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GEOMETRY AND ARITHMETIC OF CERTAIN LOG
K3 SURFACES

by Yonatan HARPAZ

Abstract. — In this paper we describe a classification of smooth log K3
surfaces whose geometric Picard group is trivial and which can be embedded as
complements of simple normal crossing anti-canonical divisors in del Pezzo surfaces.
We show that such a log K3 surface can be compactified into a del Pezzo surface
of degree 5, with a compactifying divisor a cycle of five (−1)-curves, and is in
fact determined up to isomorphism by the Galois action on the dual graph of the
compactifying divisor. When the ground field is the field of rational numbers and
the Galois action is trivial, we prove that the set of integral points is not Zariski
dense on any integral model. We also show that the Brauer Manin obstruction is
not the only obstruction for the integral Hasse principle on such log K3 surfaces,
even when their compactification is “split”.
Résumé. — Dans cet article, on décrit une classification de surfaces log K3

lisses dont le groupe de Picard géométrique s’annule, et qui peuvent être réalisées
comme compléments de diviseurs anti-canoniques à croisements normaux simples
dans les surfaces de del Pezzo. On montre qu’une telle surface log K3 admet une
compactification en une surface de del Pezzo de degree 5, avec un lacet de cinq
(−1)-courbes comme complément, et qu’elle est déterminée à isomorphisme près
par l’action de Galois sur le graphe dual du lacet. Quand le corps de base est
le corps de nombres rationnels et l’action de Galois est triviale, on montre que
l’ensemble des points entiers n’est pas Zariski dense sur n’importe quel modèle
entier. On montre également que l’obstruction de Brauer–Manin n’est pas la seule
obstruction au principe de Hasse entier pour de telles surfaces log K3, même quand
ils admettent une compactification « scindée ».

1. Introduction

Let k be a number field, S a finite set of places containing all archimedean
places and OS the ring of S-integers in k. By an OS-scheme we mean a
separated scheme of finite type over OS . A fundamental question in number
theory is to understand the set X (OS) of S-integral points. In this paper
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2168 Yonatan HARPAZ

we shall be interested in the case where X = X ⊗OS
k is a smooth log K3

surface.
When studying integral points on schemes, the following two questions

are of great interest.
(1) Given an OS-scheme X , is the set X (OS) non-empty?
(2) If the set X (OS) is non-empty, is it in any sense “large”?

Let us begin with the second question. Consider the problem of counting
points of bounded height with respect to some height function. Informally
speaking, the behaviour of integral points on smooth log K3 surfaces is
expected to parallel the behaviour of rational points on smooth and proper
K3 surfaces. The following is one of the variants of a conjecture appearing
in [13]:

Conjecture 1.1 ([13]). — Let X be a K3 surface over a number field
k, and let H be a height function associated to an ample divisor. Suppose
that X has geometric Picard number 1. Then there exists a Zariski open
subset U ⊆ X such that

#{P ∈ U(k)|H(P ) 6 B} = O(log(B)) .

When considering integral points on smooth log K3 surfaces, one might
expect to obtain a similar logarithmic estimate for the growth of integral
points. We note that the minimal geometric Picard number a non-proper
smooth log K3 surface may attain is 0 (although this is by no means the
“generic” case, see Remark 2.11). We then consider the following conjecture:

Conjecture 1.2. — Let k be a number field and S a finite set of places
of k containing the infinite places. Let X be a separated scheme over OS
such that X = X ⊗k X is a log K3 surface with Pic(X ⊗k k) = 0. Let H
be a height function associated to an ample divisor. Then there exists a
Zariski open subset U ⊆ X and a constant b such that

#{P ∈ X (Ok) ∩ U(k)|H(P ) 6 B} ' O(log(B)b) .

Our main goal in this paper is to give evidence for this conjecture. We
focus our attention on what can be considered as the simplest class of log
K3 surfaces, namely, those whose log K3 structure comes from a compact-
ification into a del Pezzo surface. We call such log K3 surfaces ample log
K3 surfaces.

The bulk of this paper is devoted to the classification of log K3 surfaces of
this “simple” kind over a general base field k of characteristic 0, under the
additional assumption that Pic(X ⊗k k) = 0. Our first result is that such
surfaces can always be compactified into a del Pezzo surface X of degree 5,
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with a compactifying divisor D = X \ X being a cycle of five (−1)-curve.
The Galois action on the dual graph of D then yields an invariant α ∈
H1(k,D5), where D5 is the dihedral group of order 10, appearing here as
the automorphism group of a cyclic graph of length 5, and considered with
a trivial Galois action (so that H1(k,D5) is just the set of conjugacy classes
of homomorphisms Γk −→ D5). We then obtain the following classification
theorem:

Theorem 1.3 (See Theorem 3.21 and Theorem 3.23). — The element
α = αX ∈ H1(k,D5) does not depend on the choice of X. Furthermore,
the association X 7→ αX determines a bijection between the set of k-
isomorphism classes of ample log K3 surfaces of Picard rank 0 and the
Galois cohomology set H1(k,D5).

Our second main result is a verification of Conjecture 1.2 for ample log
K3 surface of Picard rank 0 corresponding to the trivial class in H1(k,D5).
More precisely, we have the following

Theorem 1.4 (See Theorem 4.1). — Let X be a separated scheme of
finite type over Z such that X = X ⊗Z Q is an ample log K3 surface of
Picard rank 0 and such that αX = 0. Then the set of integral points X (Z)
is not Zariski dense.

We also give an example over Z in which αX 6= 0, and where integral
points are in fact Zariski dense. In particular, if Conjecture 1.2 holds in this
case then b must be at least 1. We would be very interested to understand
what properties of X control the value of b, when such a value exists.
Now consider Question (1) above, namely, the existence of integral points.

The study of this question often begins by considering the set of S-integral
adelic points

X (Ak,S) def=
∏
v∈S

X(kv)×
∏
v/∈S

X (Ov)

where X = X ⊗OS
k is the base change of X to k. If X (Ak,S) = ∅ one may

immediately deduce that X has no S-integral points. In general, it can
happen that X (Ak,S) 6= ∅ but X (OS) is still empty. One way to account
for this phenomenon is given by the integral version of the Brauer–Manin
obstruction, introduced in [4]. To this end one considers the set

X (Ak,S)Br(X) def= X (Ak,S) ∩X(Ak)Br(X)

given by intersecting the set of S-integral adelic points with the Brauer
set of X. When X (Ak,S)Br(X) = ∅ one says that there is a Brauer–Manin
obstruction to the existence of S-integral points.

TOME 67 (2017), FASCICULE 5



2170 Yonatan HARPAZ

Question 1.5. — Is there a natural class of OS-schemes for which we
should expect the integral Brauer–Manin obstruction to be the only one?

IfX is proper then the set of S-integral points on X can be identified with
the set of rational points on X. In this case, the class of smooth and proper
rationally connected varieties is conjectured to be a natural class where the
answer to Question 1.5 is positive (see [2]). If X is not proper, then the
question becomes considerably more subtle. One may replace the class of
rationally connected varieties by the class of log rationally connected va-
rieties (see [16]). However, even for log rationally connected varieties, the
integral Brauer–Manin obstruction is not the only one in general. One possi-
ble problem is that log rationally connected varieties may have a non-trivial
(yet always finite) fundamental group. In [3, Example 5.10] Colliot-Thélène
and Wittenberg consider a log rationally connected surface X over spec(Z)
with fundamental group Z/2. It is then shown that the Brauer–Manin ob-
struction is trivial, but one can prove that integral points do not exist by
applying the Brauer–Manin obstruction to the universal covering of X.
This can be considered as a version of the étale-Brauer Manin obstruction
for integral points. In [3, Example 5.9], Colliot-Thélène and Wittenberg
consider another surface X over spec(Z) given by the equation

(1.1) 2x2 + 3y2 + 4z2 = 1.

This time X is simply-connected and log rationally connected, and yet
X (Z) = ∅ with no integral Brauer–Manin obstruction. This unsatisfactory
situation motivates the following definition:

Definition 1.6. — Let X be a smooth, geometrically integral vari-
ety over a field k and let X ⊆ X be a smooth compactification such that
D = X \ X is a simple normal crossing divisor. Let Ck(D) be the geometric
Clemens complex of D (see [1, §3.1.3]). We will say that the compactifica-
tion (X,D) is split (over k) if the Galois action on Ck(D) is trivial and for
every point in Ck(D) the corresponding subvariety of D has a k-point. We
will say that X itself is split if it admits a split compactification.

Example 1.7. — Let k = R and let f(x1, . . . , xn) be a non-degenerate
quadratic form. The affine variety X given by

(1.2) f(x1, . . . , xn) = 1

is split if and only if the equation f(x1, . . . , xn) = 0 has a non-trivial
solution in k. Indeed, if f represents 0 over k then we have a split compact-
ification X ⊆ Pn given by f(x1, . . . , xn) = y2. On the other hand, if f does
not represent 0 then the space X(k) is compact (with respect to the real
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topology) and hence X cannot admit any split compactification. A similar
argument works when k is any local field.

Definition 1.8. — Let X be an OS-scheme. We will say that X is
S-split if X ⊗Ov

kv is split over kv for at least one v ∈ S.

The class of S-split schemes appears to be more well-behaved with re-
spect to S-integral points. As example 1.7 shows, counter-example (1.1) is
indeed not S-split.

Question 1.9. — Is the integral Brauer–Manin obstruction the only
obstruction for a simply-connected S-split OS-schemes?

Our last goal in this paper is to show that the answer to this question is
negative. More precisely:

Theorem 1.10 (See §4.2). — Let S = {∞}. Then there exists an S-
split log K3 surface over Z for which X(Z) = ∅ and yet the integral Brauer–
Manin obstruction is trivial.

To the knowledge of the author this is the first example of a simply-
connected S-split OS-scheme for which the Brauer–Manin obstruction is
shown to be insufficient.
Despite Theorem 1.10, we do believe that the answer to Question 1.9 is

positive when one restricts attention to log rationally connected schemes.
More specifically, we offer the following integral analogue of the conjecture
of Colliot-Thélène (see [2]):

Conjecture 1.11. — Let X be an S-split OS-scheme such that X =
X ⊗OS

k is a simply connected, log rationally connected variety. If
X (Ak,S)Br(X) 6= ∅ then X(OS) 6= ∅.

1.1. Acknowledgments

The author is grateful to the Fondation Sciences Mathématiques de Paris
for its support, and to Olivier Wittenberg for numerous enlightening con-
versations surrounding the topic of this paper.

2. Preliminaries

Let k be a field of characteristic 0. We will denote by k a fixed algebraic
closure of k and by Γk = Gal(k/k) the absolute Galois group of k. Given a
variety X over k and a field extension L/k, we will denote by XL = X⊗kL
the base change of X to L. Let us begin with some basic definitions.

TOME 67 (2017), FASCICULE 5
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Definition 2.1. — Let Z be a separated scheme of finite type over k.
By a geometric component of Z we mean an irreducible component of Zk.
The set C(Z) of geometric components of Z is equipped with a natural
action of Γk and we will often consider it as a Galois set. If Z ⊂ Y is an
effective divisor of smooth variety Y then we will say that Z has simple
normal crossing if each geometric component of Z is smooth and for every
subset I ⊆ C(Z) the intersection of {Di}i∈I is either empty or pure of
dimension dim(Z)−|I|+1 and transverse at every point. If dim(Z) = 1 this
means that each component of Z is a smooth curve and each intersection
point is a transverse intersection of exactly two components.

Definition 2.2. — Let Y be a smooth surface over k and D ⊆ Y a
simple normal crossing divisor. The dual graph of D, denoted G(D), is
the graph whose vertices are the geometric components of D and whose
edges are the intersection points of the various components (since D is a
simple normal crossing divisor no self intersections or triple intersections are
allowed). Note that two distinct vertices may be connected by more than
one edge. We define the splitting field of D to be the minimal extension
L/k such that the action of ΓL on G(D) is trivial. In other words, the
minimal extension over which all components and all intersection points
are defined.

Definition 2.3. — Let X be a smooth geometrically integral surface
over k. A simple compactification of X is a smooth compactification ι :
X ↪→ X (defined over k) such that D = X \ X is a simple normal crossing
divisor.

Definition 2.4. — Let X be a smooth geometrically integral surface
over k. A log K3 structure on X is a simple compactification (X,D, ι) such
that

[D] +KX = 0
(where KX ∈ Pic(X) is the canonical class of X). A log K3 surface is a
smooth, geometrically integral, simply connected surface X equipped with
a log K3 structure (X,D, ι).

Remark 2.5. — The property of being simply connected in Definition 2.4
is intended in the geometric since, i.e., the étale fundamental group of the
base change Xk is trivial.

Remark 2.6. — Definition 2.4 is slightly more restrictive then other
definitions which appear in the literature (see, e.g, [9], [15]). In particular,
many authors do not require X to be simply-connected, but require instead
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the weaker property that there are no global 1-forms on X which extend
to X with logarithmic singuliarites along D. In another direction, some
authors relax the condition that [D] + KX = 0 and replace it with the
condition that dimH0(X,n([D] + KX)) = 1 for all n > 0. In this more
general context one may consider Definition 2.4 as isolating the simplest
kind of log K3 surfaces. It will be interesting to extend the questions of
integral points considered in this paper to the more general setting as well.

Proposition 2.7. — Let X be a log K3 surface and (X,D, ι) a log K3
structure on X. Then either D = ∅ and X = X is a (proper) K3 surface or
D 6= ∅ and Xk is a rational surface.

Proof. — If D = ∅ then X = X is proper and KX = KX = 0. Since
X is also simply connected it is a K3 surface. Now assume that D 6= ∅.
Since −KX = [D] is effective and X is smooth and proper it follows that
H0(X,mKX) = 0 for every m > 1, and hence X has Kodaira dimen-
sion −∞. In light of Castelnuevo’s rationality criterion it will suffice to
prove that H1(Xk,Z/n) = 0 for every n, or better yet, that X is simply
connected. But this now follows from our assumption that X is simply-
connected: indeed, any irreducible étale covering of X must restrict to an
irreducible trivial covering over X, and must therefore have degree 1. �

Proposition 2.7 motivates the following definition:

Definition 2.8. — We will say that a log K3 structure (X,D, ι) is
ample if [D] ∈ Pic(X) is ample. Note that in this case X is a del Pezzo
surface. We will say that a log K3 surface is ample if it admits an ample
log K3 structure.

Remark 2.9. — Any ample log K3 surface is affine, as it is the com-
plement of an ample divisor. This observation can be used to show that
not all (non-proper) log K3 surfaces are ample. For example, if X −→ P1

is a rational elliptic surface (with a section) and D ⊆ X is the fiber over
∞ ∈ P1(k) then X = X \ D is a log K3 surface admitting a fibration
f : X −→ A1 into elliptic curves. As a result, any regular function on X is
constant along the fibers of f and hence X cannot be affine.

Now let X be a log K3 surface. Since Xk is assumed to be simply con-
nected the middle term in the short exact sequence

0 −→ k[X]∗/(k[X]∗)n −→ H1(Xk,Z/n) −→ Pic(Xk)[n] −→ 0

vanishes, implying that Pic(Xk) is torsion free and k[X] is cotorsion free,
i.e., divisible. In particular, every invertible function on Xk is an n’th power

TOME 67 (2017), FASCICULE 5
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of any n and hence constant. Since Pic(Xk) is torsion free and finitely
generated, it is isomorphic to Zr for some r. The integer r is called the
Picard rank of X. We note that this invariant should arguably be called the
geometric Picard number, but since it will be the only Picard rank under
consideration, we opted to drop the adjective “geometric”. The following
observation will be useful in identifying log K3 surfaces of Picard rank 0:

Lemma 2.10. — Let X be a smooth, geometrically integral variety over
k and (X,D, ι) a simple compactification of X. Then the following condi-
tions are equivalent:

(1) Pic(Xk) = 0 and k∗[X] = k
∗.

(2) The geometric components of D form a basis for Pic(Xk).

Proof. — Let V be the free abelian group generated by the geometric
components of D. We may then identify H1

D(Y,Gm) with V , yielding an
exact sequence

0 −→ k
∗[X] −→ k

∗[X] −→ V −→ Pic(Xk) −→ Pic(Xk) −→ 0 .

Since X is proper we have k∗[X] = k
∗. We hence see that condition (1)

above is equivalent to the map V −→ Pic(Xk) being an isomorphism. �

Remark 2.11. — Let X be a smooth proper rational surface and D ⊆ X
a simple normal crossing divisor such that [D] = −KX and such that the
components of D are of genus 0 and form a basis for Pic(Xk). By the
classical work of Looijenga ([10], see also [5, Lemma 3.2]), the pair (X,D) is
rigid, i.e., does not posses any first order deformations (nor any continuous
families of automorphisms). By Lemma 2.10 we may hence expect that
any type of moduli space of log K3 surfaces of Picard rank 0 will be 0-
dimensional. In particular, the classification problem for such surfaces over
a non-algebraically closed field naturally leads to various Galois cohomology
sets with coefficients in a discrete groups.

We shall now describe two examples of ample log K3 surfaces with Picard
rank 0.

Example 2.12. — Let X be the blow-up of P2 at a point P ∈ P2(k). Let
C ⊆ P2 be a quadric passing through P and let L ⊆ P2 be a line which does
not contain P and meets C at two distinct points Q0, Q1 ∈ P2(k), both
defined over k. Let C̃ be the strict transform of C in X. Then D = C̃ ∪ L
is a simple normal crossing divisor, and it is straightforward to check that
[D] = −KX . As we will see in Remark 3.29 below, the smooth variety
X = X \ D is simply connected, and so X is an ample log K3 surface.
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Since [L] and [C̃] form a basis for Pic(Xk), Lemma 2.10 implies that X has
Picard rank 0.
To construct explicit equations for X, let x, y, z be projective coordinates

on P2 such that L is given by z = 0. Let f(x, y, z) be a quadratic form
vanishing on C and let g(x, y, z) be a linear form such that the line g = 0
passes through P and Q1. Then X is isomorphic to the affine variety given
by the equation

f(x, y, 1)t = g(x, y, 1) .
By a linear change of coordinates we may assume that Q0 = (1, 0, 0) and
Q1 = (0, 1, 0), in which case the equation above can be written as

(axy + bx+ cy + d)t = ex+ f .

For some a, b, c, d, e, f ∈ k. We will later see that the k-isomorphism type
of this surface does not depend, in fact, on any of these parameters.

Example 2.13. — Let L = k(
√
a) be a quadratic extension of k. Let

P0, P1 ∈ P2(L) a Gal(L/k)-conjugate pair of points and let X be the blow-
up of P2 at P0 and P1. Let L ⊆ P2 be a line defined over k which does
not meet {P0, P1} and let L1, L2 ⊆ P2 be a Gal(L/k)-conjugate pair of
lines such that L1 contains P1 but not P2 and L2 contains P2 but not P1.
Assume that the intersection point of L1 and L2 is not contained in L. Let
L̃1, L̃2 be the strict transforms of L1 and L2 in X. Then D = L ∪ L̃1 ∪ L̃2
is a simple normal crossing divisor, and it is straightforward to check that
[D] = −KX . As we will see in Remark 3.29 below the smooth variety
X = X \ D is simply connected and so X is an ample log K3 surface.
Since [L], [L̃1] and [L̃2] form a basis for Pic(Xk), Lemma 2.10 implies that
X has Picard rank 0.

To construct explicit equations for X, let x, y, z be projective coordinates
on P2 such that L is given by z = 0. Let f1(x, y, z) and f2(x, y, z) be linear
forms defined over L which vanish on L1 and L2 respectively. Let g(x, y, z)
be a linear form defined over k such that the line g = 0 passes through P1
and P2. Then X is isomorphic to the affine variety given by the equation

f1(x, y, 1)f2(x, y, 1)t = g(x, y, 1) .

By a linear change of variables (over k) we may assume that the intersection
point of L1 and L2 is (0, 0, 1) and that f(x, y) = x +

√
ay, in which case

the equation above becomes

(x2 − ay2)t = bx+ cy + d.

We will later see that the k-isomorphism type of this surface only depends
on the quadratic extension L/k, i.e., only on the class of a mod squares.

TOME 67 (2017), FASCICULE 5
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3. Geometry of ample log K3 surfaces with Picard rank 0

Let k be a field of characteristic 0. The goal of this section is to classify all
ample log K3 surfaces X/k whose Picard rank is 0. We begin in §3.1, where
we consider the following question: given a log K3 surface, how unique is
the choice of a log K3 structure? To answer this question it is convenient
to organize the various log K3 structures into a category Log(X). We note
that the categorical structure here is somewhat degenerate: between every
two log K3 structures there is at most a single morphism. We may hence
consider Log(X) also as a partially order set, or a poset. The main result
of 3.1 is that the poset Log(X) is cofiltered. In this context this statement is
equivalent to the following concrete claim: for every two log K3 structures
on X, there is a third log K3 structure which dominates both of them. In
fact, we will prove a more precise result (see Theorem 3.10): for every two
log K3 structures on X, we can pass from one to the other by a sequence
of blow-ups and blow-downs of a particular type, which, following [5], we
call corner blow-ups/blow-downs.
The above result allows one to easily relate any two log K3 surfaces,

and can hence be considered as stating a type of uniqueness for log K3
structures. We will continue this approach in §3.2, where we will show that
any ample log K3 surface of Picard number 0 admits a log K3 structure
of a particular form, namely, a log K3 structure (X,D, ι) such that X is
a del Pezzo surface of degree 5 and D is a cycle of five (−1)-curves (see
Proposition 3.16). Identifying the automorphism group of a cyclic graph
of length 5 with the Dihedral group D5 of order 10, the Galois action on
D naturally yields an invariant α ∈ H1(k,D5). The uniqueness result of
§3.1 then comes into play in showing that this invariant depends only on
X itself. The main classification theorem is subsequently formulated and
proven in §3.3 (see Theorem 3.23). Finally, in §3.4 we consider some special
cases where the invariant α ∈ H1(k,D5) has a particularly simple form, and
give explicit equations for the associated log K3 surfaces.

3.1. The category of log K3 structures

Definition 3.1. — Let X be a log K3 surface. We will denote by
Log(X) the category whose objects are log K3 structures (X,D, ι) and
whose morphisms are maps of pairs f : (X,D) −→ (X ′, D′) which respect
the embedding of X.

ANNALES DE L’INSTITUT FOURIER
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Between every two objects of Log(X) there is at most one morphism. We
may hence think of Log(X) as a partially ordered set (poset), where we
say that (X,D, ι) > (X ′, D′, ι′) if there exists a morphism f : (X,D) −→
(X ′, D′) in Log(X). Let us recall the following notion

Definition 3.2. — Let A be a partially ordered set. One says that A is
cofiltered if for every two elements x, y ∈ A there exists an element z ∈ A
such that z > x and z > y.

Our main motivation in this section is to show that if X is a log K3
surface then the partially ordered set Log(X) of log K3 structures on X is
cofiltered: every two log K3 structures are dominated by a common third
(see Corollary 3.11 below). In that sense the choice of a log K3 structure
on a given log K3 surface is “almost unique”. We begin with the following
well-known statement (see the introduction section in [5]), for which we
include a short proof for the convenience of the reader.

Proposition 3.3. — Let X be a smooth, projective, (geometrically)
rational surface over k and D ⊆ X a simple normal crossing divisor such
that [D] = −KX . Then one of the following option occurs:

(1) D is a geometrically irreducible smooth curve of genus 1.
(2) The geometric components of D are all of genus 0, and the dual

graph of D is a circle containing at least two vertices.

Proof. — Since this is a geometric statement we may as well extend our
scalars to k. According to [6, Lemma II.5] the underlying curve of D is
connected. Now let D0 ⊆ D be a geometric component and let E ⊆ D be
the union of the geometric components which are different from D′. Since
[D0] + [E] = [D] is the anti-canonical class the adjunction formula tells us
that

2− 2g(D0) = [D0] · ([D]− [D0]) = [D0] · [E] .

Since D0 and E are effective divisors without common components it fol-
lows that [D0] · [E] > 0 and hence either g(D0) = 1 and [D0] · [E] = 0 or
g(D0) = 0 and [D0] · [E] = 2. Since D is connected it follows that D is
either a genus 1 curve or a cycle of genus 0 curves. �

Let us now establish some notation. Let X be a log K3 surface of Picard
rank 0 equipped with a log K3 structure (X,D, ι). We will denote by d =
[D]·[D] and n = rank(Pic(Xk)). We note that since Pic(Xk) = 0 the surface
X cannot be proper and so Proposition 2.7 implies that Xk is rational. It
follows that d and n are related by the formula n = 10 − d. We will refer
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to d as the degree of the log K3 structure (X,D, ι). If (X,D, ι) is ample
then d > 0.

Since X has Picard rank 0, Lemma 2.10 implies that the number of
geometric components of D is equal to n. According to Proposition 3.3, we
either have that D is a smooth curve of genus 1 and d = 9 or D is a cycle
of n > 2 genus 0 curves. The case where D is a curve of genus 1 and d = 9
cannot occur, because then X = P2 and no genus 1 curve forms a basis for
Pic(P2). Hence D is necessarily a cycle of n genus 0 curves. In particular,
we have the following corollary:

Corollary 3.4. — LetX be a log K3 surface of Picard rank 0 equipped
with an ample log K3 structure (X,D, ι) of degree d. Then 1 6 d 6 8 and
D is a cycle of 10− d genus 0 curves.

Definition 3.5. — Let X be a log K3 surface equipped with a log
K3 structure (X,D, ι). If D1, . . . , Dn are the geometric components of D,
numbered compatibly with the cyclic order of the dual graph G(D) of D
(see Proposition 3.3), then we will denote by ai = [Di] · [Di]. Following
the terminology of [5] we will refer to (a1, . . . , an) as the self-intersection
sequence of (X,D, ι). We note that the self-intersection sequence is well-
defined up to a dihedral permutation.

Example 3.6. — Let X be a log K3 surface of the form described in
Example (2.12), and let (X,D, ι) be the associated log K3 structure. Then
X is a del Pezzo surface of degree 8 and the components of D consist of
a rational curve L with self intersection 1 and a rational curve C̃ with
self intersection 3, both defined over k. Furthermore, by construction the
intersection points of C̃ and L are defined over k. It follows that the self-
intersection sequence of (X,D, ι) is (3, 1) and the Galois action on G(D)
is trivial.

Example 3.7. — Let X be a log K3 surface of the form described in
Example (2.13), and let (X,D, ι) be the associated log K3 structure. Then
X is a del Pezzo surface of degree 7 and the components of D consist of a
rational curve L with self intersection 1 and two Gal(k(

√
a)/k)-conjugate

rational curves L̃1, L̃2, defined over k(
√
a), each with self intersection 0. We

hence see that the self-intersection sequence of (X,D, ι) is (0, 0, 1) and the
Galois action on G(D) factors through the quadratic extension k(

√
a)/k,

where the generator of Gal(k(
√
a)/k) acts by switching the two 0-curves.

In particular, the splitting field of D is k(
√
a).

We shall now consider a basic construction which allows one to change
the log K3 structure of a given log K3 surface by performing blow-ups and
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blow-downs. We will see below that any two log K3 structures on a given
log K3 surface can be related to each other by a sequence of such blow-ups
and blow-downs.

Construction 3.8. — Let X be a log K3 surface and let (X,D, ι)
be a log K3 structure on X of degree d and self-intersection sequence
(a1, . . . , an). If the intersection point Pi = Di ∩ Di+1 is defined over k,
then we may blow-up X at Pi and obtain a new simple compactification
(X ′, D′, ι′). It is then straightforward to verify that [D′] = −K

X
′ and hence

(X ′, D′, ι′) is a log K3 structure of degree d − 1 and self-intersection se-
quence (a1, . . . , ai − 1,−1, ai+1 − 1, ai+2, . . . , an). If ai, ai+1 6= −1 then a
direct application of the adjunction formula shows that P cannot lie on any
(−1)-curve ofX. If in addition (X,D, ι) is ample and d > 1 then (X ′, D′, ι′)
is ample by the Nakai–Moishezon criterion. Following the notation of [5]
we will refer to such blow-ups as corner blow-ups.
Alternatively, if n > 3 and for some i = 1, . . . , n, the geometric com-

ponent Di is a (−1)-curve defined over k, then we may blow-down X and
obtain a new simple compactification (X ′, D′, ι′). It is then straightfor-
ward to verify that [D′] = −K

X
′ and hence (X ′, D′, ι′) is a log K3 struc-

ture of degree d+ 1 and self-intersection sequence (a1, . . . , ai−1 + 1, ai+1 +
1, ai+2, . . . , an). Furthermore, if (X,D, ι) is ample then so is (X ′, D′, ι′).
Following the notation of [5] we will refer to such blow-downs as corner
blow-downs.

Remark 3.9. — Let X be a log K3 surface of Picard rank 0 and let
(X,D, ι) be an ample log K3 structure on X. Let X ′ −→ X be a new log
K3 structure obtained by a corner blow-up (see Construction 3.8). It is
then clear that the Galois action on the dual graph of D is trivial if and
only if the Galois action on the graph of D′ is trivial. In particular, corner
blow-ups preserve the splitting field of the compactification.

Theorem 3.10. — Let X be a log K3 surface and let (X,D, ι) and
(X ′, D′, ι′) be two log K3 structures. Then (X ′, D′, ι′) can be obtained
from (X,D, ι) by first performing a sequence of corner blow-ups and then
performing a sequence of corner blow-downs.

Proof. — Clearly we may assume that D and D′ are not empty. Since k
has characteristic 0 we may find a third simple compactification (Y,E, ιY ),
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equipped with compatible maps

Y
p

��

q

  
X X

′

where both p and q can be factored as a sequence of blow-down maps
(defined over k)

(Y,E) = (Xm, Dm) pm−→ (Xm−1, Dm−1) pm−1−→ . . .
p1−→ (X0, D0) = (X,D)

and

(Y,E) = (X ′k, D′k) qk−→ (X ′k−1, D
′
k−1) qk−1−→ . . .

q1−→ (X ′0, D′0) = (X ′, D′)

such that the center of pi is contained in Di−1 and the center of qj is
contained in D′j−1. Furthermore, we may choose Y to be such that
m+ k attains its minimal possible value. Since D and D′ are simple normal
crossing divisors it follows that each Di and D′j are simple normal cross-
ing divisors. We further note that every geometric fiber of either p or q is
connected.
According to Proposition 3.3, D is either a geometrically irreducible

smooth curve of genus 1 or a cycle of genus 0 curves. Let us first treat
the case where D is a curve of genus 1. Let D̃ be the strict transform of D
in Y . Since D̃ has genus 1 the image q(D̃) cannot be a point, and hence
q(D̃) = D′. Since D′ is smooth and the fibers of q are connected q must
induce an isomorphism D̃

∼=−→ D′. It follows that the birational transfor-
mation X // X

′ extends to an well-defined map X −→ X
′. Arguing

the same in the other direction we get that X
′ // X is everywhere

defined as well and hence we get an isomorphism X ∼= X
′. In particular,

the desired result holds vacuously.
Now assume that D is a cycle of genus 0 curves. By the above argument

D′ must be a cycle of genus 0 curves as well. In particular, the dual graphs
G(D) and G(D′) are circles. We shall now define for each i = 0, . . . ,m
a simple circle Ci ⊆ G(Di) as follows. For i = 0 we set C0 = G(D0).
Now suppose that Ci ⊆ G(Di) has been defined for some i > 0. Recall that
Xi+1 is obtained from Xi by blowing up a point on Di. If the blow-up point
is not an intersection point corresponding to an edge of Ci then the strict
transforms of the components in Ci form a simple circle in G(Di+1) and we
define Ci+1 to be the resulting circle. If the blow-up point is an intersection
point corresponding to an edge of Ci then the sequence of strict transforms
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of the components in Ci forms a simple chain, and we may close this chain to
a simple circle by adding the exceptional curve ofXi+1. We then define Ci+1
to be the resulting circle. Similarly, we may define a circle C ′j ⊆ G(D′j) for
j = 0, . . . , k. These constructions yield two simple circles in the dual graph
G(E) = G(Dm) = G(D′k), which must coincide since H1(|G(E)|,Z) ∼= Z
(where | • | denotes geometric realization) and so G(E) cannot contain
two distinct simple circles. In particular, the geometric components of D′i
which belong to C ′i are exactly the geometric components which are images
of geometric components lying in Cm ⊆ G(Dm) = G(D′k).
We now claim that the minimality of (Y,E) implies that Ci = G(Di) for

every i. Indeed, let i0 > 0 be the smallest index such that Ci0 6= G(Di0).
This means that Xi0 is obtained from Xi0−1 by blowing up a point P ∈
Di0−1 which lies on exactly one geometric component D0

i0−1 ⊆ Di0−1. We
may then define inductively D0

i ⊆ Di for i > i0 to be the strict transform
of D0

i−1. This gives us in particular a component E0 = D0
m in E = Dm. Let

j0 be the smallest index such that the image of E0 in D′j0
is 1-dimensional.

We may now define for each j > j0 the component D1
j ⊆ D′j to be the

image of E0. In addition, we may define for each i > i0 the curve Ti ⊆ Di

which is the inverse image of P , and for each j > j0 the curve T ′j ⊆ D′j
which is image of Tm ⊆ Dm = E. We note that Ti need not be irreducible,
but must be connected. By construction, no geometric component of Ti is
a vertex of Ci and no geometric component of T ′i is a vertex of C ′i. We
now claim that Tj0 is a point. If j0 = 0 then this follows from the fact
that every component of D′0 is a vertex of C ′0. If j0 > 0 then by the choice
of j0 the map qj0 : X ′j0

−→ X
′
j0−1 must be the blow-down of D1

j0
. Since

D′j0−1 has simple normal crossings it follows that D1
j0

can have at most two
intersection points with other components of D′j0

. Since D1
j0

belongs to the
circle C ′j0

it already has two intersection points with components in C ′j0
,

and hence these must be the only intersection points on D1
j0
. This implies

that T ′j0
is a point (otherwise there would be a third intersection point of

D1
j0

with some component of T ′j0
).

Let r be the number of components of Tm ⊆ Dm. We now observe that
for i > i0 the only component of Di which meets a component of Ti is D0

i ,
and that for j > j0 the only component of D′j which meets a component of
T ′j is D1

j . We may hence rearrange the order of blow-ups and blow-downs
so that the components of Tm are added in steps i = m− r+ 1, . . . ,m and
are blown-down in steps j = k, . . . , k− r+ 1. The minimality of (Y,E) now
implies that r = 0. It follows that Ci = G(Di) for every i as desired, and
hence C ′j = G(D′j) for every j as well. In particular, E is a circle of curves,
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(Y,E) is obtained from (X,D) by a sequence of blowing up intersection
points, and (X ′, D′) is obtained from (Y,E) by a sequence of blowing down
components. �

Corollary 3.11. — Let X be a log K3 surface. Then the category
Log(X) of log K3 structures on X is cofitlered. In particular, if (X,D, ι)
and (X ′, D′, ι′) are two log K3 structures then there exists a third log
K3 structure (Y,E, η) equipped with maps p : (Y,E) −→ (X,D) and
q : (Y,E) −→ (X ′, D′) which respect the embedding of X.

Corollary 3.12. — Let X be a log K3 surface. Then the splitting
fields of all log K3 structures on X are identical. In particular, the splitting
field is an invariant of X itself.

Proof. — Combine Theorem 3.10 and Remark 3.9. �

3.2. The characteristic class

In this subsection we will focus our attention on ample log K3 surfaces of
Picard rank 0. We will show that every such surface admits an ample log K3
structure of degree 5 and self-intersection sequence (−1,−1,−1,−1,−1).
Associated with such a log K3 structure is a natural characteristic class
α ∈ H1(k,D5). We will show that this class is independent of the choice
of a log K3 structure, and is hence an invariant of X itself. We begin with
some preliminary lemmas.

Lemma 3.13. — Let X be a log K3 surface of Picard rank 0 and let
(X,D, ι) be a log K3 structure on X of degree d and self-intersection se-
quence (a1, . . . , an). Then ∑

i

ai = 3d− 20 .

Proof. — Since the geometric components of D form a cycle we have

d = [D] · [D] =
n∑
i=1

[Di] · [Di] + 2
n−1∑
i=1

[Di][Di+1] + 2[Dn] · [D0] =
∑
i

ai + 2n

and so ∑
i

ai = d− 2n = 3d− 20

as desired. �
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Corollary 3.14. — Let X be a smooth, simply connected surface and
(X,D, ι) an ample log K3 structure on X of degree d. Then d > 5.

Proof. — Let (a1, . . . , an) be the self-intersection sequence of (X,D, ι).
Since X is a del Pezzo surface we have that ai > −1 for every i = 1, .., n.
By Lemma 3.13 we get that

3d− 20 =
∑
i

ai > −n = d− 10

and so d > 5, as desired. �

Proposition 3.15. — Let X be a log K3 surface of Picard rank 0 and
let (X,D, ι) be an ample log K3 structure of degree 8. Then (X,D, ι) has
self-intersection sequence (3, 1).

Proof. — Let us write D = D1 ∪D2 with D1, D2 the geometric compo-
nents. According to Lemma 2.10 the classes {[D1], [D2]} form a basis for
Pic(Xk). Let (a1, a2) be the self-intersection sequence ofD. By Lemma 3.13
we have a1 + a2 = 4. Since X is a del Pezzo surface we have ai > −1.
Hence, up to switching [D1] and [D2], the only options for (a1, a1) are
(5,−1), (4, 0), (3, 1) and (2, 2). By Proposition 3.3 we have [D1] · [D2] = 2.
Hence the intersection matrix of D1 and D2 is given by

M =
(
a1 2
2 a2

)
.

Since D1, D2 form basis the determinant of this matrix must be ±1. We
hence see that the only option for the self-intersection sequence is (a1, a2) =
(3, 1). �

We are now in a position to show that any ample log K3 surface of
Picard rank 0 admits a log K3 structure of self-intersection sequence
(−1,−1,−1,−1,−1).

Proposition 3.16. — Let X be an ample log K3 surface of Picard
rank 0. Then X admits an ample log K3 structure of degree 5 and self-
intersection sequence (−1,−1,−1,−1,−1).

Proof. — Let (X,D, ι) be an ample log K3 structure on X of degree
d > 5 and self-intersection sequence (a1, . . . , an). First assume that d = 5.
By Lemma 3.13 we have a1 + a2 + a3 + a4 + a5 = −5. Since X is a del
Pezzo surface each ai > −1 and so ai = −1 for every i = 1, . . . , 5.

Now assume that d = 6. In this case n = 4 and by Lemma 3.13 we have
a1 + a2 + a3 + a4 = −2 and hence D contains either two or three (−1)-
curves. The possible self-intersection sequences, up to a dihedral permuta-
tion, are then (−1,−1, 0, 0), (−1, 0,−1, 0) and (−1,−1,−1, 1). Let us show
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that the self-intersection sequence (−1, 0,−1, 0) cannot occur. For this, one
may base change to k. One may then blow-down the two (−1)-curves and
obtain a new ample log K3 structure of degree 8 and self-intersection se-
quence (2, 2). According to Proposition 3.15 this is impossible. It follows
that the self-intersection sequence of (X,D, ι) is either (−1,−1, 0, 0) or
(−1,−1,−1, 1).

If the self-intersection sequence is (−1,−1, 0, 0) then the intersection
point P of the two 0-curves must be Galois invariant. We may then perform
a corner blow-up at P and obtain new ample log K3 structure of degree 5
and self-intersection sequence (−1,−1,−1,−1,−1). If the self-intersection
sequence is (−1,−1,−1, 1) then the (−1)-curve that meets two other (−1)-
curves must be defined over k. We may then blow it down to obtain a new
ample log K3 structure of degree 7 and self-intersection sequence (0, 0, 1).
In this log K3 structure the two intersection points which lie on the 1-curve
must be defined over k as a pair. We may then perform a corner blow-up
at these two points to obtain an ample log K3 structure of degree 5 and
self-intersection sequence (−1,−1,−1,−1,−1). This covers the case d = 6.
Let us now assume that d = 7. In this case n = 3 and by Lemma 3.13

we have a1 + a2 + a3 = 1. The possible self-intersection sequences (up
to permutation) are then (−1,−1, 3), (−1, 0, 2), (−1, 1, 1) and (0, 0, 1). We
now claim that the self-intersection sequences (−1,−1, 3) and (−1, 1, 1)
cannot occur. Working again over k, we may blow-down one of the (−1)-
curves and get an ample log K3 structure of degree 8 and self-intersection
sequence (0, 4) in the first case and self-intersection sequence (2, 2) in the
second. According to Proposition 3.15, this is impossible. We next observe
that (−1, 0, 2) has a trivial symmetry group and that the symmetry group
of (0, 0, 1) fixes the vertex between the two 0-curves. In particular, in either
case there must exist an intersection point which is Galois invariant and
which does not lie on any (−1)-curve. Performing a corner blow-up at this
point we obtain an ample log K3 structure of degree 6 and we can proceed
as above.
Let us now assume that d = 8. By Proposition 3.15 the self-intersection

sequence must be (1, 3). Blowing up the two intersection points we get an
ample log K3 structure of degree 6, and we may proceed as above. �

Remark 3.17. — Let X be a log K3 surface and let (X,D, ι) be an
ample log K3 structure with splitting field L (see Definition 2.2). Combining
Proposition 3.16 and Corollary 3.12 we may conclude that X admits an
ample log K3 structure of self-intersection sequence (−1,−1,−1,−1,−1)
and splitting field L.
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Remark 3.18. — According to [14, Theorem 2.1] every del Pezzo surface
of degree 5 is rational over its ground field. Proposition 3.16 now implies
that every ample log K3 surface of Picard rank 0 has a point defined over k.

According to Proposition 3.16 every ample log K3 surface of Picard
rank 0 admits an ample log K3 structure (X,D, ι) such that X is a del
Pezzo surface of degree 5 and D is a cycle of five (−1)-curves. Recall that
we have denoted by G(D) the dual graph of D. In particular, in this case
G(D) is a circle of length 5. Let

D5 =
〈
σ, τ |στσ−1 = τ−1, τ5 = 1

〉
be the dihedral group of order 10. A choice of two neighbouring vertices
v0, v1 ∈ G(D) yields an isomorphism Tv0,v1 : D5 −→ Aut(G(D)) which
sends τ to a the rotation of G(D) that maps v0 to v1 and τ to the reflection
of G(D) which fixes v0. Since Aut(G(D)) acts transitively on the set of
ordered pairs of neighbours in G(D) it follows that the isomorphism Tv0,v1

is well-defined up to conjugation.

Definition 3.19. — LetX be a smooth log K3 surface. Given an ample
log K3 structure (X,D, ι) of self-intersection sequence (−1,−1,−1,−1,−1)
we will denote by

ρX : Γk −→ Aut(G(D))
the action of the Galois group Γk on the dual graph G(D) of D. Choosing
two neighbouring vertices v0, v1 ∈ G(D) we denote by

ρv0,v1

X

def= T−1
v0,v1

◦ ρX : Γk −→ D5

the corresponding composition. As explained above, Tv0,v1 is independent
of the choice of v0, v1 up to conjugation. We will denote by

αX
def= [ρv0,v1

X
] ∈ H1(Γk,D5)

the corresponding non-abelian cohomology class (which is independent of
v0, v1) and will refer to it as the characteristic class of the log K3 struc-
ture X.

Our next goal is to show that αX does not depend on the choice of
a log K3 structure (X,D, ι). We begin by observing that the geomet-
ric realization |G(D)| of the graph G(D) is a topological space homeo-
morphic to the 1-dimensional circle, and hence the first singular homol-
ogy group H1(|G(D)|,Z) (see [8, §2]) is isomorphic to Z. The induced
action of Aut(G(D)) in H1(|G(D)|,Z) ∼= Z yields a homomorphism χ :
Aut(G(D)) −→ {1,−1}. Elements of Aut(G(D)) which are mapped to 1
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acts via orientation preserving maps, i.e., via rotation of the circle, while el-
ements which are mapped to −1 act via orientation reversing maps, i.e., via
reflections. We will generally refer to elements of the first kind as rotations
and elements of the second kind as reflections.
Given an isomorphism Tv0,v1 : D5

∼=−→ Aut(G(D)) as above we may
identify χ with the homomorphism (denoted by the same name)

χ : D5 −→ {1,−1}

which sends τ to 1 and σ to −1. We note that this identification does
not depend on the choice of (v0, v1). We will refer to χ as the sign ho-
momorphism. The sign homomorphism χ : D5 −→ {1,−1} induces a map
χ∗ : H1(Γk,D5) −→ H1(Γk, µ2). Given a log K3 structure (X,D, ι) of
self-intersection sequence (−1,−1,−1,−1,−1) we hence obtain a quadratic
character χ∗(αX) ∈ H1(Γk, µ2). As a first step towards the invariance of
αX we will show that χ(αX) is independent of X.
Proposition 3.20. — Let X be an ample log K3 surface of Picard

rank 0 and let (X,D, ι) be a log K3 structure of self-intersection sequence
(−1,−1,−1,−1,−1). Then for every large enough l, the second l-adic co-
homology with compact support H2

c (Xk,Ql) is isomorphic to Ql and the
action of Γk on Ql is given by the quadratic character χ(αX).

Proof. — Since Br(Xk) = 0 the Kummer sequence yields a canonical
isomorphism H2(Xk,Z/l

n) ∼= Pic(Xk)/ln for every prime l and integer
n > 1. On the other hand, since D is a union of curves which meet each
other transversely we have a short exact sequence

0 −→ T (k) −→ Pic(Dk) −→ Pic(D̃k) −→ 0

where D̃ is the normalization of D and T is a suitable algebraic torus, in
this case of dimension 1 (see, e.g, [7, Proposition 1.9]). Since D is a curve we
have Br(Dk) = 0 and since T (k) is divisible the Kummer sequence yields a
natural isomorphismH2(Dk,Z/l

n) ∼= Pic(Dk)/ln ∼= Pic(D̃k)/ln. Now D̃k is
just the disjoint union of geometric components of D, and since the images
of these components form a basis for Pic(Xk) it now follows that the map
H2(Xk,Z/l

n) −→ H2(Dk,Z/l
n) is an isomorphism for every n, implying

that H2 (Xk,Ql
)
−→ H2 (Dk,Ql

)
is an isomorphism as well. Now consider

the canonical long exact sequence of cohomology with compact support:

· · · −→ H1
c

(
Xk,Ql

)
−→ H1 (Xk,Ql

)
−→ H1 (Dk,Ql

)
−→ H2

c

(
Xk,Ql

)
−→ H2 (Xk,Ql

)
−→ H2 (Dk,Ql

)
−→ H3

c

(
Xk,Ql

)
−→ . . .
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Since Xk is simply connected we now obtain an isomorphism of Galois
modules

H1 (Dk,Ql
) ∼= H2

c

(
Xk,Ql

)
.

Let us first assume that the image of ρX : Γk −→ Aut(G(D)) is either
trivial or generated by a reflection. In this case the Galois action on D

must fix one of the intersection points P ∈ D. Since Dk is a cycle of 5
rational curves, and each rational curve is simply connected, we see that
the category of finite étale coverings of D can be identified with the cate-
gory of finite coverings of the dual graph of D (where we say that a map
of graphs is covering if it induces a covering map after geometric realiza-
tion). We may hence identify π1(Dk, P ) with the pro-finite completion of
the fundamental group of G(D), namely, with Ẑ. Furthermore, the Ga-
lois action on π1(Dk, P ) is given by the action of Γk on π1(|G(D)|, P )
via ρX . In particular, the action of Γk on π1(Dk, P ) ∼= Ẑ is given by
the character Γk

ρ
X−→ Aut(G(D)) χ−→ {1,−1}. We may hence identify

H2
c

(
Xk,Ql

) ∼= H1 (Dk,Ql
)
with Hom(Ẑ,Zl) ⊗ Ql ∼= Ql and we get that

the Galois action is given by the quadratic character [χ∗αX ] ∈ H1(Γk, µ2),
as desired.
Let us now assume that the image of ρX is not trivial and not gener-

ated by a reflection. In this case the image of ρX is either the rotation
subgroup or all of Aut(G(D)). It will suffice to prove the claim for a single
large enough l. We may hence assume that l − 1 is not divisible by 5. Let
H ⊆ Aut(G(D)) be the image of ρX . If H contains a reflection (i.e., if
H = Aut(G(D))) then let H0 ⊆ H be a subgroup generated by a reflec-
tion. If H does not contain a reflection (i.e., H is the rotation subgroup
of Aut(G(D))), we let H0 = {1} ⊆ H be the trivial subgroup. Let L/k be
the field extension of degree [H : H0] = 5 corresponding to the subgroup
ρ−1
X

(H0) ⊆ Γk and let ρL : ΓL −→ H0 be the natural map. By the argument
above we know that ΓL acts on H2

c (Xk,Ql) ∼= Ql via the map

ΓL
ρL−→ H0

χ|H−→ {1,−1} −→ Q∗l .

It follows that Γk acts on H2
c (Xk,Ql) via ρX . We need to prove that the

induced action ofH on Ql is via χ. IfH = Aut(G(D)) then since Aut(Ql) =
Q∗l is abelian and χ exhibits {1,−1} as the abelianization of Aut(G(D))
we get that any action of H on Ql factors through χ. It is hence left to
show that the action of H is non-trivial. But this follows from the fact
that in this case H0 ⊆ H is the subgroup generated by a single reflection,
and hence the restricted map χ|H0 : H0 −→ {1,−1} is an isomorphism. If
H ⊆ Aut(G(D)) is the cyclic subgroup of rotations than we note that by
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our assumption Q∗l contains no 5-torsion elements and hence every action
of H on Ql is trivial, and in particular given by the trivial homomorphism
χ|H . �

Finally, we may now show that αX is independent of X.

Theorem 3.21. — Let X be a log K3 surface and let (X,D, ι) and
(X ′, D′, ι′) be two ample log K3 structures of self-intersection sequence
(−1,−1,−1,−1,−1). Then the dual graphs G(D) and G(D′) are Galois
equivariantly isomorphic. In particular, αX = α

X
′ in H1(Γk,D5).

Proof. — By Theorem 3.10 we may find a third log K3 structure
(Y,E, ιY ), equipped with compatible maps

Y
p

��

q

  
X X

′

where both p and q can be factored as a sequence of blow-down maps. In
particular, every geometric fiber of either p (resp. q) is connected, and hence
the pre-image under p (resp. q) of every connected subscheme is connected.
Let D0, . . . , D4 be the geometric components of D and let D′0, . . . , D′4 be
the components of D′. Let D̃0, . . . , D̃4 be the strict transform of the Di’s
in Y and let D̃′0, . . . , D̃′4 be the strict transform of the D′i’s in Y .
Let Λ ⊆ Γk be the kernel of ρX and let L/k be the finite Galois extension

determined by Λ. By Proposition 3.20 ρ
X
′(Λ) is contained in the rotation

subgroup of Aut(G(D′)). Since each D̃i is defined over L we get that q(D̃i)
is either a component of D′, or a point of D′, which in either case are
defined over L. Since any rotation in Aut(G(D′)) acts freely on the set of
points over any field, it follows that Λ is contained in the kernel of ρ

X
′ .

Applying the argument in the other direction we may conclude that Λ is
equal to the kernel of ρ

X
′ . In particular, all the D′i are defined over L.

Now if Λ = Γk then clearly G(D) and G(D′) are equivariantly isomor-
phic (and αX = α

X
′ = 0). If ρX(Γk) ⊆ Aut(G(D)) is a group of order 2

generated by a reflection then by the above the same is true for ρ
X
′(Γk)

and the desired isomorphism follows from Proposition 3.20. We may hence
assume that Γk acts transitively on the geometric components of both D
and D′.
Since X is not proper and E cannot be a genus 1 curve, we get from

Proposition 2.7 and Proposition 3.3 that E is a cycle of genus 0 curves. We
will say that two components E0, E1 ⊆ E are p-neighbours if they can be
connected by a consecutive chain of components E0, F1, F2, .., Fn, E1 such
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that p(Fi) is a point for every i = 1, . . . , n. Similarly, we define the notion
of q-neighbours. Now if D̃i and D̃j are p-neighbours then Di ∩Dj must be
non-empty. Conversely, if P ∈ Di∩Dj is an intersection point then p−1(P )
is connected and must be a chain of curves in E (on which p is constant)
which meets both D̃i and D̃j . It follows that D̃i and D̃j are p-neighbours
if and only if Di and Dj are neighbours in D.
We now consider two possible cases. The first case is when D̃0 coincides

with one of the D̃′i. Since the Galois action is transitive on geometric com-
ponents we then have that each D̃i coincides with one of the D̃′j . This
implies that two components E0, E1 ⊆ E are p-neighbours if and only if
they are q-neighbours. By the above we get that the associated Di 7→ q(D̃i)
determines a Galois equivariant isomorphism G(D) ∼= G(D′), as desired.
Now assume that D̃0 does not coincides with one of the D̃′i. In this case,

Galois invariance implies that the sets {D̃0, . . . , D̃4} and {D̃′0, . . . , D̃′4} are
disjoint. Since the Galois action is also transitive on intersection point we
may deduce that for each intersection point P of D the curve p−1(P ) must
contain D̃′j for exactly one j. Since p−1(P ) is connected it follows that
q(p−1(P )) = D′j . Now let Ĝ(D) denote the graph whose vertices are the
intersection points of D and whose edges are the components of D. It fol-
lows that the association P 7→ q(p−1(P )) determines a Galois equivariant
isomorphism of graphs Ĝ(D) ∼= G(D′). Since Ĝ(D) and G(D) are equiv-
ariantly isomorphic (e.g., by sending each component to the antipodal in-
tersection point) we may conclude that G(D) and G(D′) are equivariantly
isomorphic. �

3.3. The classification theorem

Relying on Proposition 3.16 and Theorem 3.21 we may now make the
following definition:

Definition 3.22. — Let X be an ample log K3 surface of Picard
rank 0. We will denote by αX ∈ H1(k,D5) the characteristic class αX
associates to any log K3 structure (X,D, ι) of self-intersection sequence
(−1,−1,−1,−1,−1).

Our goal in this subsection is to prove the following theorem:

Theorem 3.23. — The association X 7→ αX determines a bijection
between the set of k-isomorphism classes of ample log K3 surfaces of Picard
rank 0 and the cohomology set H1(k,D5).
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The proof of Theorem 3.23 will occupy the rest of the subsection. We
begin by a combinatorial result concerning the configuration of (−1)-curves
on del Pezzo surfaces of degree 5.

Proposition 3.24. — Let X be a del Pezzo surface of degree 5. Then
there exist exactly 12 cycles of five (−1)-curves on Xk, and the automor-
phism group of X acts transitively on the set of such cycles. Further-
more, if D0, . . . , D4 is such a cycle then the (−1)-curves which are not
in {D0, . . . , D4} form a cycle D′0, . . . , D′4 of length 5 such that Di meets
D′j if and only if j = 2i mod 5.

Proof. — It is well known that X has exactly ten (−1)-curves and that
two (−1)-curves are either skew or meet transversely at a single point. The
intersection graph of the (−1)-curves is the Petersen graph:

Figure 3.1. The Petersen graph

Let C0, C1 be the external pentagon and internal pentagons in the Pe-
tersen graph. Then C0 and C1 each form a cycle of length five. Furthermore,
each vertex of C0 is connected by an edge to exactly one vertex of C1, and
vice versa. Now consider a cycle C = 〈v0, . . . , v4〉 of length five which is
not C0 or C1. Without loss of generality we may assume that v0 ∈ C0 and
v4 ∈ C1. Since two edges connecting C0 and C1 cannot have a common
vertex it follows that the intersection of C with C0 either consists of the
segment 〈v0, v1〉 or the segment 〈v0, v1, v2〉. We claim that for each choice
of three consecutive vertices w0, w1, w2 ∈ C0 there exists a unique cycle of
length five C = 〈v0, . . . , v4〉 such that vi = wi for i = 0, 1, 2. Indeed, there
could be at most one such cycle because v3, v4 ∈ C1 are completely deter-
mined by the fact that v3 is connected to w2 and v4 is connected to w0.
On the other hand, direct examination shows that this choice indeed gives
a cycle, i.e., that v3 and v4 are connected in C1. It follows that there are
exactly five cycles of length five whose intersection with C0 contains three
vertices and by applying the above argument to C1 instead of C0 we see
that there are also exactly five cycles of length five whose intersection with
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C0 contains two vertices. We have hence counted all together (including C0
and C1 themselves) exactly 12 cycles of length five.

Now it is known that the automorphism group G = Aut(Xk) of Xk

is isomorphic to S5. Furthermore, the action of G on the graph of (−1)-
curves identifies G with the isomorphism group of the Petersen graph. Let
H ⊆ G be the subgroup of those transformations mapping C0 to itself. The
automorphism group of a cycle of length five is D5 and direct observation
shows that each transformation in D5 can be extended to an automorphism
of the Petersen graph, and hence to an automorphism of Xk. It follows that
H ∼= D5 and hence H has exactly 12 cosets in G, which means that G acts
transitively on the set of cycles of length five.
It will now suffice to show the desired property for just one cycle of length

five. In particular, it is straightforward to verify the property for the cycle
C0, with the remaining vertices forming the cycle C1. �

We are now in a position to establish the first half of Theorem 3.23,
namely, that the invariant αX ∈ H1(Γk,D5) determines X up to a k-
isomorphism.

Theorem 3.25. — Let X,Y be an ample log K3 surfaces of Picard
rank 0. If αX = αY then X is k-isomorphic to Y .

Proof. — Let (X,D, ι) and (Y ,E, ι) be ample log K3 structures of de-
gree 5 and self-intersection sequence (−1, . . . ,−1) on X and Y respectively.
Let D0, . . . , D4 be the geometric components of D, considered as a cycle
of (−1)-curves. By Proposition 3.24 the (−1)-curves of X which are not in
{D0, . . . , D4} form a cycle D′0, . . . , D′4 of length five, such that Di meets
D′j if and only if j = 2i mod 5. It follows that the association i 7→ 2j iden-
tifies the Galois action on the cycle D′0, . . . , D′4 with the Galois action on
the cycle D0, . . . , D4. We may hence extend the equivariant isomorphism
of the dual graphs of D and E to an equivariant isomorphism of the graphs
of (−1)-curves of X and Y . By the general theory of del Pezzo surfaces of
degree 5, every such isomorphism is induced by an isomorphism X

∼=−→ Y ,
yielding the desired isomorphism X

∼=−→ Y . �

Our next goal is to show that any class α ∈ H1(k,D5) is the characteristic
class of some ample log K3 surface of Picard rank 0. We begin with a few
lemmas that will help us determine when certain open varieties are simply-
connected.
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Lemma 3.26. — Let

K
f //

g

��

H

��
G // P

be a pushout square of groups. If the map f is surjective and the map g

vanishes on the kernel of f then the map G −→ P is an isomorphism.

Proof. — By the universal property of pushouts it will suffice to show
that for every homomorphism of groups ϕ : G −→ N there exists a unique
homomorphism of groups ψ : H −→ N such that ψ ◦ f = ϕ ◦ g. But this
now follows directly from the fact ϕ◦g vanishes on the kernel of f and that
f is surjective. �

Lemma 3.27. — Let Y be a smooth, connected algebraic variety (not
necessarily proper) over an algebraically closed field k of characteristic 0
and let D ⊆ Y be a smooth irreducible divisor. Assume that Y contains
a smooth projective rational curve C ⊆ Y which meets D transversely at
exactly one point. Let W = Y \ D. Then the induced map πét

1 (W,Q) −→
πét

1 (Y,Q) is an isomorphism.

Proof. — By choosing a large enough algebraically closed field which con-
tains both k and the field of complex numbers C, and using the invariance
of the fundamental group by base change between algebraically closed fields
(see [12, Tag 0BQC]), we may reduce to the case where k = C. Further-
more, by the Riemann existence theorem it will suffice to show the claim
for the topological fundamental group of the associated space of complex
points.
Let P be the intersection point of C andD. Since C meetsD transversely

we may find a tubular neighborhood D(C) ⊆ U ⊆ Y (C) such that U∩C(C)
is a tubular neightborhood of P in C(C). Furthermore, we may find a
retraction r : U −→ D(C) such that U ∩ C(C) = r−1(P ) and such that
r exhibits U as a disc bundle over D(C) (isomorphic to the disc bundle
associated to the normal bundle of D(C) in Y (C)). Let E = U ∩W (C) and
let q : E −→ D(C) be the restriction of r to E, so that q is fiber bundle
whose fibers are punctured discs (and in particular homotopy equivalent to
S1). Let F = q−1(P ) and Q ∈ F be a point. Using van Kampen’s theorem
and the fact that r : U −→ D(C) is a homotopy equivalence we obtain a
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pushout square of groups

π1(E,Q)
q∗ //

i∗

��

π1(D(C), Q)

��
π1(W (C), Q) // π1(Y (C), Q) .

Since q : E −→ D(C) is a fiber bundle whose fiber F = q−1(P ) is connected
it follows that the sequence of groups

π1(F,Q) −→ π1(E,Q) −→ π1(D) −→ 1

is exact. Since F is contained in the contractible space C(C) ∩W (C) ∼=
A1(C) (recall that C ∼= P1 by assumption) it follows that the composed
map π1(F,Q) −→ π1(W (C), Q) is the trivial map. By Lemma 3.26 it follows
that the map

π1(W (C), Q) −→ π1(Y (C), Q)
is an isomorphism as desired. �

Corollary 3.28. — Let X be a simply connected algebraic variety
over an algebraically closed field k of characteristic 0. Let D ⊆ X be a
simple normal crossing divisor with geometric components D0, . . . , Dn−1.
Assume that for every i = 0, . . . , n− 1 there exists a smooth rational curve
Ei such that Di meets Ei transversely at one point and Di ∩ Ej = ∅ if
i < j. Then X = X \ D is simply connected.

Proof. — For each r = 0, . . . , n let Xr = X \ [∪i<rDi], so that in
particular X0 = X and Xn = X. Let Q ∈ Xn be a closed point. For
each r = 0, . . . , n − 1 we may apply Lemma 3.27 with Y = Xr, D = Dr

and C = Er and deduce that the map πét
1 (Xr+1, Q) −→ πét

1 (Xr, Q) is an
isomorphism. Since X is simply connected it follows by induction that each
Xr is simply connected, and in particular X = Xn is simply connected, as
desired. �

Remark 3.29. — Corollary 3.28 can be used to show that the surfaces
considered in Examples (2.12) and (2.13) are (geometrically) simply con-
nected. In Example (2.12) we may apply Corollary 3.28 with E0 the inverse
image of any line in P2 other than L and E1 the exception curve above P .
In Example (2.13) we may apply Corollary 3.28 with E0 the inverse image
of any line in P2 other than L and E1, E2 the exceptional curves above P1
and P2 respectively.

Corollary 3.30. — Let X be a del Pezzo surface of degree 5 and let
D ⊆ X be a cycle of five (−1)-curves. Then X \ D is simply connected.
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Proof. — We first note that any two (−1)-curves on X which meet each
other do so transversely. The desired result now follows by combining
Proposition 3.24 and Corollary 3.28. �

Lemma 3.31. — Let X be a del Pezzo surface of degree 5. If D0, . . . , D4
is a cycle of (−1)-curves then [D0], . . . , [D4] forms a basis for Pic(Xk) and∑
i[Di] = −KX .

Proof. — By Proposition 3.24 it will suffice to prove this for a single
choice of cycle. Since this is a geometric property we may as well extend
our scalars to k and identify X with the blow-up of P2 and four suitably
generic points P1, P2, P3, P4 ∈ P2(k). For i = 1, 2, 3 let Li ⊆ Xk be the
strict transform of the line in P2 passing through Pi and Pi+1 and for j =
1, . . . , 4 let Ej be the exceptional curve associated to Pj . Then we have a
cycle of (−1)-curves given by 〈L1, E2, L2, E3, L3〉. It is then straightforward
to verify that these curves form a basis for Pic(Xk), and that

∑
i[Di] =

−KX . �

We now have what we need in order to establish the second half of
Theorem 3.23.

Theorem 3.32. — Let k be a field of characteristic 0 and let ρ : Γk −→
D5 be a homomorphism. Then there exists a log K3 surface X and an
ample log K3 structure (X,D, ι) on X whose self-intersection sequence is
(−1,−1,−1,−1,−1) and such that ρk = ρ.

Proof. — Let X be the blow-up of P2 at 4 points in general position
which are all defined over k. Then X is a del Pezzo surface of degree 5.
Let G be the incidence graph of (−1)-curves on X (which is isomorphic
to the Petersen graph, see 3.3). By our construction the Galois action on
G is trivial. It is well-known that the action of Aut(Xk) on G induces an
isomorphism Aut(Xk) ∼= Aut(G). Let us now choose a cycle C of length five
in G, and let H ⊆ G be the stabilzer of this cycle. Then H is isomorphic to
D5. Composing ρ : Γk −→ D5 with the inclusion D5 ∼= H ⊆ G we obtain a
homomorphism σ : Γk −→ Aut(G) ∼= Aut(Xk). Twisting X by σ we obtain
a new del Pezzo surface Xσ over k. Since σ factors through the stabilizer of
C we see that C will be Galois stable in Xσ. Let D be the union of (−1)-
curves in C. It now follows from Proposition 3.24, Lemma 2.10, Lemma 3.31
and Corollary 3.28 that X = X \ D is a log K3 surface. Furthermore, by
construction we have ρX = ρ. �

We are now in a position to deduce our main result of this subsection.
Proof of Theorem 3.23. — By Theorem 3.32 every element α ∈H1(k,D5)

is the characteristic class αX of some ample log K3 surface of Picard rank 0.
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By Theorem 3.25 the invariant αX determines X up to an isomorphism. It
follows that the association X 7→ αX determines a bijection between the
set of k-isomorphism types of ample log K3 surfaces of Picard rank 0 and
the Galois cohomology set H1(k,D5). �

3.4. Quadratic log K3 surfaces

Definition 3.33. — LetX be an ample log K3 surface of Picard rank 0.
We will say thatX is quadratic with character χ ∈ H1(X,µ2) if there exists
a homomorphism f : {1,−1} −→ D5 such that αX = f∗(χ).

Remark 3.34. — By Remark 3.17 we see that a log K3 surface X of
Picard rank 0 is quadratic if and only if X admits an ample log K3 struc-
ture with a quadratic splitting field L/k, in which case χ is the quadratic
character associated to L.

Definition 3.35. — Given a non-zero element a ∈ k∗ we will denote by
[a] ∈ H1(k, µ2) the class corresponding to the quadratic extension k(

√
a)/k.

Proposition 3.36. — Let X be a log K3 surface of Picard rank 0 which
is quadratic with character χ = [a] ∈ H1(k, {1,−1}). Then X is isomorphic
over k to the affine surface in A3 given by

(3.1) (x2 − ay2)t = y − 1 .

Proof. — Equation (3.1) is a particular case of Examples (2.13) and (3.7)
and hence defines a log K3 surface which possess an ample log K3 structure
(X,D, ι) of self-intersection sequence (0, 0, 1) and splitting field k(

√
a). By

Remark 3.34 we see that X is quadratic with character χ = [a]. Finally,
by Theorem 3.25 it follows that every quadratic log K3 structure with
character [a] is isomorphic to X. �

Proposition 3.37. — Let X be an ample log K3 surface of Picard
rank 0. If αX = 0 then X is k-isomorphic to the affine surface in A3 given
by the equation

(3.2) (xy − 1)t = x− 1.

Proof. — Equation (3.2) is a particular case of Examples (2.12) and (3.6)
and hence defines a log K3 surface which possess an ample log K3 struc-
ture (X,D, ι) of self-intersection sequence (3, 1) and splitting field k. By
Remark 3.34 we see that X is quadratic with character χ = 0, and hence
αX = 0. By Theorem 3.25 it follows that every log K3 structure with
αX = 0 is isomorphic to X. �
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4. Integral points

4.1. Zariski density

Our goal in this section is to prove the following theorem:

Theorem 4.1. — Let X be a separated scheme of finite type over Z such
that X = X ⊗Z Q is an ample log K3 surface of Picard rank 0 and trivial
characteristic class. Then the set of integral points X (Z) is not Zariski
dense.

Proof. — According to Proposition 3.37 X is isomorphic over k to the
affine surface in A3 given by the equation

(4.1) (xy − 1)t = x− 1 .

Hence the coordinates x, y, t determine three rational functions fx, fy, ft
on the scheme X which are regular when restricted to X. It follows that
the poles of fx, fy and ft are all “vertical”, i.e., they are divisors of the
form M = 0 for M ∈ Z. In particular, there exists divisible enough M

such that for every P ∈ X (Z) the values Mfx(P ),Mfy(P ) and Mft(P )
are all integers. Given an 0 6= M ∈ Z, we will say that a number x ∈ Q is
M -integral if Mx ∈ Z. We will say that a solution (x, y, t) of (4.1) is M -
integral if each of x, y and t isM -integral. Now by the above there exists an
M 6= 0 such that (fx(P ), fy(P ), fz(P )) is an M -integral solution of (4.1)
for every P ∈ X (Z). It will hence suffice to show that for every 0 6= M ∈ Z,
the set of M -integral solutions of (4.1) is not Zariski dense (in the affine
variety (4.1)).

Since the function f(y) = y−1
y on R \ {0} converges to 1 as y goes to

either ±∞ it follows that there exists a positive constant C > 0 such that∣∣∣y−1
y

∣∣∣ < C for every y such that |y| > 1. We now claim that if (x, y, t) is a
M -integral solution then either |y| < 2M or |x− 1| < 2C or t = 0. Indeed,
suppose that (x, y, t) is an M -integral triple such that |y| > 2M > 1,
|x− 1| > 2C, and |t| > 1

M . Then
∣∣∣y−1
y

∣∣∣ < C 6 |x−1|
2 and hence

|(xy − 1)t| = |(x− 1)y + (y − 1)||t| > 1
2 |(x− 1)y||t| > |x− 1| ,

which means that (x, y, t) is not a solution to (4.1). It follows that all the
M -integral solutions of (4.1) lie on either the curve t = 0, or on the curve
x − 1 = i for |i| < 2C an M -integral number, or the curve y = j for
|j| < 2M an M -integral number. Since this collection of curves is finite it
follows that M -integral solutions to (4.1) are not Zariski dense. �
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Theorem 4.1 raises the following question:

Question 4.2. — Is it true that X (Z) is not Zariski dense for any in-
tegral model of any log K3 surface of Picard rank 0?

We shall now show that the answer to Question 4.2 is negative. Theorem
I of [11] implies, in particular, that there exists a real quadratic number
field L = Q(

√
a), ramified at 2 and with trivial class group, such that

the reduction map O∗L −→ (OL/p)∗ is surjective for infinitely many prime
ideals p ⊆ OL of degree 1 over Q. Given such an L, we may find a square-
free positive integer a ∈ Q such that L = Q(

√
a). Now let X be the ample

log K3 surface over Z given by the equation

(4.2) (x2 − ay2)t = y − 1.

We now claim the following:

Proposition 4.3. — The set X (Z) of integral points is Zariski dense.

Proof. — Let p = (π) ⊆ OL be an odd prime ideal of degree 1 such
that O∗L −→ (OL/p)∗ is surjective and let p = NL/Q(π). We note that L is
necessarily unramified at p. Let r ∈ F∗p be the image of the residue class of√
a under the (unique) isomorphism OL/p ∼= Fp. Let σ ∈ Gal(L/Q) be a

generator. Then the image of the residue class of
√
a under the isomorphism

OL/σ(p) ∼= Fp is necessarily −r.
By our assumption on L there exists a u ∈ O∗L such that the residue

class of uσ(π) mod p is equal to 2r. Since L is ramified at 2 there exists
x0, y0 ∈ Z such that uσ(π) = x0 +

√
ay0. Let x0, y0 ∈ Fp be the reductions

of x0 and y0 mod p respectively. By construction we have x0 − ry0 = 0
and x0 + ry0 = 2r and hence x0 = r and y0 = 1. It follows that y0 − 1 is
divisible by p and since x2

0 − ay2
0 = NL(uσ(π)) = ±p there exists a t0 ∈ Z

such that
(x2

0 − ay2
0)t0 = y0 − 1.

In particular, the triple (x0, y0, t0) is a solution for (4.2). Let Cp ⊆ X be
the curve given by the additional equation x2 − ay2 = p. We have thus
found an integral point on Cp. By multiplying u with units whose image in
OL/p is trivial we may produce in this way infinitly many integral points
on Cp. Now any irreducible curve in X is either equal to Cp = Cp ⊗Z Q
for some p or intersects each Cp at finitely many points. Our construction
above produces infinitely many p’s for which Cp has infinitely many integral
points, and hence X (Z) is Zariski dense, as desired. �
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We end this section with the following question:

Question 4.4. — Does conjecture 1.2 hold for the surface (4.2)? If so,
what is the appropriate value of b?

4.2. A counter-example to the Brauer–Manin obstruction

Let k = Q and S = {∞}. In this subsection we will prove Theorem 1.10,
by constructing a log K3 surface over Z which is S-split and for which
the integral Brauer–Manin obstruction is insufficient to explain the lack of
integral points.
Let a, b, c, d,m ∈ Z and set ∆ = ad − bc. Assume that acm∆ 6= 0.

Consider the affine scheme X ⊆ A3
Z given by the equation

(4.3) ((ax+ b)y +m)t = cx+ d.

Then X = X ⊗Z Q is a particular case of Example (2.13) and is hence an
ample log K3 surface of Picard rank 0 with αX = 0. In this section we
will show that the Brauer–Manin obstruction is not enough to explain the
failure of the integral Hasse principle for schemes of this type.
Note that when the equation cx + d = 0 is soluble mod m (e.g. when c

is coprime to m) then X has an integral point with y = 0. Furthermore, if
ax0 + b = ±1 for some x0 then we have a solution with x = x0 and z = 1.
Otherwise, there don’t seem to be any obvious integral points on X . We
note that by the same argument X always has a real point and if a, c are
coprime than X has a Zp-point for every p.
As in the proof of Proposition 3.20 we may use the long exact sequence as-

sociated to cohomology with compact support to prove thatH2
c (XQ,Z/n) ∼=

Z/n with trivial Galois action. By Poincare duality with compact support
we get that H2(XQ,Z/n(2)) ∼= Z/n as well, and hence H2(XQ,Z/n(1)) ∼=
Z/n(−1). Since Pic(XQ) = 0 and Q[X]∗ = Q it follows from the
Hochschild–Serre spectral sequence and the above that the algebraic part
of the Brauer group of X is trivial and that

Br(X)/Br(Q) =
(

Br
(
XQ

))ΓQ
= (Q/Z(−1))ΓQ ∼= Z/2 .

Let us now exhibit a specific generator. Consider the quaternion algebra
on X given by

A =
(
−c(ax+ b)

∆ ,
(ax+ b)y +m

m

)
.

Then it is straightforward to check that A is unramified in codimension 1
and hence unramified by purity. Furthermore, the residue of A along the
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curve C0 ⊆ A2 given by (ax + b)y + m = 0 is the class of the restriction
− c(ax+b)

∆ |C0 , which is non-trivial (and in fact a generator of H1(C0,Z/2) ∼=
Z/2). We may hence conclude that A is a generator of Br(X).

Now assume that a, b, c, d are pairwise coprime and such that there exists
a prime q dividing both c andm exactly once (and hence a, b, d,∆, cm are all
units mod q). Reducing mod q the function f becomes f(x, y) = (ax+ b)y
and the function g becomes g(x) = d. The equation defining X ⊗Z Fq then
becomes

(ax+ b)yz = d.

with a, b, d non-zero, and so ax + b, y and z are invertible functions on
XFq

. Direct computation shows that the residue of A mod q is the class
[ c
∆my] ∈ H1(XFq

,Z/2). It is then clear that the evaluation map

evA : X (Zp) −→ Z/2

is surjective. This means that A poses no Brauer–Manin obstruction to the
existence of an integral point (as noted above our assumptions imply in
particular that X has an integral points everywhere locally).

Proof of Theorem 1.10. — Consider the scheme X given by the equation

((11x+ 5)y + 3)z = 3x+ 1.

Here a, b, c, d = 11, 5, 3, 1 and ∆ = −4. We claim that X (Z) = ∅. Indeed,
observe that |11x + 5| > |3x + 1| + 3 for every x ∈ Z. Now assume that
(x0, y0, z0) was a solution. Then z0 would have to be non-zero and so we
would obtain

|11x0 + 5| > |3x0 + 1|+ 3 > |(11x0 + 5)y0 + 3|+ 3 > |11x0 + 5||y0|

which implies |y0| = 0. But this is impossible because then 3z0 would be
equal to 3x0 + 1. It follows that X (Z) = ∅ as desired. By the above we
also know that X (AS)Br(X) 6= ∅ and hence the integral Brauer–Manin
obstruction is trivial. Furthermore, since αX = 0 it follows that X is
S-split. �
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