Alessandro D’ANDREA, Claudia PINZARI & Stefano ROSSI

Polynomial growth of discrete quantum groups, topological dimension of the dual and *-regularity of the Fourier algebra

<http://aif.cedram.org/item?id=AIF_2017__67_5_2003_0>
POLYNOMIAL GROWTH OF DISCRETE QUANTUM GROUPS, TOPOLOGICAL DIMENSION OF THE DUAL AND *-REGULARITY OF THE FOURIER ALGEBRA

by Alessandro D’ANDREA, Claudia PINZARI & Stefano ROSSI (*)

Abstract. — Banica and Vergnioux have shown that the dual discrete quantum group of a compact simply connected Lie group has polynomial growth of order the real manifold dimension. We extend this result to a general compact group and its topological dimension, by connecting it with the Gelfand–Kirillov dimension of an algebra. Furthermore, we show that polynomial growth for a compact quantum group G of Kac type implies $*$-regularity of the Fourier algebra $A(G)$, that is every closed ideal of $C(G)$ has a dense intersection with $A(G)$. In particular, $A(G)$ has a unique C^*-norm.

Dedicated to the memory of John E. Roberts

1. Introduction

The notion of polynomial growth for a discrete quantum group Γ was introduced by Vergnioux [31]. It is a growth property of the vector dimension function \dim on the representation ring $R(\hat{\Gamma})$ of the dual compact quantum group $\hat{\Gamma}$ and extends the classical notion of polynomial growth

Keywords: quantum group, topological dimension, polynomial growth, Fourier algebra.
2010 Mathematics Subject Classification: 58B32, 46L65, 43A20, 16P90.

(*) We would like to thank Mikael Rørdam for a discussion. We are also grateful to the referee for suggestions which improved the presentation of the paper. We acknowledge support by AST fundings from “La Sapienza” University of Rome.
for discrete groups. One of the most interesting questions is of course that of developing geometric analysis of discrete quantum groups of polynomial growth in analogy to the classical case.

Up to date, we know very few classes of discrete quantum groups of polynomial growth, beyond the classical groups, and not much is known on the general implications of polynomial growth in this setting. Specifically, Banica and Vergnioux have shown in [3, 31] that if G is a connected, simply connected, compact Lie group then $(R(G), \dim)$ has polynomial growth, and the order of the growth equals the manifold dimension of G.

The aim of this paper is twofold. The first is to support the viewpoint that polynomial growth of $(R(G), \dim)$, with G a compact quantum group, may be understood as a noncommutative analogue of the topological dimension of G. The second is to describe a structural consequence of polynomial growth.

We first connect growth of a quantum group with the notion of growth of an algebra in the sense introduced by Gelfand and Kirillov and show that this leads to an extension of Banica and Vergnioux theorem to all compact groups.

More specifically, we recall that Gelfand and Kirillov, motivated by the isomorphism problem of Weyl division algebras, introduced what is now called the GK dimension of an algebra \mathcal{A} [14]. The GK dimension measures the best polynomial growth rate of \mathcal{A}. By definition, every algebra of polynomial growth is the inductive limit of finitely generated algebras of finite GK dimension.

Gelfand–Kirillov dimension equals the Krull dimension for finitely generated commutative algebras. For commutative domains, it further equals the transcendence degree of the corresponding fraction field over the base field.

We remark that if G is a compact quantum group, the GK dimension of the canonical dense Hopf algebra equals the growth rate of the vector dimension function in the sense of Banica and Vergnioux. We further show that in the classical case, the GK dimension also equals the Lebesgue topological dimension, and, as mentioned above, this extends Banica and Vergnioux’s theorem to general compact groups. The further connection of the GK dimension with the classical transcendence degree also recovers a theorem of Takahashi on the topological dimension of a compact group [30], in turn extending a classical result of Pontryagin for compact abelian groups on the equality between dimension and rank of the dual group.
The GK dimension of the group algebra of a discrete group of polynomial growth coincides with the Bass–Guivarch rank, by well-known results of Wolf, Bass, Guivarch and Gromov [20].

Motivated by these facts, we introduce the topological dimension of a compact quantum group G as the Gelfand–Kirillov dimension of the dense Hopf algebra. For example, the compact quantum groups with the same representation theory as that of a given compact Lie group, in the sense of [27], have finite topological dimension. Saying that $(R(G), \dim)$ has polynomial growth means precisely that the associated Hopf C^*–algebra is the inductive limit of Hopf C^*–algebras of compact matrix quantum groups of finite topological dimension.

In the second part of the paper we discuss an implication of polynomial growth for compact quantum groups of Kac type. It is known that compact quantum groups G of subexponential growth are coamenable [2, 3]. However, we gain further information in the case of polynomial growth.

More specifically, recall that the Fourier algebra $A(G)$ of a locally compact group was introduced by Eymard [13] as a commutative Banach algebra, with dual the von Neumann algebra of the regular representation. A non-commutative analogue has been studied by several authors, see [1] for multiplicative unitaries and [10, 11, 17, 18, 19] for locally compact quantum groups.

In compact quantum case, discreteness of the dual allows an explicit description of $A(G)$ which parallels the classical case, see Section 5. If we moreover assume that G is of Kac type, $A(G)$ becomes an involutive Banach algebra with involution obtained extending the involution of the canonical dense Hopf subalgebra Q_G. The maximal completion $C_{\text{max}}(G) = C^*(Q_G)$ can also be regarded as the enveloping C^*–algebra of $A(G)$. There is a natural surjective map between the primitive ideal spaces $\Psi : \text{Prim}C_{\text{max}}(G) \to \text{Prim}A(G)$ which is continuous when either space is endowed with the hull-kernel topology. We show that if G is of Kac type and of polynomial growth, Ψ is a homeomorphism. This in particular implies that the Jacobson topology on $C_{\text{max}}(G)$ coincides with the Jacobson topology induced by the Fourier subalgebra $A(G)$.

In the framework of Banach $*$–algebras, this property is known as $*$–regularity. If A is such an algebra, an equivalent statement of $*$–regularity is that every closed ideal of $C^*(A)$, has dense intersection with A. As an important general consequence of this property we have that A has a unique C^*–norm [4, 5, 7]. This in particular applies to $A(G)$, as opposed to the canonical dense Hopf algebra which has many C^*–norms already for $G = \mathbb{T}$.
The property of *-regularity has been first shown for the pair of the group algebra $L^1(\Gamma)$ of a locally compact group with Haar measure of polynomial growth and its C^*-envelope $C^*(\Gamma)$ [8]. In this sense, our result is a discrete quantum analogue.

To conclude, it is perhaps worth emphasizing that our quantum group approach provides a new look at *-regularity as a geometric property, in that it may now be interpreted as a regularity condition of the spectrum of $C(G)$ enjoyed by the subclass of those (Kac-type) G which can be approximated by quotients of finite topological dimension.

The paper is organised as follows. Section 2 is dedicated to preliminaries on GK dimension and compact quantum groups. In Section 3 we compute GK dimension for compact groups, derive the generalised Banica–Vergnioux theorem, and introduce the notion of topological dimension for a compact quantum group. Its basic properties are discussed in Section 4. Section 5 deals with the Fourier algebra of a compact quantum group. We describe an approach in terms of representations which extends the classical treatment in the book by Hewitt and Ross [16]. In Section 6 we show our *-regularity result.

2. Preliminaries on the GK dimension and compact quantum groups

2.1. Algebras of polynomial growth and GK dimension

Let A be a unital algebra over a field k. We recall the definition of GK dimension of A [14]. Let V be a subspace of A and form the subspace of elements that can be written as sums of products of at most n elements of V,

$$V_n = \Sigma_{k=0}^n V^k.$$

Definition 2.1. — We shall say that A has polynomial growth if for every finite dimensional subspace V of A there is $\gamma \in \mathbb{R}^+$ such that

$$\text{dim}(V_n) = O(n^\gamma).$$

If A has polynomial growth one can compute the infimum of polynomial exponents γ associated to V with the formula

$$\inf\{\gamma > 0 : \text{dim}(V_n) = O(n^\gamma)\} = \lim_{n \to \infty} \frac{\log \text{dim}(V_n)}{\log(n)}.$$
The GK dimension of \mathcal{A} is defined by

$$\text{GKdim}(\mathcal{A}) = \sup_V \lim_{n \to \infty} \frac{\log \dim(V_n)}{\log n}.$$

It is easy to see that $\dim(V_n)$ grows at most exponentially and that V generates a finite-dimensional algebra if and only if $\dim(V_n) = \dim(V_{n+1})$ for some n. Hence either $\dim(V_n)$ is eventually constant or $\dim(V_n) \geq n + 1$. Thus $\text{GKdim}(\mathcal{A})$ takes no value in the interval $(0, 1)$, and $\text{GKdim}(\mathcal{A}) = 0$ if and only if \mathcal{A} is inductive limit of finite dimensional subalgebras. It is also known that no real number in $(1, 2)$ either can arise as the GK dimension of an algebra, hence $\text{GKdim}(\mathcal{A})$ is either 0, 1 or ≥ 2 [20]. GK dimension seems to take integral or infinite values on all known algebras admitting a Hopf algebra structure [37].

In the case where \mathcal{A} is a finitely generated algebra, polynomial growth takes a simpler form. First, it suffices to verify it only on a finite dimensional subspace V generating \mathcal{A} as an algebra. Indeed, any other finite dimensional subspace W is contained in some V, and therefore $W_n \subset V$ for all n. If we know that $\dim(V_n) = O(n^\gamma)$ then $\dim(W_n) = O(n^\gamma)$ as well and the growth exponent $\lim_{n \to \infty} \frac{\log \dim(W_n)}{\log n}$ of W is bounded above by that of V; consequently, the growth exponent does not depend on the choice of the generating subspace and equals $\text{GKdim}(\mathcal{A})$. This also shows that every finitely generated algebra of polynomial growth has finite GKdim.

Notice that if \mathcal{A} is the inductive limit of subalgebras \mathcal{A}_γ then $\text{GKdim}(\mathcal{A}) = \lim_{\gamma} \text{GKdim}(\mathcal{A}_\gamma)$. In general, a polynomial growth algebra is the inductive limit of finitely generated algebras with finite GK dimension.

In fact, for some applications, we will use the following stronger notion of polynomial growth.

Definition 2.2. — Let \mathcal{A} be a finitely generated algebra. We shall call \mathcal{A} of strict polynomial growth of degree $\gamma \in \mathbb{R}^+$ if there is a f.d. generating subspace V and constants $c, d > 0$ such that for all $n \in \mathbb{N}$,

$$cn^\gamma \leq \dim(V_n) \leq dn^\gamma.$$

Obviously, if \mathcal{A} has strict polynomial growth of degree γ then $\text{GKdim}(\mathcal{A}) = \gamma$.

Proposition 2.3. — If strict polynomial growth of degree γ holds for a generating subspace V then it holds for all other generating subspaces.

Proof. — We have already shown independence of the right inequality. For the left inequality, let, as before, W be another generating subspace. There is a positive integer t such that $W_{tm} \supset V_m$ for all m. For a fixed
If \mathcal{A} is a commutative algebra, its GK dimension reduces to classical notions.

Theorem 2.4. — If \mathcal{A} is a commutative unital algebra over a field κ then \mathcal{A} is of polynomial growth and $\text{GKdim}(\mathcal{A})$ is either a non-negative integer or infinite. More precisely,

1. if \mathcal{A} is finitely generated, $\text{GKdim}(\mathcal{A})$ is finite and equals the Krull dimension d of \mathcal{A}. In fact, \mathcal{A} has strict polynomial growth.

2. If \mathcal{A} has no zero divisors then $\text{GKdim}(\mathcal{A}) = \text{tr.deg}(\mathbb{Q}(\mathcal{A}))$, the transcendence degree of the fraction field of \mathcal{A} over k.

Proof. — Property (2) follows from [20, Ch. 4, Cor. 4.4 and Prop. 4.2] while (1), except the property of strict polynomial growth, is stated in Theorem 4.5. in loc. cit.. For the last property, notice that the proof of Lemma 4.3 in loc. cit. shows that if $B \subset A$ is an inclusion of finitely generated commutative algebras such that A is finitely generated as a B-module then $\dim(V_n) \leq r \dim(W_{2n-1})$ where W and V are generating subspaces of B and A respectively, and V contains a set of generators of A as a B-module, whose cardinality is denoted by r. Assuming in addition that V contains W as well, we also gain $\dim(V_n) \geq \dim(W_n)$. Thus if B has strict polynomial growth then so does A and with the same degree. As in the proof of [20, Thm. 4.5], we may now appeal to Noether’s normalisation lemma and choose for B the polynomial algebra $k[x_1, \ldots, x_d]$. □

Another important class of examples arises from discrete groups. Polynomial growth of the group algebra $\mathbb{C}\Gamma$ of a finitely generated discrete group Γ reduces to the usual notion of polynomial growth for Γ. It is well known that groups of polynomial growth have been studied, among others, by Bass, Milnor, Wolf and Gromov. In particular, Bass and Wolf showed that nilpotent groups have strict polynomial growth of degree given by the Bass rank, and Gromov proved that every polynomial growth group is virtually nilpotent. See [20] for references.

2.2. Compact quantum groups

We briefly recall the notion of a compact quantum group along with the main properties, as developed by Woronowicz [35], see also [24, 26].
A compact quantum group is defined by a pair \(G = (Q, \Delta) \) where \(Q \) is a unital \(C^* \)-algebra and \(\Delta \) is a coassociative unital \(*\)-homomorphism

\[
\Delta : Q \to Q \otimes Q
\]
such that \(I \otimes Q\Delta(Q) \) and \(Q \otimes I\Delta(Q) \) are dense in the minimal tensor product \(Q \otimes Q \).

The basic example is given by the algebra \(C(G) \) of continuous functions on a compact group, and every commutative example is of this form. It is customary to keep the same notation \(C(G) \) for \(Q \) also when \(Q \) is not commutative and we shall occasionally follow this convention.

Another important class of examples is provided by discrete groups. If \(\Gamma \) is such a group then the group \(C^* \)-algebra \(C^*(\Gamma) \), which is the completion of the group algebra \(\mathbb{C}\Gamma \) in the maximal \(C^* \)-norm, becomes a compact quantum group with coproduct \(\Delta(\gamma) = \gamma \otimes \gamma, \gamma \in \Gamma \). We may also consider the reduced \(C^* \)-completion \(C_{\text{red}}^*(\Gamma) \) and still obtain a compact quantum group. We shall refer to these as cocommutative examples, since the coproduct is invariant under the automorphism that exchanges the factors of \(C^*(\Gamma) \otimes C^*(\Gamma) \). Furthermore, every cocommutative compact quantum group can be obtained as the completion of \(\mathbb{C}\Gamma \) with respect to some \(C^* \)-norm, which is bounded by the reduced and the maximal norm. This fact extends to general compact quantum groups where elements of \(\Gamma \) are replaced by the matrix coefficients of representations of \(G \), that we recall next, and is a consequence of Woronowicz density theorem. The quantum group \(G \) is called coamenable if the reduced and maximal norm coincide.

A representation of \(G \) can be defined as a unitary element \(u \in B(H) \otimes Q \), where \(H \) is a finite dimensional Hilbert space, satisfying \(\Delta(u_{\xi,\eta}) = \sum_r u_{\xi,e_r} \otimes u_{e_r,\eta} \), where \(u_{\xi,\eta} \), the matrix coefficients of \(u \), are defined by \(u_{\xi,\eta} = (\xi^* \otimes 1)u(\eta \otimes 1) \), with \(\xi \) and \(\eta \) vectors of \(H \) here regarded as operators \(\mathbb{C} \to H \) between Hilbert spaces, and \((e_r) \) is an orthonormal basis of \(H \). The more general notion of invertible representation is meaningful, and in fact invertible representations arise naturally in the construction of the conjugate representation, that we next recall. However every invertible representation turns out to be equivalent to a unitary one. Henceforth the term representation will always mean a unitary representation on a finite dimensional Hilbert space.

An intertwiner between two representations \(u \) and \(u' \) is a linear operator \(T \) from the space of \(u \) to that of \(u' \) such that \((T \otimes I)u = u'(T \otimes I) \). Two representations are equivalent if there is an invertible intertwiner, which can always be chosen to be unitary.
The category whose objects are representations of G and whose arrows are intertwiners is a tensor C^*-category with conjugates in the sense of, e.g., [26]. Subrepresentations, direct sums of representations as well as irreducible representations are defined in the natural way. The tensor product $u \otimes u'$ of two representations acts on the tensor product Hilbert space, and is determined by

$$(u \otimes u')_{\xi \otimes \xi', \eta \otimes \eta'} = u_{\xi, \eta} u'_{\xi', \eta'}.$$

Furthermore, the conjugate \overline{u} of any representation u is determined, up to unitary equivalence, by an invertible antilinear operator j from the space of u to that of \overline{u} satisfying

$$j_{\phi, \psi} = (u_{j^{-1} \phi, j^* \psi})^*.$$

It follows that

$$R = \sum_r j e_r \otimes e_r \in (\iota, u \otimes u), \quad \overline{R} = \sum_s j^{-1} f_s \otimes f_s \in (\iota, u \otimes \overline{u})$$

with ι the trivial representation. Every representations can be decomposed as a direct sum of irreducible representations, in a unique way up to equivalence.

We shall denote by \hat{G} a fixed complete set of inequivalent irreducible representations. Notice that later on we shall use the same symbol for the discrete quantum group dual to G, but this should not cause confusion.

The linear span Q_G of matrix coefficients of representations is a canonical dense $*$–subalgebra of Q_G, which has the structure of a Hopf $*$–algebra [35, 36]. The collection $\{v_{rs}, v \in \hat{G}\}$ of all matrix coefficients with respect to a choice of orthonormal bases is linearly independent and spans Q_G.

In the classical case, representations describe usual unitary representations and Q_G is the Hopf algebra of representative functions on G. If G is co-commutative and arises from Γ then every element of Γ is a one-dimensional representation, and these are the only irreducible representations.

Most importantly, Q_G has a unique Haar state h, which means that h is a state satisfying the invariance condition $h \otimes 1(\Delta(a)) = h(a)I = 1 \otimes h(\Delta(a))$ for all $a \in Q_G$. It is determined by requiring that it annihilates all coefficients of non-trivial irreducible representations.

For any irreducible u with conjugate defined by j_u, set $F_u = j_u^* j_u$. This operator depends on the choice of \overline{u} and j_u only up to a positive scalar factor; we will henceforth normalise the choice of j_u so that $\text{Tr}(F_u) = \text{Tr}(F_u^{-1})$, which yields a positive invertible operator F_u canonically associated with u. The scalar $\dim_q(u) = \text{Tr}(F_u) \geq \dim(u)$ is the quantum dimension of u. The quantum group G is called of Kac type if $F_u = I$ for all u, which
is equivalent to h being a trace or to $\dim_q(u) = \dim(u)$ holding for all representations.

The Haar state satisfies the following orthogonality relations for matrix coefficients of irreducible representations, see [35],

$$h(v, u) = \delta_{v, u} \frac{1}{\dim_q(u)} \langle \xi, F_u \psi \rangle \langle \phi, \eta \rangle$$

$$= \delta_{v, u} \frac{1}{\dim_q(u)} \text{Tr}(F_u \Theta^v_{\psi, \phi} \Theta^u_{\eta, \xi})$$

where $\Theta^u_{\eta, \xi}$ is the rank 1 operator $\Theta^u_{\eta, \xi}(\zeta) = \langle \xi, \zeta \rangle \eta$ and Tr is the non-normalised trace. Similarly

$$h(u, u) = \delta_{v, u} \frac{1}{\dim_q(u)} \langle \xi, \psi \rangle \langle \phi, F_u^{-1} \eta \rangle$$

$$= \delta_{v, u} \frac{1}{\dim_q(u)} \text{Tr}(F_u^{-1} \Theta^u_{\eta, \xi} \Theta^v_{\psi, \phi}).$$

3. A theorem of Banica and Vergnioux

Theorem 2.4 can be made more precise for function algebras of compact groups.

Theorem 3.1. — If G is a compact group then

1. $GK\text{dim}(Q_G)$ equals the Lebesgue topological dimension of G,
2. if G is a Lie group then $GK\text{dim}(Q_G)$ equals the dimension of G as a real manifold.

Proof. — Q_G is inductive limit of finitely generated algebras as G is the inverse limit of compact Lie groups. Lebesgue dimension commutes with inverse limits of compact Lie groups, while GK dimension commutes with inductive limits of algebras. Also, for a compact Lie group, the Lebesgue dimension coincides with the real manifold dimension. These remarks show that (1) follows from (2).

In order to show (2), assume G is a compact Lie group. The complexification G_C of G is an algebraic group and Q_G identifies with the coordinate ring $\mathcal{O}(G_C)$ of G, see e.g., [9]. The real dimension of G equals the complex dimension of the Lie group G_C as the Lie algebra of G_C is the complexification of the Lie algebra of G. Now, the complex dimension of the Lie group G_C equals the Krull dimension of $\mathcal{O}(G_C)$, which is a finitely generated complex commutative algebra. By Theorem 2.4 (1), the latter coincides with the GK dimension.
We also give an alternative argument. By [30, Thm. A] the topological dimension of a general compact group G is given by the transcendence degree of \mathbb{Q}_G over \mathbb{C}. Assume for simplicity that G is connected. Then \mathbb{Q}_G has no zero divisors, hence the latter equals $\text{GKdim}(\mathbb{Q}_G)$ by Theorem 2.4(2). □

Definition 3.2. Let G be a compact quantum group whose associated dense Hopf algebra \mathbb{Q}_G is of polynomial growth. We define the topological dimension of G by

$$\text{dim}(G) = \text{GKdim}(\mathbb{Q}_G).$$

It is an easy but important remark that computation of $\text{dim}(G)$ can be spelled out in terms of representations for all compact quantum groups, and in fact this connects it with the work of Banica and Vergnioux [31, 3]. We recall their main definitions. We pick a dimension function $d : R(G)^+ \to \mathbb{R}^+$ on the representation ring of G and define, for any representation u of G and any positive integer n, the sequence

$$b(u, n) := \sum d(v)^2,$$

where the sum is taken over irreducible subrepresentations $v \subset u^\otimes k$, for $k \leq n$. One can then introduce a notion of polynomial (resp., subexponential, exponential) growth for d requiring that for any $u \in R(G)^+$, $b(u, n) = O(n^\gamma)$, for some $\gamma > 0$, (resp., $\lim_{n \to \infty} b(u, n)^{1/n} = 1$, $\lim_{n \to \infty} b(u, n)^{1/n} > 1$. Notice that these limits always exist.) We shall be interested in the growth of the following dimension functions:

1. $d = \text{dim}$, associating every representation with its vector space dimension, and referred to as the vector dimension function,

2. $d = \text{dim}_q$, the quantum dimension.

Lemma 3.3. Let u be a representation of a compact quantum group G and V be the linear span of the matrix coefficients of u. Then V_n is the linear span of matrix coefficients of the set of inequivalent irreducible subrepresentations v of $u^\otimes k$, for $k \leq n$, and we have equality

$$b(u, n) = \text{dim}(V_n),$$

where the left hand side refers to the vector dimension function dim.

Proof. V_n is the linear span of products of matrix coefficients of u up to length n. But finite products of entries of u are coefficients of tensor powers of u, hence complete reducibility shows that V_n is as stated. Computation
of dimension follows from linear independence of coefficients of irreducible representations in \mathcal{Q}_G. □

Example. — Let u_n denote the irreducible representation of SU(2) of dimension $n + 1$. Then u_1 is a generating representation, and the family of irreducible subrepresentations of $u_1^\otimes n$ consists precisely of all u_i such that $i \leq n$ has the same parity as n. Then vector and quantum dimension coincide and the associated sequence is

$$b(u_1, n) = \frac{(n + 1)(n + 2)(2n + 3)}{6},$$

hence $\dim(SU(2)) = 3$.

Example. — More generally, the growth of \dim for G_q is the same as that for G, which is polynomial of degree equal to the manifold dimension of G, by [3, Thm. 2.1]. However, the growth of \dim_q is exponential. For $A_0(F) \dim$ (hence, \dim_q) has exponential growth as soon as F is a matrix of order at least 3.

Proposition 3.4. — Let G be a compact quantum group. The following properties are equivalent:

1. \mathcal{Q}_G has polynomial growth,
2. the vector dimension function $d = \dim$ has polynomial growth,
3. $C(G)$ is the inductive limit of Hopf C^*-algebras of compact matrix quantum groups of finite topological dimension.

Theorem 3.1, along with the above proposition allow us to generalise [3, Thm. 2.1] from connected, simply connected, compact Lie groups to all compact Lie groups.

Corollary 3.5. — Let G be a compact Lie group, u a selfadjoint generating representation and let N be the dimension of G as a real manifold. Then the sequence $b(u, n)$ has strict polynomial growth, in that it is bounded above and below by a polynomial of degree N.

4. Basic properties

Proposition 4.1. — If G is a compact quantum group such that \mathcal{Q}_G is of polynomial or subexponential growth and H is either a quotient or a subgroup of G, then \mathcal{Q}_H is accordingly of polynomial or subexponential growth, and we have $\dim H \leq \dim G$.
Proof. — A subalgebra or a quotient algebra B of an algebra A of polynomial or subexponential growth has the same property, and it is easy to see that $\text{GKdim}(B) \leq \text{GKdim}(A)$ in the first case. On the other hand, quotients and subgroups of G are described respectively by subalgebras and quotient algebras of Q_G. \hfill \Box

An explicit proof in terms of growth of the sequences $b(u, n)$ can alternatively be worked out. One can indeed bound the sequences corresponding to quotients or subgroups by those related to G.

Remark 4.2. — Notice that even though subquotients of compact quantum groups having a generating representation may fail to have a generating representation, finite topological dimension is inherited by all subquotients.

We next give a simple result which guarantees polynomial growth.

Proposition 4.3. — Let G be a compact quantum group with commutative representation ring $R(G)$. Assume that for any irreducible representation v, $\dim(V_n) = O(n^\gamma)$ for some $\gamma > 0$, where V is the linear span of coefficients of v. Then Q_G is of polynomial growth.

Proof. — Pick a subspace $W \subset Q_G$ spanned by coefficients of a representation u of G, and decompose u into its irreducible components $u = v_1 \oplus \cdots \oplus v_p$. Denote by V_i the span of coefficients of v_i. The subspace W_n, being the linear span of coefficients of powers of u, is already spanned by $V_1^{k_1} \cdots V_p^{k_p}$ with $k_1 + \cdots + k_p \leq n$ thanks to commutativity of $R(G)$. Hence $\dim(W_n) \leq \binom{n+p}{p} \dim((V_1)_n) \cdots \dim((V_p)_n)$ showing that $\dim(W_n)$ is bounded by a polynomial. \hfill \Box

We have seen that the property of polynomial growth for Q_G is in fact a property of the vector dimension function \dim. On the other hand, $R(G)^+$ is also endowed with the quantum dimension function $\dim_q(u)$, which in general exceeds \dim. The stronger property of polynomial growth of \dim_q was introduced, among other things, by Vergnioux [31]. Later on we will be interested in quantum groups G with this property.

Proposition 4.4. — Let d be a dimension function on $R(G)$ of subexponential growth. Then any other dimension function d' on $R(G)$ satisfies $d'(u) \geq d(u)$ for all u. In particular, $R(G)$ admits at most one dimension function of subexponential growth.

Proof. — Assume that for some u, $d' = d'(u) < d(u) = d$. If $v \in u^\otimes k$, $k \leq n$, is an irreducible subrepresentation then $d(v) \leq \sqrt{b(u, n)}$, where obviously $b(u, n)$ is associated to d. We know that $d(u^k) = d^k$ for $k \leq n$. Hence there are at least $(1 + d + \cdots + d^m)/\sqrt{b(u, n)}$ irreducible summands.
Let us compare the d'-dimension using the same decomposition. We have that $d'(u^k)$ equals d'^{k} and that each irreducible summand has d'-dimension at least 1. Consequently,

$$(1 + \cdots + d'^{n}) \geq (1 + \cdots + d^n)/\sqrt{b(u,n)},$$

implying $b(u,n) \geq \frac{1}{(n+1)!} (d/d')^{2n}$, which contradicts subexponentiality of $b(u,n)$.

Notice that $d(u)$ may differ from the vector dimension function. For example, for any integer $n \geq 2$ if $F \in M_n(\mathbb{C})$ satisfies suitable properties then $SU_q(2)$ and $A_o(F)$ have isomorphic representation rings (in fact isomorphic representation categories), hence the vector dimension function of $R(SU_q(2))^+$ gives a dimension function d on $R(A_o(F))^+$ of polynomial growth smaller than its vector dimension function.

Corollary 4.5. — The following properties are equivalent for a compact quantum group G.

1. $u \mapsto \dim(u)$ has polynomial (subexponential) growth and G is of Kac type,
2. $u \mapsto \dim_q(u)$ has polynomial (subexponential) growth.

Proof. — If (2) holds then \dim must have subexponential growth since it is bounded above by \dim_q. Hence $\dim_q = \dim$ by the previous proposition, and this shows that G is of Kac type. The converse is obvious.

We remark that Proposition 4.4 and Corollary 4.5 can alternatively be derived, in a less direct way, from known results in the literature. Indeed, the vector dimension function of a coamenable compact quantum group is known to be minimal among all dimension functions, see e.g. [26]. Furthermore, the following relationship between subexponential growth and coamenability has been highlighted in [2, 3], where the main focus was on compact quantum groups of Kac type. For the reader’s convenience, we complete details of the proof to point out that the Kac assumption is not needed.

Theorem 4.6. — Every compact quantum group G for which Q_G is of subexponential growth is coamenable.

Proof. — Let $u = \bar{u}$ be a self-conjugate representation of G. Thanks to a characterisation of coamenability given by Skandalis, cf. [2, Thm. 6.1], see also [26, Thm. 2.7.10] and the remark following it, we have to show that $\|x_u\|_r = \dim(u)$, where x_u denotes the character of u. The inequality $\|x_u\|_r \leq \dim(u)$ is always trivially verified. Therefore, it suffices to
prove the reverse inequality. We start by observing that
\[\|\chi_u\|_r = \|\chi_u^{2k}\|_{\frac{r}{2}} \]
for every natural number \(k \), since \(\chi_u \) is self-adjoint. We have
\[\|\chi_u^{2k}\|_{\frac{r}{2k}} \geq h(\chi_u^{2k}\chi_u^{2k})^{\frac{1}{2k}} = h(\chi_u^{2k}\chi_u^{2k})^{\frac{1}{2k}} \geq m_{2k}(1)^{\frac{1}{2k}}, \]
where \(m_{2k}(1) \) is the multiplicity of the trivial representation in \(u^{\otimes 2k} \) and the last inequality follows from a decomposition of \(u^{\otimes 2k} \) into irreducible components.

The statement is now a consequence of the proof of [3, Prop. 2.1], which shows that subexponential growth is enough to establish
\[\limsup_{k \to \infty} m_{2k}(1)^{\frac{1}{2k}} \geq \dim(u). \]
□

We conclude by observing that most of the results of this and the previous section can be extended to ergodic actions \(\delta : C \to C \otimes Q \) of compact quantum groups on unital \(C^* \)-algebras. In the commutative case, \(C \) will be the algebra of continuous functions on a quotient space \(G/K \) by a closed subgroup, and one can generalise Theorem 3.1 to this setting. In the general case, ergodic actions still enjoy a good spectral theory [28, 29], which can be used to extend Lemma 3.3. Indeed, \(C \) has a canonical dense \(* \)-subalgebra \(C \) linearly spanned by a choice of elements carrying irreducible representations under the action. For a given (reducible) representation \(u \), \(V \) is the subspace of \(C \) corresponding to the irreducible components of \(u \). Thus \(V_n \) becomes the linear span of elements of \(C \) corresponding to set \(S_{u,n} \) of irreducible and spectral subrepresentations of \(u^{\otimes k} \), for \(k \leq n \). The computation of now yields \(\dim(V_n) = \sum_{v \in S_{u,n}} \dim(v) \text{mult}(v) \), where \(\text{mult}(v) \) is the multiplicity of \(v \) in the action. Unlike the classical case, examples are known of ergodic actions of \(SU_q(2)\) for which \(\text{mult}(v) \) arbitrarily exceeds \(\dim(v) \) [6]. Correspondingly, the dense subalgebra of an ergodic action of a finite dimensional quantum group can be of infinite dimension. However, if the action arises from a quantum subgroup \(K \) then \(\text{mult}(v) \leq \dim(v) \) for all irreducible representations \(v \), hence one still has \(\dim(G/K) \leq \dim(G) \).

5. The Fourier algebra of a compact quantum group

As already recalled in the introduction, the Fourier algebra \(A(G) \) of a locally compact quantum group has been extensively studied [1, 10, 11, 17, 18, 19]. In the compact case, one would like to have an explicit formulation in terms of irreducible representations parallel to the classical theory, see e.g. [16]. To the best of our knowledge, the paper [34] by Simeng Wang is among the few making such a description explicit. However, aspects concerning involution are not considered. In this section we review \(A(G) \) for a
compact quantum group with a look close to the representation category. In particular, we discuss a result about a correspondence between the irreducible representations of $A(G)$ and those of $C_{\text{max}}(G)$. We shall also see that if G is of Kac type then $A(G)$ is an involutive Banach algebra with respect to its natural involution.

5.1. The Banach algebra $A(G)$

Consider the dense subalgebra Q_G of $C(G)$, and express an element $a \in Q_G$ in the form

$$ a = \sum_{v \in \hat{G}} \sum_{i,j} \lambda_{v_{i,j}} v_{i,j}, $$

where $v_{i,j}$ are coefficients of v with respect to some orthonormal basis. We introduce a new norm in Q_G,

$$ \|a\|_1 = \sum_{v \in \hat{G}} \text{Tr}(|\Lambda^t_v|) $$

where Λ_v denotes the complex-valued matrix $(\lambda_{v_{i,j}})$ and Tr is the non-normalised trace of a matrix algebra. Properties of Tr imply that $a \mapsto \|a\|_1$ is indeed a norm that depends neither on the choice of the irreducible representations nor on that of the orthonormal bases.

Theorem 5.1. — The completion $A(G)$ of Q_G in the norm $a \mapsto \|a\|_1$ is a Banach algebra isometrically isomorphic via the Fourier transform to $\ell^1(\hat{G}) := \ell^\infty(\hat{G})_*$, where \hat{G} is the dual quantum group of G. When G is of Kac type, the natural involution of Q_G makes $A(G)$ into an involutive Banach algebra.

Definition 5.2. — The algebra $A(G)$ is called the Fourier algebra of G.

We will now explain the statement of Theorem 5.1 and sketch the main points in its proof. Recall how the ℓ^1-algebra of the dual discrete quantum group \hat{G} is defined. Consider the C^*–algebra associated to \hat{G},

$$ c_0(\hat{G}) = \bigoplus_{v \in \hat{G}} \mathcal{B}(H_v) $$

and the von Neumann algebra

$$ \ell^\infty(\hat{G}) = \prod_{v \in \hat{G}} \mathcal{B}(H_v). $$
Duality between G and \hat{G} in the sense of [1] is described by the unitary $V \in M(c_0(\hat{G}) \otimes C(G))$,

$$V = \bigoplus_{v \in \hat{G}} v,$$

so that the coproduct $\hat{\Delta} : \ell^\infty(\hat{G}) \rightarrow \ell^\infty(\hat{G}) \otimes \ell^\infty(\hat{G})$ is defined by

$$\hat{\Delta} \otimes 1(V) = V_{13} V_{23}.$$

Explicitly,

$$\hat{\Delta}(\Theta^v_{\xi, \eta}) = \sum_{u, u' \in \hat{G}} \sum_p \Theta_p^{u \otimes u'} S_p^\xi, S_p^\eta, \quad (5.2)$$

where $\Theta^v_{\xi, \eta}$ is the rank 1 operator in the space of v, $\Theta^v_{\xi, \eta}(\zeta) = \xi(\eta, \zeta)$, and $S_p \in (v, u \otimes u')$ is a maximal family of isometric intertwiners with mutually orthogonal ranges. The left- and right-invariant Haar weights \hat{h}_l, \hat{h}_r of $\ell^\infty(\hat{G})$ are respectively given by

$$\hat{h}_l(T) = \sum_{v \in \hat{G}} \dim_q(v) \text{Tr}(F_v^{-1} T_v),$$

$$\hat{h}_r(T) = \sum_{v \in \hat{G}} \dim_q(v) \text{Tr}(F_v T_v), \quad T \in \ell^\infty(\hat{G})^+.$$

The GNS representation associated with \hat{h}_l provides an action of $\ell^\infty(\hat{G})$ on the Hilbert space $\ell^2(\hat{G})$. Set $\ell^1(\hat{G}) = \ell^\infty(\hat{G})_+$. The coproduct of $\ell^\infty(\hat{G})$ is a normal faithful $*$-homomorphism, which induces a contractive map

$$\hat{\Delta}^* : \ell^1(\hat{G}) \otimes \ell^1(\hat{G}) \rightarrow \ell^1(\hat{G})$$

making $\ell^1(\hat{G})$ into a Banach algebra with respect to the convolution product given by

$$\omega * \omega' = \hat{\Delta}^*(\omega \otimes \omega') = \omega \otimes \omega' \circ \hat{\Delta}. \quad (5.3)$$

There is a natural isometric identification of Banach spaces

$$\left\{ A \in \prod_{v \in \hat{G}} B(H_v) : \|A\|_1 = \sum_{v \in \hat{G}} \dim_q(v) \text{Tr}(|A_v F_v^{-1}|) < \infty \right\} \rightarrow \ell^1(\hat{G})$$

taking A to the functional $\omega_A \in \ell^1(\hat{G})$ given by

$$\omega_A(T) := \hat{h}_l(T A), \quad T \in \ell^\infty(\hat{G}). \quad (5.4)$$

We henceforth realise $\ell^1(\hat{G})$ in this way. The algebraic direct sum

$$\mathcal{P}_\hat{G} = \bigoplus_{v \in \hat{G}} B(H_v) \subset \ell^1(\hat{G})$$

ANNALES DE L’INSTITUT FOURIER
then becomes a dense subalgebra of $\ell^1(\widehat{G})$ with respect to the convolution product

\[(5.5) \Theta^u_{\eta, \xi} \ast \Theta^{u'}_{\eta', \xi'} := \sum_{w \in G} \sum_i \frac{\dim_q(u) \dim_q(u')}{\dim_q(w)} \Theta^w_{S_{w, i}(\eta \eta'), S_{w, i}^*(\xi \xi')},\]

where $S_{w, i} \in (w, u \otimes u')$ is a complete set of isometries with mutually orthogonal ranges. This formula can be derived from the identification (5.4), and relations (5.2), (5.3). The algebra unit is the identity operator on the space of the trivial representation.

We next construct the Fourier algebra $A(G)$. For $a \in C(G)$ we define the Fourier coefficients by

\[\hat{a}(v) = 1_{B(H_v)} \otimes h(v^*(I_{B(H_v)} \otimes a)) \in B(H_v), \quad v \in \widehat{G}.\]

The orthogonality relations (2.1) then imply

\[(5.6) \hat{\delta}_{\eta, \xi}(v) = \frac{1}{\dim_q(v)} \delta_{u, v} \Theta_{\eta, \xi} F_v.\]

Then the following Fourier inversion formula holds:

\[a = \sum_{v \in \widehat{G}} \dim_q(v) \text{Tr} \otimes 1_{Q_G}((\hat{a}(v) F_v^{-1} \otimes I)v), \quad a \in Q_G.\]

Proposition 5.3. — The Fourier transform $F : a \in Q_G \to \hat{a} \in \mathcal{P}_{\widehat{G}}$ is an algebra isomorphism which extends to an isometric isomorphism of Banach spaces

\[F : A(G) \to \ell^1(\widehat{G}).\]

This makes $A(G)$ into a Banach algebra.

Proof. — We may write, for $u, u' \in \widehat{G}$, and $S_{w, i} \in (w, u \otimes u')$ as before,

\[u_{\xi, \eta} u'_{\xi', \eta'} = (u \otimes u')_{\xi \xi', \eta \eta'} = \sum_{w, i} w S_{w, i}^* \xi \xi', S_{w, i}^* \eta \eta'.\]

Hence

\[F(u_{\xi, \eta} u'_{\xi', \eta'})(v) = \sum_{w, i} \Theta^{S_{w, i}^* \xi \xi', \eta \eta'}(v) = \frac{1}{\dim_q(v)} \sum_i \Theta^v_{S_{w, i}^* \eta \eta', S_{w, i}^* \xi \xi'} F_v.\]

On the other hand, by (5.5) we have

\[F(u_{\xi, \eta}) \ast F(u'_{\xi', \eta'})(v) = \frac{1}{\dim_q(v)} \sum_i \Theta^v_{S_{w, i}^* \eta \eta', S_{w, i}^* F_u \otimes F_u \xi \xi'},\]

hence the two expressions coincide, thanks to

\[(5.7) SF_v = F_u \otimes F_u S, \quad S \in (v, u \otimes u').\]
We next notice that the trace norm of Q_G defined in (5.1) is but the norm making F isometric. In particular, Q_G becomes a normed algebra. The remaining statement is now clear.

5.2. The *-involution

In this subsection $A(G)$ is regarded as a Banach algebra endowed with the densely defined involution $a \in Q_G \mapsto a^* \in Q_G$. Notice that in the particular case where G is of Kac type, this involution is isometric for the norm of $A(G)$, hence $A(G)$ becomes an involutive Banach algebra.

Definition 5.4. — A *-representation of $A(G)$ is a Hilbert space representation of $A(G)$ which is a *-representation of Q_G.

We start by recalling from [21], see also [33], a continuity result of *-preserving Hilbert space representations of Q_G which can be used to continuously embed the Fourier algebra $A(G)$ into $C(G)$.

Proposition 5.5. — Let G be a compact quantum group. Every *-representation π of Q_G on a Hilbert space H satisfies

$$\|\pi(a)\|_{B(H)} \leq \|a\|_1, \quad a \in Q_G,$$

hence it extends to a contractive *-representation of $A(G)$.

Proof. — A slight modification of the argument in [33, Prop. 2.9] proves the result in the more general setting that we are considering. Namely, it suffices to replace the predual of $L_\infty(G)$ with that of $B(H)$ (or just the dual Banach space) and the norm of $L_\infty(G)$ with that of $B(H)$, and notice that the same computations involving the Fourier inversion formula go through since $\|1 \otimes \pi(u)\| \leq 1$ by unitarity of u and the fact that π is *-preserving.

Corollary 5.6. — The natural inclusion $Q_G \subset C(G)$ extends to a contractive inclusion

$$\iota : A(G) \to C(G)$$

of Banach algebras.

Proof. — Apply Proposition 5.5 to a faithful Hilbert space realisation of $C(G)$.

We next show that $A(G)$ is a semisimple Banach algebra. Consider the GNS representation $(L^2(G), \pi_h)$ of $C(G)$ associated with the Haar state h of G, and restrict it to a *-representation π of $A(G)$ via $\pi = \pi_h \circ \iota$. The following fact is standard.
Proposition 5.7. — The Fourier transform extends to a unitary operator

$$U_F : L^2(G) \to \ell^2(\hat{G}).$$

Furthermore, the action of $\mathcal{P}_{\hat{G}}$ on itself by convolution extends to a contractive representation λ of $\ell^1(\hat{G})$ on $\ell^2(\hat{G})$ and one has

$$(5.8) \quad U_F \pi(x) = \lambda(F(x))U_F, \quad x \in A(G).$$

Proof. — Unitarity of U_F is an immediate consequence of (5.6) along with the orthogonality relations (2.1). By Proposition 5.3, the intertwining relation (5.8) holds for $x \in \mathcal{P}_{\hat{G}}$ on a dense subspace of $L^2(G)$. Thus $\lambda(y)$ is a bounded operator on $\ell^2(\hat{G})$. for $y \in \mathcal{P}_{\hat{G}}$ and $\|\lambda(y)\| \leq \|F^{-1}(y)\|_1 = \|y\|_1$. We conclude that λ extends to a bounded representation of $\ell^1(\hat{G})$ and (5.8) still holds for the extension.

There is an antilinear involution on $\mathcal{P}_{\hat{G}}$ given by

$$(\Theta_{\xi,\eta}^u)^* = \Theta_{\xi^{-1},\eta^{-1}}^u F_{\pi}.$$

This coincides with the involution inherited from Q_G via Fourier transform. Indeed, we recall from Subsection 2.1, that if $j : H_u \to H_{\pi}$ defines a conjugate of u then $u_{\xi,\eta}^* = \pi_{j,\xi,j^{-1},\eta^{-1}}^u, F_u = j^* j, F_{\pi} = (jj^*)^{-1}$. Hence

$$F(u_{\xi,\eta}^*) = F(\pi_{j,\xi,j^{-1},\eta^{-1}}^u) = \frac{1}{\dim_q(\pi)} \Theta_{\xi^{-1},\eta^{-1}}^u F_{\pi} = \frac{1}{\dim_q(\pi)} \Theta_{\xi^{-1},\eta^{-1}}^u.$$

and this equals $F(u_{\xi,\eta})^*$. This involution coincides also with that inherited from the Hilbert space representation λ.

Corollary 5.8. — The *-representation $\pi = \pi_h \circ \iota$ of $A(G)$ is faithful. In other words, $A(G)$ is semisimple.

Proof. — Proposition 5.7 shows that the operator $\ell^1(\hat{G}) \to \ell^2(\hat{G}), x \to \lambda(x)\eta$, is contractive, where $\eta \in \ell^2(\hat{G})$ is a normalized vector supported on the trivial representation. On the other hand this operator acts trivially on $\ell^1(\hat{G})$, hence $\ell^1(\hat{G}) \subset \ell^2(\hat{G})$. If $\pi(x) = 0$ for some $x \in A(G)$ then $\lambda(F(x))\eta = 0$ by (5.8). Hence $F(x) = 0$ and this implies $x = 0$.

We denote by $\overline{A(G)}$ the set of equivalence classes of topologically irreducible *-representations of $A(G)$. Let $C^*(A(G))$ be the completion of $A(G)$ in the norm

$$\|x\|_{\text{max}} = \sup_{\pi \in \overline{A(G)}} \|\pi(x)\|, \quad x \in A(G).$$

The natural map $A(G) \to C^*(A(G))$ is faithful and contractive.
THEOREM 5.9. — $C^*(A(G))$ is a C^*-algebra and coincides with $C_{\text{max}}(G)$.

Proof. — Since $\|x\|_{\text{max}} \leq \|x\|_1$, Q_G is dense in $C^*(A(G))$. Being a C^*-completion of a *-algebra, $C^*(A(G))$ is a C^*-algebra. On the other hand, the map $\pi \to \pi \circ \iota$, with ι defined as in the Corollary 5.6, establishes a bijective correspondence between $\hat{C}_{\text{max}}(G)$ and $\hat{A}(G)$ by Proposition 5.5. We conclude that the norm of $C^*(A(G))$ equals the maximal norm of $C_{\text{max}}(G)$ on Q_G. □

6. Polynomial growth and *-regularity

If G is a coamenable compact quantum group, the dense Hopf subalgebra Q_G admits a unique C^*–completion to a compact quantum group, since $C_{\text{max}}(G) = C_{\text{red}}(G) = C(G)$. However, Q_G in general does not determine $C(G)$ as a C^*–algebra, as it often admits several C^*–norms. This can be seen already for the circle group, $G = \mathbb{T}$, where the supremum norm on any infinite closed subset $C \subset \mathbb{T}$ gives a C^*–norm due to the fact that elements of Q_G are restrictions to the torus of analytic functions. We thus need to replace Q_G by a larger *–algebra. One of the results of this section is that for compact quantum groups of Kac type and of polynomial growth the Fourier algebra $A(G)$, when regarded as a subalgebra of $C(G)$, is the correct algebra, in that it does have a unique C^*–norm. As mentioned in the introduction, this is related to previous work on *-regularity dating back to the ’80s.

Recall that if A is a (semisimple) Banach *–algebra, the spectrum \hat{A} is the set of equivalence classes of topologically irreducible *–representations of A on Hilbert spaces. This is a T_0-topological space with the Jacobson topology, defined as follows. Let $\text{Prim}(A)$ denote the space of kernels of elements of \hat{A} endowed with the hull-kernel topology. We have a natural map

$$\kappa : \hat{A} \to \text{Prim}(A)$$

associating a representation with its kernel, which is always surjective but may fail to be injective. For instance, if A is a C^*–algebra, this map is injective if and only if A is of type I. The Jacobson topology on \hat{A} is the weakest topology making κ continuous.

In the framework of compact quantum groups, when $G = SU_q(d)$, it is known that $C(G)$ is of type I, and the Jacobson topology of $\hat{C}(G)$ has been
described, see [25] and references therein. Consider, for a general Banach *–algebra \(A\), the continuous surjective map
\[
\Psi_A : \text{Prim}(C^*(A)) \ni \ker \pi \mapsto \ker \pi \cap A \in \text{Prim}(A).
\]

Definition 6.1. — \(A\) is called *–regular if \(\Psi_A\) is a homeomorphism.

Clearly, \(\hat{A}\) is in bijective correspondence with \(\hat{C}^*(A)\). If \(A\) is *–regular then the identification holds also at the level of topological spaces. In particular, if \(G\) is a compact quantum group of Kac type, *–regularity of \(A(G)\) ensures that \(C_{\max}(G)\) identifies topologically with \(\hat{A}(G)\).

There are several statements equivalent to *–regularity, such as asking that \(I \cap A\) be dense in \(I\) for every closed ideal of \(C^*(A)\). The notion of *–regularity is closely related to uniqueness of a \(C^*\)–norm. It is known that \(A\) has a unique \(C^*\)–norm if and only if \(I \cap A \neq 0\) for every nonzero ideal \(I\) as above and this implies that *–regular Banach algebras have a unique \(C^*\)–norm. Furthermore, \(A\) is *–regular if and only if all quotients \(A/A \cap I\) have a unique \(C^*\)–norm [5].

The property of being *–regular was first studied for the group algebra \(L^1(\Gamma)\) of a locally compact group [8]. In particular, the authors show that if the Haar measure of \(\Gamma\) has polynomial growth (that is for every compact subset \(K \subset \Gamma, \mu(K^n) = O(n^N)\) for some integer \(N\)) then \(L^1(\Gamma)\) is *–regular. The aim of this section is to show a non-commutative analogue of this result.

Theorem 6.2. — Let \(G\) be a compact quantum group of Kac type. If \(Q_G\) is of polynomial growth, then \(A(G)\) is *–regular.

We will prove this by extending [8] so as to apply it to the Fourier algebra of a compact quantum group. An important aspect of the original proof is the construction of a functional calculus for a dense subset of elements, which can be traced back to the work of Dixmier [12] on nilpotent Lie groups. We extend these ideas to general Banach *–algebras.

Let \(A\) be a Banach algebra. Set \(\hat{A} = A\) if \(A\) is unital and \(\hat{A} = A \oplus CI\) otherwise. Given an element \(f \in A\), define
\[
\hat{e}^i f = \sum_{k=0}^{\infty} \frac{(if)^k}{k!} \in \hat{A}.
\]

We shall say that \(f\) has polynomial growth if there exists \(\gamma > 0\) such that
\[
\|\hat{e}^{i\lambda} f\| = O(|\lambda|^{\gamma}) \quad \text{for } |\lambda| \to +\infty.
\]

The following lemma is a well-known abstract reformulation of [12, Lem. 7].
LEMMA 6.3. — Let A be a Banach *–algebra. For any C^∞-function $\varphi : \mathbb{R} \to \mathbb{C}$ with compact support and any element $f \in A$ of polynomial growth,

1. the integral

$$\varphi\{f\} := \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{i\lambda f} \varphi(\lambda) \, d\lambda$$

is absolutely convergent in \tilde{A},

2. if A is non-unital, $\varphi\{f\} \in A$ whenever $\varphi(0) = 0$,

3. for every *–representation π of A,

$$\pi(\varphi\{f\}) = \varphi(\pi(f))$$

if $f = f^*$, where the right-hand side denotes the continuous functional calculus of the operator $\pi(f)$.

We now give an abstraction of an argument of [8].

LEMMA 6.4. — Let A be a Banach *–algebra admitting a subset of elements of polynomial growth dense in A_{sa}. Then A is *–regular.

Proof. — By [8, Prop. 1], see also [23, Prop. 1.3], we need to show that $\|\rho(f)\| \leq \|\pi(f)\|$ holds for all $f \in A$ whenever π, ρ are *–representations of A satisfying $\ker \pi \subset \ker \rho$.

By the C^*–property it suffices to show this for all selfadjoint elements f, and by our assumption we may also assume f to be of polynomial growth. Assume on the contrary there exists such an $f \in A_{sa}$ with $\|\pi(f)\| < \|\rho(f)\|$.

Let φ be a positive C^∞-function with compact support such that $\varphi(x) = 0$ for $|x| \leq \|\pi(f)\|$ and $\varphi(\pm \|\rho(f)\|) = 1$. Then φ vanishes on $\text{Sp}\pi(f)$ and $\sup\{\varphi(t), t \in \text{Sp}\rho(f)\} \geq 1$ since $\pi(f)$ und $\rho(f)$ are selfadjoint operators. By the previous lemma,

$$\|\pi(\varphi\{f\})\| = \|\varphi(\pi(f))\| = \sup\{\varphi(t); t \in \text{Sp}\pi(f)\} = 0$$

and

$$\|\rho(\varphi\{f\})\| = \|\varphi(\rho(f))\| = \sup\{\varphi(t); t \in \text{Sp}\rho(f)\} \geq 1.$$

This contradicts our assumption that $\ker \pi \subset \ker \rho$. □

Dixmier showed that if Γ is a unimodular locally compact group with Haar measure of polynomial growth then every continuous function $f \in C_c(\Gamma)$ with compact support has polynomial growth in $\hat{L}^1(\Gamma)$. The following lemma is a non-commutative analogue.
Lemma 6.5. — Let G be a compact quantum group of Kac type. If Q_G is of polynomial growth, then every selfadjoint $f \in Q_G$ has polynomial growth in $A(G)$.

Proof. — By Proposition 5.3 and the remarks preceding Corollary 5.8, it is enough to prove the statement for a selfadjoint element $g \in P_{\hat{G}}$ and the Banach algebra $\ell^1(\hat{G})$.

We adapt the proof of [12, Lem. 5, 6] by replacing the role of a finite measure subset A of Γ with a finite set $F \subset \hat{G}$ of irreducible representations of G, and powers A^p with the set of irreducible representations contained in u_F^p, where u_F is the direct sum of elements of F. Choose now F so that it contains the support of g. Finally, perform the same computations where the norms of $L^1(\Gamma)$ and $L^2(\Gamma)$ are replaced by the norms of $\ell^1(\hat{G})$, $\ell^2(\hat{G})$ mentioned in the previous section. □

The proof of Theorem 6.2 is now complete.

Remark 6.6. — Examples of Kac-type compact quantum groups that are not \ast–regular are provided by non-amenable discrete groups. Indeed, for any such Γ, $\ell^1(\Gamma)$ is not C^\ast–unique. As a matter of fact, it is not as easy to find examples among amenable discrete groups. Indeed, on the one hand the relationship between \ast–regularity and C^\ast–uniqueness has been studied at an in-depth level in [5]. On the other, it is not known whether every such group is automatically C^\ast–unique, see [22] for partial positive results. The most natural candidate to disprove this conjecture is the so-called Grigorchuk group as remarked in [15]. Moreover, giving workable examples of coamenable Kac-type compact quantum groups, beyond the cocommutative or commutative cases, is not easy either. For example, $A_o(n)$ and $A_u(n)$ of Shuzhou Wang [32] are not coamenable, except for $A_o(2)$. For more information, see also the recent paper [27] and references therein.

BIBLIOGRAPHY

Manuscrit reçu le 23 mai 2016,
révisé le 1er octobre 2016,
accepté le 8 décembre 2016.

Alessandro D’ANDREA
Dipartimento di Matematica
Università degli Studi di Roma “La Sapienza”
I-00185 Roma (Italy)
dandrea@mat.uniroma1.it

Claudia PINZARI
Dipartimento di Matematica
Università degli Studi di Roma “La Sapienza”
I-00185 Roma (Italy)
pinzari@mat.uniroma1.it

Stefano ROSSI
Dipartimento di Matematica
Università degli Studi di Roma “Tor Vergata”
I-00133 Roma (Italy)
rossis@mat.uniroma2.it