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DEL PEZZO SURFACES OF DEGREE FOUR
VIOLATING THE HASSE PRINCIPLE ARE ZARISKI

DENSE IN THE MODULI SCHEME

by Jörg JAHNEL & Damaris SCHINDLER

Abstract. — We show that, over every number field, the degree four del Pezzo
surfaces that violate the Hasse principle are Zariski dense in the moduli scheme.
Résumé. — Nous montrons que, sur chaque corps de nombres, les surfaces

de del Pezzo de degré quatre qui violent le principe de Hasse sont denses pour la
topologie de Zariski dans le schéma de modules.

1. Introduction

A del Pezzo surface is a smooth, proper algebraic surface S over a field
K with an ample anti-canonical sheaf K −1. Over an algebraically closed
field, every del Pezzo surface of degree d 6 7 is isomorphic to P2, blown
up in (9− d) points in general position [14, Thm. 24.4.iii)].
According to the adjunction formula, a smooth complete intersection of

two quadrics in P4 is del Pezzo. The converse is true, as well. For every
del Pezzo surface of degree four, its anticanonical image is the complete
intersection of two quadrics in P4 [8, Thm. 8.6.2].
Although del Pezzo surfaces over number fields are generally expected

to have many rational points, they do not always fulfil the Hasse principle.
The first example of a degree four del Pezzo surface for which the Hasse
principle is violated was conceived by B. Birch and Sir Peter Swinnerton-
Dyer [3, Thm. 3]. It is given in P4

Q by the equations

T0T1 = T 2
2 − 5T 2

3 ,

(T0 + T1)(T0 + 2T1) = T 2
2 − 5T 2

4 .

Keywords: Del Pezzo surface, Hasse principle, moduli scheme.
Math. classification: 11G35, 14G25, 14J26, 14J10.



1784 Jörg JAHNEL & Damaris SCHINDLER

Meanwhile, more counterexamples to the Hasse principle have been con-
structed, see, e.g., [5, Ex. 15 and 16]. Quite recently, N.D.Q. Nguyen proved
in [18, Thm. 1.1] that the degree four del Pezzo surface, given by

T0T1 = T 2
2 − (64k2 + 40k + 5)T 2

3 ,

(T0 + (8k + 1)T1)(T0 + (8k + 2)T1) = T 2
2 − (64k2 + 40k + 5)T 2

4

is a counterexample to the Hasse principle if k is an integer such that
64k2 + 40k + 5 is a prime number. In particular, under the assumption of
Schinzel’s hypothesis, this family contains infinitely many members violat-
ing the Hasse principle.
In this article, we prove that del Pezzo surfaces of degree four that fail

the Hasse principle are Zariski dense in the moduli scheme. In particular,
we establish, for the first time unconditionally, that their number up to
isomorphism is infinite. We show, in addition, that these results hold over
an arbitrary number field K.
Before we can state our main results, we need to recall some notation

and facts about the coarse moduli scheme of degree four del Pezzo surfaces.
For this we consider a del Pezzo surface X of degree four given as the

zero set of two quinary quadrics

Q1(T0, . . . , T4) = Q2(T0, . . . , T4) = 0 .

The pencil (uQ1 +vQ2)(u:v)∈P1 of quadrics defined by the forms Q1 and Q2
contains exactly five degenerate elements. The corresponding five values
t1, . . . , t5 ∈ P1(K) of t := (u : v) are uniquely determined by the surface
X, up to permutation and the natural operation of Aut(P1) ∼= PGL2(K).

Let U ⊂ (P1
K)5 be the Zariski open subset given by the condition that

no two of the five components coincide. Then there is a K-isomorphism

j : U/(S5 × PGL2)
∼=−→M

to the coarse moduli scheme M of degree four del Pezzo surfaces [12, §5].
The quotient of U modulo S5 alone is the space of all binary quintics

without multiple roots, up to multiplication by constants. This is part of
the stable locus in the sense of Geometric Invariant Theory, which is formed
by all quintics without roots of multiplicity >3 [16, Prop. 4.1].

Furthermore, classical invariant theory teaches that, for binary quintics,
there are three fundamental invariants I4, I8, and I12 of degrees 4, 8, and
12, respectively, that define an open embedding

ι : U/(S5 × PGL2) ↪→ P(1, 2, 3)K
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DEL PEZZO SURFACES OF DEGREE FOUR 1785

into a weighted projective plane. This result is originally due to Ch. Her-
mite [13, §VI], cf. [21, ß224–228]. A more recent treatment from a com-
putational point of view is due to A. Abdesselam [1].
Altogether, this yields an open embedding I : M ↪→ P(1, 2, 3)K . More

generally, every family π : S → B of degree four del Pezzo surfaces over a
K-scheme B induces a morphism

Iπ = I : B → P(1, 2, 3)K ,

which we call the invariant map associated with π.

Remark 1.1. — There cannot be a fine moduli scheme for degree four
del Pezzo surfaces, as geometrically every such surface X has at least 16
automorphisms [8, Thm. 8.6.8]. (The statement of Theorem 8.6.8 in [8] con-
tains a misprint, but it is clear from the proof that the described quotient
group may either be isomorphic to one of the listed groups or be trivial).

Let us, for simplicity of notation, identify the space S2((K5)∗) of all
quinary quadratic forms with coefficients in K with K15. This is clearly a
non-canonical isomorphism. To give an intersection of two quadrics inP4

K is
then equivalent to giving aK-rational plane through the origin ofK15, i.e. a
K-rational point on the Graßmann scheme Gr(2, 15)K . The open subset
Ureg ⊂ Gr(2, 15)K that parametrises non-singular surfaces is isomorphic to
the Hilbert scheme [10] of del Pezzo surfaces of degree four in P4

K . We will
not go into the details as they are not necessary for our purposes. Using this
identification, we can now state our main result in the following form.

Theorem 1.2. — Let K be a number field, Ureg ⊂ Gr(2, 15)K the open
subset of the Graßmann scheme that parametrises degree four del Pezzo
surfaces, and H CK ⊂ Ureg(K) be the set of all degree four del Pezzo sur-
faces over K that are counterexamples to the Hasse principle. Then H CK

is Zariski dense in Gr(2, 15)K .

Remark 1.3. — An analogous result for cubic surfaces has recently been
established by A.-S. Elsenhans together with the first author [9]. Our ap-
proach is partly inspired by the methods applied in the cubic surface case.
The concrete construction of del Pezzo surfaces of degree four that vio-
late the Hasse principle is motivated by the work [18] of N.D.Q. Nguyen.
In particular, all the failures of the Hasse principle we consider below are
due to the Brauer–Manin obstruction.

The following result could be seen as a corollary of Theorem 1.2, but it is,
in fact, more or less equivalent. Our strategy will be to prove Theorem 1.4
first and then to deduce Theorem 1.2 from it.

TOME 67 (2017), FASCICULE 4



1786 Jörg JAHNEL & Damaris SCHINDLER

Theorem 1.4. — Let K be a number field, Ureg ⊂ Gr(2, 15)K the open
subset of the Graßmann scheme that parametrises degree four del Pezzo
surfaces, and H CK ⊂ Ureg(K) be the set of all degree four del Pezzo
surfaces over K that are counterexamples to the Hasse principle. Then the
image of H CK under the invariant map

I : Ureg −→ P(1, 2, 3)K

is Zariski dense.

Remark 1.5 (Particular K3 surfaces that fail the Hasse principle). — In
their article [23], A. Várilly-Alvarado and B. Viray provide, among other
things, families of K3 surfaces of degree eight that violate the Hasse prin-
ciple. These K3 surfaces allow a morphism p : Y → X being generically
2:1 down to a degree four del Pezzo surface X that fails the Hasse prin-
ciple. Since X(K) = ∅, the existence of the morphism alone ensures that
Y (K) = ∅. Examples of the same kind also appear in [18].

The construction of these families easily generalises to our setting. One
has to intersect the cone CX ⊂ P5 over the del Pezzo surface with a quadric
that avoids the vertex. The intersection Y is then a degree eightK3 surface,
provided it is smooth, which it is generically according to Bertini’s theorem.
Thus, Y is a counterexample to the Hasse principle provided it has an
adelic point.

For Y , the failure of the Hasse principle may be explained by the Brauer–
Manin obstruction (cf. Section 3 for details). If α ∈ Br(X) explains the
failure for X then p∗α does so for Y .

However, the K3 surfaces obtained in this way do clearly not dominate
the moduli space of degree eight K3 surfaces. Indeed, the pull-back homo-
morphism p∗ : Pic(XK) → Pic(YK) doubles the intersection numbers and
is, in particular, injective. This means that Y has geometric Picard rank
at least six, while a general degree eight K3 surface is of geometric Picard
rank one.

Acknowledgements
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2. A family of degree four del Pezzo surfaces

We consider the surface S := S(D;A,B) over a field K, given by the
equations

T0T1 = T 2
2 −DT 2

3 ,(2.1)

(T0 +AT1)(T0 +BT1) = T 2
2 −DT 2

4(2.2)

for A,B,D ∈ K. We will typically assume that D is not a square in K and
that S is non-singular. If S is non-singular then S is a del Pezzo surface of
degree four.

Proposition 2.1. — Let K be a field of characteristic 6= 2 and A,B,

D ∈ K.
(a) Then the surface S(D;A,B) is non-singular if and only if ABD 6= 0,

A 6= B, and A2 − 2AB +B2 − 2A− 2B + 1 6= 0.
(b) If D 6= 0 then S(D;A,B) is not a cone and has at worst isolated sin-

gularities.

Proof. — (a). — The surface S(D;A,B) is defined by the two quadrics
Q1 and Q2 that are given by the symmetric matrices

M1 =


0 1

2 0 0 0
1
2 0 0 0 0
0 0 −1 0 0
0 0 0 D 0
0 0 0 0 0



and M2 =


1 A+B

2 0 0 0
A+B

2 AB 0 0 0
0 0 −1 0 0
0 0 0 0 0
0 0 0 0 D

 ,

respectively. Therefore,

det(uM1 + vM2)

= −D2[ABv2 − (Av+Bv+u)2

4 ](u+ v)uv
= 1

4D
2[u2 + 2(A+B)uv + (A2 − 2AB +B2)v2](u+ v)uv .

It is well-known [20, Prop. 2.1] that S is non-singular if and only if
det(uM1 + vM2) has five distinct roots in P1(K).

TOME 67 (2017), FASCICULE 4
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In particular, S is clearly singular for D = 0. Otherwise, the roots
are u/v = −(A + B) ± 2

√
AB, 0, −1, and ∞. The first two coincide

exactly when AB = 0. It therefore remains to investigate the cases that
−(A+B)± 2

√
AB = 0 or −(A+B)± 2

√
AB = −1.

Clearly, the first equality is equivalent to ±2
√
AB = (A + B), hence to

4AB = (A+B)2, and A = B. On the other hand, −(A+B)±2
√
AB = −1

means nothing but ±2
√
AB = A+B − 1, hence

4AB = A2 + 2AB +B2 + 1− 2A− 2B,

and
A2 − 2AB +B2 − 2A− 2B + 1 = 0 .

(b). — First of all, the binary quintic form det(uM1 + vM2) does not
entirely vanish. Therefore, the pencil of quadrics defining S contains one of
full rank, which is enough to show that S is not a cone.
On the other hand, a point (t0 : . . . : t4) ∈ S(K) is singular if and only

if the Jacobian matrix(
t1 t0 −2t2 2Dt3 0

2t0 + (A+B)t1 (A+B)t0 + 2ABt1 −2t2 0 2Dt4

)
is not of full rank. In particular, this means that t20 = ABt21 and that at least
two of the coordinates t2, t3, and t4 must vanish. Together these conditions
define six lines in P4, which collapse to three in the case that AB = 0.
If there were infinitely many singular points then at least one of these

lines would be entirely contained in S. But this is not the case, as, on each
of the six lines, one equation of the form

F (T1) = T 2
2 , F (T1) = −DT 2

3 , or F (T1) = −DT 2
4

remains from the equations of S. �

Remark 2.2. — Assume that D ∈ K is a non-square and that S(D;A,B)

is non-singular. Then there is neither a K-rational point (t0 : t1 : t2 : t3 : t4) ∈
S(K) such that t0 = t1 = 0, nor one such that t0 + At1 = t0 + Bt1 = 0.
Indeed, in view of A 6= B either condition implies that t0 = t1 = 0, so
t22 = Dt23 = Dt24. Since D is a non-square, there is no K-rational point
satisfying these conditions.

3. A class in the Grothendieck–Brauer group

It is a discovery of Yu. I. Manin [14, §47] that a non-trivial element α ∈
Br(S) of the Grothendieck–Brauer group [11], [15, Chap. IV] of a variety S

ANNALES DE L’INSTITUT FOURIER
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may cause a failure of the Hasse principle. Today, this phenomenon is called
the Brauer–Manin obstruction. Its mechanism works as follows.
LetK be a number field, l ⊂ OK a prime ideal, andKl be the correspond-

ing completion. The Grothendieck–Brauer group is a contravariant functor
from the category of schemes to the category of abelian groups. In partic-
ular, for an arbitrary scheme S and a Kl-rational point x : SpecKl → S,
there is a restriction homomorphism x∗ : Br(S) → Br(SpecKl) ∼= Q/Z.
For a Brauer class α ∈ Br(X), we call

evα,l : S(Kl) −→ Q/Z , x 7→ x∗(α)

the local evaluation map, associated to α. Analogously, for σ : K ↪→ R a
real prime, there is the local evaluation map evα,σ : S(Kσ)→ 1

2Z/Z.

Proposition 3.1 (The Brauer–Manin obstruction to the Hasse
principle). — Let S be a projective variety over a number field K and
α ∈ Br(S) be a Brauer class.
For every prime ideal l ⊂ OK , suppose that S(Kl) 6= ∅ and that the

local evaluation map evα,l is constant. Analogously, assume that, for every
real prime σ : K ↪→ R, one has S(Kσ) 6= ∅ and that the local evaluation
map evα,σ is constant. Denote the values of evα,l and evα,σ by el and eσ,
respectively. If, in this situation,∑

l⊂OK

el +
∑

σ:K↪→R
eσ 6= 0 ∈ Q/Z

then S is a counterexample to the Hasse principle.

Proof. — The assumptions imply, in particular, that S is not the empty
scheme. Consequently, there are Kτ -rational points on S for every complex
prime τ : K ↪→ C. The Hasse principle would assert that S(K) 6= ∅.
On the other hand, by global class field theory [22, §10, Thm. B] one has

a short exact sequence

0→ Br(K)→
⊕
ν

Br(Kν)→ Q/Z→ 0 ,

where the direct sum is taken over all places ν of the number field K.
Assume that there is a point x : SpecK → S. Then x∗(α) ∈ Br(SpecK) is
a Brauer class that naturally maps to an element of⊕

l

Br(Kl)⊕
⊕
σ

Br(Kσ)∼=
⊕
l

Q/Z⊕
⊕
σ

1
2Z/Z

of a non-zero sum, which is a contradiction to the exactness of the above
sequence. �

TOME 67 (2017), FASCICULE 4



1790 Jörg JAHNEL & Damaris SCHINDLER

Proposition 3.2. — Let K be a field of characteristic 6= 2 and
A,B,D ∈ K \ {0} be arbitrary elements. Suppose that D is a non-square
and set L := K(

√
D). Assume that S := S(D;A,B) is non-singular.

(a) Then the quaternion algebra (see [19, §15.1] for the notation)

A :=
(
L(S), τ, T0+AT1

T0

)
over the function field K(S) extends to an Azumaya algebra over
the whole of S. Here, by τ ∈ Gal(L(S)/K(S)), we denote the non-
trivial element.

(b) Assume that K is a number field and denote by α ∈ Br(S) the
Brauer class, defined by the extension of A . Let l be any prime
of K.
(i) Let (t0 : t1 : t2 : t3 : t4) ∈ S(Kl) be a point and assume that

at least one of the quotients (t0 + At1)/t0, (t0 + At1)/t1,
(t0 + Bt1)/t0, and (t0 + Bt1)/t1 is properly defined and non-
zero. Denote that by q. Then

evα,l(t0 : t1 : t2 : t3 : t4) =
{

0 if (q,D)l = 1 ,
1
2 if (q,D)l = −1 ,

for (q,D)l the Hilbert symbol.
(ii) If l is split in L then the local evaluation map evα,l is con-

stantly zero.

Proof. — (a) (cf. [24, Lem. 3.2]). — First of all, A is, by construction,
a cyclic algebra of degree two. In particular, A is simple [19, §15.1, Cor. d].
Furthermore, A is obviously a central K(S)-algebra.
To prove the extendability assertion, it suffices to show that A extends

as an Azumaya algebra over each valuation ring that corresponds to a prime
divisor on S. Indeed, this is the classical Theorem of Auslander–Goldman
for non-singular surfaces [2, Prop. 7.4], cf. [15, Chap. IV, Thm. 2.16].

For this, we observe that the principal divisor div((T0 + AT1)/T0) ∈
Div(S) is the norm of a divisor on SL. In fact, it is the norm of the difference
of two prime divisors, the conic, given by T0 +AT1 = T2−

√
DT4 = 0, and

the conic, given by T0 = T2 −
√
DT3 = 0. In particular, A defines the zero

element in H2(〈σ〉,Div(SL)). Under such circumstances, the extendability
of A over the valuation ring corresponding to an arbitrary prime divisor
on S is worked out in [14, §42.2].

ANNALES DE L’INSTITUT FOURIER
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(b.i). — The quotients
T0 +AT1

T0

/T0 +AT1

T1
= T 2

2 −DT 2
3

T 2
0

,
T0 +BT1

T0

/T0 +BT1

T1
= T 2

2 −DT 2
3

T 2
0

,

and T0 +AT1

T0

/T0 +BT1

T0
= T 2

2 −DT 2
4

(T0 +BT1)2

are norms of rational functions. Thus, each defines the zero class in
H2(〈σ〉,K(SL)∗) ⊆ BrK(S), and hence in BrS. In particular, the four ex-
pressions (T0 +AT1)/T0, (T0 +AT1)/T1, (T0 +BT1)/T0, and (T0 +BT1)/T1
define the same Brauer class.
The general description of the evaluation map, given in [14, §45.2] shows

that evα,l(t0 : t1 : t2 : t3 : t4) is equal to 0 or 1
2 depending on whether q is in

the image of the norm map NLL/Kl
: L∗L → K∗l , or not, for L a prime of L

lying above l. This is exactly what is tested by the Hilbert symbol (q,D)l.

(b.ii). — If l is split in L then the norm map N : K(SLL
)∗ → K(SKl

)∗
is surjective. In particular, T0+AT1

T0
∈ K(SKl

)∗ is the norm of a rational
function on SLL

. Therefore, it defines the zero class in H2(〈σ〉,K(SLL
)∗) ⊆

BrK(SKl
), and thus in BrSKl

. Finally, we observe that every Kl-rational
point x : SpecKl → S factors via SKl

. �

Geometrically, on a rank four quadric in P4, there are two pencils of
planes. In our situation, these are conjugate to each other under the oper-
ation of Gal(K(

√
D)/K). The equation T0 = 0 cuts two conjugate planes

out of the quadric (2.1) and the same is true for T1 = 0. The equations
T0 +AT1 = 0 and T0 +BT1 = 0 each cut two conjugate planes out of (2.2).

Remark 3.3. — A. Várilly-Alvarado and B. Viray [24, Thm. 5.3] prove
for a certain class of degree four del Pezzo surfaces that the Brauer–Manin
obstruction is the only obstruction to the Hasse principle and to weak ap-
proximation. Their result is conditional under the assumption of Schinzel’s
hypothesis and the finiteness of Tate–Shafarevich groups of elliptic curves
and based on ideas of O. Wittenberg [26, Thm. 1.1]. The class considered
in [24] includes our family (2.1, 2.2).

One might formulate our strategy to prove S(D;A,B)(K) = ∅ for K a
number field and particular choices of A, B, and D in a more elementary
way as follows.
Suppose that there is a point (t0 : t1 : t2 : t3 : t4) ∈ S(K). Then

(t0, t1) 6= (0, 0). Among (t0 + At1)/t0, (t0 + At1)/t1, (t0 + Bt1)/t0, and
(t0 + Bt1)/t1, consider an expression q that is properly defined and non-
zero. Then show that, for every prime l of K including the Archimedean

TOME 67 (2017), FASCICULE 4
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ones, but with the exception of exactly an odd number, the Hilbert symbol
(q,D)l is equal to 1. Finally, observe that such a behaviour contradicts the
Hilbert reciprocity law [17, Chap. VI, Thm. 8.1].
In other words, the element q ∈ Kl belongs to the image of the norm map

N : LL → Kl, for L := K(
√
D) and L a prime of L lying above l, for all

but an odd number of primes. Which is incompatible with [17, Chap. VI,
Cor. 5.7] or [22, Thm. 5.1 together with 6.3].

4. Unramified primes

Lemma 4.1. — Let K be a field of characteristic 6=2 and A,B,D ∈ K
be elements such that D 6= 0. Then the minimal resolution of singularities
S̃ of S := S(D;A,B) is geometrically isomorphic to P2, blown up in five
points (some of which may be infinitely near points).

Proof. — By Proposition 2.1.b), we know that SK is not a cone and has
at worst isolated singularities. In this situation, it is well-known that all
the singularities of SK are of ADE-type. The usual argument for this is
based on the classification of singularities of cubic surfaces (e.g. [8, §9.2]).
Cf. [6, §5, particularly Prop. 5.1] for details.
Consequently, according to [6, Ex. 0.7.b)], SK is either a del Pezzo surface

of degree 4 or a singular del Pezzo surface of degree 4 in the sense of [6].
That is, its minimal resolution of singularities S̃K is a generalised del Pezzo
surface of degree 4 [7]. But those are isomorphic to P2

K
, blown up in five

points [6, Prop. 0.4]. �

Corollary 4.2. — Let F̀ be a finite field of characteristic 6= 2 and
A,B,D ∈ F̀ such that D 6= 0. Then S := S(D;A,B) has a regular F̀ -
rational point.

Proof. — By Lemma 4.1, the minimal resolution of singularities S̃ of S is
geometrically isomorphic to P2, blown up in five points. In such a situation,
the Weil conjectures have been established by A. Weil himself [25, p. 557],
cf. [14, Thm. 27.1].
At least one of the eigenvalues of Frobenius on Pic(S̃

F̀
) is equal to (+1).

Say, the number of eigenvalues (+1) is exactly n > 1. The remaining (6−n)
eigenvalues are of real part >(−1). Hence, #S̃(F̀ ) > `2 + (2n− 6)`+ 1.

Among these, at most (n − 1)(` + 1) points may have originated from
blowing up the singular points of Sl. Indeed, each time an F̀ -rational point

ANNALES DE L’INSTITUT FOURIER
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is blown up, a (+1)-eigenspace is added to the Picard group. Therefore,

#Sreg(F̀ ) > `2 + (2n− 6)`+ 1− (n− 1)(`+ 1)

= `2 − 5`+ 2 + n(`− 1) > `2 − 4`+ 1 .

For ` > 5, this is positive.
Thus, it only remains to consider the case that ` = 3. Then S is the

closed subvariety of P4
F3
, given by

T0T1 = T 2
2 −DT 2

3 ,

(T0 + aT1)(T0 + bT1) = T 2
2 −DT 2

4

for D = ±1 and certain a, b ∈ F3. Independently of the values of a and b,
S has the regular F3-rational point (1 : 0 : 1 : 1 : 0) in the case that D = 1
and (1 :0 :0 :0 :1) in the case that D = −1. �

Proposition 4.3 (Unramified primes). — Let K be a number field,
A,B,D ∈ OK , and l ⊂ OK be a prime ideal that is unramified under the
field extension K(

√
D)/K. Consider the surface S := S(D;A,B).

(a) If #OK/l is not a power of 2 then S(Kl) 6= ∅.
(b) Assume that A 6≡ B (mod l), that S is non-singular, and that

S(Kl) 6= ∅. Let α ∈ Br(S) be the Brauer class, described in Propo-
sition 3.2.a). Then the local evaluation map evα,l : S(Kl) → Q/Z

is constantly zero.

Proof. — We put ` := #OK/l. Furthermore, we normalise D to be a
unit in OKl

. This is possible because l is unramified.

(a). — It suffices to verify the existence of a regular F̀ -rational point on
the reduction Sl of S. For this, we observe that (D mod lOKl

) 6= 0, which
shows that Corollary 4.2 applies.

(b). — If l is split then this is Proposition 3.2(b)(ii). Otherwise, let
(t0 : t1 : t2 : t3 : t4) ∈ S(Kl) be an arbitrary point. Normalise the coordinates
such that t0, . . . , t4 ∈ OKl

and at least one is a unit.
We first observe that one of t0 and t1 must be a unit. Indeed,

otherwise one has l|t0, t1. According to equation (2.1), this implies that
l|NKl(

√
D)/Kl

(t2 + t3
√
D). Such a divisibility is possible only when l|t2, t3,

since Kl(
√
D)/Kl is an unramified, proper extension and

√
D ∈ Kl(

√
D)

is a unit. But then t4 is a unit, in contradiction to equation (2.2).
Second, we claim that t0 +At1 or t0 +Bt1 is a unit. Indeed, since A 6≡ B

(mod l), the assumption l|t0 +At1, t0 +Bt1 implies l|t0, t1.
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We have thus shown that one of the four expressions (t0 +At1)/t0, (t0 +
At1)/t1, (t0 +Bt1)/t0, and (t0 +Bt1)/t1 is a unit. Write q for that quotient.
As the local extension Kl(

√
D)/Kl is unramified of degree two, we see that

(q,D)l = 1. Proposition 3.2(b)(i) implies the assertion. �

If l is a split prime then an even stronger statement is true.

Lemma 4.4 (Split primes). — Let K be a number field, A,B,D ∈ OK ,
and l ⊂ OK a prime ideal that is split under K(

√
D)/K. Consider the

surface S := S(D;A,B).
(a) Then S(Kl) 6= ∅.
(b) Furthermore, if S is non-singular and α ∈ Br(S) is the Brauer

class, described in Proposition 3.2.a), then the local evaluation map
evα,l : S(Kl)→ Q/Z is constantly zero.

Proof. — (a). — The assumption that l is split under the field extension
K(
√
D)/K is equivalent to

√
D ∈ Kl. Therefore, the point (1 : 0 : 1 : 1√

D
: 0)

is defined over Kl. In particular, S(Kl) 6= ∅.

(b). — This is the assertion of Proposition 3.2(b)(ii) �

Remark 4.5. — If l is inert, 0 6≡ A ≡ B (mod l), and (A/D mod l) ∈
OK/l is a non-square then the assertion of Proposition 4.3.b) is true, too.

Indeed, t0 or t1 must be a unit by the same argument as before. The as-
sumption l|t0 +At1, t0 +Bt1 does not lead to an immediate contradiction,
but to l|t2, t4 and t0/t1 ≡ −A (mod l). In particular, both t0 and t1 must
be units. But then equation (2.1) implies the congruence

−At21 ≡ −Dt23 (mod l) .

Remark 4.6 (Inert primes–the case of residue characteristic 2). — We
note that a statement analogous to Proposition 4.3(a) is true for any inert
prime l under some more restrictive conditions on the coefficients A and
B.
For this suppose that A, B, D ∈ OK and that l ⊂ OK is a prime

ideal that is inert under K(
√
D)/K. Let e be a positive integer such that

x ≡ 1 (mod le) is enough to imply that x ∈ Kl is a square. Assume that
νl(B−1) = f > 1 and that νl(A) is an odd number such that νl(A) > 2f+e.
Then S(Kl) 6= ∅.
Indeed, let us show that there exists a point (t0 : t1 : t2 : t3 : t4) ∈ S(Kl)

such that t3 = t4 and t1 6= 0. This leads to the equation (T0 + AT1) ×
(T0 +BT1) = T0T1, or

T 2
0 + (A+B − 1)T0T1 +ABT 2

1 = 0 .
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The discriminant of this binary quadric is

(A+B − 1)2 − 4AB = (B − 1)2 +A(A− 2B − 2) ,

which is a square in Kl by virtue of our assumptions. Thus, there are two
solutions inKl for T0/T1 and their product is AB, which is of odd valuation.
We may therefore choose a solution t0/t1 such that νl(t0/t1) is even. This is
enough to imply that (t0 +At1)(t0 +Bt1) = t0t1 is a norm from Kl(

√
D).

Remark 4.7 (Archimedean primes).
(1) Let σ : K ↪→ R be a real prime. Then, for A, B ∈ K arbitrary and

D ∈ K non-zero, one has Sσ(R) 6= ∅.
Indeed, we can put t1 := 1 and choose t0 ∈ R such that t0,

t0 + σ(A), and t0 + σ(B) are positive. Then C := t0 > 0 and
C ′ := (t0 + σ(A))(t0 + σ(B)) > 0 and we have to show that the
system of equations

T 2
2 − σ(D)T 2

3 = C

T 2
2 − σ(D)T 2

4 = C ′

is solvable in R. For this one may choose t2 such that
t22 > max(C,C ′) if σ(D) > 0 and such that t22 6 min(C,C ′),
otherwise. In both cases it is clear that there exist real numbers
t3 and t4 such that the resulting point is contained in Sσ(R).
Moreover if σ(D) > 0 then the local evaluation map

evα,σ : S(Kσ) → 1
2Z/Z is constantly zero. Indeed, then one has

(q,D)σ = 1 for every q ∈ Kσ
∼= R, different from zero.

(2) For τ : K ↪→ C a complex prime and A, B, and D ∈ K arbitrary,
we clearly have that S(Kτ ) 6= ∅. Furthermore, (q,D)τ = 1 for every
non-zero q ∈ Kτ

∼= C.

5. Ramification–Reduction to the union of four planes

The goal of this section is to study the evaluation of the Brauer class at
ramified primes l. Under certain congruence conditions on the parameters
A and B we deduce that the evaluation map is constant on the Kl-rational
points on S, and we determine its value depending on A and B.

Proposition 5.1 (Ramified primes in residue characteristic 6= 2). —
LetK be a number field, A,B,D ∈ OK , and l ⊂ OK a prime ideal such that
#OK/l is not a power of 2 and that is ramified under the field extension
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K(
√
D)/K. Suppose that A := (A mod l) ∈ OK/l is a square, different from

0 and (−1), that A2 +A+ 1 6= 0, and that

B ≡ − A
A+1 (mod l) .

Consider the surface S := S(D;A,B).
(a) Then S(Kl) 6= ∅.
(b) Assume that S is non-singular and let α ∈ Br(S) be the Brauer

class, described in Proposition 3.2(a).
(i) If A + 1 ∈ OK/l is a square then the local evaluation map

evα,l : S(Kl)→ Q/Z is constantly zero.
(ii) If A+ 1 ∈ OK/l is a non-square then the local evaluation map

evα,l : S(Kl)→ Q/Z is constant of value 1
2 .

Proof. — First of all, we note that νl(D) is odd. Indeed, assume the
contrary. We may then normalise D to be a unit and write Kn

l for the
unramified quadratic extension of Kl. Then (D mod lOKn

l
) is a square and,

since OKn
l
/lOKn

l
is a field of characteristic different from 2, Hensel’s Lemma

ensures that D is a square in Kn
l . I.e., Kl(

√
D) ⊆ Kn

l , a contradiction.
Let us normalise D such that νl(D) = 1. Then the reduction Sl of S is

given by the equations

T0T1 = T 2
2 ,(5.1)

(T0 +AT1)(T0 − A

A+1
T1) = T 2

2 ,(5.2)

which geometrically define a cone over four points in P2.

(a). — We write ` := #OK/l. It suffices to verify the existence of a
regular F̀ -rational point on Sl. For this, it is clearly enough to show that
one of the four points in P2, defined by the equations (5.1) and (5.2), is
simple and defined over F̀ .
Equating the two terms on the left hand side, one finds the equation

T 2
0 + A

2−A−1
A+1

T0T1 − A
2

A+1
T 2

1 = 0 ,

which obviously has the two solutions T0/T1 = 1 and T0/T1 = − A
2

A+1
.

By virtue of our assumptions, both are F̀ -rational points in P1, different
from 0 and ∞. They are different from each other, since A2 +A+ 1 6= 0.

Consequently, the four points defined by the equations (5.1) and (5.2)
are all simple. The two points corresponding to (t0 : t1) = 1 are defined
over F̀ . The two others are defined over F̀ if and only if (−A− 1) ∈ F̀ is
a square.
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(b). — Let (t0 : t1 : t2 : t3 : t4) ∈ S(Kl) be any point. We normalise the
coordinates such that t0, . . . , t4 ∈ OKl

and at least one of them is a unit.
Then l cannot divide both t0 and t1. Indeed, this would imply l2|t22 −Dt23
and l2|t22 −Dt24 and, as νl(D) = 1, this is possible only for l|t2, t3, t4.
Therefore, ((t0 + At1)/t1 mod l) = A + (t0/t1 mod l) is either equal to

(A + 1) or to A − A
2

A+1
= A

A+1
. Both terms are squares in F̀ under the

assumptions of (i), while, under the assumptions of (ii), both are non-
squares.
As a unit in OKl

is a norm from the ramified extension Kl(
√
D) if and

only if its residue modulo l is a square, for q := (t0 +At1)/t1, we find that
(q,D)l = 1 in case (i) and (q,D)l = −1 in case (ii). Proposition 3.2(b)(ii)
implies the assertion. �

6. Zariski density in the coarse moduli scheme

We are now in the position to formulate sufficient conditions on A,B,D,
under which the corresponding surface S(D;A,B) violates the Hasse princi-
ple.

Theorem 6.1. — Let D ∈ K be non-zero and

(D) = (qk1
1 · . . . · q

kl

l )2 p1 · . . . · pk
its decomposition into prime ideals with p1, . . . , pk being distinct.
Suppose that
(i) k > 1,
(ii) the quadratic extension K(

√
D)/K is unramified at all primes of K

lying over the rational prime 2,
(iii) for every real prime σ : K ↪→ R, one has σ(D) > 0.
(iv) For every prime l of K that lies over the rational prime 2 and is

inert under K(
√
D)/K, assume that

• νl(B − 1) = fl > 1,
• νl(A) is odd,
• νl(A) > 2fl + el

for el a positive integer such that x ≡ 1 (mod lel) is enough to
ensure that x ∈ Kl is a square.

(v) For every i = 1, . . . , k, suppose that
• (A mod pi) ∈ OK/pi is a square, different from 0, (−1), and
the primitive third roots of unity. If #OK/pi is a power of 3
then assume (A mod pi) 6= 1, too.
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• B ≡ − A
A+1 (mod pi).

• 1 + (A mod pi) ∈ OK/pi is a non-square for i = 1, . . . , b, for an
odd integer b, and a square for i = b+ 1, . . . , k.

(vi) Finally, assume that (A−B) is a product of only split primes.
Then S(D;A,B)(AK) 6= ∅. If S(D;A,B) is non-singular then S(D;A,B)(K) = ∅.

Remark 6.2. — Without any change, one may assume q1, . . . , ql dis-
tinct, too. Note, on the other hand, that we do not suppose {p1, . . . , pk}
and {q1, . . . , ql} to be disjoint.

Proof of Theorem 6.1. — By (i),D is not a square inK, henceK(
√
D)/K

is a proper quadratic field extension. It is clearly ramified at p1, . . . , pk.
According to (ii), these are the only ramified primes. In view of assump-
tion (iv), S(AQ) 6= ∅ follows from Proposition 4.3(a) and Proposition 5.1(i),
together with Lemma 4.4(a), Remark 4.6, and Remark 4.7.
On the other hand, let α ∈ Br(S) be the Brauer class, described in

Proposition 3.2(a). Then, in view of assumptions (vi), (v) and (iii), Propo-
sition 4.3(b) and Proposition 5.1(b), together with Lemma 4.4(b) and Re-
mark 4.7, show that the local evaluation map evα,l is constant of value 1

2
for l = p1, . . . , pb and constantly zero for all others. Proposition 3.1 proves
that S is a counterexample to the Hasse principle. �

Example 6.3. — Let S be the surface in P4
Q, given by

T0T1 = T 2
2 − 17T 2

3 ,

(T0 + 9T1)(T0 + 11T1) = T 2
2 − 17T 2

4 .

Then S(AQ) 6= ∅ but S(Q) = ∅.

Proof. — We have K = Q and D = 17. Furthermore, A = 9 and B = 11
such that Proposition 2.1 ensures that S = S(D;A,B) is non-singular.

The extension L := Q(
√

17)/Q is real-quadratic, i.e.D > 0, and ramified
only at 17. Under Q(

√
17)/Q, the prime 2 is split, which completes the

verification of (i)–(iii) and shows that (iv) is fulfilled trivially.
For (v), note that 17 6≡ 1 (mod 3), such that there are no non-

trivial third roots of unity in F17. Furthermore, 9 6= 0, (−1) is a square
modulo 17, but 10 is not, and 11 ≡ − 9

10 (mod 17). Finally, for (vi), note
that (A−B) = (−2) = (2) is a prime that is split in Q(

√
17). �

Remark 6.4. — The assumption on S to be non-singular may be re-
moved from Theorem 6.1. Indeed, the elementary argument described at
the very end of section 3 works in the singular case, too.
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The goal of the next lemma is to construct discriminants D ∈ K, for
which we will later be able to construct counterexamples to the Hasse
principle, via the previous theorem.

Lemma 6.5. — Let K be an arbitrary number field and p, r1, . . . , rn
be distinct prime ideals such that OK/p and OK/ri are of characteristics
different from 2. Then there exists some D ∈ K such that

(i) the prime p is ramified in K(
√
D),

(ii) all primes lying over the rational prime 2 are split in K(
√
D).

(iii) For every real prime σ : K ↪→ R, one has σ(D) > 0.
(iv) The primes ri are unramified in K(

√
D).

In particular, assumptions (i)–(iv) of Theorem 6.1 are fulfilled.

Proof. — Let l1, . . . , lm be the primes of K that lie over the rational
prime 2. We impose the congruence conditions D ≡ 1 (mod le1

1 ), . . . ,
D ≡ 1 (mod lem

m ), for e1, . . . , em large enough that this implies that D
is a square in Kl1 , . . . ,Klm .

Furthermore, the assumptions imply that p, r1, . . . , rn are different
from l1, . . . , lm. We impose, in addition, the conditions D ∈ p \ p2 and
D 6∈ r1, . . . , rn.
According to the Chinese remainder theorem, these conditions have a

simultaneous solution D′. Put D := D′ + k · #(OK/le1
1 . . . lem

m p2r1 . . . rn),
for k an integer that is sufficiently large to ensure σ(D) > 0 for every real
prime σ : K ↪→ R. Then assertion (iii) is true. Furthermore, the congru-
ences D ≡ 1 (mod lei

i ) imply (ii), while D ∈ p\p2 yields assertion (i) and
D 6∈ r1, . . . , rn ensures that (iv) is true. �

Before we come to the next main theorem of this section, we need to
formulate two technical lemmata.

Lemma 6.6. — Let K be a number field, I ⊂ OK an ideal, and
x ∈ OK \ I any element. Then there exists an infinite sequence of pair-
wise non-associated elements yi ∈ OK such that, for each i ∈ N, one has
that (yi) is a prime ideal and yi ≡ x (mod I).

Proof. — The invertible ideals in K relatively prime to I modulo the
principal ideals generated by elements from the residue class (1 mod I)
form an abelian group that is canonically isomorphic to the ray class group
ClIK

∼= CK/C
I
K of K [17, Chap. VI, Prop. 1.9]. Thus, the Chebotarev

density theorem applied to the ray class field KI/K, which has the Galois
group Gal(KI/K) ∼= ClIK , shows that there exist infinitely many prime
ideals ri ⊂ OK with the property below.
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There exist some ui, vi ∈ OK , ui ≡ vi ≡ 1 (mod I) such that

ri ·(ui) = (x)·(vi) .

Take one of these prime ideals. Then ri·(ui) = (xvi). As ri ⊂ OK , this shows
that xvi is divisible by ui. Put yi := xvi/ui. Then (yi) = ri. Furthermore,
yi ≡ x (mod I). �

Lemma 6.7. — Let Fq be a finite field of characteristic 6= 2 having
> 25 elements. Then there exist elements a00, a01, a10, and a11 ∈ Fq,
different from 0, (−1), (−2) and such that a2

ij + aij + 1 6= 0, that fulfil the
conditions below.

(i) a00, (a00 + 1), and (a00 + 2) are squares in Fq.
(ii) a01 and (a01 + 1) are squares in Fq, but (a01 + 2) is not.
(iii) a10 and (a10 + 2) are squares in Fq, but (a10 + 1) is not.
(iv) a11 is a square in Fq, but (a11 + 1) and (a11 + 2) are not.

Proof. — Let C1 ∈ F∗q be a square in the cases (i) and (ii), and a non-
square, otherwise. Similarly, let C2 ∈ F∗q be a square in the cases (i)
and (iii), and a non-square, otherwise. The problem then translates into
finding an Fq-rational point on the curve E, given in P3 by

U2
1 + U2

0 = C1U
2
2 ,

U2
1 + 2U2

0 = C2U
2
3 ,

such that Ui 6= 0 for i = 0, . . . , 3 and (U1/U0)4+(U1/U0)2+1 6= 0. Note that
the conditions U2 6= 0 and U3 6= 0 imply that

(
U1
U0

)2 6= −1,−2.
Since the characteristic of the base field is different from two, a direct

calculation shows that E is non-singular, i.e. a smooth curve of genus 1.
The extra conditions define an open subscheme Ẽ ⊂ E that excludes not
more than 32 points. Thus, Hasse’s bound yields #Ẽ(Fq) > q− 2

√
q− 31,

which is positive for q > 44.
An experiment shows that the four affine curves have points, too, over

F27, F29, F31, F37, F41, and F43. �

The following theorem provides us with Hasse counterexamples in the
family S(D;A,B) for suitable discriminants D. For us, the important feature
is that one may choose the parameters A and B to lie in (almost) arbitrary
congruence classes modulo some prime ideal l ⊂ OK , unramified inK(

√
D),

provided only that A 6≡ B (mod l).
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Theorem 6.8. — LetK be an arbitrary number field andD ∈ K a non-
zero element. Write (D) = (qk1

1 · . . . · q
kl

l )2p1 · . . . · pk for its decomposition
into prime ideals, the pi being distinct. Assume that

(i) k > 1,
(ii) all primes lying over the rational prime 2 are split in K(

√
D),

(iii) for every real prime σ : K ↪→ R, one has σ(D) > 0,
(iv) all primes with residue field F3 are unramified in K(

√
D).

Suppose further that among the primes p of K that are ramified in K(
√
D),

there is one such that #OK/p > 25.
Then, for every prime l ⊂ OK , unramified in K(

√
D), and all a, b ∈

OK/l such that a 6= b, there exist A,B ∈ OK such that (A mod l) = a,
(B mod l) = b, and S(D;A,B)(AK) 6= ∅, but S(D;A,B)(K) = ∅.

Proof. — First step: Construction of A and B. — Let M ∈ {1, . . . , k}
be such that #OK/pM > 25. Besides

(6.1) (A mod l) = a and (B mod l) = b ,

we will impose further congruence conditions on A and B. For each
i 6= M , we choose a square ai ∈ OK/pi such that ai 6= 0, (−1), (−2)
and a2

i + ai + 1 6= 0. This is possible since OK/pi is of characteristic 6= 2
and #OK/pi > 3. For instance, ai := 1 may be taken except when pi is of
residue characteristic 3.
We require

(6.2) (A mod pi) = ai and (B mod pi) = − ai
ai + 1 .

Finally, we choose a square aM ∈ OK/pM such that aM 6= 0, (−1), (−2)
and a2

M + aM + 1 6= 0, satisfying the additional conditions below.
• If, among the elements a1 + 1, . . . , aM−1 + 1, aM+1 + 1, . . . , ak + 1,
there are an odd number of non-squares then aM + 1 is a square.
Otherwise, aM + 1 is a non-square.

• If, among the elements a1 + 2, . . . , aM−1 + 2, aM+1 + 2, . . . , ak + 2,
there are an odd number of non-squares then aM + 2 is a square.
Otherwise, aM + 2 is a non-square.

Lemma 6.7 guarantees that such an element aM ∈ OK/pM exists. We im-
pose the final congruence condition

(6.3) (A mod pM ) = aM and (B mod pM ) = − aM
aM + 1 .

According to the Chinese remainder theorem, one may choose an alge-
braic integer B ∈ OK such that the conditions on the right hand sides
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of (6.1), (6.2), and (6.3) are fulfilled. Then, by Lemma 6.6, there exist in-
finitely many non-associated elements yi ∈ OK such that (yi) is a prime
ideal and (yi + B,B) a simultaneous solution of the system of congru-
ences (6.1, 6.2, 6.3).
We choose some i ∈ N such that r := (yi) is of residue characteristic

different from 2, that r 6= p1, . . . , pk, q1, . . . , ql, and such that A2 − 2AB +
B2 − 2A− 2B + 1 6= 0 for A := yi +B. Note that r 6= p1, . . . , pk, q1, . . . , ql
is equivalent to r 63 D.

Second step: The surface S := S(D;A,B) is a counterexample to the
Hasse principle. — To show this, let us use Theorem 6.1. Our assumptions
on D imply that assumptions (i)–(iv) of Theorem 6.1 are fulfilled. Assump-
tion (v) is satisfied, too, by consequence of the construction of the elements
ai. Observe, in particular, that among the elements a1 +1, . . . , ak+1, there
are an odd number of non-squares. Furthermore, S is non-singular.
It therefore remains to check assumption vi). The only prime p ⊂ OK ,

for which A ≡ B (mod p), is p = r (= (A − B)). We have to show that r
is split under K(

√
D)/K.

For this, we observe that, for i = 1, . . . , k,

A−B ≡ A+ A
A+1 = AA+2

A+1 (mod pi) .

As A is a square modulo pi, this shows
k∏
i=1

(A−B,D)pi
=

k∏
i=1

(A+ 2, D)pi

/ k∏
i=1

(A+ 1, D)pi
.

Here, by our construction, both 1 + (A mod pi) and 2 + (A mod pi) are
non-squares, an odd number of times. Consequently,

k∏
i=1

(A−B,D)pi
= 1 .

On the other hand, D is a square in Kli for li the primes of residue
characteristic 2 and for every real prime, by assumption (iii). Thus,
(A−B,D)l = 1 unless l divides either (A−B) or D. I.e. for l 6= r, p1, . . . , pk,

q1, . . . , ql. Moreover, (A−B,D)q = 1 for q ∈ {q1, . . . , ql}\{p1, . . . , pk} since
both arguments of the Hilbert symbol are of even q-adic valuation. The
Hilbert reciprocity law [17, Chap. VI, Thm. 8.1] therefore reveals the fact
that

(A−B,D)r ·
k∏
i=1

(A−B,D)pi = 1 .
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Altogether, this implies (A− B,D)r = 1. Consequently, the prime ideal
r splits in K(

√
D). �

Sublemma 6.9. — The rational map κ : A2/S2 99K U/(S5 × PGL2),
given on points by

(a1, a2) 7→ (a1, a2, 0,−1,∞) ,

is dominant.

Proof. — It suffices to prove that the rational map

κ̃ : A2 99K U/(S5 × PGL2) ,

given by (a1, a2) 7→ (a1, a2, 0,−1,∞) is dominant. For this, recall that
dominance may be tested after base extension to the algebraic closure.
Moreover, it is well-known that three distinct points on P1

K
may be sent

to 0, (−1), and ∞ under the operation of PGL2(K). �

Lemma 6.10. — Let K be a field of characteristic 6=2 and 0 6= D ∈ K.
Let π : S → U be the family of degree four del Pezzo surfaces over an open
subscheme U ⊂ A2

K , given by

T0T1 = T 2
2 −DT 2

3 ,

(T0 + a1T1)(T0 + a2T1) = T 2
2 −DT 2

4 .

I.e., the fibre of π over (a1, a2) is exactly the surface S(D;a1,a2). Then the
invariant map

Iπ : U −→ P(1, 2, 3)
associated with π is dominant.

Proof. — As dominance may be tested after base extension to the alge-
braic closure, let us assume that the base field K is algebraically closed.
Write

Q1(a1, a2;T0, . . . , T4) := T0T1 − (T 2
2 −DT 2

3 )

and Q2(a1, a2;T0, . . . , T4) := (T0 + a1T1)(T0 + a2T1)− (T 2
2 −DT 2

4 ),

and consider the family (uQ1 + vQ2)(u:v)∈P1 of pencils of quadrics that is
parametrised by (a1, a2) ∈ A2(K).
We see that, independently of the values of the parameters, degenerate

quadrics occur for (u : v) = 0, ∞, and (−1). The two other degenerate
quadrics appear for (u : v) the zeroes of the determinant∣∣∣∣ 1 (a1 + a2 + t)/2

(a1 + a2 + t)/2 a1a2

∣∣∣∣ = − 1
4 [t2 + 2(a1 + a2)t+ (a1 − a2)2] .
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Thus, Iπ is the composition of the rational map ρ : A2 ⊃ U 99K A2/S2, send-
ing (a1, a2) to the pair of roots of t2 + 2(a1 + a2)t+ (a1− a2)2, followed by
the rational map κ : A2/S2 99K U/(S5 × PGL2), studied in Sublemma 6.9,
and the open embedding ι : U/(S5 × PGL2) ↪→ P(1, 2, 3), defined by the
fundamental invariants. It remains to prove that ρ : U 99K A2/S2 is domi-
nant.
For this, as coordinates on A2/S2 one may choose the sum and the prod-

uct of the coordinates onA2. Indeed, these generate the field of S2-invariant
functions on A2. Thus, we actually claim that the map A2 → A2, given by
(a1, a2) 7→ (−2(a1 + a2), (a1 − a2)2) is dominant, which is obvious. �

We are now, finally, in the position to prove that the set of counterex-
amples to the Hasse principle is Zariski dense in the moduli scheme of del
Pezzo surfaces of degree four. For this, we will consider the family S(D;A,B)

for some fixed discriminant D and use Theorem 6.8.

Theorem 6.11. — LetK be a number field, Ureg ⊂ Gr(2, 15)K the open
subset of the Graßmann scheme that parametrises degree four del Pezzo
surfaces, and H CK ⊂ Ureg(K) be the set of all degree four del Pezzo
surfaces over K that are counterexamples to the Hasse principle.
Then the image of H CK under the invariant map

I : Ureg −→ P(1, 2, 3)K

is Zariski dense.

Proof. — According to Lemma 6.5, there exists an algebraic integer
D ∈ OK fulfilling the assumptions of Theorem 6.8. Suppose that the image
of I were not Zariski dense. By Lemma 6.10, this implies that there exists
a (possibly reducible) curve C ⊂ A2 of certain degree d such that, for all
surfaces of the form

T0T1 = T 2
2 −DT 2

3 ,

(T0 +AT1)(T0 +BT1) = T 2
2 −DT 2

4

that violate the Hasse principle, one has (A,B) ∈ C(K).
On the other hand, let l ⊂ OK be an unramified prime and put

` := #OK/l. Then, by Theorem 6.8, we know counterexamples to the
Hasse principle having `(`− 1) distinct reductions modulo l. But an affine
plane curve of degree d has 6 `d points over F̀ [4, the lemma in Chap. 1,
§5.2]. For a prime ideal l such that ` > d+2, this yields a contradiction. �
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7. Zariski density in the Hilbert scheme

This section is devoted to Zariski density of the counterexamples to the
Hasse principle in the Hilbert scheme. Our result is, in fact, an application
of the Zariski density in the moduli scheme established above.

Theorem 7.1. — Let K be a number field, Ureg ⊂ Gr(2, 15)K the open
subset of the Graßmann scheme that parametrises degree four del Pezzo
surfaces, and H CK ⊂ Ureg(K) be the set of all degree four del Pezzo
surfaces over K that are counterexamples to the Hasse principle.
Then H CK is Zariski dense in Gr(2, 15)K .

Proof. — Let us fix an algebraic closure K and an embedding of K into
K. Assume for the sake of assertion that H CK ⊂ Ureg ⊂ Gr(2, 15)K is not
Zariski dense. It is well-known that the Graßmann scheme Gr(2, 15)K is
irreducible and projective of dimension (15−2)·2 = 26. The Zariski closure
H CK ⊂ Gr(2, 15)K is therefore of dimension at most 25.

By Theorem 6.11, the invariant map H CK → P(1, 2, 3) is dominant. Its
generic fibre thus must be of dimension at most 23. In particular, outside
of a finite union of curves C ⊂ P(1, 2, 3), the special fibres are of dimension
623, as well.
Now, let us choose a K-rational point s ∈ [P(1, 2, 3)\C](K) that is the

image of a degree four del Pezzo surface S ∈ H CK under the invariant
map. The geometric fibre I−1(s)K over s of the full invariant map

I : Ureg → P(1, 2, 3)

parametrises all reembeddings of S into P4
K

and is therefore a torsor under
PGL5(K)/Aut(SK). In particular, I−1(s)K is of dimension 24.
This implies that I−1(s) 6⊆ H CK . But the orbit of s under PGL5(K)

parametrises counterexamples to the Hasse principle, and is therefore con-
tained in H CK . As PGL5(K) is Zariski dense in PGL5(K), this is a con-
tradiction. �
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