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EXISTENCE OF COMMON ZEROS FOR COMMUTING
VECTOR FIELDS ON THREE MANIFOLDS

by Christian BONATTI & Bruno SANTIAGO (*)

Abstract. — In 1964, E. Lima proved that commuting vector fields on surfaces
with non-zero Euler characteristic have common zeros. Such statement is empty
in dimension 3, since all the Euler characteristics vanish. Nevertheless, C. Bonatti
proposed in 1992 a local version, replacing the Euler characteristic by the Poincaré–
Hopf index of a vector field X in a region U , denoted by Ind(X,U); he asked:

Given commuting vector fields X,Y and a region U where
Ind(X,U) 6= 0

does U contain a common zero of X and Y ?
A positive answer was given in the case where X and Y are real analytic, in the

same article where the above question was posed.
In this paper, we prove the existence of common zeros for commuting C1 vector

fields X, Y on a 3-manifold, in any region U such that Ind(X,U) 6= 0, assuming
that the set of collinearity of X and Y is contained in a smooth surface. This is a
strong indication that the results for analytic vector fields should hold in the C1

setting.
Résumé. — En 1964, E. Lima a montré que des champs de vecteurs qui com-

mutent sur une surface ont un zéro commun. Cette énoncé est trivial en dimension 3
puisque les caractéristiques d’Euler sont nulles dans ce cas. Cependant, C. Bonatti
a proposé 1992 une version locale, en remplaçant la caractéristique d’Euler par
l’indice de Poincaré–Hopf d’un champ de vecteurs X dans une région U , qu’on
denote par Ind(X,U). Il a proposé la question suivante:

Étant donnés deux champs de vecteurs X et Y qui commutent et une
région compacte U sur lequel

Ind(X,U) 6= 0,
est-ce que U contient un zéro commun de X et Y ?
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Math. classification: 37C25, 37C85, 57S05, 58C30.
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Une réponse positive a été donnée dans le cas où X et Y sont réels analytiques,
dans le même papier où la question au-dessus a été posée.

Dans cet article on montre existence de zéros communs pour les champs de
vecteurs de classe C1 qui commutent en dimension 3, pour toute région U telle
que l’indice Ind(X,U) est non nul et en supposent en plus que le lieu de colinéarité
entre X et Y est contenu dans une surface lisse. C’est une forte indication que le
résultat pour les champs de vecteurs analytiques doit être vrai en régularité C1.

1. Introduction

One of the fundamental problems in dynamical systems is whether a
given system possesses fixed points or not. A simple scenario to pose this
question is for the Z-action generated by a diffeomorphism or a homeomor-
phism of a manifold, or for the continuous time dynamical system generated
by the flow of a vector field. In both cases, the theories of Poincaré–Hopf
and Lefschetz indices relate the topology of the ambient manifold with the
existence of fixed points.
Nonetheless, if one consider two commuting diffeomorphisms or two com-

muting vector fields i.e. vector fields X and Y whose flows satisfy:(1)

Xt ◦ Ys = Ys ◦Xt, ∀(s, t) ∈ R2,

the existence of a fixed point for the action they generate is a wide open
question in dimensions > 3.

The first result on this question is given by the works on surfaces of
Lima [12], [11]. He proves that any family of commuting vector fields on
a surface with non-zero Euler characteristic have a common zero. In the
late eighties, [1] proved that commuting diffeomorphisms of the sphere S2

which are C1-close to the identity have a common fixed point. Later [2]
extended this result to any surface with non-zero Euler characteristic (see
other generalizations in [5][6]). Then, Handel [9] provided a topological in-
variant in Z/2Z for a pair of commuting diffeomorphisms of the sphere S2

whose vanishing guarantees a common fixed point. This was further gen-
eralized by Franks, Handel and Parwani [8] for any number of commuting
diffeomorphisms on the sphere (see [10] and [7] for generalizations on other
surfaces).
It is worth to note, however, that two commuting continuous interval

maps may fail to have a common fixed point: an example is constructed
in [4] of two continuous commuting, non-injective, maps of the closed in-
terval which do not have a common fixed point.

(1)This definition can be adapted for non-complete vector fields, see Section 3

ANNALES DE L’INSTITUT FOURIER
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In higher dimensions much less is known:
• One knows some relation between the topology of the manifold
and the dimension of the orbits of Rp-actions (see [13, 14]). The
techniques introduced in these works made possible a simple proof
of Lima’s result, for smooth vector fields [15];

• [3] proved that two commuting real analytic vector fields on an an-
alytic 4-manifold with non-zero Euler characteristic have a common
zero. The same statement does not make sense in dimension three
since every 3-manifold has zero Euler characteristic. Nevertheless,
a local result remains true in dimension three.

Before stating the result of [3] on 3-manifolds, we briefly recall the notion
of the Poincaré–Hopf index Ind(X,U) of a vector field X on a compact
region U whose boundary ∂U is disjoint from the set Zero(X). If U is a
small compact neighborhood of an isolated zero p of the vector fieldX, then
Ind(X,U) is just the classical Poincaré–Hopf index Ind(X, p) of X at p. For
a general compact region U with ∂U ∩ Zero(X) = ∅, one considers a small
perturbation Y of X with only finitely many isolated zeros in U . Then,
we define the index Ind(X,U) as the sum of the Poincaré–Hopf indices
Ind(Y, p), p ∈ Zero(Y ) ∩ U . We refer the reader to Section 3 for details (in
particular for the fact that Ind(X,U) does not depend on the perturbation
Y of X).

Then, the main theorem of [3] says that every pair X,Y of analytic
commuting vector fields have a common zero in any compact region U

such that Ind(X,U) 6= 0. By contraposition, if X and Y are analytic and
commute but do not have common zeros then Ind(X,U) = 0. By reducing
the compact region U so that it separates Zero(X) ∩ U from Zero(Y ) one
obtains the following statement:

Theorem 1.1 (Bonatti [3]). — Let M be a real analytic 3-manifold
and X and Y be two analytic commuting vector fields over M . Let U be a
compact subset of M such that

Zero(Y ) ∩ U = Zero(X) ∩ ∂U = ∅.

Then,
Ind(X,U) = 0.

This statement is also true whenM has dimension 2 and the vector fields
are just C1 (see Proposition 11 in [2](2) ). This motivates the following

(2)The result stated there is for C∞ vector fields, but the proof indicated there can be
adapted for C1 vector fields using cross-sections, in a similar way we do here in Section 4
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Conjecture 1.2. — Let X and Y be two C1 commuting vector fields
on a 3-manifold M . Let U be a compact subset of M such that

Zero(Y ) ∩ U = Zero(X) ∩ ∂U = ∅.

Then,
Ind(X,U) = 0.

This conjecture was stated as a problem in [3].
The goal of the present paper is to solve, in the C1-setting, what was the

main difficulty in the analytic case in [3]. We explain now what was this
difficulty in [3]. A crucial role is played by the set of points of U in which
X and Y are collinear:

Col(X,Y, U) := {p ∈ U ; dim (〈X(p), Y (p)〉) 6 1}.

In [3] the assumption that the commuting vector fields are analytic is used
to say that Col(X,Y, U) is either equals to U or is an analytic set of dimen-
sion at most 2. The case where Col(X,Y, U) = U admits a direct proof. In
the other case, a simple argument allows to assume that Col(X,Y, U) is a
surface. The main difficulty in [3] consists in proving that, if Col(X,Y, U) is
a smooth surface and X and Y are analytic, then the index of X vanishes
on U .
Our result is the following

Theorem A. — Let M be a 3-manifold and X and Y be two C1 com-
muting vector fields over M . Let U be a compact subset of M such that
Zero(Y ) ∩ U = Zero(X) ∩ ∂U = ∅. Assume that Col(X,Y, U) is contained
in a C1-surface which is a compact and boundaryless submanifold of M .
Then,

Ind(X,U) = 0.

The hypothesis “Col(X,Y, U) is contained in a C1-surface” consists in
considering the simplest geometric configuration of Col(X,Y, U) for which
the conjecture is not trivial: if (X,Y ) is a counter example to the conjec-
ture, then Col(X,Y ) cannot be “smaller” than a surface. More precisely,
if Ind(X,U) 6= 0, and if Y commutes with X then the sets Zero(X − tY )
for small t are not empty compact subsets of Col(X,Y, U), invariant by
the flow of Y and therefore consist in orbits of Y . If X and Y are as-
sumed without common zeros, every set Zero(X − tY ) consists on regular
orbits of Y , thus is a 1-dimensional lamination. Furthermore, these lamina-
tions are pairwise disjoint and vary semi-continously with t. In particular,
Col(X,Y, U) cannot be contained in a 1-dimensional submanifold of M .

ANNALES DE L’INSTITUT FOURIER



COMMUTING VECTOR FIELDS ON THREE MANIFOLDS 1745

Another (too) simple configuration would be the case where X and Y

are everywhere collinear. This case has been treated in [3] and the same
proof holds at least in the C2 setting.
We believe that the techniques that we introduce here will be usefull to

prove the conjecture, at least for C2 vector fields.
The proof of Theorem A is by contradiction. The intuitive idea which

guides the argument is that, at one hand, the vector field X needs to turn
in all directions in a non-trivial way in order to have a non-zero index.
On the other hand, X commutes with Y and therefore is invariant under
the tangent flow of a non-zero vector field. The combination of this two
properties will lead to a contradiction.
This paper is organized as follows.

• In Section 2 we give an informal presentation of the proof, describing
the main geometrical ideas.

• In Section 3 we give detailed definitions and state some classical
facts that we shall use.

• In Section 4 we reduce the proof of Theorem A to the proof of
a slightly more technical version of it (see Lemma 4.3), for which
U is a solid torus and Col(X,Y, U) is an annulus foliated by peri-
odic orbits of Y , and cutting U in two connected components U+

and U−.
• In Section 5 we consider the projection N , of the vector field X

parallel to Y on the normal bundle of Y . We show that Ind(X,U)
is related with the angular variations `+ and `− of N along gen-
erators of the fundamental group of each connected components
U+ and U− of U \ Col(X,Y, U). More precisely we will show in
Proposition 5.9 that

| Ind(X,U)| = |`+ − `−|.

Assuming that at least one of `+ and `− does not vanish, and the
fact that Col(X,Y, U) is a C1-surface, we deduce in Proposition 5.19
that the the first return map P of Y on a transversal Σ0 is C1-close
to identity in a small neighborhood of Col(X,Y, U) ∩ Σ0.

• In Section 6, still assuming that at least one of `+ and `− does not
vanish, we give a description of the dynamics of the first return map
P. If for instance `+ 6= 0 then every point in Σ0 ∩ U+ belongs to
the stable set of a fixed point of P (Lemma 6.4). We will then use
the invariance of these stable sets under the orbits of the normal
vector field N for getting a contradiction.

TOME 67 (2017), FASCICULE 4
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We end this introduction by a general comment. The accumulation of
results proving the existence of common fixed points for commuting dy-
namical systems seems to indicate the possibility of a general phenomenon.
However, our approach in Poincaré–Bendixson spirit has a difficulty which
increases drastically with the ambient dimension. We hope that this results
will motivate other attempts to study this phenomenon.

2. Idea of the proof

The proof is by contradiction. We assume that there exists a counter
example to the Theorem, that is a pair of commuting C1-vector fields X,Y
on a 3-manifold M , and a compact set U so that

• the colinearity locus of X and Y in U is contained in a closed C1

surface S.
• X is non-vanishing on the boundary ∂U and the index Ind(X,U)
is non-zero,

• X and Y have no comon zero in U .

Simplifying the counter examples. A first step of the proof (see the
whole Section 4 and more specifically Lemmas 4.1 and 4.3) consists in
showing that, up to shrink the compact set U , and up to replace the vector
fields X and Y by (constant) linear combinations of X and Y , one may
assume futher, without loss of generality, that

• the manifold M is orientable;
• U is a solid torus D2 × (R/Z);
• the surface S is an annulus invariant by the flow of X and Y whose

intersection with the boundary ∂U is precisely its own boundary
∂S;

• Y is non-vanishing on U and transverse to every factor Σt = D2 ×
{t}, t ∈ R/Z;

• for every x ∈ S its Y orbit is a periodic orbit contained in S, of
period τ(x).

• the map x ∈ S 7→ τ(x) > 0 is of class C1, constant on the Y -orbits,
and its derivative is non vanishing on S;

• as X is colinear on S to the non-vanishing vector field Y one may
write X(x) = µ(x)Y (x) for x ∈ S; then the map µ is of class C1,
constant on the Y -orbits, and its derivative is non vanishing on S.

We endow the solid torus U with a basis B(x) = (e1(x), e2(x), e3(x)) of
TxM dependind continuously with x and so that e3(x) = Y (x), the plane

ANNALES DE L’INSTITUT FOURIER
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< e1(x), e2(x) > is tangent to the disc Σt through x, and for x ∈ S the
vector e1(x) is tangent to S.

Figure 2.1. Geometric configuration of a prepared counter example
and the basis B(x) = (e1(x), e2(x), e3(x)) at a point x ∈ S ∩ Σt.

The pair of vector fields (X,Y ) with all these extra properties and en-
dowed with the basis B is called a prepared counter example. More formally
Lemmas 4.1 and 4.3 announce that the existence of a counter example to
Theorem A implies the existence of a prepared counter example. The rest
of the proof consists in getting a contradiction from the existence of a
prepared counter example.

Calculating the index Ind(X,U). As Y is transverse to the discs Σt
one can write the vector field X as

X(x) = N(x) + µ(x)Y (x)

where N(x) is a vector tangent to the discs Σt, so that one may write
N(x) = α(x)e1(x) + β(x)e2(x). This choice of coordinates allows us to
consider the vector N(x) as a vector on the plane R2. Notice that N(x)
vanishes if and only if x ∈ S.

Thus, given any closed curve γ ⊂ U \ S which is freely homotopic to
{(0, 0)}×(R/Z) in U , one defines the linking number of N along γ as being
the number of turns given by N(x) (considered as a non-vanishing vector
on R2) as x runs along γ. One easily checks that this linking number only
depends on the connected component of U \S which contains γ. Since U \S
consist in two connected components U+ and U−, there are only two linking

TOME 67 (2017), FASCICULE 4



1748 Christian BONATTI & Bruno SANTIAGO

numbers which we denote by `+ and `− and we prove (Proposition 5.9)

| Ind(X,U)| = |`+ − `−|.

The normally hyperbolic case. By assumption the annulus S is fo-
liated by periodic orbits of Y so that the derivative associated to these
periodic orbits is 1 in the direction of S.
Note that, if one of the periodic orbits of Y in S is partially hyperbolic,

that is, has an eigenvalue different from 1, then it admits a neighborhood
foliated by the local stable manifolds of the nearby periodic orbits. As
the vector field X commutes with Y and preserves each periodic orbit in
S, it preserves each leaf of this foliation. Thus the normal vector N is
tangent to this foliation and one deduces that the linking numbers `+ and
`− both vanish. Thus Ind(X,U) also vanishes leading to a contradiction
(see Lemma 4.7 which formalizes this argument).

Figure 2.2. As X is tangent to the stable manifolds, it cannot turn in
all directions. Its normal component N is everywhere collinear with
e2, so that both linking numbers vanish.

The first return map P, the derivative of the return time, and
the angular variation of N . The vector field N does not commute with
Y but it is invariant under the holonomies of Y of the cross sections Σt. One
deduces that N almost cannot turn along the orbits of Y . This motivate us
to calculate the linking number `± along particular closed curves obtained
in the following way: we follow the Y -orbit of a point x ∈ Σ0 \ S until
its first return P(x) then we close the curve by joining a small geodesic
segment in Σ0. This allows us to prove that the angular variation of N is
larger than 2π along the segment in Σ0 joining x to P2(x) (second return
of x in Σ0) (Corollary 5.14).

ANNALES DE L’INSTITUT FOURIER
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Figure 2.3. N has large angular variation along the segments [x,P2(x)].

Now the contradiction we are looking for will be found in a subtle analysis
of the dynamics of the first return map P together with the dynamics of the
vector N , which commute together. In particular Corollary 5.6 links the
direction of the vector field N(x) (through the derivative in the direction
of N of the return time of Y on Σ0) with the variation µ(P(x)) − µ(x).
The big angular variation of N along the small segments [x,P2(x)] lead us
to prove that

• the derivative of P is the identity at any point of S (Proposi-
tion 5.19)

• P almost preseves the levels of the map µ (see Lemmas 6.1 and 6.2):
one deduces that (up to exchange P by P−1) every orbit of P
converges to a point of S.

Invariant stable sets and the contradiction. The second property
above allows us to obtain stable sets for the points in S ∩Σ0 (with respect
to the first return map P) and to show that these stable sets are (as in the
normally hyperbolic case) invariant under the vecter field N . Unluckely the
concluison is not so straightforward as in the normally hyperbolic case. We
first prove that there is an N -orbit which is invariant uner P (Lemma 6.8)
and we prove that the angular variation of N , between x and P2(x), along
such a P invariant N -orbit is arbitrarilly small when x is close to S ∩ Σ0:
that is the announced contradiction.

3. Notations and definitions

In this paper M denotes a 3-dimensional manifold. Whenever X is a
vector field over M , we denote Zero(X) = {x ∈ M ;X(x) = 0} and

TOME 67 (2017), FASCICULE 4
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Zero(X,U) = Zero(X) ∩ U , for any subset U ⊂ M . We shall denote its
flow by Xt. A compact set Λ ⊂ M is invariant under the flow of X if
Xt(Λ) = Λ for every t ∈ R.

If X and Y are vector fields on M we denote by Col(X,Y ) the set of
points p for which X(p) and Y (p) are collinear:

Col(X,Y ) = {p ∈M,dim(〈X(p), Y (p))〉 6 1}.

If U ⊂M is a compact region we denote Col(X,Y, U) = Col(X,Y ) ∩ U .

3.1. The Poincaré–Hopf index.

In this section we recall the classical definition and properties of the
Poincaré–Hopf index.

Let X be a continuous vector field of a manifold M of dimension d

and x ∈ M be an isolated zero of X. The Poincaré–Hopf index Ind(X,x)
is defined as follows: consider local coordinates ϕ : U → Rd defined in a
neighbohood U of x. Up to shrink U one may assume that x is the unique
zero of X in U . Thus for y ∈ U \ {x}, X(y) expressed in that coordinates
is a non vanishing vector of Rd, and 1

‖X(y)‖X(y) is a unit vector hence
belongs to the sphere Sd−1. Consider a small ball B centred at x. The map
y 7→ 1

‖X(y)‖X(y) induces a continuous map from the boundary S = ∂B to
Sd−1. The Poincaré–Hopf index Ind(X,x) is the topological degree of this
map.

Remark 3.1. — The Poincaré–Hopf index Ind(X,x) of an isolated zero
x does not depend on the choice of a local orientation of the manifold at x.
For instance, the Poincaré Hopf index of a hyperbolic zero x is

Ind(X,x) = (−1)dimE
s(x),

where Es(x) ⊂ TxM is the stable space of x.
More conceptually, a change of the local orientation of M at x:
• composes the map x 7→ X(x)

‖X(x)‖ with a symmetry of the sphere Sd−1

• changes the orientation of the sphere ∂B, where B is a small ball
around x.

Therefore the topological degree of the induced map from ∂B to Sd−1 is
kept unchanged.

Assume now that U ⊂M is a compact subset and that X does not van-
ishes on the boundary ∂U . The Poincaré–Hopf index Ind(X,U) is defined
as follows: consider a small perturbation Y of X so that the set of zeros of

ANNALES DE L’INSTITUT FOURIER
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Y in U is finite. A classical result asserts that the sum of the indices of the
zeros of Y in U does not depend on the perturbation Y of X; this sum is
the Poincaré–Hopf index Ind(X,U). Here, small perturbation means that
Y is homotopic to X through vector fields which do not vanish on ∂U .
More precisely

Proposition 3.2. — If {Xt}t∈[0,1] is a continuous family of vector fields
so that Zero(Xt) ∩ ∂U = ∅, then Ind(Xt, U) does not depend on t ∈ [0, 1].

We say that a compact subset K ⊂ Zero(X) is isolated if there is a
compact neighborhood U of K so that K = Zero(X)∩U ; the neighborhood
U is called an isolating neighborhood of K. The index Ind(X,U) does not
depend of the isolating neighborhood V of K. Thus Ind(X,U) is called the
index of K and denoted Ind(X,K).

3.2. Calculating the Poincaré Hopf index

Next Lemma 3.3 provides a practical method for calulating the index of
a vector field X in some region where it may have infinitely many zeros,
without performing perturbations of X.
Assume now that ∂U is a codimension one submanifold and that U is

endowed with d continous vector fields X1 . . . Xd so that, at every point
z ∈ U , (X1(z), . . . , Xd(z)) is a basis of the tangent space TzM . Once again,
one can write the vector field X in this basis so that the vector X(y), for
y ∈ U , can be considered as a vector of Rd. One defines in such a way a
map g : ∂U → Sd−1 by y 7→ g(y) = 1

‖X(y)‖X(y).
As ∂U has dimension d−1, and is oriented as the boundary of U , this map

has a topological degree. A classical result from homology theory implies
the following

Lemma 3.3. — With the notations above the topological degre of g is
Ind(X,U).

In particular it does not depend on the choice of the vector fieldsX1. . . Xd.

Remark 3.4. — By Lemma 3.3, if there is j ∈ {1, . . . , d} so that the
vector X(x) is not colinear to Xj(x), for every x ∈ ∂U , then Ind(X,U) = 0.

3.3. Topological degree of a map from T2 to S2

We consider the sphere S2 (unit sphere of R3) endowed with the north
and south poles denoted N = (0, 0, 1) and S = (0, 0,−1) respectively.

TOME 67 (2017), FASCICULE 4



1752 Christian BONATTI & Bruno SANTIAGO

We denote by S1 ⊂ S2 the equator, oriented as the unit circle of R2×{0}.
For p = (x, y, z) ∈ S2 \ {N,S} we call projection of p on S1 along the
meridians the point 1√

x2+y2
(x, y, 0), which is intersection of S1 with the

unique half meridian containing p.

Lemma 3.5. — Let Φ: S2 → S2 be a continuous map so that Φ−1(N) =
{N} and Φ−1(S) = {S}.

Let ϕ : S1 → S1 be defined as follows: the point ϕ(p), for p ∈ S1, is the
projection of Φ(p) ∈ S2 \ {N,S} on S1 along the meridians of S2.
Then the topopological degrees of Φ and ϕ are equal.

As a direct consequence one gets

Corollary 3.6. — Let Φ: S2 → S2 be a continuous map so that
Φ−1(N) = {S} and Φ−1(S) = {N}.

Let ϕ : S1 → S1 be defined as follows: the point ϕ(p), for p ∈ S1, is the
projection of Φ(p) ∈ S2 \ {N,S} on S1 along the meridians of S2.
Then the topopological degrees of Φ and ϕ are opposite.

We consider now the torus T2 = R/Z×R/Z. As a direct consequence of
Lemma 3.5 and Corollary 3.6 one gets:

Corollary 3.7. — Let Φ: T2 → S2 be a continuous map so that
Φ−1(N) = {0} × R/Z and Φ−1(S) = { 1

2} × R/Z.
Let ϕ+ : { 1

4} × R/Z → S1 (resp. ϕ− : { 3
4} × R/Z → S1) be defined as

follows: the point ϕ+(p) (resp. ϕ−(p)) is the projection of Φ(p) ∈ S2\{N,S}
on S1 along the meridians of S2.
Then

|deg(Φ)| = |deg(ϕ+)− deg(ϕ−)|
where deg() denotes the topological degree, and { 1

4}×R/Z and { 3
4}×R/Z

are endowed with the positive orientation of R/Z.

Proof. — Indeed, Φ is homotopic (by an homotopy preserving Φ−1(N)
and Φ−1(S)) to the map Φd+,d− : R/Z× R/Z→ S2 defined as follows

• Φd+,d−(s, t) =
(
| sin(2πs)| · e2iπd+t, cos(2πs)

)
if s ∈ [0, 1

2 ],

• Φd+,d−(s, t) =
(
| sin(2πs)| · e2iπd−t, cos(2πs)

)
if s ∈ [0, 1

2 ].

where d+ and d− are deg(ϕ+) and deg(ϕ−), respectively. �

3.4. Commuting vector fields: local version

There are two usual definitions for commuting vector fields: one can
require that the flows of X and Y commute; one may also require that the
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Lie bracket [X,Y ] vanishes. These two definitions coincide for C1 vector
fields on compact manifolds. On non compact manifolds we just have the
commutation of the flows for small times, as explained more precisely below.
Let M be a (not necessarily compact) manifold and X, Y be C1-vector

fields onM . The Cauchy–Lipschitz theorem asserts that the flows of X and
Y are locally defined but they may not be complete.
We say that X and Y commute if for every point x there is t(x) > 0 so

that for every s, t ∈ [−t(x), t(x)] the compositions Xt ◦Ys(x) and Ys ◦Xt(x)
are defined and coincide. Thus, the local diffeomorphism Xt carries integral
curves of Y into integral curves of Y , and vice-versa.

Remark 3.8. — There are (non complete) commuting vector fields, a
point x and t > 0 and s > 0 so that both Xt ◦ Ys(x) and Ys ◦ Xt(x) are
defined but are different. Let us present an example.
Consider C∗ = R2 \ {(0, 0)} endowed with the two vector fields X̃ = ∂

∂x

and Ỹ = ∂
∂y . Note that X̃ and Ỹ commute. Consider the 2-cover φ : C∗ →

C∗ defined by z 7→ z2. Let X and Y the lifts for φ of X̃ and Ỹ , respectively.
Then X and Y commute. However, consider the point x̃ = (− 1√

2 ,−
1√
2 ) =

eiπ
5
4 . Consider x = eiπ

5
8 , so that φ(x) = x̃.

Next figure illustates the fact that XtYt(x) and YtXt(x) are well defined
but distinct, for t =

√
2:

Figure 3.1. The flow of X commutes with the flow of Y until one of
the composed orbits XtYs crosses one of the axes.

Next section states straightforward consequences of this definition.
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3.5. Commuting vector fields: first properties

If X and Y are commuting vector fields then:

(1) for every a, b, c, d ∈ R, aX + bY commutes with cX + dY ;
(2) for every x ∈M , and any t ∈ R for which Yt is defined, one has

DYt(x)X(x) = X(Yt(x))

(3) if x ∈ Zero(X), Then for any t ∈ R for which Yt is defined, Yt(x) ∈
Zero(X).

(4) Col(X,Y ) is invariant under the flow of X in the following sense:
if x ∈ Col(X,Y ) and if Xt(x) is defined, then Xt(x) ∈ Col(X,Y );
in the same way, Col(X,Y ) is invariant under the flow of aX + bY

for any a, b ∈ R.
(5) if Zero(Y ) = ∅, Then for each point x in Col(X,Y ) there is µ(x) ∈ R

so that X(x) = µ(x)Y (x). The map x 7→ µ(x) is called the ratio
between X and Y at x, is continuous on Col(X,Y ) and can be
extended in a C1 map on the ambient manifold.

Proof. — One can extend µ to a small neighboorhod V of
Col(X,Y ) in the following way: given some riemannien metric on
M , if V is small enough then X is never orthogonal to Y in
V \ Col(X,Y ). Thus, one can consider the vector field Z obtained
as the orthogonal projection of X onto the direction of Y . It is clear
that Z|Col(X,Y ) = X and that there exists a C1 function ψ : V → R
such that Z(x) = ψ(x)Y (x). Since Zero(Y ) = ∅, this implies that
ψ is an extension of µ. Moreover, clearly ψ extends to M .(3) �

(6) the ratio µ defined on Col(X,Y ) is invariant under the flow of aX+
bY for any a, b ∈ R.

(7) if γ is a periodic orbit of X of period τ and if t ∈ R is such that Yt
is defined on γ, then Yt(γ) is a periodic orbit of X of period τ . The
same occurs with the images by the flow of cX + dY of periodic
orbits of aX + bY , for a, b, c, d ∈ R.

(8) as a consequence of the previous item, if γ is a periodic orbit of X
of period τ and if γ is isolated among the periodic orbits of X of
the same period τ , then γ is invariant under the flow of Y ; as a
consequence, γ ⊂ Col(X,Y ).

(3)We shall see in Section 5 a particular case of this construction.
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3.6. Counter examples to Theorem A

Our proof is a long proof by reductio ad absurdum. To achieve this
goal, we shall first show that the existence of a pair (X,Y ) which do not
satisfy the conclusion of Theorem A implies the existence of other pairs
with simpler geometric behaviors.
For this reason, it will be convenient to define the notion of counter

examples in a formal manner.

Definition 3.9. — Let M be a 3-manifold, U a compact subset of M
and X, Y be C1 vector fields on M . We say that (U,X, Y ) is a counter
example to Theorem A if

• X and Y commute
• Zero(Y ) ∩ U = ∅
• Zero(X) ∩ ∂U = ∅
• Ind(X,U) 6= 0.
• the collinearity locus, Col(X,Y, U), is contained in a C1 surface

which is a closed submanifold of M .

Let us illustrate our simplifying procedure by a simple argument:

Remark 3.10. — If M is a 3-manifold carrying a counter example

(U,X, Y )

to Theorem A, then there is an orientable manifold carrying a counter
example to Theorem A. Indeed, consider the orientation cover M̃ → M

and Ũ , X̃, Ỹ the lifts of U,X, Y on M̃ . Then the Poincaré–Hopf index of
X̃ on Ũ is twice the one of X on U , and (Ũ , X̃, Ỹ ) is a counter example to
Theorem A.

Thus we can assume (and we do it) without loss of generality that M is
orientable.
Most of our simplifying strategy will now consist in combinations of the

following remarks

Remark 3.11. — If (U,X, Y ) is a counter example to Theorem A, then
there is ε > 0 so that (U, aX + bY, cX + dY ) is also a counter example
to Theorem A, for every a, b, c, d with |a − 1| < ε, |b| < ε, |c| < ε and
|d− 1| < ε.

Remark 3.12. — If (U,X, Y ) is a counter example to Theorem A, then
(V,X, Y ) is also a counter example to Theorem A for any compact set
V ⊂ U containing Zero(X,U) in its interior.
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Remark 3.13. — Let (U,X, Y ) be a counter example to Theorem A and
assume that Zero(X,U) = K1∪· · ·∪Kn, where the Ki are pairwise disjoint
compact sets. Let Ui ⊂ U be compact neighborhood of Ki so that the Ui,
i = 1, . . . , n, are pairwise disjoint.
Then there is i ∈ {1, . . . , n} so that (Ui, X, Y ) is a counter example to

Theorem A.

4. Prepared counter examples (U,X, Y ) to Theorem A

Simplifying Col(X,Y, U). The aim of this paragraph is to prove

Lemma 4.1. — If (U,X, Y ) is a counter example to Theorem A then
there is a counter example (Ũ , X̃, Ỹ ) to Theorem A and µ0 > 0 with the
following property:

• for any t ∈ [−µ0, µ0], the set of zeros of X̃ − tỸ in Ũ consists
precisely in 1 periodic orbit γt of Ỹ ;

• for any t /∈ [−µ0, µ0], the set of zeros of X̃ − tỸ in Ũ is empty;
• Col(X̃, Ỹ , Ũ) is a C1 annulus;
• there is a C1-diffeomorphism ϕ : R/Z × [−µ0, µ0] → Col(X̃, Ỹ , Ũ)
so that, for every t ∈ [−µ0, µ0], one has

ϕ(R/Z× {t}) = γt.

Proof. — By hypothesis Col(X,Y, U) is contained in a C1-surface S.
Notice that there is µ1 > 0 so that for any t ∈ [−µ1, µ1] one has
Zero(X − tY ) ∩ ∂U = ∅ and Ind(X − tY, U) 6= 0. In particular, we have
that Zero(X − tY, U) 6= ∅.
As X − tY and Y commute, Zero(X − tY, U) is invariant under the flow

of Y . Futhermore, as Zero(X − tY ) does not intersect ∂U the Y -orbit of a
point x ∈ Zero(X− tY, U) remains in the compact set U hence is complete.

Consider now the ratio function µ : Col(X,Y ) → R, defined in the
item (5) of Subsection 3.5. It follows that, for x ∈ Col(X,Y ), µ(x) =
t ⇔ x ∈ Zero(X − tY ). The map µ is invariant under the flows of X and
Y (on Col(X,Y )). As mentioned in 3.5, the map µ can be extended on M
as C1 map still denoted by µ (but no more X,Y -invariant).

Consider L =
⋃
t∈[−µ1,µ1] Zero(X − tY ) ∩ U . Then L is a compact set,

contained in S disjoint from the boundary of U and invariant under Y : it
is a compact lamination of S.
By applying the flox box theorem and a standard compactness argument

we can take σ ⊂ S a union of finitely many compact segments with end
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points out of L and so that the interior of σ cuts transversely every orbit
of Y contained in L.

Claim 1. — Lebesgue almost every t ∈ [−µ1, µ1] is a regular value of
the restriction of µ to σ.

Proof. — Recall that Sard’s theorem requires a regularity n − m + 1
if one consider maps from an m-manifold to an n-manifold. As µ is C1

and dim σ = 1 we can apply Sard’s theorem to the restriction of µ to σ,
concluding. �

Consider now a regular value t ∈ (−µ1, µ1) of the restriction of µ to σ.
Then µ−1(t) ∩ σ consists in finitely many points. Furthermore, µ−1(t) ∩ σ
contains Zero(X − tY ) ∩ σ.

Claim 2. — If t ∈ [−µ1, µ1] is regular value of the restriction of µ to σ,
then the compact set Zero(X − tY ) ∩ U consists in finitely many periodic
orbits γi, i ∈ {1, . . . , n} of Y .

Proof. — Zero(X − tY ) ∩ U is a compact sub lamination of L ⊂ S con-
sisting of orbits of Y , and contained in µ−1(t). Now, σ cuts transversely
each orbit of this lamination and σ ∩ µ−1(t) is finite. One deduces that
Zero(X− tY )∩U consists in finitely many compact leaves, concluding. �

We now fix a regular value t ∈ (−µ1, µ1) of the restriction of µ to σ.
Since Zero(X − tY, U) 6= ∅ we have that the integer n of the above claim

is positive. Moreover, notice that Ind(X − tY, U) =
∑n
i=1 Ind(X − tY, γi).

Thus there is i so that

Ind(X − tY, γi) 6= 0.

Claim 3. — There is a neighborhood Γi of γi in S which is contained
in Col(X,Y, U) and which consists in periodic orbits of Y .

Proof. — Let p be a point in σ ∩ γi. As p is a regular point of the
restriction of µ to σ there is a segment I ⊂ σ centered at p so that the
restriction of µ to I is injective and the derivative of µ does not vanish.
As γi has non-zero index for any s close enough to t, Zero(X − sY )

contains an isolated compact subset Ks contained in a small neighborhood
of γi, and hence in U , thus in Col(X,Y, U) and thus in a small neighborhood
of γi in L ⊂ S. This implies that each orbit of Y contained in Ks cuts I.
However, µ is constant equal to s on Ks and thus µ−1(s) ∩ I consist in a
unique point. One deduces that Ks is a compact orbit of Y .
Since this holds for any s close to t, one obtain that any point q of I close

to p is the intersection point of Kµ(q) ∩ I. In other words, a neighborhood
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of p in I is contained in Col(X,Y, U) and the corresponding leaf of L is a
periodic orbit of Y , concluding. �

Notice that Γi is contained in Col(X,Y, U) so that the function µ is
invariant under Y on Γi. As the derivative of µ is non vanishing (by con-
struction) on Γi ∩ I one gets that the derivative of the restriction of µ to
Γi is non-vanishing. One deduces that Γi is diffeomorphic to an annulus: it
is foliated by circles and these circles admit a transverse orientation.
For concluding the proof it remains fix t ∈ (−µ1, µ1) regular value of µ,

then one fixes X̃ = X − tY and Ỹ = Y . One chooses a compact neighbor-
hood Ũ of γi in M , which is a manifold with boundary, whose boundary is
tranverse to S and so that Ũ ∩S = Γi. By construction, (Ũ , X̃, Ỹ ) satisfies
all the announced properties. �

4.1. Prepared counter examples to Theorem A

Definition 4.2. — We say that (U,X, Y,Σ,B) is a prepared counter
example to Theorem A if

(1) (U,X, Y ) is a counter example to Theorem A
(2) There is µ0 > 0 so that (U,X, Y ) satisfies the conclusion of Lem-

ma 4.1:
• for any t ∈ [−µ0, µ0], the set of zeros of X − tY in U consists

precisely in 1 periodic orbit γt of Y ;
• for any t /∈ [−µ0, µ0], the set of zeros of X − tY in U is empty;
• Col(X,Y, U) is a C1 annulus;
• there is a C1-diffeomorphism ϕ :R/Z×[−µ0, µ0]→Col(X,Y, U)
so that, for every t ∈ [−µ0, µ0], one has

ϕ(R/Z× {t}) = γt.

(3) U is endowed with a foliation by discs; more precisely there is a
smooth submersion Σ: U → R/Z whose fibers Σt = Σ−1(t) are
discs; furthermore, the vector field Y is transverse to the fibers Σt.

(4) Each periodic orbit γs, s ∈ [−µ0, µ0], of Y cuts every disc Σt in
exactly one point. In particular the period of γs coincides with its
return time on Σ0 and is denoted τ(s), for s ∈ [−µ0, µ0].
Thus s 7→ τ(s) is a C1-map on [−µ0, µ0]. We require that the

derivative of τ does not vanish on [−µ0, µ0].
(5) B is a triple (e1, e2, e3) of C0 vector fields on U so that

• for any x ∈ U B(x) = (e1(x), e2(x), e3(x)) is a basis of TxU .
• e3 = Y everywhere
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• the vectors e1, e2 are tangent to the fibers Σt, t ∈ R/Z. In
other words, DΣ(e1) = DΣ(e2) = 0

• The vector e1 is tangent to Col(X,Y ) at each point of
Col(X,Y ).

Lemma 4.3. — If there exists a counter example (U,X, Y ) to Theo-
rem A then there is a prepared counter example (Ũ , X̃, Ỹ ,Σ,B) to Theo-
rem A.

Proof. — The two first items of the definition of prepared counter exam-
ple to Theorem A are given by Lemma 4.1. For getting the third item, it
is enough to shrink U . For getting item (4), one replace Y by Y + bX for
some b ∈ R, |b| small enough. This does not change the orbits γt, as X and
Y are both tangent to γt, but it changes its period. Thus, this allows us to
change the derivative of the period τ at s = 0. Then one shrink again U

and µ0 so that the derivative of τ will not vanish on Col (X,Y, U).
Consider any metric on U . For any point x in the annulus Col(X,Y, U)

and contained in the fiber Σt we chose e1(x) as being a unit vector tangent
to the segment Col(X,Y ) ∩ Σt. We extend e1 as a continuous vector field
on U tangent to the fibers Σt. We choose e2(x), for any x in a fiber Σt as
being an unit vector tangent to Σt and orthogonal to e1(x). Now e3(x) =
Y (x) is transverse to the plane spanned by e1(x), e2(x) so that B(x) =
(e1(x), e2(x), e2(x)) is a basis of TxM . This provides the basis announced
in item 5. �

Remark 4.4. — If (U,X, Y,Σ,B) is a prepared counter example to The-
orem A, then for every t ∈ (−µ0, µ0), (U,X − tY, Y,Σ,B) is a prepared
counter example to Theorem A.

Whenever (U,X, Y,Σ,B) is a prepared counter example to Theorem A,
we shall denote by P the first return map, defined on a neighborhood of
Col(X,Y ) ∩ Σ0 in Σ0.

Remark 4.5. — As the ambient manifold is assumed to be orientable
(see Remark 3.10), the vector field Y is normally oriented so that the
Poincaré map P preserves the orientation.

4.2. Counting the index of a prepared counter example

Definition 4.6. — Let (U,X, Y,Σ,B) be a prepared counter example
to Theorem A. In particular, U is a solid torus (C1-diffeomorphic to D2 ×
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R/Z) and Zero(X − tY ), t ∈ (−µ0, µ0), is an essential simple curve γt
isotopic to {0} × R/Z. An essential torus T is the image of a continuous
map from the torus T2 in the interior of U , disjoint from γ0 = Zero(X) and
homotopic, in U \ γ0, to the boundary of a tubular neighborhood of γ0.

In other words, H2(U \γ0,Z) = Z, and T is essential if it is the generator
of this second homology group.
We shall now describe how we use the basis B, which comes with a

prepared counter example, and an essential torus T to calculate the index.
For each point x ∈ U , one can write X(x) as a linear combination of

the vectors e1(x), e2(x) and e3(x). Notice that, since e3 = Y everywhere,
the e3-coordinate µ of X is a C1 extension of the ratio function, µ that
we introduced on Col(X,Y ) in item (5) of Subsection 3.5. Therefore, there
exists C1 functions α, β, µ : U → R such that

(4.1) X(x) = α(x)e1(x) + β(x)e2(x) + µ(x)e3(x).

For x /∈ γ0 one considers the vector

(4.2) X (x) = 1√
α(x)2 + β(x)2 + µ(x)2

(α(x), β(x), µ(x)) ∈ S2.

The map restriction X|T : T → S2 has a topological degree, which, by
Lemma 3.3, coincides with Ind(X,U), for some choice of an orientation
on T .

4.3. The normally hyperbolic case

In this section we illustrate our procedure by giving the very simple proof
of Theorem A in the case where Col(X,Y, U) is furthermore assumed to be
normally hyperbolic for the flow of Y .

Here we shall prove

Lemma 4.7. — Let (U,X, Y,Σ,B) be a prepared counter example to
Theorem A. Then, the first return map P : Σ0 → Σ0 of the flow of Y
satisfies: for every point x of Col(X,Y, U) ∩ Σ0, the unique eigenvalue of
the derivative of P at x is 1.

Proof. — The argument is by contradiction. Let us denote xt = γt ∩Σ0,
t ∈ [−µ0, µ0], (recall γt = Zero(X − tY )). We assume that the derivative
of P at some point of xt0 has some eigenvalue of different from 1.
Notice that the first return map P is the identity map in restriction to

the segment Col(X,Y )∩Σ0. In particular, the derivative of P at xt admits
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1 as an eigenvalue. Since P preserves the orientation (see Remark 4.5), the
other eigenvalue is positive.

Claim 4. — There exists Ũ ⊂ U , X̃ = X − tY and a prepared counter
example to Theorem A (Ũ , X̃, Y,Σ,B) for which the surface Col(X̃, Y, Ũ)
is normally hyperbolic.

Proof. — As the property of having an eingenvalue of mudulus different
from 1 is an open condition, there exists an interval [µ1, µ2] ⊂ [−µ0, µ0] on
which the condition holds. Consider t = µ1+µ2

2 and X̃ = X − tY .
Then, one obtains a new prepared counter example to Theorem A by

replacing X by X̃ (see Remark 4.4); now, by shrinking U one gets a tubular
neighborhood Ũ of γt so that Col(X̃, Y, Ũ) =

⋃
s∈[µ1,µ2] γs.

Moreover, the derivative of P at each point xs, s ∈ [µ1, µ2], has an
eigenvalue different from 1 in a direction tranverse to Col(X̃, Y, Ũ) ∩ Σ0.
By compactness and continuity these eigenvalues are uniformly far from 1
so that Col(X̃, Y, Ũ) ∩ Σ0 is normally hyperbolic for P.
Thus Col(X̃, Y, Ũ) is an invariant normally hyperbolic annulus for the

flow of Y . �

By virtue of the above claim (up to change X by X̃ and U by Ũ) one
may assume that Col(X,Y, U) is normally hyperbolic, and (up change Y
by −Y ) one may assume that Col(X,Y, U) is normally contracting.
This implies that every periodic orbit γt has a local stable manifold

W s
Y (γt) which is a C1-surface depending continuously on t for the C1-

topology and the collection of these surfaces build a C0-foliation FsY tan-
gent to a continuous plane field EsY , in a neighborhood of Col(X,Y, U).
Furthermore, EsY is tangent to Y , and hence is tranverse to the fibers of Σ.

Up to shrink U , one may assume that FsY and EsY are defined on U .

Claim 5. — There is a basis B̃ = (ẽ1, ẽ2, ẽ3) so that (U,X, Y,Σ, B̃) is a
prepared counter example to Theorem A and ẽ2 is tangent to EsY .

Proof. — Choose ẽ2 as being a unit vector tangent to the intersection
of EsY with the tangent plane of the fibers of Σ. It remains to choose ẽ1
tranverse to e2 and tangent to the fibers of Σ and tangent to Col(X,Y ) at
every point of Col(X,Y ). �

Up to change B by the basis B̃ given by the claim above, we will now
assume that e2 is tangent to EsY .

Claim 6. — The vector field X is tangent to EsY .

Proof. — The flow of the vector field X leaves invariant the periodic
orbit γt of Y and X commutes with Y . As a consequence, it preserves the
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stable manifold W s(γt) for every t. This implies that X is tangent to the
foliation FsY and therefore to EsY . �

Therefore, for every x ∈ U \Zero(X) the vector X (x) ∈ S2 (see the nota-
tions in Equations 4.1 and 4.2) belongs to the circle {x1 = 0}. In particular,
for any essential torus T the map X|T : T → S2 is not surjective, an thus
has zero topological degree. This proves that Ind(X,U) vanishes, contra-
dicting the fact that (U,X, Y,Σ,B) is assumed to be a prepared counter
example to Theorem A. �

5. Holonomies, return time, and the normal component

In the whole section, (U,X, Y,Σ,B) is a prepared counter example to
Theorem A.

Definitions. Recall that Σt = Σ−1(t), t ∈ R/Z, is a family of cross
section, each Σt is diffeomorphic to a disc, and we identify Σ0 with the
unit disc D2.

Definition 5.1. — Consider t ∈ R. Consider x ∈ Σ0 and y ∈ Σt. We
say that y is the image by holonomy of Y over the segment [0, t], and we
denote y = Pt(x), if there exists a continuous path xr ∈ U , r ∈ [0, t], so
that Σ(xr) = r, x0 = x, xt = y, and for every r ∈ [0, t] the point xr belongs
to the Y -orbit of x.

The holonomy map Pt is well defined in a neighborhood of Col(X,Y, U)∩
Σ0 and is a C1 local diffeomorphism.
If t = 1 then P1 is the first return map P (defined before Remark 4.5) of

the flow of Y on the cross section Σ0.

Remark 5.2. — With the notation of Definition 5.1, there is a unique
continuous function τx : [0, t]→ R so that τx(0) = 0 and xr = Yτx(r)(x) for
every r ∈ [0, t].
We denote τt(x) = τx(t) and we call it the transition time from Σ0 to

Σt. The map τt : Σ0 → R is a C1 map and by definition one has

(5.1) Pt(x) = Yτt(x)(x)

We denote τ = τ1 and we call it the first return time of Y on Σ0.
Remark 5.3. — In Definition 4.2 item 4 we defined τ(s) as the period

of γs; in the notation above, it coincides with τ(xs) where xs = γs ∩ Σ0.
In this case, Equation 5.1 takes the special form

(5.2) P(x) = Yτ(x)(x)
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5.1. The normal conponent of X

Definition 5.4. — For every t and every x ∈ Σt we define the normal
component of X, which we denote by N(x), the projection of X(x) on TxΣt
parallel to Y (x).

Thus x 7→ N(x) is a C1-vector field tangent to the fibers of Σ and which
vanishes precisely on Col(X,Y, U).
Moreover, in the basis B, N(x) = α(x)e1(x) + β(x)e2(x) (see Equa-

tion 4.1), and we have the following formula

X(x) = N(x) + µ(x)Y (x),

for every x ∈ U .

The first return map and the derivative of the first return time.
The goal of this paragraph is the proof of Corollary 5.6 which claims the
following formula

(5.3) −Dτ(x)N(x) = µ((P(x)))− µ(x)

relating the derivative of the return time function τ : Σ0 → (0,+∞), the
normal component N and the first return map P, at every point x ∈ Σ0.
This formula will be crucial for transfering informations on the normal vec-
tor field N to the first return map P. At the end of this section, we shall use
the angular variation of N (see the precise formulation in Corollary 5.14)
together with formula (5.3) to prove that the derivative of P at any fixed
point is the identity.
The geometrical idea for proving (5.3) is the following:
• at one hand, if x ∈ Σ0, one has that the difference between the
vectors DP(x)N(x) and DYτ(x)(x)N(x) is parallel to Y (P(x)), and
the proportion is given exactly by Dτ(x)N(x) (this is a classical
fact, which we state precisely below).

• On the other hand, X is equal to N + µY and is invariant under
DYt, for any t.

One gets (5.3) by combining these two facts.
Let us proceed with the formal proof. The first step is the (classical)

result below. The proof is an elementary and simple application of the flow
box theorem, so we omit.

Lemma 5.5. — For every t ∈ R x ∈ Σ0 and every v ∈ TxΣ0 one has,

(5.4) DPt(x)v −DYτt(x)(x)v = Dτt(x)v.Y (Pt(x)).
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Figure 5.1. Geometric proof of formula (5.3):
N(P(x)) + µ(P(x))Y (P(x)) = X(P(x)) = DYτ(x)(x)N(x) + µ(x)Y (P(x))

thus Dτ(x)N(x)Y (P(x)) = (µ(x)− µ(P(x)))Y (P(x))

In particular, for every x ∈ Σ0 and v ∈ TxΣ0, one has

(5.5) DP(x)v −DYτ(x)(x)v = Dτ(x)v.Y (P(x)).

Now, recall that
X(x) = N(x) + µ(x)Y (x)

and since
DYτ(x)X(x) = X(Yτ(x)) = X(P(x)),

we obtain

(5.6) X(P(x)) = DYτ(x)(x)N(x) + µ(x)Y (P(x)).

On the other hand, by Lemma 5.5

DYτ(x)(x)N(x) = DP(x)N(x)−Dτ(x)N(x)Y (P(x)).

As
X(P(x)) = N(P(x)) + µ(P(x))Y (P(x)),

we conclude that

DP(x)N(x)−Dτ(x)N(x))Y (P(x)) + µ(x)Y (P(x))
= N(P(x)) + µ(P(x))Y (P(x)),
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and so

(µ(x)− µ(P(x))−Dτ(x)N(x)))Y (P(x)) +DP(x)N(x)−N(P(x)) = 0.

Since Y is transverse to the tangent space of Σ0, the vectors Y (P(x)) and
DP(x)N(x) − N(P(x)) are linearly independent. As a consequence, one
obtains that DP(x)N(x) = N(P(x)) and

Corollary 5.6. — Let x ∈ Σ0. Then,

−Dτ(x)N(x) = µ((P(x)))− µ(x).

Moreover, applying the same argument with the time t holonomy Pt in
place of the first return map P, one obtain the invariance of N under the
holonomies.

Lemma 5.7. — For t ∈ R and every x ∈ Σ0 one has

DPt(x)N(x) = N(Pt(x)).

The normal component of X and the index of X. Let (U,X,Y,Σ,B)
be a prepared counter example to Theorem A and N be the normal com-
ponent of X.

Let us define, for x ∈ U \ Col (X,Y, U),

N (x) = 1√
α(x)2 + β(x)2

(α(x), β(x)) ∈ S1 ⊂ S2,

where S1 is the unit circle of the plane R2 × {0} ⊂ R3.
Recall that U is homeomorphic to the solid torus so that its first ho-

mology group H1(U,Z) is isomorphic to Z, by an isomorphism sending the
class of γ0, oriented by Y , on 1. Let U+ and U− be the two connected com-
ponents of U \Col (X,Y, U). These are also solid tori, and the inclusion in
U induces isomorphisms of the first homology groups which allows us to
identify H1(U±,Z) with Z.

Definition 5.8. — We call linking number of X with respect to Y in
U+ (resp. in U−) and we denote it by `+(X,Y ) (resp. `−(X,Y )) the integer
defined as follows: the continuous map N : U± → S1 induces morphisms on
the homology groups H1(U±,Z)→ H1(S1,Z). As these groups are all iden-
tified with Z, these morphisms consist in the multiplication by an integer
`±(X,Y ).

In other words, consider a closed curve σ ⊂ U+ homotopic in U to γ0.
Then `+(X,Y ) is the topological degree of the restriction of N to σ.
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Proposition 5.9. — Let (U,X, Y,Σ,B) be a prepared counter example
to Theorem A. Then

| Ind(X,U)| = |`+(X,Y )− `−(X,Y )|

Proof. — Consider a tubular neighborhood of γ0 whose boundary is an
essential torus T which cuts Col (X,Y, U) transversely and along exactly
two curves σ+ and σ−. Then the map X on T takes the value N ∈ S2

(resp. S ∈ S2) exactly on σ+ (resp. σ−), where N and S are the points on
S2 corresponding to e3 = Y and −e3.
We identify T with T2 = R/Z × R/Z so that σ− and σ+ correspond to

{ 1
2} × R/Z and {0} × R/Z respectively. It remains to apply Corollary 3.7

to Φ = X and ϕ = N , noticing that N is the projection of X on S1 along
the meridians. This gives the announced formula. �

As a direct consequence of Proposition 5.9 one gets

Corollary 5.10. — Let (U,X, Y,Σ,B) be a prepared counter example
to Theorem A, then

(`+(X,Y ), `−(X,Y )) 6= (0, 0)

5.2. Angular variation of the normal component

Definition of the angular variation. Recall that, for any x ∈ U \
Col(X,Y ), we defined N (x) ∈ S1 as the normalisation of the expression of
the normal component N(x) in the basis B(x)
Consider a path η : [0, 1]→ U\Col(X,Y ). We define the angular variation

of N along η is as being

Ñ (η(1))− Ñ (η(0))

where Ñ (η(t)) is a lift of the path t 7→ N (η(t) ∈ S1 on the universal cover
R 7→ S1 ' R/2πZ.

By a practical abuse of language, if there is no ambiguity on the basis
B, we will call angular variation of N along η the angular variation of N
along η.

Angular variation of the normal component N along the Y -
orbits. We denote {xt} = γt ∩ Σ0. For every pair of points x, y ∈ Σ0, we
denote the segment of straight line joining x and y and contained in Σ0 by
[x, y] (for some choice of coordinates on Σ0).
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Lemma 5.11. — For any K > 0 there is a neighborhood VK of γ0 with
the following property.
Consider x ∈ VK ∩ Σ0 and u ∈ TxΣ0 a unit vector, and write u =

u1e1(x)+u2e2(x). Consider t ∈ [0,K] and v = DPt(u) ∈ TPt(x)Σt the image
of u by the derivative of the holonomy. Write v = v1e1(Pt(x))+v2e2(Pt(x)).
Then (

u1√
u2

1 + u2
2
,

u2√
u2

1 + u2
2

)
6= −

(
v1√
v2

1 + v2
2
,

v2√
v2

1 + v2
2

)

Proof. — Assuming, by contradiction, that the conclusion does not hold
we get yn ∈ Σ0, unit vectors un ∈ Txn

Σ0 and tn ∈ [0,K] so that yn tends
to x0 = γ0∩Σ0, un tends to a unit vector u in Tx0Σ0, tn tends to t ∈ [0,K]
and the image vn of the vector un, expressed in the basis B, is collinear to
un with the opposite direction.

Then DPt(x0)u is a vector that, expressed in the basis B, is collinear to u
with the opposit direction. In other words, u is an eigenvector of DPt(x0),
with a negative eigenvalue.
However, for every t ∈ R the vector e1 is an eigenvector of DPt(x0), with

a positive eigenvalue, and DPt(x0) preserves the orientation, leading to a
contradiction. �

Lemma 5.12. — For every N ∈ N there exists a neighborhood ON ⊂ Σ0
of x0 so that if x ∈ ON \ Col(X,Y, U) then the segment of straight line
[x,PN (x)] is disjoint from Col(X,Y, U).

Proof. — Assume that there is a sequence of points yn → x0, yn /∈
Col(X,Y, U) so that the segment [yn,PN (yn)] intersect Col(X,Y, U) ∩ Σ0
at some point zn. Recall that Col(X,Y, U) ∩ Σ0 consists in fixed points of
the first return map P. In particular, zn is a fixed point of PN .
The image of the segment [zn, yn] is a C1 curve joining zn to PN (yn).

Notice that the segments [zn, yn] and [zn,PN (yn)] are contained in the
segment [yn,PN (yn)] and oriented in opposite direction. One deduces that
there is a point wn in [yn, zn] so that the image under the derivativeDPN of
the unit vector un directing this segment is on the form λnun with λn < 0.
Since yn tends to x0, one deduces that DPN (x0) has a negative eigen-

value. This contradicts the fact that both eigenvalues of DPN (x0) are pos-
itive and completes the proof. �

Recall that U+ and U− are the connected components of U\Col (X,Y, U).
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Corollary 5.13. — If x ∈ U±∩Σ0∩O3 let θx : R/Z→ U be the curve
obtained by concatenation of the Y -orbit segment from x to P2(x) and the
straight line segment [P2(x), x], that is:

• for t ∈ [0, 1
2 ], θx(t) = Y2t.τ2(x)(x) where τ2 is the transition time

from x to P2(x)
• for t ∈ [ 1

2 , 1], θx(t) = (2− 2t)P2(x) + (2t− 1)x.

Then θx is a closed curved contained in U± and whose homology class in
H1(U±,Z) = Z is 2.

Proof. — The unique difficulty here is that the curve don’t cross the
colinearity locus Col (X,Y, U) and that is given by Lemma 5.12. �

The next corollary is one of the fundamental arguments of this paper.

Corollary 5.14. — Let (U,X, Y,Σ,B) be a prepared counter example
to Theorem A, and assume that `+(X,Y ) 6= 0.
Consider x ∈ U+∩Σ0∩O3. Then the angular variation of the vectorN (y)

for y ∈ [x,P2(x)] is strictly larger than 2π in absolute value. In particular,

N ([x,P2(x)]) = S1.

The same statement holds in U− if `−(X,Y ) 6= 0.

Proof. — Lemma 5.11 implies that the angular variation of N (θx(t)) is
contained in (−π, π) for t ∈ [0, 1

2 ]. However, the topological degree of the
map N : θx → S1 is 2`+(X,Y ) which has absolute value at least 2. Thus
the angular variation of N on the segment [x,P2(x)] is (in absolute value)
at least 3π concluding. �

As an immediate consequence one gets

Corollary 5.15. — If `+(X,Y ) 6= 0, then P2 has no fixed points in
O3 ∩ U+.

The return map at points where N is pointing in opposite di-
rections. We have seen in the proof of Corollary 5.14 that the vector N
has an angular variation larger than 3π along the segment [x,P2(x)], as
x ∈ Σ0 approaches x0. In this section we use the large angular variation of
N for establishing a relation between the return map P, the return time
τ , and the coordinate µ of X in the Y direction.

Recall that, for every x ∈ U \ Col(X,Y, U), N (x) is a unit vector con-
tained in S1, unit circle of R2.
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Lemma 5.16. — Assume that there exists sequences

qn, qn ∈ Σ0 \ Col(X,Y, U)

converging to x0, such that the following two conditions are satisfied:
(1) N (qn)→ (1, 0) and N (qn)→ (−1, 0), as n→ +∞,
(2) (µ(P(qn))− µ(qn))(µ(P(qn))− µ(qn)) > 0, for every n.

Then, Dτ(x0)e1(x0) = 0.

Proof. — Recall that N(x) = α(x)e1(x) + β(x)e2(x) and

N (x) = 1√
α(x)2 + β(x)2

(α(x), β(x))

for x ∈ U \ Col(X,Y, U).
By Corollary 5.6, we have

(5.7) −Dτ(qn) N(qn)√
α(qn)2 + β(qn)2

= µ(P(qn))− µ(qn)√
α(qn)2 + β(qn)2

,

and

(5.8) −Dτ(qn) N(qn)√
α(qn)2 + β(qn)2

= µ(P(qn))− µ(qn)√
α(qn)2 + β(qn)2

.

Multiplying side by side Equations 5.7 and 5.8 and using the second
assumption of the lemma, we get

Dτ(qn) N(qn)√
α(qn)2 + β(qn)2

Dτ(qn) N(qn)√
α(qn)2 + β(qn)2

> 0.

Notice that the first assumption of the lemma is equivalent to

N(qn)√
α(qn)2 + β(qn)2

→ e1(x0)

and
N(qn)√

α(qn)2 + β(qn)2
→ −e1(x0).

Since qn, qn → x0, from the continuity of Dτ , we conclude that

0 > − (Dτ(x0)(e1(x0)))2 > 0,

which completes the proof. �

Since we assumed (Dτ(x0)(e1(x0)) 6= 0 (item (4) of the definition of a
prepared counter example to Theorem A), one gets the following corollary:
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Corollary 5.17. — Let (U,X, Y,Σ,B) is a prepared counter exam-
ple to Theorem A. Assume that there exists sequences qn, qn ∈ Σ0 \
Col(X,Y, U) converging to x0, such that N (qn) → (1, 0) and N (q̄n) →
(−1, 0), as n tends to +∞. Then

(µ(P(qn))− µ(qn))(µ(P(qn))− µ(qn)) < 0,

for every n large enough.

5.3. The case DP(x0) 6= Id

In this section, (U,X, Y,Σ,B) is a prepared counter example to The-
orem A so that the derivative of the first return map P at the point
x0 = Σ0 ∩ γ0 is not the identity map. Recall that DP(x0) admits an eigen-
value equal to 1 directed by e1(x0), has no eigenvalues different from 1 and
is orientation preserving.
Recall that Col (X,Y, U) cuts the solid torus U in two components U+

and U−. Let denote Σ+ = Σ0 ∩ U+ and Σ− = Σ0 ∩ U−.

Lemma 5.18. — Let (U,X, Y,Σ,B) be a prepared counter example to
Theorem A so that the derivative of the first return map P at the point x0
is not the identity map.
There is a neighborhood W of x0 in Σ so that the map µ(P(x))− µ(x)

restricted to W vanishes only on Col (X,Y, U).
More precisely,
• (µ(P(x))− µ(x))(µ(P(y))− µ(y)) > 0 if x and y ∈ W ∩ Σ+ and if
x and y ∈W ∩ Σ−

• (µ(P(x))−µ(x))(µ(P(y))−µ(y)) < 0 if x ∈W∩Σ+ and y ∈W∩Σ−
and if x ∈W ∩ Σ− and y ∈W ∩ Σ+

• (µ(P(x))− µ(x)) = 0 and x ∈W if and only if x ∈ Col (X,Y, U).

Proof. — The derivative Dµ(x0)(e1(x0)) do not vanish (item 2 of Defini-
tion 4.2). Thus the kernel of Dµ(x0) is tranverse to e1(x0). The derivative
DP(x0) admits e1(x0) as an eigenvector (for the eigenvalue 1) and has no
eigenvalue different from 1 and is not the identity. This implies that the
kernel of Dµ(x0) is not an eigendirection of DP(x0). Notice that the deriv-
ative at x0 of the map µ(P(x))− µ(x) is Dµ(x0)DP(x0)−Dµ(x0). As we
have seen above the kernel of Dµ(x0)DP(x0) is different from the kernel
of Dµ(x0) so that Dµ(x0)DP(x0) 6= Dµ(x0).
As a consequence the derivative of the function x 7→ µ(P(x)) − µ(x))

does not vanish at x = x0.
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Thus {x ∈ Σ, µ(P(x)) − µ(x)) = 0} is a codimension 1 submanifold in
a neighborhood of x0 in Σ0, and this submanifold contains Col (X,Y, U),
because Col (X,Y, U) ⊂ Fix(P). Therefore these submanifolds coincide in
the neighborhood of x0, concluding. �

We are now ready to prove the following proposition:

Proposition 5.19. — If (U,X, Y,Σ,B) is a prepared counter example
to Theorem A then DP(x) is the identity map for every x ∈ Col (X,Y, U)∩
Σ0.

Proof. — Up to exchange + by −, we assume that `+(X,Y ) 6= 0. Then
Corollary 5.14 implies that there are sequences qn, q̄n ∈ Σ+ tending to
x0 and so that N (qn) = (1, 0) and N (−qn) = (−1, 0). More precisely
Corollary 5.14 implies that for any x ∈ Σ+ close enough to x0 the segment
[x,P2(x)] contains points q, q̄ with N (q) = (1, 0) and N (q̄) = (−1, 0). Now
Lemma 5.12 implies that the segment is contained in Σ+, concluding.

Now Corollary 5.17 implies that, for n large enough, the sign of the
map (µ(P(x)) − µ(x)) is different on qn and on q̄n. One concludes with
Lemma 5.18 which says that this sign cannot change if the derivative
DP(x0) is not the identity. Thus we proved DP(x0) = Id.
Now if x ∈ Col (X,Y, U) then x is of the form x = xt = γt∩Σ0. According

to Remark 4.4 (U,X − tY, Y,Σ,B) is also a prepared counter example to
Theorem A, and the linking number of `+(X − tY, Y ) is the same as the
linking number of `+(X,Y ), and therefore is not vanishing. Notice that the
first return map P is not affected by the substitution of the pair (X,Y )
by the pair (X − tY, Y ) but the point x0 is now replaced by the point
xt. Therefore the argument above establishes that DP(xt) = Id for every
xt ∈ Col (X,Y, U) ∩ Σ0. �

6. Proof of Theorem A

In the whole section, (U,X, Y,Σ,B) is a prepared counter example to
Theorem A. According to Corollary 5.10 one of the linking numbers
`+(X,Y ), `−(X,Y ) does not vanish, so that, up to exchange + with −,
one may assume `+(X,Y ) 6= 0. According to Proposition 5.19 the deriva-
tive DP(x) is the identity map for every x ∈ Col (X,Y, U) ∩ Σ0.

This means that, in a neighborhood of Col (X,Y, U), the diffeomorphism
P is C1 close to the identity map. The techniques introduced in [1] and [2]
allow to compare the diffeomorphism P with the vector field P(x)−x, and
we will analyse the behavior of this vector field. We will first show that,
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in the neighborhood of Col (X,Y, U) these vectors are almost tangent to
the kernel of Dµ. As the fibers of Dµ are tranverse to Col (X,Y, U) we
get a topological dynamics of P similar to the normally hyperbolic case of
Section 4.3. We will end contradicting Corollary 5.14.

Quasi invariance of the map µ by the first return map. Recall
that µ is the coordinate of X in the Y direction: X(x) = N(x)+µ(x)Y (x).
The aim of this section is to prove

Lemma 6.1. — If xn ∈ Σ+ is a sequence of points tending to x ∈
Col (X,Y, U) and if vn ∈ TxnΣ+ is the unit tangent vector directing the
segment [xn,P(xn)] then Dµ(xn)(vn) tends to 0.

According to Remark 4.4, it is enough to prove Lemma 6.1 in the case
x = x0 = γ0 ∩ Σ0. Lemma 6.1 is now a straighforward consequence of the
following lemma

Lemma 6.2.

lim
x→x0,x∈Σ+

µ(P(x))− µ(x)
d(P(x), x) = 0,

where d(P(x), x) denotes the distance between x and P(x).

Note that Lemma 5.18 implies that this estimate could not hold if the
derivative DP(x0) were not the identity. Here we use Proposition 5.19
which asserts that the derivative of P at the fixed points is the identity.

Proof. — Fix ε > 0 and let us prove that |µ(P(x))−µ(x)|
d(P(x),x) is smaller than ε

for every x close to x0 in Σ+. Recall that, according to Lemma 5.12, there
is a neighborhood O2 of γ0 so that if x ∈ O+

2 = O2∩Σ+ then the segment of
straight line [x,P2(x)] is contained in Σ+. Furthermore, Corollary 5.14 says
that N|[x,P2(x)] is surjective onto S1 (unit circle in R2). In particular, there
are points qx, q̄x ∈ [x,P2(x)] so that N (qx) = (1, 0) and N (q̄x) = (−1, 0).
According to Corollary 5.17 one gets

(6.1) (µ(P(qx))− µ(qx))(µ(P(qx))− µ(qx)) < 0,

for every x ∈ O+
2 .

The diffeomorphism P is C1-close to the identity in a small neighborhood
of x0 Now [1] (see also [2]) implies that there is a neigborhood V1 of x0 in
Σ0 so that if x ∈ V1 then

‖(P(x)− x)− (P(y)− y)‖ < 1
2‖P(x)− x‖,
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for every y with d(x, y) < 3‖P(x)− x‖. In particular,

‖P2(x)− P(x)‖ < 3
2‖P(x)− x‖ < 2‖P(x)− x‖,

and thus ‖P2(x)− x‖ < 3‖P(x)− x‖.
Consider the function f(x) = µ(P(x)) − µ(x). Since DP(x0) = Id, we

have that Df(x0) = 0. As a consequence, there exists a neighborhood
V2 ⊂ V1 of x0 such that |Df(x)| < ε

9 , for every x ∈ V2.
Since P(x0) = x0, we can choose a smaller neighborhood V3 such that

P(x),P2(x) ∈ V2, for every x ∈ V3. This ensures that
|f(qx)− f(x)|
d(x,P(x)) <

ε

9
d(qx, x)
d(x,P(x)) 6

ε

3 .

Similar estimates hold with qx in place of qx and in place of x, respectively.
By Inequality (6.1) we see that f(qx) and f(q̄x) have opposite signs and

thus
|f(qx) + f(q̄x)|
d(x,P(x)) 6

|f(qx)− f(q̄x)|
d(x,P(x)) 6

ε

3 .

We deduce∣∣∣∣ 2f(x)
d(x,P(x))

∣∣∣∣ = |f(x)− f(qx) + f(qx) + f(q̄x) + f(x)− f(q̄x)|
d(x,P(x))

6
|f(x)− f(qx)|
d(x,P(x)) + |f(q̄x) + (qx)|

d(x,P(x))
|f(x)− f(q̄x)|
d(x,P(x))

6 ε.

This establishes that |µ(P(x))−µ(x)|
d(P(x),x) is smaller than ε for every x ∈ V3 ∩Σ+

and completes the proof. �

Remark 6.3. — The Lemmas 6.1 and 6.2 depend a priori on the choice
of coordinates on Σ0 since they are formulated in terms of segments of
straight line [x,P(x)], and vectors P(x) − x. Nevertheless, the choice of
coordinates on Σ0 was arbitrary (see first paragraph of Section 5.2) so that
it holds indeed for any choice of C1 coordinates on Σ0 (on a neighborhood
of x0 depending on the choice of the coordinates).

Dynamics of the first return map P in the neighborhood of 0.
Recall that Σ0 is a disc endowed with an arbitrary (but fixed) choice of
coordinates. Also, µ : Σ0 → R is a C1-map whose derivative does not vanish
along Col (X,Y, U) and Col (X,Y, U) ∩ Σ0 is a C1-curve.

Therefore, one can choose a C1-map ν : Σ0 → R so that
• there is a neighborhood O of x0 in Σ0 so that (µ, ν) : O → R2 is C1

diffeomorphism,
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• Col (X,Y, U) ∩O = ν−1({0})
• ν > 0 on Σ+

We denote by (µ(x), ν(x)) the image of x by (µ, ν).
Notice that (µ(x), ν(x)) are local coordinates on Σ0 in a neighborhood

of x0. Remark 6.3 allows us to use Lemma 6.1 and Lemma 6.2 in the
coordinates (µ, ν).

As a consequence, there exist ε > 0 so that for any point x ∈ Σ+ with
(µ(x), ν(x)) ∈ [−ε, ε]× (0, ε], one has

(6.2) |µ(P(x))− µ(x)| < 1
100 |ν(P(x))− ν(x)|.

In particular, since P has no fixed point in Σ+ (Corollary 5.15), one gets
that ν(P(x))− ν(x) does not vanish for (µ(x), ν(x)) ∈ [−ε, ε]× (0, ε], and
in particular it has a constant sign. Up to change P by its inverse P−1

(which is equivalent to replace Y by −Y ), one may assume

ν(P(x))− ν(x) < 0, for (µ(x), ν(x)) ∈ [−ε, ε]× (0, ε]

Next lemma allows us to define stable sets for the points in Col (X,Y, U)
and shows that every point in Σ+ close to x0 belongs to such a stable set.

Lemma 6.4. — Let x ∈ Σ+ be such that (µ(x), ν(x)) ∈ [− 9
10ε,

9
10ε] ×

(0, ε]. Then, for any integer n > 0, Pn(x) satisfies

(µ(Pn(x)), ν(Pn(x))) ∈ [−ε, ε]× (0, ε]

Furthermore the sequence Pn(x) converges to a point x∞ ∈Col(X,Y, U)∩
Σ0 and we have

• ν(x∞) = 0
• µ(x∞)− µ(x) 6 ν(x)

100 6
ε

100 .
The map x 7→ x∞ is continuous.

Proof. — Consider the trapezium D (in the (µ, ν) coordinates) whose
vertices are (−ε, 0), (ε, 0), (− 9ε

10 , ε), and ( 9ε
10 , ε). This trapezium D is con-

tained in [−ε, ε] × [0, ε] and contains [− 9
10ε,

9
10ε] × [0, ε]. Thus for prov-

ing the first item it is enough to check that D is invariant under P.
For that notice that, for any x with (µ(x), ν(x)) ∈ [−ε, ε] × [0, ε] one
has that (µ(P(x)), ν(P(x)) belongs to the triangle δ(x) whose vertices are
(µ(x), ν(x)), (µ(x)− ν(x)

100 , 0), (µ(x)+ ν(x)
100 , 0) (according to Equation 6.2 and

the fact that ν(P(x)) < ν(x)); one conclude by noticing that, if (ν(x), µ(x))
belongs to D then δ(x) ⊂ D.
Let us show that Pn(x) converges.
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The sequence ν(Pn(x)) is positive and decreasing, hence converges, and∑
|ν(Pn+1(x))− ν(Pn(x))|

converges. As |µ(Pn+1(x))− µ(Pn(x))| < 1
100 |ν(Pn+1(x))− ν(Pn(x))| one

deduces that the sequence {µ(Pn(x)}n∈N is a Cauchy sequence, hence con-
verges.
The continuity of x 7→ x∞ follows from the inequality µ(x∞) − µ(x) 6

ν(x)
100 applied to Pn(x) with n large, so that ν(Pn(x)) is very small, and
from the continuity of x 7→ Pn(x). �

For any point y with (µ(y), ν(y)) ∈ [− 8
10ε,

8
10ε] × {0} the stable set of

y, which we denote by S(y), is the the union of {y} with the set of points
x ∈ Σ+ with (µ(x), ν(x)) ∈ [− 9

10ε,
9
10ε] × (0, ε] so that x∞ = y. The

continuity of the map x 7→ x∞ implies the following remark:

Remark 6.5. — For any point y with (µ(y), ν(y)) ∈ [− 8
10ε,

8
10ε] × {0},

S(y) is a compact set which has a non-empty intersection with the hori-
zontal lines {x, ν(x) = t} for every t ∈ (0, ε].

If E is a subset of Col (X,Y, U)∩Σ0 so that µ(y) ∈ [− 8
10ε,

8
10ε] for y ∈ E

one denotes
S(E) =

⋃
y∈E

(S(y)).

Lemma 6.6. — Let I ⊂ Col (X,Y, U) be the open interval (µ(x), ν(x)) ∈
(− 1

2ε,
1
2ε)×{0}. Consider the quotient space Γ of S(I)\I by the dynamics.

Then Γ is a C1-connected surface diffeomorphic to a cylinder R/Z× R.

Proof. — Consider the compact triangle whose end points are (− ε2 , 0),
(0, ε10 ) and (+ ε

2 , 0). Let ∆̄ be its preimage by (µ, ν).
∆̄ is a triangle with one side on Col(X,Y, U). Let ∆ = ∆̄ \Col(X,Y, U).

We denote by ∂∆ the union of the two other sides.
As the vectors directing the two other sides have a first coordinated larger

than the second (in other words, they are more horizontal than vertical)
and as the vectors [x,P(x)] are almost vertical, one deduces that ∆ is a
trapping region for P:

x ∈ ∆ =⇒ P(x) ∈ ∆.

Now
P(∂∆)

is a curve contained in the interior of ∆ and joining the vertex (− ε2 , 0) to
the vertex (+ ε

2 , 0). Thus ∂∆ and P(∂∆) bound a strip homeomorphic to
[0, 1]× R in ∆.
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Let Γ be the cylinder obtained from this strip by gluing ∂∆ with P(∂∆)
along P.
It remains to check that Γ is the quotient space of S(I) \ I by P. For

that, one just remark that the orbit of every point in S(I) \ I has a unique
point in the strip, unless in the case where the orbits meets ∂∆: in that
case the orbits meets the strip twice, the first time on ∂∆, the second on
P(∂∆).

Note that Γ is the quotient of an open region in a smooth surface by a
diffeomorphism (and the action is proper and free) so that Γ is not only
homeomorphic to a cylinder but diffeomorphic to a cylinder. �

Let us end this section by stating important straighforward consequences
of the invariance of the vector field N under P.

Remark 6.7.
• For every y ∈ Col(X,Y, U) with µ(y) ∈ [− 8

10ε,
8
10ε], the stable set

S(y) is invariant under the flow of N .
• The vector field N induces a vector field, denoted by NΓ, on the

quotient space Γ. As Γ is a C1 surface, NΓ is only C0. However, it
defines a flow on Γ which is the quotient by P of the flow of N .

• The continuous map x 7→ x∞ is invariant under P and therefore
induces on Γ a continuous map Γ→ (−ε/2, ε/2), and x∞ tends to
−ε/2 when x tends to one end of the cyclinder Γ and to ε/2 when x
tends to the other end. This implies that, for every t ∈ (−ε/2, ε/2)
the set of points x ∈ Γ for which x∞ = t is compact. Recall that this
set is precisely the projection on Γ of S(y) where y ∈ Col(X,Y, U)
satisfies (µ(y), ν(y)) = (t, 0).

• The vector field NΓ on Γ leaves invariant the levels of the map
x 7→ x∞. As a consequence, every orbit of NΓ is bounded in Γ.

One deduces

Lemma 6.8. — For every y ∈ Col(X,Y, U) with µ(y) ∈ [− 8
10ε,

8
10ε], the

stable set S(y) \ {y} contains an orbit of N which is invariant under P.
In particular, there exists x in ∆ ∩ S(x0) whose orbit by N is invariant
under P.

Proof. — A Poincaré–Bendixon argument implies that, for every flow
on the cylinder R/Z × R without fixed points, for every bounded orbit
the ω-limit set is a periodic orbit. Furthermore this periodic orbit is not
homotopic to a point (otherwise it bounds a disc containing a zero).

Since NΓ has no zeros, one just applies this argument to the flow of it
restricted to the a level of the map x 7→ x∞. The level contains a periodic
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orbit which is not homotopic to 0, hence corresponds to an orbit of N
joining a point in S(y) to is image under P. This orbit of N is invariant
under P, concluding. �

End of the proof of Theorem A: the vector field N does not
rotate along a P-invariant orbit of N . From now on, (U,X, Y,Σ,B) is
a prepared counter example to Theorem A with `+(X,Y ) 6= 0. According
to Proposition 5.19 the derivative DP(x) is the identity map for every
x ∈ Col (X,Y, U) ∩ Σ0.
According to Lemma 6.8, there is a point x in the stable set S(x0) whose

N -orbit is invariant under P.

Lemma 6.9. — If y ∈ [Pn(x),Pn+1(y)] then the angular variation of
the vector N(y) tends to 0 when n→ +∞.

Before proving Lemma 6.9 let us conclude the proof of Theorem A.
Proof of Theorem A. — Lemma 6.9 is in contradiction with Corol-

lary 5.14, which asserts that the angular variation of the vector N along
any segment [z,P2(z)] for z ∈ Σ+ close enough to x0 is larger than 2π.
This contradiction ends the proof of Theorem A. �

It remains to prove Lemma 6.9. First, notice that the angular variation
of N along a segment of curve is invariant under homotopies of the curve
preserving the ends points. Therefore Lemma 6.9 is a straighforward con-
sequence of next lemma:

Lemma 6.10. — The angular variation of the vector N(y) along the
N -orbit segment joining Pn(x) to Pn+1(x) tends to 0 when n→ +∞.

As N is (by definition) tangent to the N -orbit segment joining Pn(x) to
Pn+1(x), its angular variation is equal to the angular variation of the unit
tangent vector to this orbit segment.

Proof of Lemma 6.10: the tangent vector to a P-invariant em-
bedded curve do not rotate.

Remark 6.11. — For n large enough the point Pn(x) belongs to the re-
gion ∆ defined in the previous section, and whose quotient by the dynamics
P is the cyclinder Γ. Then,

• any continuous curve γ in ∆ joining Pn(x) to Pn+1(x) induces on
Γ a closed curve, homotopic to the curve induced by the N -orbit
segment joining Pn(x) to Pn+1(x).

• The curve induced by γ is a simple curve if and only if γ is simple
and disjoint from Pi(γ) for any i > 0.
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• If the curve γ is of class C1, the projection will be of class C1 if and
only if the image by P of the unit vector tangent to γ at Pn(x) is
tangent to γ (at Pn+1(x)).

• on the cylinder, any two C1-embbedding σ1, σ2 of the circle, so
that σ1(0) = σ2(0) are isotopic through C1-embeddings σt with
σt(0) = σi(0).

We consider I(∆,P) as being the set of C1-immersed segment I in
∆ \ ∂∆, so that:

• if y, z are the initial and end points of I then z = P(y)
• if u is a vector tangent to I at y then P∗(u) is tangent to I (and
with the same orientation.

In other words, I ∈ I(∆,P) if the projection of I on Γ is a C1 immersion
of the circle, generating the fundamental group of the cylinder. We endow
I(∆,P) with the C1-topology.
We denote by V ar(I) ∈ R the angular variation of the unit tangent

vector to I along I. In other words, for I : [0, 1] → ∆, consider the unit
vector

I̊(t) = dI(t)/dt
‖dI(t)/dt‖ ∈ S1 ' R/2πZ.

One can lift I̊ is a continuous map İ : [0, 1]→ R. Then

V ar(I) = İ(1)− İ(0),

this difference does not depend on the lift.
The map V ar : I(∆,P) → R is continuous. Let Ṽ ar(I) ∈ R/2πZ be

the projection of V ar(I). In other words, Ṽ ar(I) is the angular variation
modulo 2π.

Remark 6.12. — Let In ∈ I(∆,P) be a sequence of immersed segments
such that In(0) tends to x0 ∈ Σ. Then Ṽ ar(In) tends to 0.

Indeed, since DP(In(0)) tends to the identity map, the angle between
the tangent vectors to In at In(1) and In(0) tends to 0.

As a consequence of Remark 6.12, we get the following lemma:

Lemma 6.13. — There is a neighborhood O of x0 in Σ so that to any
I ∈ I(∆,P) with I(0) ∈ O there is a (unique) integer [var](I) ∈ Z so that

V ar(I)− 2π[var](I) ∈
[
− 1

100 ,
1

100

]
.

Furthermore, the map I 7→ [var](I) is locally constant in I(∆,P), hence
constant under homotopies in I(∆,P) keeping the initial point in O.
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As a consequence we get

Lemma 6.14. — If I and J are segments in I(∆,P) with the same intial
point in O and whose projections on the cylinder Γ are simple closed curves,
then

[var](I) = [var](J).

Proof. — Since the projections of I and J are simple curves which are
not homotopic to a point in the cylinder Γ, the projections of I and J are
isotopic on Γ by an isotopy keeping the initial point. One deduces that I
and J are homotopic through elements It ∈ I(∆,P) with the same initial
point. Indeed, the isotopy on Γ between the projection of I and J can be
lifted to the universal cover of Γ. This universal cover is diffeomorphic to
a plane R2, in which ∆ \ ∂∆ is an half plane (bounded by two half lines).
There is a diffeomorphism of R2 to ∆ \ ∂∆ which is the indentity on I ∪ J .
The image of the lifted isotopy induces the announced isotopy through
elements in I(∆,P). Now, as [var](It) is independent of t, one concludes
that [var](I) = [var](J). �

Now Lemma 6.10 is a consequence of Lemma 6.14 and of the folowing
lemma:

Lemma 6.15. — For any n > 0 large enough there is a curve In ∈
I(∆,P) whose initial point is Pn(x) and such that:

• the projection of In on Γ is a simple curve
• [var](In) = 0.

End of the proof of Lemma 6.10. — The N -orbit segment Jn joining
Pn(x) to Pn+1(x) belongs to I(∆,P) and its projection on Γ is a simple
curve. Hence Lemma 6.14 asserts that, for n large enough, [var](Jn) =
[var](In) = 0 where In is given by Lemma 6.15.
Now, when n tends to infinity, V ar(Jn) − 2π[var](Jn) tends to 0 (ac-

cording to Remark 6.12), that is, V ar(Jn) tends to 0. This is precisely the
statement of Lemma 6.10. �

Proof of Lemma 6.15. — As n tends to +∞ the derivative of P at Pn(x)
tends to the identity map. Thus, the segment [Pn(x),Pn+1(x)] may fail
to belong to I(∆,P) only by a very small angle between vn and DP(vn),
where vn is the unit vector directing [Pn(x),Pn+1(x)]. Therefore, one easily
builds an arc In joining Pn(x) to Pn+1(x), whose derivative at Pn(x) is
vn and its derivative at Pn+1(x) is DP(vn) and whose derivative at any
point of In belongs to an arbitrarily small neighborhood of vn. In particular
In ∈ I(∆,P) and [var](In) = 0 for n large. In order to complete the proof,
it remains to show that:
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Claim 7. — For n large enough In projects on Γ as a simple curve.

Proof. — We need to prove that for n large enough and for any i > 1,
In ∩ Pi(In) = ∅ and In ∩ P(In) is a singleton (the endpoint of In which is
the image of its initial point).
Indeed, it is enough to prove that, for any y ∈ In different from the initial

point,
ν(P(y)) < inf

z∈In

ν(z).

As the action of P consists in lowing down the value of ν, the further
iterates cannot cross In.

For proving that, notice that the vectors tangent to In are very close to
vn which is uniformly (in n large) transverse to the levels of ν. As DP(y)
tends to the identity map when y tends to 0, for n large, the vectors tangent
to P(In) are also transverse to the levels of ν. Hence P(In) is a segment
starting at the end point of In (which realizes the infimum of ν on In) and
ν is strictly decreasing along P(In), concluding. �

This ends the proof of Lemma 6.15 (and so of Theorem A). �
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