Shihoko ISHII

Corrigendum to “Mather discrepancy and the arc spaces”

<http://aif.cedram.org/item?id=AIF_2017__67_4_1609_0>
CORRIGENDUM TO “MATHER DISCREPANCY AND
THE ARC SPACES”

Annales de l’institut Fourier, vol. 63 (2013), n°1, 89–111

by Shihoko ISHII

Abstract. — This paper gives a correction of a theorem in “Mather discrepancy and the arc spaces”.

Résumé. — Dans cette note nous corrigeons un théorème de « Discrépance de Mather et les espaces d’arcs ».

In this paper, we make a correction of the statement of Theorem 4.7 in [2], where (v) was misstated as:

“The tangent cone of \((X, x)\) has a reduced irreducible component.”

This statement should be corrected as:

“Let \(\overline{b} : \overline{Y} \to X\) be the composite of the blow up \(b : Y \to X\) at the point \(x \in X\) and the normalization \(\nu : \overline{Y} \to Y\). Then, the fiber scheme \(\overline{b}^{-1}(x) = E\) has a reduced irreducible component.”

The whole statement of the corrected theorem is as follows:

Theorem 4.7. — For a singularity \((X, x)\) of dimension \(n\) the following are equivalent:

(i) \(\text{mld}(x; X, \mathcal{O}_X) = n;\)

(ii) \(\lambda_m = 0\) for every \(m \in \mathbb{N};\)

(iii) \(\lambda^0_m = 0\) for every \(m \in \mathbb{N};\)

(iv) \(\lambda^1_0 = 0;\)

Keywords: singularities, arc space, log-canonical threshold, minimal log-discrepancy.

Math. classification: 14E18, 14B05.
(v) Let $\overline{b} : \overline{Y} \to X$ be the composite of the blow up $b : Y \to X$ at the point $x \in X$ and the normalization $\nu : \overline{Y} \to Y$. Then, the fiber scheme $\overline{b}^{-1}(x) = \overline{E}$ has a reduced irreducible component, where a reduced irreducible component means an irreducible component which is reduced at the generic point.

Here, we give a proof for the relevant parts under this alteration.

Proof. — The proof in [2] of equivalence among (i), (ii) and (iii) is not affected by the change in (v). The implication (iii) \Rightarrow (iv) is obvious. The implication (iv) \Rightarrow (v) is proved as follows:

Let $E \subset Y$ be the scheme theoretic fiber of x by the blow up $b : Y \to X$ and let $g : \tilde{Y} \to Y$ be a log resolution of (Y, E) and let g be factored as $\tilde{Y} \xrightarrow{h} Y \xrightarrow{\nu} Y$. Then, by the same argument in the corresponding part of the proof in the paper [2], we obtain

$$\dim g(E'_{\text{reg}}) = n - 1,$$

where E' is the scheme theoretic fiber of x by the morphism $b \circ g : \tilde{Y} \to X$ and E'_{reg} is the locus of non-singular points of E'. Therefore we obtain

$$\dim h(E'_{\text{reg}}) = n - 1.$$

As h is isomorphic at the generic point of each irreducible component of $h(E'_{\text{reg}})$, this shows that $\overline{E} = \overline{b}^{-1}(x)$ is reduced at an irreducible component, which implies (v).

For the proof of (v) \Rightarrow (iii), we show that we can reduce the discussion into the case that E has a reduced component and Y is non-singular at the generic point of the component. Then the discussion in the proof of the corresponding part in [2] would work.

Let $E'_0 \subset \overline{Y}$ be an irreducible component of \overline{E} with the coefficient 1 in \overline{E} and let $E_0 \subset Y$ be the irreducible components of E corresponding to E'_0. Let e and \overline{e} be the generic points of E_0 and \overline{E}_0, respectively. The normalization $\nu : \overline{Y} \to Y$ induces a homomorphism

$$\widehat{\nu}^* : \widehat{\mathcal{O}}_{\overline{Y}, e} \to \widehat{\mathcal{O}}_{\overline{Y}, \overline{e}}.$$

of k-algebras. Let \mathcal{O}_0 be the image of $\widehat{\nu}^*$:

$$\widehat{\mathcal{O}}_{\overline{Y}, e} \twoheadrightarrow \mathcal{O}_0 \subset \widehat{\mathcal{O}}_{\overline{Y}, \overline{e}}.$$

Then $\text{Spec} \mathcal{O}_0$ is an analytic branch of Y at e that is dominated by $\text{Spec} \widehat{\mathcal{O}}_{\overline{Y}, \overline{e}}$. Here, as \overline{Y} is non-singular at \overline{e} we have

$$\widehat{\mathcal{O}}_{\overline{Y}, \overline{e}} = K[[s]],$$

where K is a field.
for some extension field K of k. For $f = \sum a_i s^i \in K[[s]]$, we denote the lowest degree i with $a_i \neq 0$ by $\text{ord}_s f$ and call it the order of f with respect to the variable s.

We will show that O_0 is a regular local ring. For that, we first prove that O_0 contains an element of order 1 with respect to s. Assume contrary, then every element of O_0 is either a unit or an element of order greater than 1. Let $\ell \in \hat{O}_{Y,e}$ be the defining equation of E in Y around e. We also denote by ℓ the images of ℓ in O_0 and in $\hat{O}_{Y,e}$ by abuse of notation. Then, in particular, $\text{ord}_s \ell \geq 2$. As ℓ is also the defining equation of E in \overline{Y} around \overline{e} by the assumption on \overline{E}. Then, the above inequality shows that E is not reduced at \overline{e}, which yields a contradiction.

Now we may assume there is an element $s' \in O_0$ with order 1 with respect to s. As $\hat{O}_{Y,e} = K[[s]] = K[[s']]$, we may assume that $s \in O_0$, by replacing s by s'. By Cohen’s structure theorem, the residue field K' of the complete local ring O_0 is contained in O_0 and therefore we obtain

$$K'[s] \subset O_0.$$

Note that the base field k is of characteristic 0. Then the extension $K' \hookrightarrow K$ of fields is separable, therefore it is étale. Now as $K'[s] \rightarrow K[[s]]$ is étale and $O_0 \rightarrow K[[s]]$ is flat, it follows that

$$K'[s] \rightarrow O_0$$

is étale by [1, IV, 17.7.7]. Therefore, O_0 is also regular and $\text{ord}_s(\ell) = 1$.

Now one branch of Y at e is non-singular and E is reduced at the the generic point. We restrict the discussion onto this branch. So, we may assume that Y is non-singular at e and E is reduced at e. Then, the proof of (v) \Rightarrow (iii) in [2] completes the proof. \qed

Acknowledgments

Weichen Gu kindly provides us the following example which shows a contradiction to the previous statement in the Theorem 4.7 in [2]. The author would like to thank him.

Example. — Let $X \subset \mathbb{A}^5$ be a hypersurface defined by

$$y^2 - x_1x_2x_3x_4 = 0.$$

Then, the tangent cone has no reduced component, but $(X, 0)$ satisfies (iv). We should also note that X satisfies the condition (v).
BIBLIOGRAPHY

Manuscrit reçu le 10 août 2016, accepté le 10 février 2017.

Shihoko ISHII
School of Art and Science,
Tokyo Woman’s Christian University,
Zempukuji, Suginami, Tokyo (Japan)
shihoko@lab.twcu.ac.jp