 (2017), FASCICULE 6



2682 Henning KRAUSE

Given a colocalisation sequence (2.2) and an object X in A, we have the
counit j!j!(X) → X and the unit X → i∗i

∗(X). These fit into an exact
sequence

j!j
!(X) −→ X −→ i∗i

∗(X) −→ 0 (A abelian)

and an exact triangle

j!j
!(X) −→ X −→ i∗i

∗(X) −→ (A triangulated) .

Often we consider abelian categories having enough projective objects,
that is, every object X admits an epimorphism P → X with P projective.
We use without mentioning that a left adjoint of an exact functor preserves
projectivity.

Recollements of module categories

Let Λ be a ring (associative with identity). We consider the category
Mod Λ of right Λ-modules. We write mod Λ for the full subcategory of
finitely presented Λ-modules and proj Λ for the full subcategory of finitely
generated projective Λ-modules.
The following result summarises some basic facts about subcategories of

Mod Λ consisting of modules that are annihilated by a fixed ideal. Note
that all ideals in this work are two-sided.

Recall that a full subcategory C ⊆ A of an abelian category is a Serre
subcategory if for every exact sequence 0 → X ′ → X → X ′′ → 0 in A we
have X ∈ C iff X ′, X ′′ ∈ C. For example, the objects that are annihilated
by an exact functor A → A′ form a Serre subcategory.

Proposition 2.4 ([1, Proposition 7.1]). — Let Λ be a ring. A full sub-
category C of Mod Λ is of the form Mod Λ/a for some ideal a of Λ if and
only if the following holds:

(1) If X ′ ⊆ X is a submodule of X ∈ C, then X ′ and X/X ′ are in C.
(2) If (Xi)i∈I is a family of modules in C, then their product

∏
i∈I Xi

is in C.
In this case a =

⋂
X∈C annX. Moreover, a2 = a if and only if C is a Serre

subcategory.

Given an idempotent e ∈ Λ, the inclusion i∗ : Mod Λ/ΛeΛ→ Mod Λ and

j∗ := HomΛ(eΛ,−) ∼= −⊗Λ Λe

ANNALES DE L’INSTITUT FOURIER



HIGHEST WEIGHT CATEGORIES AND RECOLLEMENTS 2683

induce a recollement

(2.4) Mod Λ/ΛeΛ Mod Λ Mod eΛe .i∗ j∗

In fact, any recollement of module categories

Mod Λ′ Mod Λ Mod Λ′′

is up to Morita equivalence of this form. For each Λ-module X there is a
natural exact sequence

(2.5) HomΛ(eΛ, X)⊗eΛe eΛ
εX−−−→ X −→ X ⊗Λ Λ/ΛeΛ −→ 0 .

If Λ is right artinian, then (2.4) restricts to a colocalisation sequence

mod Λ/ΛeΛ mod Λ mod eΛe .

Lemma 2.5. — Let Λ be a right artinian ring and C ⊆ mod Λ a Serre
subcategory. Then there is an idempotent e ∈ Λ such that C = mod Λ/ΛeΛ.
Moreover, the following holds:

(1) The inclusion mod Λ/ΛeΛ → mod Λ admits a left and a right ad-
joint.

(2) The functor HomΛ(eΛ,−) : mod Λ → mod eΛe admits a left ad-
joint.

(3) The functor HomΛ(eΛ,−) : mod Λ → mod eΛe admits a right ad-
joint provided that mod Λ has enough injective objects.

Proof. — The annihilator a ⊆ Λ of the modules in C is idempotent since
C is closed under forming extension. Thus a = ΛeΛ for some idempotent
e ∈ Λ.
(1) The right adjoint sends a Λ-module X to the maximal submodule

belonging to C. The left adjoint sends X to the maximal factor module
belonging to C.

(2) Take −⊗eΛe eΛ.
(3) Let E be an injective cogenerator and set Γ = EndΛ(E)op. Then we

have (mod Λ)op ∼−→ mod Γ via HomΛ(−, E) and can apply (2). �

Example 2.6. — Consider the right artinian ring Λ =
[ R R

0 Q
]
and e =

[ 0 0
0 1 ]. Then HomΛ(eΛ,−) : mod Λ→ mod eΛe admits no right adjoint, be-
cause it would send eΛe to HomeΛe(Λe, eΛe) which is not finitely generated
over Λ.

We recall a well known criterion for a recollement of module categories
to be homological.

TOME 67 (2017), FASCICULE 6



2684 Henning KRAUSE

Lemma 2.7. — Let Λ be a ring and a ⊆ Λ an ideal. Then the following
are equivalent:

(1) Λ/a⊗Λ Λ/a ∼= Λ/a and TorΛ
p (Λ/a,Λ/a) = 0 for all p > 0.

(2) ExtpΛ/a(X,Y ) ∼−→ ExtpΛ(X,Y ) for all Λ/a-modules X,Y and p > 0.
These conditions are satisfied when a is a projective Λ-module.

Proof. — For the first part, see [12, Theorem 4.4]. Now suppose that
a is projective. This implies TorΛ

∗ (a,Λ/a) = 0, and the exact sequence
0 → a → Λ → Λ/a → 0 induces an isomorphism TorΛ

∗ (Λ/a,Λ/a) ∼= Λ/a.
Thus (1) holds. �

Abelian length categories

Let A be an abelian length category. Thus A is an abelian category and
every object in A has a finite composition series.

Recall that A is Ext-finite if for every pair of simple objects S and T

dimEndA(T )op Ext1
A(S, T ) <∞ .

This property is useful for constructing projective generators.

Proposition 2.8 ([10, 8.2]). — An abelian length category A is equiv-
alent to the category mod Λ of finitely generated Λ-modules for some right
artinian ring Λ if and only if the following holds:

(1) A has only finitely many simple objects.
(2) A is Ext-finite.
(3) The supremum of the Loewy lengths of the objects in A is finite.

3. Highest weight categories

Highest weight categories were introduced by Cline, Parshall, and Scott
in [5] in the context of k-linear categories over a field k. The definition given
here uses a slightly different formulation which follows Rouquier [23]. Also,
our definition is more general since the endomorphism ring of a standard
object can be any division ring. For simplicity, we restrict ourselves to the
case that the set of weights is finite and totally ordered.
Let ∆1, . . . ,∆n be objects in an abelian category A. We denote by

Filt(∆1, . . . ,∆n) the full subcategory of objects X in A that admit a finite
filtration 0 = X0 ⊆ X1 ⊆ . . . ⊆ Xt = X such that each factor Xi/Xi−1

ANNALES DE L’INSTITUT FOURIER
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is isomorphic to an object of the form ∆j . Also, let Thick(∆1, . . . ,∆n)
denote the smallest thick subcategory of A containing ∆1, . . . ,∆n. Recall
that a full subcategory C ⊆ A is thick if for any short exact sequence
0 → X → Y → Z → 0 in A all three of {X,Y, Z} belong to C if two of
them are in C.
Recall that a projective object P of an abelian (or exact) category is

a projective generator if for every object X there is an exact sequence
0→ N → P r → X → 0 for some positive integer r.

Definition 3.1. — Let A be an abelian length category having only
finitely many isoclasses of simple objects. Then A is called highest weight
category if there are finitely many exact sequences

(3.1) 0 −→ Ui −→ Pi −→ ∆i −→ 0 (1 6 i 6 n)

in A satisfying the following:
(1) EndA(∆i) is a division ring for all i.
(2) HomA(∆i,∆j) = 0 for all i > j.
(3) Ui belongs to Filt(∆i+1, . . . ,∆n) for all i.
(4)

⊕n
i=1 Pi is a projective generator of A.

The objects ∆1, . . . ,∆n are called standard objects.

Now fix a highest weight category A with standard objects ∆1, . . . ,∆n.
Let P denote a projective generator and set Λ = EndA(P ). We identify
A = mod Λ via HomA(P,−). Set Γ = EndΛ(∆n) and note that ∆n is
projective. For each Λ-module X there is a natural exact sequence

(3.2) HomΛ(∆n, X)⊗Γ ∆n
εX−−−→ X −→ X̄ −→ 0 .

Note that Ker εX and X̄ are annihilated by HomΛ(∆n,−) since the map
HomΛ(∆n, εX) is invertible. The homomorphism Λ → Λ̄ identifies via re-
striction of scalars

mod Λ̄ = {X ∈ mod Λ | HomΛ(∆n, X) = 0}

and X̄ ∼= X ⊗Λ Λ̄ for all X ∈ mod Λ.

Lemma 3.2.
(1) The counit εX is a monomorphism for X in Filt(∆1, . . . ,∆n).
(2) The assignment X 7→ X̄ provides an exact left adjoint of the inclu-

sion Filt(∆1, . . . ,∆n−1)→ Filt(∆1, . . . ,∆n).

Proof. — An induction on the length of a filtration of an object X in
Filt(∆1, . . . ,∆n) yields some r > 0 and an exact sequence 0→ ∆r

n → X →
X ′ → 0 with X ′ in Filt(∆1, . . . ,∆n−1). Then we have HomΛ(∆n, X) ⊗Γ

TOME 67 (2017), FASCICULE 6



2686 Henning KRAUSE

∆n
∼= ∆r

n and X̄ ∼= X ′. The exactness follows from the snake lemma since
HomΛ(∆n,−)⊗Γ ∆n is exact. �

Lemma 3.3. — Let A be a highest weight category with standard ob-
jects ∆1, . . . ,∆n. For the full subcategory Ā= {X ∈A | HomA(∆n, X) = 0}
the following holds:

(1) Ā is a highest weight category with standard objects ∆1, . . . ,∆n−1.
(2) The inclusion Ā → A induces bijections ExtpĀ(X,Y ) ∼−→ExtpA(X,Y )

for all X,Y in Ā and p > 0.

Proof. — (1) Applying the assignment X 7→ X̄ to (3.1) yields exact
sequences

(3.3) 0 −→ Ūi −→ P̄i −→ ∆i −→ 0 (1 6 i 6 n− 1)

with Ūi in Filt(∆i+1, . . . ,∆n−1) by Lemma 3.2. It remains to observe that⊕n−1
i=1 P̄i is a projective generator of Ā.
(2) Let a denote the kernel of Λ → Λ̄. This is a projective Λ-module

because it is a direct sum of copies of ∆n by Lemma 3.2. Thus the assertion
follows from Lemma 2.7. Alternatively, use Proposition A.1. �

The following result establishes the precise connection between highest
weight categories and recollements of abelian categories with semisimple
factors. For a similar result involving recollements of derived categories,
see [21, Theorem 5.13].

Theorem 3.4. — Let A be an abelian length category with finitely
many simple objects. Suppose that A and Aop are Ext-finite. Then the
following are equivalent:

(1) The category A is a highest weight category.
(2) There is a finite chain of full subcategories

0 = A0 ⊆ A1 ⊆ . . . ⊆ An = A

and a sequence of division rings Γ1, . . . ,Γn such that each inclusion
Ai−1 → Ai induces a homological recollement of abelian categories

(3.4) Ai−1 Ai mod Γi .

In that case the standard objects ∆1, . . . ,∆n in A are obtained by apply-
ing the left adjoint mod Γi → Ai to Γi for 1 6 i 6 n. Conversely, the
subcategories Ai ⊆ A are obtained by setting Ai = Thick(∆1, . . . ,∆i) or
recursively Ai−1 = {X ∈ Ai | HomA(∆i, X) = 0}.

ANNALES DE L’INSTITUT FOURIER
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Remarks 3.5.
(1) The assertion of Theorem 3.4 remains true if one requires each Γi to

be a semisimple ring.
(2) The number n in Theorem 3.4 equals the number of pairwise non-

isomorphic simple objects in A and the Γi are their endomorphism rings.
(3) Each recollement (3.4) restricts to a diagram of exact functors

Filt(∆1, . . . ,∆i−1) Filt(∆1, . . . ,∆i) Filt(∆i) .

(4) Each recollement (3.4) induces for the corresponding bounded derived
categories a recollement of triangulated categories

Db(Ai−1) Db(Ai) Db(mod Γi) .

This follows, for example, from [17, Lemme 2.1.3].

Proof. — (1) ⇒ (2): Suppose A is a highest weight category with stan-
dard objects ∆1, . . . ,∆n. Observe that A has enough injective objects by
Proposition 2.8, since Aop is Ext-finite. We give a recursive construction of
a chain

0 = A0 ⊆ A1 ⊆ . . . ⊆ An = A
of full subcategories satisfying the conditions in (2). Let An−1 denote the
full subcategory of objects X in A such that HomA(∆n, X) = 0 and set
Γn = EndA(∆n). The object ∆n is projective and HomA(∆n,−) induces a
recollement

An−1 A mod Γn

by Lemma 2.5. In Lemma 3.3 it is shown that the recollement is homological
and that An−1 is a highest weight category.

(2)⇒ (1): Fix a chain of full subcategories Ai ⊆ A satisfying the condi-
tions in (2). We show by induction on n that A is a highest weight category.
Let ∆n denote the image of Γn under the left adjoint mod Γn → A. Clearly,
EndA(∆n) ∼= Γn and ∆n is a projective object. The induction hypothesis
for An−1 yields a collection of exact sequences (3.3). We modify them as
follows to obtain exact sequences (3.1).
Fix 1 6 t < n. Observe that ∆n/ rad ∆n is a simple object and that

Ext1
A(P̄t,∆n) ∼−→ Ext1

A(P̄t,∆n/ rad ∆n)

since rad ∆n belongs to An−1. Using the Ext-finiteness of A, we can form
the universal extension

(3.5) 0 −→ ∆r
n −→ Pt −→ P̄t −→ 0

TOME 67 (2017), FASCICULE 6
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in A, that is, the induced map HomA(∆r
n,∆n) → Ext1

A(P̄t,∆n) is surjec-
tive. This implies Ext1

A(Pt,∆n) = 0.
We claim that Pt is a projective object. First observe that for any object

X in A, the recollement (3.4) yields an exact sequence

(3.6) 0 −→ Ker εX −→ j!j
!(X) εX−−−→ X −→ i∗i

∗(X) −→ 0

with Ker εX in the image of i∗, since j!(εX) is invertible (using the notation
of (2.3)). The functor ExtpA(Pt,−) vanishes for all p > 0 on the image of i∗
because the recollement is homological, and Ext1

A(Pt,−) vanishes on the
image of j! since Ext1

A(Pt,∆n) = 0. Now one applies the sequence (3.6) by
writing it as composite of two exact sequences

0→ Ker εX → j!j
!(X)→ X ′ → 0 and 0→ X ′ → X → i∗i

∗(X) −→ 0 .

From the first sequence one gets Ext1
A(Pt, X ′) = 0, and then the second

sequence gives Ext1
A(Pt, X) = 0.

Combining the exact sequences (3.3) and (3.5) gives for each t the fol-
lowing commutative diagram with exact rows and columns.

0 0

∆r
n ∆r

n

0 Ut Pt ∆t 0

0 Ūt P̄t ∆t 0

0 0

This yields exact sequences (3.1) with Ut in Filt(∆t+1, . . . ,∆n), where
Pn := ∆n and Un := 0. We observe that

⊕
t Pt is a projective genera-

tor of A.
It remains to show that At = Thick(∆1, . . . ,∆t) for 1 6 t 6 n. We

prove this by induction on t, using the recollement (3.4) and the induced
sequence (3.6). For X ∈ At we have j!j

!(X) = ∆r
t for some r > 0.

Also, Ker εX and i∗i∗(X) are in At−1 = Thick(∆1, . . . ,∆t−1). Thus X ∈
Thick(∆1, . . . ,∆t). The other inclusion is clear. �

ANNALES DE L’INSTITUT FOURIER
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4. Quasi-hereditary rings

Quasi-hereditary rings provide an alternative concept for describing a
highest weight category. Quasi-hereditary algebras over a field were intro-
duced by Scott [25]; the definition given here for semiprimary rings is due
to Dlab and Ringel [6].

Recall that a ring Λ is semiprimary if its Jacobson radical J(Λ) is nilpo-
tent and Λ/J(Λ) is semisimple. For example, the endomorphism ring of an
object having finite composition length is semiprimary.

Definition 4.1. — An ideal a ⊆ Λ of a semiprimary ring Λ is an hered-
ity ideal if a is idempotent, a is a projective Λ-module, and aJ(Λ)a = 0.

Note that an ideal a of a semiprimary ring Λ is idempotent iff there exists
an idempotent e ∈ Λ such that a = ΛeΛ; see [6, Statement 6]. In that case
aJ(Λ)a = 0 iff the ring eΛe is semisimple.

Definition 4.2. — A semiprimary ring Λ is quasi-hereditary if there is
a finite sequence of surjective ring homomorphisms

(4.1) Λ = Λn → Λn−1 → · · · → Λ1 → Λ0 = 0

such that for each 1 6 i 6 n the kernel of Λi → Λi−1 is an heredity ideal.
Clearly, such a sequence is equivalent to a finite chain of ideals

0 = an ⊆ . . . ⊆ a1 ⊆ a0 = Λ

such that ai−1/ai is an heredity ideal in Λ/ai for all i.

For k-linear highest weight categories over a field k, the following result
is due to Cline, Parshall, and Scott [5].

Theorem 4.3. — Let A be an abelian length category A having only
finitely many isoclasses of simple objects. Then A is a highest weight cate-
gory if and only there is a quasi-hereditary ring Λ such that A ∼−→ mod Λ.

Proof. — The proof is by induction on the number of simple objects in
A and yields an explicit correspondence between the standard objects in
A and the chain of ideals in Λ.

Suppose that A is a highest weight category and fix the standard objects
∆1, . . . ,∆n. Then we have A = mod Λ for a ring Λ and there is a surjective
homomorphism f : Λ→ Λ̄ such that mod Λ̄ = {X ∈A | HomA(∆n, X) = 0}
is a highest weight category, by Lemma 3.3. The induction hypothesis im-
plies that Λ̄ is quasi-hereditary, and we need to show that a := Ker f is an
heredity ideal. Observe first that ∆n

∼= eΛ for some idempotent e ∈ Λ, and

TOME 67 (2017), FASCICULE 6
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therefore a = ΛeΛ. We have eJ(Λ)e = 0 since eΛe ∼= EndΛ(∆n) is a division
ring. Moreover, a is a direct sum of copies of ∆n, since the counit εΛ in (3.2)
is a monomorphism by Lemma 3.2. Thus a is a projective Λ-module.

Now suppose that Λ is a quasi-hereditary ring with A = mod Λ. Thus
there is a sequence of surjective ring homomorphisms (4.1) such that the
kernel of each Λi → Λi−1 is an heredity ideal. We may assume that n is
maximal. Set Λ̄ = Λn−1. Then the induction hypothesis implies that mod Λ̄
is a highest weight category, say with standard objects ∆1, . . . ,∆n−1, and
we view this as full subcategory of mod Λ via restriction along f : Λ → Λ̄.
There is an idempotent e ∈ Λ such that Ker f = ΛeΛ and we set ∆n = eΛ.
Then EndΛ(∆n) ∼= eΛe is semisimple since eJ(Λ)e = 0. In fact, it is a
divison ring because of the maximality of n. The induction hypothesis
yields a collection of exact sequences (3.3) in mod Λ̄. We modify them
exactly as in the second part of the proof of Theorem 3.4 to obtain exact
sequences (3.1). For this construction one uses that A is Ext-finite (holds by
Proposition 2.8) and that ExtpΛ̄(−,−) ∼−→ ExtpΛ(−,−) for all p > 0 (holds
by Lemma 2.7). Thus mod Λ is a highest weight category. �

We continue with a reformulation of the definition of a quasi-hereditary
ring which makes the concept accessible for interesting constructions. The
basic idea is to extend the definition of an heredity ideal to the context of
additive categories.

Let C be an additive category. An ideal I in C is given by subgroups

I(X,Y ) ⊆ HomC(X,Y ) (X,Y ∈ C)

such that any composition A φ−→ B
ψ−→ C of morphisms in C belongs to I if

φ or ψ belongs to I.
For a full additive subcategory B ⊆ C let IC denote the ideal in C given

by

IC(X,Y ) = {φ ∈ HomC(X,Y ) | φ factors through some B ∈ B}.

We denote by C/B the additive category having the same objects as C while
the morphisms for objects X,Y ∈ C are defined by the quotient

HomC/B(X,Y ) = HomC(X,Y )/IB(X,Y ) .

The Jacobson radical J(C) of an additive category C is by definition the
unique ideal in C such that J(C)(X,X) equals the Jacobson radical of the
endomorphism ring EndC(X) for every object X in C.

ANNALES DE L’INSTITUT FOURIER



HIGHEST WEIGHT CATEGORIES AND RECOLLEMENTS 2691

Definition 4.4. — A full additive subcategory B ⊆ C of an additive
category C is called heredity subcategory if J(B) = 0 and the inclusion
admits a right adjoint p : C → B such that for each X in C the counit
p(X)→ X is a monomorphism.

For a semiprimary ring Λ there is a bijective correspondence between
idempotent ideals of Λ and certain additive subcategories of proj Λ. Next
we show that this restricts to a correspondence between heredity ideals and
heredity subcategories.
For an object X of an additive category let addX denote the full sub-

category of direct summands of finite direct sums of copies of X.

Lemma 4.5. — Let Λ be a semiprimary ring and set C = proj Λ. The
assignments

Λ ⊇ a 7−→ {X ∈ C | HomΛ(X,Λ/a) = 0} ⊆ C

and
C ⊇ B 7−→ IB(Λ,Λ) ⊆ Λ

give mutually inverse and incluson preserving bijections between the sets
of

(1) idempotent ideals of Λ, and
(2) strictly full and idempotent complete additive subcategories of

proj Λ.
These bijections restrict to a correspondence between heredity ideals and
heredity subcategories.

Proof. — For an idempotent ideal a = ΛeΛ, an analysis of the recolle-
ment (2.4) shows that add eΛ = {X ∈ C | HomΛ(X,Λ/a) = 0}. Conversely,
any strictly full and idempotent complete additive subcategory B ⊆ C is
of the form B = add eΛ for some idempotent e ∈ Λ, because the ring Λ is
semiperfect. Then IB(Λ,Λ) = ΛeΛ.
Now fix an ideal a = ΛeΛ and a subcategory B = add eΛ that cor-

respond to each other. Then aJ(Λ)a = 0 if and only if J(B) = 0. As-
sume this property, which means that eΛe is semisimple. The assignment
X 7→ HomΛ(eΛ, X)⊗eΛeeΛ provides a right adjoint for the inclusion B → C.
We claim that a is a projective Λ-module if and only if the counit εX in (2.5)
is a monomorphism for all X in C. For this it suffices to consider εΛ, using
that its image equals a. If a is projective, then εΛ is a monomorphism since
HomΛ(eΛ,Ker εΛ) = 0. Conversely, if εΛ is a monomorphism, then a be-
longs B and is therefore projective. We conclude that a is an heredity ideal
if and only if B is an heredity subcategory. �
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Proposition 4.6. — Let Λ be a semiprimary ring and set C = proj Λ.
Then Λ is quasi-hereditary if and only if there is a finite chain of full additive
subcategories

(4.2) 0 = Cn ⊆ . . . ⊆ C1 ⊆ C0 = C

such that Ci−1/Ci is an heredity subcategory of C/Ci for 1 6 i 6 n.

Proof. — Apply Lemma 4.5. �

We provide a sufficient criterion for the existence of a chain of full additive
subcategories (4.2).

Proposition 4.7. — A semiprimary ring Λ is quasi-hereditary via a
chain of full additive subcategories (4.2) if the following holds for 1 6 i 6 n:

(1) J(Ci−1)(X,Y ) ⊆ ICi
(X,Y ) for all X,Y ∈ Ci−1.

(2) The inclusion Ci → Ci−1 admits a right adjoint pi such that the
counit pi(X)→ X is a monomorphism in C for all X ∈ Ci−1.

The proof is based on the following elementary lemma.

Lemma 4.8. — Let C be an additive category and B ⊆ C′ ⊆ C full
additive subcategories. If the inclusion C′ → C admits a right adjoint p
such that the counit p(X) → X is a monomorphism in C for all X ∈ C,
then the inclusion C′/B → C/B admits a right adjoint p̄ such that the
counit p̄(X)→ X is a monomorphism in C/B for all X ∈ C/B.

Proof of Proposition 4.7. — Set C = C0. We need to check that Ci−1/Ci is
an heredity subcategory of C/Ci for 1 6 i 6 n; see Proposition 4.6. Clearly,
(1) implies that J(Ci−1/Ci) = 0. The composite pi−1 . . . p2p1 provides a
right adjoint for the inclusion Ci−1 → C and the counit is a monomorphism
in C. Now apply Lemma 4.8. �

The following result provides a natural construction of quasi-hereditary
rings which is due to Iyama [18].

Corollary 4.9. — Let A be an abelian category and suppose that
every object in A has a semiprimary endomorphism ring. Fix an object
X = X0 and set Xt+1 = rXt for t > 0, where rY =

∑
φ∈J(EndA(Y )) Imφ

for any object Y in A. Then the endomorphism ring of
⊕

t>0Xt is quasi-
hereditary.

Proof. — In [18] the result is stated for modules over artin algebras. The
same proof works in our more general setting.

We apply the criterion of Proposition 4.7. Set Ci = add(
⊕

t>iXt) for i >
0 and Λ = EndA(

⊕
t>0Xt). Thus we can identify proj Λ = C0. Note that
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Ci = 0 for i � 0 since J(EndA(X)) is nilpotent. The inclusion Ci+1 → Ci
admits a right adjoint pi given by pi(Xt) = Xt for t > i and pi(Xi) = Xi+1.
The counit pi(Y ) → Y is a monomorphism for all Y ; it is for Y = Xt the
identity when t > i and the inclusion rXi → Xi when t = i. This follows
from the fact that rXi → Xi induces a bijection

HomC(Xt, rXi)
∼−→ HomC(Xt, Xi)

for all t > i. It remains to observe that J(Ci)(X,Y ) ⊆ ICi+1(X,Y ) for all
X,Y ∈ Ci by construction. �

5. Exceptional sequences

In Theorem 1.1 we have seen a description of highest weight categories
via standard objects that suggests a close connection with the concept of
an exceptional sequence, as introduced in the study of vector bundles [3,
13, 14, 24]. We make this connection precise, and this involves the use of
derived categories.

For an exact category A let Db(A) denote its bounded derived cate-
gory [19].

Definition 5.1. — Let A be an abelian category. An object E in A is
exceptional if EndA(E) is a division ring and ExtpA(E,E) = 0 for all p > 0.
A sequence of objects (E1, . . . , En) in A is called exceptional if each Ei is
exceptional and ExtpA(Ei, Ej) = 0 for all i > j and p > 0. The sequence is
full if the objects E1, . . . , En generate Db(A) as a triangulated category, and
we say that the sequence is strictly full if the inclusion Filt(E1, . . . , En)→
A induces a triangle equivalence

Db(Filt(E1, . . . , En)) ∼−−→ Db(A) .

Note that a full exceptional sequence need not be strictly full; see Ex-
amples 5.9 and 5.10.

Theorem 5.2. — Let k be a commutative artinian ring and A a k-
linear abelian category such that HomA(X,Y ) and Ext1

A(X,Y ) are finitely
generated over k for all X,Y in A. For a sequence (E1, . . . , En) of objects
in A the following are equivalent:

(1) The sequence (E1, . . . , En) is a strictly full exceptional sequence.
(2) There is a highest weight category A′ and a triangle equivalence

Db(A) ∼−→ Db(A′) that maps (E1, . . . , En) to the sequence of stan-
dard objects in A′.
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A special instance of this theorem for vecor bundles on rational surfaces
is due to Hille and Perling [16]. For further examples of this connection,
relating derived categories of Grassmannians and modular representation
theory, see [4, 8].

I am grateful to Lutz Hille for pointing out the following criterion for an
exceptional sequence to be strictly full; it is an immediate consequence of
the proof of Theorem 5.2.

Remark 5.3 (Hille). — An exceptional sequence (E1, . . . , En) in A is
strictly full if any tilting object in Filt(E1, . . . , En) is also a tilting object
in A.

Recall that an object T of an exact category A is a tilting object if
ExtpA(T, T ) = 0 for all p > 0 and T generates Db(A) as a triangulated
category.
We need some preparations for the proof Theorem 5.2 and we begin with

the following well known fact [27, III.2.4].

Lemma 5.4. — Let A be an abelian (or exact) category with projective
generator P and set Λ = EndA(P ). The inclusion proj Λ → A induces a
triangle equivalence Db(proj Λ) ∼−→ Db(A) if all objects of A have finite
projective dimension.

Lemma 5.5. — Let A be a highest weight category with standard ob-
jects ∆1, . . . ,∆n. Then the inclusion Filt(∆1, . . . ,∆n) → A induces a tri-
angle equivalence

Db(Filt(∆1, . . . ,∆n)) ∼−−→ Db(A) .

Proof. — This follows from Lemma 5.4 once we have shown that every
object in A has finite projective dimension, keeping in mind that every
object in Filt(∆1, . . . ,∆n) admits a projective resolution in A that belongs
to Filt(∆1, . . . ,∆n).

The fact that every object in A has finite projective dimension is shown
by induction on n. Consider Ā = {X ∈ A | HomA(∆n, X) = 0} and for
each X in A the exact sequence (3.2). Then Ker εX and X̄ have finite
projective dimension in Ā since Ā is a highest weight category with n −
1 standard objects, by Lemma 3.3. Every projective object from Ā has
projective dimension at most one in A since it is of the form P̄ for some
projective P in A and εP is a monomorphism. Thus Ker εX and X̄ have
finite projective dimension in A. It follows that X has finite projective
dimension. �
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Remark 5.6. — The proof of Lemma 5.5 shows that Ext2n−1
A (−,−) = 0

for a highest weight category A with n standard objects. This bound is
well known [6].

Proposition 5.7. — The standard objects of a highest weight category
form a strictly full exceptional sequence.

Proof. — Let ∆1, . . . ,∆n be the exceptional objects. It follows from
Lemma 3.3 by induction on n that the sequence (∆1, . . . ,∆n) is excep-
tional. The sequence is strictly full by Lemma 5.5. �

The following lemma is the key for relating exceptional sequences and
highest weight categories; it is a variation of the “standardisation” which
Dlab and Ringel introduced in [7].

Lemma 5.8. — Let A be an abelian category and (E1, . . . , En) a se-
quence of objects satisfying the following:

(1) Ext1
A(Ei, Ej) = 0 for all i > j.

(2) Ext1
A(X,Ej) is finitely generated over EndA(Ej)op for all X ∈ A.

Then there are exact sequences

(5.1) 0 −→ Ui −→ Pi −→ Ei −→ 0 (1 6 i 6 n)

in A such that Ui belongs to Filt(Ei+1, . . . , En) for all i and
⊕n

i=1 Pi is a
projective generator of Filt(E1, . . . , En).

Proof. — We use induction on n. The induction hypothesis yields a col-
lection of exact sequences

0 −→ Ūi −→ P̄i −→ Ei −→ 0 (1 6 i < n)

in Filt(Ei+1, . . . , En−1). We modify them as follows. Using Ext-finiteness
we can form the universal extension

0 −→ Ern −→ Pi −→ P̄i −→ 0

in A, that is, the induced map HomA(Ern, En) → Ext1
A(P̄i, En) is sur-

jective. This implies Ext1
A(Pi, En) = 0. Also, Ext1

A(Pi,−) vanishes on
Filt(E1, . . . , En−1).
We claim that Pi is a projective object in Filt(E1, . . . , En). First observe

that each object X in Filt(E1, . . . , En) fits into an exact sequence 0 →
Esn → X → X̄ → 0 for some s > 0 with X̄ in Filt(E1, . . . , En−1), since En
is projective. Now apply Ext1

A(Pi,−) to this sequence.
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We obtain the following commutative diagram with exact rows and
columns

0 0

Ern Ern

0 Ui Pi Ei 0

0 Ūi P̄i Ei 0

0 0

and get exact sequences (5.1) with Ui in Filt(Ei+1, . . . , En), where Pn :=
En and Un := 0. It remains to observe that

⊕
i Pi is a projective generator

of Filt(E1, . . . , En). �

Proof of Theorem 5.2. — (1) ⇒ (2): Let (E1, . . . , En) be an excep-
tional sequence in A. Then it follows from Lemma 5.8 that Filt(E1, . . . , En)
admits a projective generator, say P . Set Λ = EndA(P ) and ∆i =
HomA(P,Ei) for 1 6 i 6 n. Then HomA(P,−) induces a fully faithful and
exact functor Filt(E1, . . . , En) → mod Λ, and mod Λ is a highest weight
category with standard objects ∆1, . . . ,∆n because of the sequences (5.1).
If (E1, . . . , En) is strictly full, then HomA(P,−) extends to a triangle equiv-
alence Db(A) ∼−→ Db(mod Λ) by Lemma 5.5.

(2) ⇒ (1): Let F : Db(A) ∼−→ Db(A′) be a triangle equivalence that
identifies (E1, . . . , En) with the sequence of standard objects (∆1, . . . ,∆n)
in A′. Then the sequence (E1, . . . , En) is exceptional, because (∆1, . . . ,∆n)
is exceptional by Proposition 5.7. An induction on n shows that F induces
an equivalence

Filt(E1, . . . , En) ∼−−→ Filt(∆1, . . . ,∆n) .

Here we use the fact that for each object X in Filt(E1, . . . , En) there is
some r > 0 and an exact sequence 0 → Ern → X → X ′ → 0 with X ′ in
Filt(E1, . . . , En−1). This equivalence extends to a triangle equivalence

Db(Filt(E1, . . . , En)) ∼−−→ Db(Filt(∆1, . . . ,∆n))
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making the following square of exact functors commutative

Db(Filt(E1, . . . , En)) Db(Filt(∆1, . . . ,∆n))

Db(A) Db(A′)

∼

F

where the vertical functors are induced by the inclusions Filt(E1, . . . , En)→
A and Filt(∆1, . . . ,∆n)→ A′ respectively. The vertical functor on the right
is an equivalence by Lemma 5.5, and it follows that the vertical functor on
the left is an equivalence. Thus the sequence (E1, . . . , En) is strictly full. �

I am grateful to Martin Kalck for providing the following example of a
full exceptional sequence that is not strictly full.

Example 5.9 (Kalck). — Fix a field k and consider the finite dimensional
k-algebra Λ given by the following quiver with relations.

1

2 3

α

β

γ
γβ = 0
αγ = 0

For each vertex i let Si denote the corresponding simple Λ-module and Pi its
projective cover. Then (S1, P2, P3) is an exceptional sequence in A = mod Λ
which generates Db(A) as a triangulated category. Set B = Filt(S1, P2, P3).
Then we have B = add(S1 ⊕ P2 ⊕ P3) but Ext2

Λ(S1, P2) 6= 0. Thus the
canonical functor Db(B)→ Db(A) is not full.

The following geometric example is more involved, and I am grateful to
Nathan Broomhead for allowing me to include this.

Example 5.10 (Broomhead). — Let X be the blow up of P3 at a torus
invariant point. We consider this as a toric variety given by a fan with rays:

{(1, 0, 0), (0, 1, 0), (0, 0, 1), (−1,−1,−1), (1, 1, 1)}.

Label the corresponding divisorsD1, D2, D3, D,E. Note thatD and E form
a basis of PicX, where Di ∼ D − E for i = 1, 2, 3. An explicit calculation
shows that

X = (O(−3D+ 2E),O(−2D+E),O(−D),O(−2D+ 2E),O(−D+E),O)

is a full strong exceptional sequence in A = cohX. Mutating this sequence,
we obtain a new full exceptional sequence

X ′ = (O(−2D + E),O(−D),O(−E),O(−2D + 2E),O(−D + E),O)
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which is not strictly full. Set B = Filt(X ′). Then

B = add(O(−2D+E)⊕O(−D)⊕O(−E)⊕O(−2D+2E)⊕O(−D+E)⊕O)

but
Ext2

X(O(−E),O(−2D + 2E)) 6= 0 .
Thus the canonical functor Db(B)→ Db(A) is not full.

We end this note by giving the proof of Theorem 1.1 from the introduc-
tion.

Proof of Theorem 1.1. — Let A = mod Λ for some artin algebra. Sup-
pose first that A is a highest weight category and fix the standard objects
∆1, . . . ,∆n. Then all but one of the conditions (1)–(4) hold by definition,
while (3) follows by induction on n from Lemma 3.3. The converse is an
immediate consequence of Lemma 5.8. �

Appendix A. Homological recollements

There are well known criteria for an inclusion of abelian categories A′ →
A to extend to a fully faithful functor between their derived categories [15,
17, 19], and closely related is the question when the inclusion induces iso-
morphisms

ExtpA′(X,Y ) ∼−→ ExtpA(X,Y )
for all X,Y ∈ A′ and p > 0.
The following proposition provides a necessary and sufficient criterion

for a colocalisation sequence of abelian categories

(A.1) A′ A A′′
i∗

i∗

j!

j!

to extend to a colocalisation sequence of derived categories.

Proposition A.1. — Suppose that A has enough projective objects
and that j! preserves projectivity. Then the following are equivalent:

(1) The counit j!j!(X) → X is a monomorphism for every projective
X ∈ A.

(2) There is an induced colocalisation sequence of triangulated cate-
gories

(A.2) D−(A′) D−(A) D−(A′′) .
i∗

i∗

j!

j!

ANNALES DE L’INSTITUT FOURIER



HIGHEST WEIGHT CATEGORIES AND RECOLLEMENTS 2699

Proof. — (1) ⇒ (2): Let P denote the full subcategory of projective
objects in A; the categories P ′ and P ′′ are defined analogously. We view
A′ and A′′ as full subcategories of A via i∗ and j!, respectively, and write
Filt(P ′,P ′′) for the smallest extension closed subcategory of A containing
P ′ and P ′′. This contains P since each projective object X fits into an exact
sequence

0 −→ j!j
!(X) −→ X −→ i∗i

∗(X) −→ 0 .
Note that the diagram (A.1) restricts to

(A.3) P ′ Filt(P ′,P ′′) P ′′
i∗

i∗

j!

j!

and all functors in this diagram are exact. The only functor for which
this is not obvious is i∗. In that case exactness follows from the snake
lemma because the counit j!j!(X)→ X is a monomorphism for every X in
Filt(P ′,P ′′). Thus the diagram (A.3) induces a colocalisation sequence

(A.4) D−(P ′) D−(Filt(P ′,P ′′)) D−(P ′′) .
i∗

i∗

j!

j!

We claim that the diagrams (A.2) and (A.4) are equivalent via triangle
equivalences induced by the inclusions

f ′ : P ′ → A′ f ′′ : P ′′ → A′′ f : Filt(P ′,P ′′)→ A .

This is clear for f ′ and f ′′, since A′ and A′′ have enough projective ob-
jects. For f it suffices to note that the inclusion P → Filt(P ′,P ′′) yields
a triangle equivalence D−(P) ∼−→ D−(Filt(P ′,P ′′)), since P equals the full
subcategory of projective objects of the exact category Filt(P ′,P ′′).

(2) ⇒ (1): Suppose there is a colocalisation sequence (A.2). Given a
projective object X in A, we have an exact triangle

j!j
!(X) −→ X −→ i∗i

∗(X) −→

in D−(A). This uses the fact that for complexes of projectives the derived
functors of i∗ and j! are defined degreewise via i∗ and j!, respectively.
Taking cohomology, we obtain an exact sequence

· · · −→ 0 −→ j!j
!(X) −→ X −→ i∗i

∗(X) −→ 0 −→ · · ·

in A. It follows that the counit j!j!(X)→ X is a monomorphism. �

Remark A.2. — There is a dual version of Proposition A.1 for locali-
sation sequences of abelian categories with enough injective objects. This
situation arises frequently, a typical example being a Grothendieck abelian
category A with localising subcategory A′.
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Remark A.3. — Proposition A.1 covers a couple of known criteria for an
inclusion of abelian categories A′ → A to extend to a fully faithful functor
between their derived categories. Consider a colocalisation sequence (A.1)
and suppose that A has enough projective objects.
(1) The criterion in [15, Proposition 4.8] requires that every object Y

in A′ admits an epimorphism X → Y in A′ with X projective in A. This
implies easily that j! preserves projectivity and that for each projective X
in A the counit j!j!(X)→ X is a split monomorphism.
(2) The criterion in [19, §12] requires for every epimorphism X → Y in

A with Y in A′ the existence of an epimorphism X ′ → Y in A′ that factors
through X → Y . Given our assumptions, this condition is equivalent to the
one in [15, Proposition 4.8].
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