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SELMER GROUPS AND CENTRAL VALUES OF
L-FUNCTIONS FOR MODULAR FORMS

by Masataka CHIDA

Abstract. — In this article, we construct an Euler system using CM cycles on
Kuga–Sato varieties over Shimura curves and show a relation with the central values
of Rankin–Selberg L-functions for elliptic modular forms and ring class characters
of an imaginary quadratic field. As an application, we prove that the non-vanishing
of the central values of Rankin–Selberg L-functions implies the finiteness of Selmer
groups associated to the corresponding Galois representation of modular forms
under some assumptions.
Résumé. — Dans cet article, nous construisons un système d’Euler en utilisant

les cycles CM sur les variétés de Kuga–Sato au-dessus de courbes de Shimura, et
montrons une relation avec les valeurs centrales de fonctions L de Rankin–Selberg
associées aux formes modulaires de poids 2 et aux caractères de classes d’un corps
quadratique imaginaire. Comme application, nous prouvons que la non-annulation
des valeurs centrales de fonctions L de Rankin–Selberg implique la finitude des
groupes de Selmer associés à la représentation galoisienne de la forme modulaire
sous certaines hypothèses.

1. Introduction

Let ` be a prime and fix an embedding ι` : Q→ C`, where C` = Q̂`. Let
N be a positive integer and k an even positive integer. Let

f =
∞∑
n=1

an(f)e2πinz ∈ Sk(Γ0(N))new

be a normalized cuspidal eigenform. Denote by E = Q`({an(f)}n) the
Hecke field of f over Q` and fix a uniformizer λ of the ring of integers O
of E. Denote the residue field of E by F. Let

ρf : Gal(Q/Q)→ GL2(E)

Keywords: Modular forms, Selmer groups, Bloch–Kato conjecture.
Math. classification: 11F67, 11R23.
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be the Galois representation associated to f . We put ρ∗f = ρf ⊗ E( 2−k
2 )

and denote by Vf the representation space of ρ∗f . Fix a Gal(Q/Q)-stable
O-lattice Tf and set Af = Vf/Tf . Let L be an abelian extension of Q and
χ a character of the Galois group Gal(L/Q). By the Bloch–Kato conjec-
ture [5], it is expected that the central value of the L-function of f twisted
by the character χ is related to the order of the χ-part of the Selmer group
Sel(L,Af )(see [22, §14] for the definition of the χ-part). Kato [22] proved
that the non-vanishing of the central value L(f, χ, k/2) implies the finite-
ness of the χ-part of the Selmer group Sel(L,Af ). Moreover, Kato showed
a result on the upper bound of the size of the Selmer group in terms of
the special values of L-functions using the Euler system of Beilinson–Kato
elements in K2 of modular curves. For an elliptic curve over Q and an
imaginary quadratic filed K, similar results in the anticyclotomic setting
are considered by Bertolini–Darmon [2] and Longo–Vigni [26] using the
Euler system constructed from CM points on Shimura curves. These re-
sults were generalized to modular abelian varieties over totally real fields
by Longo [25] and Nekovář [30]. In this paper, we will consider the gen-
eralization of these results for the central values of L-function associated
to higher weight modular forms twisted by ring class characters over an
imaginary quadratic field K.
We fix an imaginary quadratic field K of discriminant DK < 0 satisfying

(N,DK) = 1 and denote the integer ring of K by OK . Then K determines
a factorization N = N+N−, where N+ is divisible only by primes which
splits inK and N− is divisible only by primes which are inert inK. Assume
that

(ST) N− is a square-free product of an odd number of inert primes.

Let k > 4 be an even integer.(1) Fix an integer m such that (NDK ,m) = 1
and let Km be the ring class field of K of conductorm. Let χ be a character
of the Galois group Gm = Gal(Km/K). Then we can define the Rankin–
Selberg L-function L(f/K, χ, s) associated to f and χ. We define a complex
number Ωf,N− by

Ωf,N− =
4k−1πk||f ||Γ0(N)

ξf (N+, N−) ,

where ||f ||Γ0(N) is the Petersson norm of f and ξf (N+, N−) is the congru-
ence number of f among cusp forms in Sk(Γ0(N))N−−new(see §1 for de-
tails). Then it is known that the value L(f/K,χ,k/2)

Ωf,N−
belongs to E(χ). Then

(1)Although our proof also works for k = 2, similar results for the weight 2 case are
already known by [2], [26], etc. Therefore we will focus on the higher weight case.
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Bloch–Kato conjecture predicts a relation between the value L(f/K,χ,k/2)
Ωf,N−

and the size of the χ-part of Selmer group Sel(Km, Af ).
We consider the following condition.

Hypothesis (CR+).
(1) ` > k + 1 and #(F×` )k−1 > 5,
(2) The restriction of the residual Galois representation ρf of ρf to the

absolute Galois group of Q(
√

(−1) `−1
2 `) is absolutely irreducible,

(3) ρf is ramified at q if either (i) q | N− and q2 ≡ 1 (mod `) or
(ii) q||N+ and q ≡ 1 (mod `),

(4) ρf restricted to the inertia group of Qq is irreducible if q2 | N and
q ≡ −1 (mod `).

Our main result is the following theorem.

Theorem 1.1. — Let χ be a ring class character of conductor m. Sup-
pose that f is a cuspidal newform. Assume the following conditions:

(1) ` does not divide NDK [Km : K],
(2) the residual Galois representation ρf satisfies the condition (CR+).

If c = ordλ
(
L(f/K,χ,k/2)

Ωf,N−

)
is finite, then we have λ c2 · Sel(Km, Af )χ = 0.

In particular, if L(f/K, χ, k/2) is non-zero, then the χ-part of the Selmer
group Sel(Km, Af ) is finite.

Remark 1.2.
(1) The assumption (ST) implies that f is not a CM form. Hence

the residual Galois representation ρf = ρf,λ satisfies the condition
(CR+) for all but finitely many λ.

(2) Let Ωcan
f be Hida’s canonical period defined by

Ωcan
f =

4k−1πk||f ||Γ0(N)

ηf (N) ,

where ηf (N) is the congruence number of f among cusp forms in
Sk(Γ0(N)). Under the hypothesis (CR+), one can show that

Ωf,N− = u · Ωcan
f for some u ∈ O×,

if we further assume that ρf is ramified at all primes dividing N−.

A similar result is given as a corollary of the anticyclotomic Iwasawa
main conjecture studied in [9] under the ordinary condition. In this paper,
we remove the ordinary condition. Also we should mention that Kings–
Loeffler–Zerbes [23, 24] proved that the non-vanishing of L-values implies

TOME 67 (2017), FASCICULE 3
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the finiteness of Selmer groups in the case of Rankin–Selberg product of
two modular forms in many cases, and their result contains the case of
“modular forms twisted by ray class characters” (not necessarily ring class
characters). However their result does not give a precise quantitative bound
of the size of Selmer groups. Moreover we remark that our methods are
amenable to being generalized to Hilbert modular forms. This is a big
difference with Kato’s Euler system used in [22] or the Euler system of
Rankin–Eisenstein classes used in [23, 24].
To prove our main theorem, we develop an analogue of the method

of Bertolini–Darmon [2] on the Euler system obtained from CM points
on Shimura curves. In [9], we used an Euler system obtained from CM
points on Shimura curves and congruences between modular forms of higher
weight and modular forms of weight two in the ordinary case. However, in
the non-ordinary case it seems difficult to use such congruences. Therefore
we choose to use CM cycles on Kuga–Sato varieties over Shimura curves
instead of CM points. For the construction of our Euler system, we also
use a level raising result (Theorem 6.3) for higher weight modular forms;
the assumption (CR+) is necessary to obtain this level raising result. More
precisely, under the assumption (CR+) we have a freeness result (Propo-
sition 6.1) of the space of definite quaternionic modular forms as Hecke
modules that is used as an important step in the proof of the level raising
result. The freeness result is a generalization of [8, Proposition 6.8] to the
“low weight crystalline case” which is closely related to “R = T” theorems
and our case was considered by Taylor [36]. Then one can construct an
Euler system using CM cycles and a level raising argument.
Moreover we show a relation between the Euler system and central values

of Rankin–Selberg L-functions (Theorem 8.4), the so-called “first explicit
reciprocity law” by Bertolini–Darmon. In the case of weight 2, the explicit
reciprocity law is proved by Kummer theory and the theory of `-adic uni-
formization of Shimura curves. To show the explicit reciprocity law in the
higher weight case, it is necessary to compute the image of CM cycles under
the `-adic Abel–Jacobi map which is defined by Hochschild–Serre spectral
sequence. Since it is difficult to compute the image of CM cycles directly,
we give a different description of the image of CM cycles using the theory of
vanishing cycles and the theory of `-adic uniformization of Shimura curves.
This is a main ingredient of our proof.
This article is organized as follows. First, we review the theory of modular

forms on quaternion algebras and the special value formula of Waldspurger
in §2. Moreover, we recall basic facts on Galois cohomology and Selmer
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groups in §3. In §4, we review the theory of vanishing cycles which is
used in §5 and §6. In §5, we prepare some fundamental results on the
cohomology of Shimura curves. In §6, we show a level raising result for
higher weight modular forms and prove a key result to compute the image
of CM cycles under the `-adic Abel–Jacobi map. In §7 and §8, we construct
special cohomology classes using CM cycles on Kuga–Sato varieties and give
a proof of the main theorem.

Acknowledgments. — The author expresses sincere gratitude to Jan
Nekovář for helpful discussions, comments and encouragement. The author
also thanks Yoichi Mieda greatly for his advice on the description of the `-
adic Abel–Jacobi map using the monodromy pairing. He thanks Naoki Imai
who answered for some questions kindly. He also thanks Ming-Lun Hsieh
for helpful discussions on the special value formula for Rankin–Selberg L-
functions and the freeness result for Hecke modules. The author thanks
the referee for helpful comments and suggestions. The author is partly
supported by JSPS KAKENHI Grant Number 23740015 and the research
grant of Hakubi project of Kyoto University.

2. Theta elements and the special value formula

In this section, we recall the construction of the theta element and the
relation with central values of anticyclotomic L-functions for modular forms
following [8, §§2, 3 and 4].
Fix an embedding ι∞ : Q ↪→ C and an isomorphism ι : C ∼→ Cp for each

rational prime p, where Cp is the p-adic completion of an algebraic closure
of Qp. Let Ẑ := lim←−Z/mZ be the finite completion of Z. For a Z-algebra
A, we denote A⊗Z Ẑ by Â.
Let K be an imaginary quadratic field of discriminant −DK < 0 and let

δ =
√
−DK . Denote by z 7→ z̄ the complex conjugate on K. Define θ by

θ = D′ + δ

2 , D′ =
{
DK if 2 - DK ,

DK/2 if 2 | DK .

Fix positive integers N+ that are only divisible by prime split in K and
N− that are only divisible by primes inert in K. We assume that N− is
the square-free product of an odd number of primes. Let B be the definite
quaternion over Q which is ramified at the prime factors of N− and the
archimedean place. We can regard K as a subalgebra of B (see [8, §2.2]).
Write T and N for the reduced trace and norm of B respectively. Let

TOME 67 (2017), FASCICULE 3
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G = B× be the multiplicative algebraic group of B over Q and let Z = Q×
be the center of G. Let ` - N− be a rational prime. Let m be a positive
integer such that (m,N+N−`) = 1. We choose a basis of B = K ⊕K · J
over K such that

• J2 = β ∈ Q× with β < 0 and Jt = tJ for all t ∈ K,
• β ∈ (Z×q )2 for all q | N+ and β ∈ Z×q for q|DK .

Fix a square root
√
β ∈ Q of β. We fix an isomorphism i(N

−) =
∏
q-N− iq :

B̂(N−) ∼= M2(A(N−)
f ) as follows. For each finite place q|m`N+, the isomor-

phism iq : Bq ∼= M2(Qq) is defined by

iq(θ) =
(

T(θ) −N(θ)
1 0

)
, iq(J) =

√
β ·
(
−1 T(θ)
0 1

)
(
√
β ∈ Z×q ).

For each finite place q - N+N−`m, choose an isomorphism iq : Bq :=
B ⊗Q Qq ∼= M2(Qq) such that

iq(OK ⊗ Zq) ⊂M2(Zq).

From now on, we shall identify Bq and G(Qq) with M2(Qq) and GL2(Qq)
via iq for q - N−. Finally, we define

iK : B ↪→M2(K), a+ bJ 7→ iK(a+ bJ) :=
(
a bβ

b a

)
(a, b ∈ K)

and let iC : B →M2(C) be the composition iC = ι∞ ◦ iK .
Fix a decomposition N+OK = N+N+ once and for all. For each finite

place q, we define ςq ∈ G(Qq) as follows:

ςq =



1 if q - N+m,

δ−1

(
θ θ

1 1

)
if q = qq̄ is split with q|N+,(

qn 0
0 1

)
if q|m and q is inert in K (n = ordq(m)),(

1 q−n

0 1

)
if q|m and q splits in K (n = ordq(m)).

Define xm : A×K → G(A) by

xm(a) := a · ς (ς :=
∏
q

ςq).

This collection {xm(a)}a∈A×
K

of points is called Gross points of conductor
m associated to K.

ANNALES DE L’INSTITUT FOURIER
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LetOK,m = Z+mOK be the order ofK of conductorm. For each positive
integer M prime to N−, we denote by RM the Eichler order of level M
with respect to the isomorphisms {iq : Bq ' M2(Qq)}q-N− . Then one can
see that the inclusion map K ↪→ B is an optimal embedding of OK,m into
the Eichler order B ∩ ςR̂M (ς)−1 (i.e. (B ∩ ςR̂M (ς)−1) ∩ K = OK,m) if
ordq(M) 6 ordq(m) for all primes q|m.
Let k > 2 be an even integer. For a ring A, we denote by Lk(A) =

Symk−2(A2) the set of homogeneous polynomials in two variables of degree
k − 2 with coefficients in A. We write

Lk(A) =
⊕

− k2<r<
k
2

A · vr (vr := X
k−2

2 −rY
k−2

2 +r).

Also we let ρk : GL2(A) → AutALk(A) be the unitary representation
defined by

ρk(g)P (X,Y ) = det(g)−
k−2

2 · P ((X,Y )g) (P (X,Y ) ∈ Lk(A)).

If A is a Z(`)-algebra with ` > k − 2, we define a perfect pairing

〈 , 〉k : Lk(A)× Lk(A)→ A

by

〈
∑
i

aivi,
∑
j

bjvj〉k =
∑

−k/2<r<k/2

arb−r · (−1)
k−2

2 +r Γ(k/2 + r)Γ(k/2− r)
Γ(k − 1) .

For P, P ′ ∈ Lk(A), this pairing satisfies

〈ρk(g)P , ρk(g)P ′〉k = 〈P, P ′〉k.

Via the embedding iC, we obtain a representation

ρk,∞ : G(R) = (B ⊗Q R)× iC−→ GL2(C)→ AutCLk(C).

Then C ·vr is the eigenspace on which ρk,∞(t) acts by (t/t)r for t ∈ (K⊗Q
C)×. If A is a K-algebra and U ⊂ G(Af ) is an open compact subgroup, we
denote by SBk (U,A) the space of modular forms of weight k defined over
A, consisting of functions f : G(Af )→ Lk(A) such that

f(αgu) = ρk,∞(α)f(g) for all α ∈ G(Q) and u ∈ U.

Set SBk (A) := lim−→U
SBk (U,A). Let A(G) be the space of automorphic forms

on G(A). For v ∈ Lk(C) and f ∈ SBk (C), we define a function Ψ(v ⊗ f) :
G(Q)\G(A)→ C by

Ψ(v ⊗ f)(g) := 〈ρk,∞(g∞)v, f(gf )〉.

TOME 67 (2017), FASCICULE 3
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Then the map v⊗f 7→ Ψ(v⊗f) gives rise to a G(A)-equivariant morphism
Lk(C) ⊗ SBk (C) → A(G). Let ω be a unitary Hecke character of Q. We
write SBk (U, ω,C) = {f ∈ SBk (U,C) | f(zg) = ω(z)f(g) for all z ∈ Z(A)}.
Let ABk (U, ω,C) be the space of automorphic forms on G(A) of weight k
and central character ω, consisting of functions Ψ(f ⊗ v) : G(A) → C for
f ∈ SBk (U, ω,C) and v ∈ Lk(C). For each positive integer M , we put

SBk (M,C) = SBk (R̂×M ,1,C),

ABk (M,C) = ABk (R̂×M ,1,C),

where 1 is the trivial character.
Let π be a unitary cuspidal automorphic representation on GL2(A) with

trivial central character and π′ the unitary irreducible cuspidal automor-
phic representation on G(A) with trivial central character attached to π
via the Jacquet–Langlands correspondence [18]. Let π′fin denote the fi-
nite constituent of π′. Let R := RN+ be an Eichler order of level N+.
The multiplicity one theorem together with our assumptions implies that
π′fin can be realized as a unique G(Af )-submodule SBk (π′fin) of SBk (C) and
SBk (N+,C)[π′fin] := SBk (π′fin) ∩ SBk (N+,C) is one dimensional. We fix a
nonzero newform fπ′ ∈ SBk (N+,C)[π′fin]. Define the automorphic form
ϕπ′ ∈ ABk (N+,C) by

ϕπ′ := Ψ(v∗0 ⊗ fπ′) (v∗0 = D
k−2

2
K · v0).

Define the local Atkin–Lehner element τN+

q ∈ G(Qq) by τN
+

q = J for

q|∞N−, τN+

q = 1 for finite place q - N and τN+

q =
(

0 1
−N+ 0

)
if q|N+.

Let τN+ :=
∏
q τ

N+

q ∈ G(A). Let Cl(R) be a set of representatives of
B×\B̂×/R̂×Q̂× in B̂× = G(Af ). Define the inner product of fπ′ with itself
by

〈fπ′ , fπ′〉R :=
∑

g∈Cl(R)

1
#Γg

· 〈fπ′(g), fπ′(gτN
+

)〉k,

where Γg := (B× ∩ gR̂×g−1Q̂×)/Q×.
Let ` - N− be a rational prime. Let λ and l be the primes of Q and

K induced by ι` respectively. We recall the description of `-adic modular
forms on B×. Let A be a OKl

-algebra. For an open compact subgroup
U ⊂ R̂×, we define the space of `-adic modular forms of weight k and level
U by

SBk (U,A) :=
{
f̂ : B̂ → Lk(A)

∣∣∣ f̂(αgu) = ρk(u−1
` )f̂(g), α ∈ B×, u ∈ UQ̂

}
.
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Also we write SBk (N+, A) := SBk (R̂×, A). We let iKl
: B ↪→ M2(Kl) be the

composition iKl
:= ι` ◦ iK . Define ρk,` : B×` → AutLk(C`) by

ρk,`(g) := ρk(iKl
(g)).

By definition, ρk,` is compatible with ρk,∞ in the sense that ρk,`(g) =
ρk,∞(g) for every g ∈ B×, and one can check that

ρk,`(g) = ρk(γli`(g)γ−1
l ), where γl :=

(√
β −

√
βθ

−1 θ

)
∈ GL2(Kl).

Here i` : B` ' M2(Q`) is the fixed isomorphism. If ` is invertible in A,
there is an isomorphism:

SBk (N+, A) ∼= SBk (N+, A), f 7→ f̂(g) := ρk(γ−1
l )ρk,`(g−1

` )f(g).

Let Q(f) be the finite extension of Q generated by the Fourier coefficients
of the newform f = fπ ∈ Snew

k (Γ0(N)). Let O ⊂ C` be the completion of
the ring of integers of Q(f) with respect to λ′ = λ∩Q(f). Fix a uniformizer
λ in O. The O-module SBk (N+,O)[π′fin] := SBk (N+,O) ∩ SBk (N+,C`)[π′fin]
has rank one. We say fπ′ ∈ SBk (N+,C)[π′fin] is λ-adically normalized if f̂π′
is a generator of SBk (N+,O)[π′fin] over O. This is equivalent to the following
condition:

f̂π′(g0) 6≡ 0 (mod λ) for some g0 ∈ G(Af ).

Now we define the theta elements. For a positive integer m, let Gm =
K×\K̂×/Ô×K,m be the Picard group of the order OK,m. We identify Gm
with the Galois group of the ring class field Km of conductor m over K via
geometrically normalized reciprocity law.
Denote by [ · ]m : K̂× → Gm, a 7→ [a]m the natural projection map. We

consider the automorphic form ϕπ′ = Ψ(v∗0⊗fπ′). It is easy to see that the
function

ϕ̂π′ : K̂× → C, a 7→ ϕ̂π′(a) := ϕπ′(xm(a))

factors through Gm, so we can extend ϕ̂π′ linearly to be a function ϕ̂π′ :
C[Gm] → C. Let Pm := [1]m ∈ Gm be the distinguished Gross point of
conductor m. We put

ϕ̂π′(σ(Pm)) = ϕπ′(xm(a)) if σ = [a]m ∈ Gm.

We define the theta element Θ(fπ′) ∈ C[Gm] by

Θ(fπ′) :=
∑
σ∈Gm

ϕ̂π′(σ(Pm)) · σ.

Then we have the following special value formula.

TOME 67 (2017), FASCICULE 3
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Proposition 2.1. — Let χ be a character of Gm. Then we have

χ(Θ(fπ′)2) = Γ(k/2)2 · L(fπ/K, χ, k/2)
Ωπ,N−

· (−1) k2 ·m ·Dk−1
K · (#OK/2)2

2

×
√
−DK

−1
·χ(N+),

where

Ωπ,N− =
4k−1πk||fπ||Γ0(N)

〈fπ′ , fπ′〉R
is the λ-adically normalized period for f .

Proof. — This formula is a special case of Hung’s result [15, Proposi-
tion 5.3]. Also see [8, Proposition 4.3] for the case where χ is an unramified
character. �

3. Selmer groups for modular forms

3.1. Definition of Selmer groups

First we recall the definition of Selmer groups following Bloch–Kato [5].
Let f be a cuspidal Hecke eigenform of weight k with respect to Γ0(N).
Let Q(f) denote the Hecke field generated by the eigenvalues {aq(f)} of
the Hecke operators {Tq}. Let λ be the prime of Q(f) above the prime `
induced by the fixed embedding ι`. Denote E = Q(f)λ. Also we denote the
integer ring of E by O and the uniformizer by λ and write On = O/λnO.
Then there exist a 2-dimensional Galois representation

ρf = ρf,λ : GQ = Gal(Q/Q)→ GL2(E)

such that det(1− ρf (Frobq) ·X) = 1− aq(f)X + qk−1X2 for any prime q
satisfying q - `N . Let Vf be the representation space of ρf ⊗ ε

2−k
2

` , where
ε` : Gal(Q/Q) → Z×` is the `-adic cyclotomic character. We choose a GQ-
stable O-lattice Tf in Vf , and denote Af = Vf/Tf . Then there is an exact
sequence 0→ Tf

i→ Vf
pr→ Af → 0.

For a finite extension F/Qp, Bloch–Kato [5] defined the finite part of
Galois cohomology groups by

H1
f (F, Vf ) :=

{
Ker

[
H1(F, Vf )→ H1(F ur, Vf )

]
` 6= p,

Ker
[
H1(F, Vf )→ H1(F, Vf⊗QpBcris)

]
` = p,

ANNALES DE L’INSTITUT FOURIER
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where Bcris is the p-adic period ring defined by Fontaine and F ur is the
maximal unramified extension of F . Also we denote

H1
f (F, Tf ) = i−1(H1

f (F, Vf ))

and

H1
f (F,Af ) = Im

[
H1
f (F, Vf ) ↪→ H1(F, Vf ) pr−→ H1(F,Af )

]
.

For a number field F , we define the λ-part of the Selmer group of f by

Sel(F,Af ) = Ker
[
H1(F,Af )→

∏
v

H1(Fv, Af )
H1
f (Fv, Af )

]
.

We also define

H1
f (F, Vf ) = Ker

[
H1(F, Vf )→

∏
v

H1(Fv, Vf )
H1
f (Fv, Vf )

]
.

Moreover we set Af,n = Af [λn] = Ker[Af
λn→ Af ] and Tf,n = Tf/λ

nTf .
Then there exists a Galois-equivariant bilinear pairing Tf × Tf → O(1)
such that the induced pairings on Tf,n ∼= Af,n are non-degenerate for all
n. For details, see Nekovář [27, Proposition 3.1].

Proposition 3.1. — The pairing above induces the local Tate pairing

〈 , 〉v : H1(Fv, Tf )×H1(Fv, Af )→ H2(Fv, E/O(1)) ∼= E/O,

〈 , 〉v : H1(Fv, Tf,n)×H1(Fv, Af,n)→ H2(Fv,On(1)) ∼= On,

for each place v of F . The local Tate pairing is perfect and satisfies the
following properties.

(1) The pairing 〈 , 〉v makes H1
f (Fv, Tf ) and H1

f (Fv, Af ) into exact
annihilators of each other at any place v.

(2) If x and y belong to H1(F,Af,n), then∑
v

〈x, y〉v = 0,

where the sum is over all places v of F but is a finite sum.

Proof. — See Besser [4, Proposition 2.2]. �

Definition 3.2. — For each place v, we define H1
f (Fv, Af,n) to be the

preimage of H1
f (Fv, Af ) in H1(Fv, Af,n). Then we let

Sel(F,Af,n) = Ker
[
H1(F,Af,n)→

∏
v

H1(Fv, Af,n)
H1
f (Fv, Af,n)

]
.
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Also we define H1
f (Fv, Tf,n) to be the image of H1

f (Fv, Tf ) in H1(Fv, Tf,n).
Moreover we define the singular part of local cohomology group
H1
sing(Fv, Tf,n) to be the quotient

H1
sing(Fv, Tf,n) = H1(Fv, Tf,n)

H1
f (Fv, Tf,n) .

If v does not divide N , then we have

H1
sing(Fv, Tf,n) = H1(F ur, Tf,n)GFv .

By Proposition 3.1, H1
f (Fv, Af,n) and H1

sing(Fv, Tf,n) are the Pontryagin
dual of each other.
For each prime q and GQ-module M , we denote

H1
f (Fq,M) =

⊕
v|q

H1
f (Fv,M)

and
H1
sing(Fq,M) =

⊕
v|q

H1
sing(Fv,M).

Lemma 3.3. — Let q be a prime which splits in K. Then

H1
sing(Km,q, Tf,n) = 0

for sufficiently large m.

Proof. — Proceed as in the proof of [2, Lemma 2.4]. �

3.2. The Euler system argument

Here we give a generalization of the Euler system argument introduced
by Bertolini–Darmon [2] to the case of higher weight modular forms.

Definition 3.4. — A prime p is said to be n-admissible if
(1) p does not divide N` [Km : K].
(2) p is inert in K.
(3) λ does not divide p2 − 1.
(4) λn divides p k2 + p

k−2
2 − ε · ap(f), where ε = ±1.

Lemma 3.5. — Let p be an n-admissible prime. Then H1
f (Km,p, Af,n)

and H1
sing(Km,p, Tf,n) are both isomorphic to On[Gm]. In particular, the

χ-parts of these groups are both isomorphic to On.

Proof. — This is a direct generalization of [2, Lemma 2.6]. �

ANNALES DE L’INSTITUT FOURIER



SELMER GROUPS AND CENTRAL L-VALUES 1243

Define the map ∂p to be the composition

H1(Km, Af,n)→ H1(Km,p, Af,n)→ H1
sing(Km,p, Af,n).

If ∂p(κ) = 0 for κ ∈ H1(Km,p, Af,n) (resp. H1(Km,p, Tf,n)), let

vp(κ) ∈ H1
f (Km,p, Af,n) (resp. H1

f (Km,p, Tf,n))

denote the natural image of κ under ∂p.

Theorem 3.6 ([9, Theorem 6.3]). — Let s ∈ H1(Km, Af,n) be a non-
zero element. Then there exist infinitely many n-admissible primes p such
that ∂p(s) = 0 and vp(s) 6= 0.

Definition 3.7. — For a prime p, we define the compactified Selmer
group H1

p (Km, Tf,n) to be

H1
p (Km, Tf,n) = Ker

H1(Km, Tf,n)→
∏
v-p

H1(Km,v, Tf,n)
H1
f (Km,v, Tf,n)

.
Recall that λ is the fixed uniformizer of O.

Theorem 3.8. — Let t be a positive integer. Suppose that for
all but finitely many n-admissible primes p there exists an element κp ∈
H1
p (Km, Tf,n+t)χ such that λt−1·∂p(κp) 6= 0. Then λn · Sel(Km,Af,n+t)χ = 0

Proof. — Assume that there exists an element s in Sel(Km, Af,n+t)χ
satisfying λns 6= 0. By Theorem 3.6 and the assumption, we can take an
n+ t-admissible prime p satisfying the following properties simultaneously:

(1) vp(λns) 6= 0 and ∂p(λns) = 0.
(2) there exists an element κp ∈ H1

p (Km, Tf,n+t)χ such that

λt−1∂p(κp) 6= 0.

By the properties of the local Tate pairing, we have∑
q

〈λt−1∂q(κp), vq(λns)〉q = 0.

Since H1
f (Km,q, Af,n)χ and H1

f (Km,q, Tf,n)χ are annihilators of each other,
we have

〈λt−1∂q(κp), vq(λns)〉q = 0 for q 6= p.

Therefore 〈λt−1∂p(κp), resp(λns)〉q = 0 by Proposition 3.1 (2). Since the lo-
cal Tate pairing is perfect, the assumption λt−1∂p(κp) 6= 0 implies vp(λns) =
0. This gives a contradiction. �
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4. Review of vanishing cycles

In §5 and §6 we will use the theory of vanishing cycles in several impor-
tant steps. Therefore, in this section we briefly recall the theory of vanishing
cycles following the exposition in Rajaei [33].

4.1. Vanishing cycles

Let R be a characteristic 0 henselian discrete valuation ring with residue
field k of characteristic p. Fix a uniformizer $ in R. Denote the fraction
field of R by K and the maximal unramified extension of K by Kur. Let
X → S = SpecR be a proper and generically smooth curve and F a
constructible torsion sheaf on X whose torsion is prime to p. Let i : Xk →
X, j : XK → X, i : Xk → XOKur and j : XK → XOKur be the canonical
maps. By the proper base change theorem and the Leray spectral sequence
for j, we have

RΓ(XK , j
∗
F) = RΓ(XOKur , Rj∗j

∗
F) '→ RΓ(Xk, i

∗
Rj∗j

∗
F).

Then the adjunction morphism gives φ : i∗F → i
∗
Rj∗j

∗
F. We define the

vanishing cycles by
RΦF := Cone(φ),

and the nearby cycles by

RΨF := i
∗
Rj∗j

∗
F.

Then we have a distinguished triangle

→ i∗F → RΨF → RΦF
+1→ .

For i > 0, we have RiΦF = RiΨF. Let Σ be the set of singular points
of Xk. Assume that a neighbourhood of each singular point x is (locally)
isomorphic to the subscheme of A2

S = S[t1, t2] with equation t1t2 = ax
(denote ex := v(ax) > 0). When the special fiberXk is reduced, Deligne [11]
proved the sheaves RiΦF vanish for i 6= 1 and R1ΦF is supported at Σ,
and the specialization map H1(Xk,F) → H1(XK ,F) is injective. Now we
have the specialization sequence

0 −→ H1(Xk, i
∗F)(1) −→ H1(XK ,F)(1) β−→

⊕
x∈Σ

(R1ΦF)x(1)

−→ H2(Xk, i
∗F)(1) sp(1)−→ H2(XK ,F)(1) −→ 0.
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Then we define the character group for the sheaf F on X by

X(F) = Ker
[⊕
x∈Σ

R1ΦFx(1)→ Ker(sp(1))
]
,

so that there is a short exact sequence

(4.1) 0 −→ H1(Xk,F)(1) −→ H1(XK ,F)(1) −→ X(F) −→ 0.

For x ∈ Σ, let (Xk)x be the henselization of Xk at x and Bx the set of two
branches of Xk at x (i.e. the irreducible components of (Xk)x). For x ∈ Σ,
we define the modules Z(x) and Z′(x) by

Z(x) := Coker
[
Z diag−→ ZBx

]
and

Z′(x) := Ker
[
ZBx sum−→ Z

]
.

Choose an ordering for Bx for each x ∈ Σ and define a basis of Z′(x) by
δ′x := (1,−1). Denote the dual basis by δx ∈ Z(x). We set Λ = Z`. For
x ∈ Σ, one has Hi

x(Xk, RΨΛ) = 0 for i 6= 1, 2 and the trace map gives an
isomorphism H2

x(Xk, RΨΛ) '−→ Λ(−1) and H1
x(Xk, RΨΛ) '−→ Z(x) ⊗ Λ.

Moreover we have R1ΦΛx
'−→ Z′(x) ⊗ Λ. Therefore we have the perfect

pairing

(R1ΦΛ)x ×H1
x(Xk, RΨΛ) −→ H2

x(Xk, RΨΛ) '−→ Λ(−1).

This pairing gives the cospecialization map

0 −→ H0(X̃k, RΨΛ) −→ H0(X̃k, i
∗Λ) −→

⊕
x∈Σ

H1
x(Xk, RΨΛ)

β′−→ H1(XK ,Λ)−→H1(Xk, i
∗Λ) −→ 0,

where X̃k → Xk is the normalization map.

4.2. Monodromy pairing

Let ` be a prime different from p and let I be the inertia subgroup
of Gal(K/K). We consider the map t` : I → Z`(1) which is defined by
σ 7→ σ($1/`)/$1/`, where $ is the uniformizer of R. For σ ∈ I and x ∈ Σ,
we define the variation map

Var(σ)x : (R1ΦΛ)x → H1
x(Xk, RΨΛ)
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by a 7→ −ext`(σ)(aδx)δx, and define the monodromy logarithm

Nx : (R1ΦΛ)x(1)→ H1
x(Xk, RΨΛ)

by Nx(t`(σ)a) = Var(σ)x(a) for a ∈ (R1ΦΛ)x and σ ∈ I. Then we have a
commutative diagram

(R1ΦΛ)x(1) '−−−−→ Z′(x)⊗ ΛyNx yφx
H1
x(Xk, RΨΛ) '−−−−→ Z(x)⊗ Λ,

where the right vertical map φx is given by δ′x 7→ −exδx. Moreover we
define the monodromy operator N by the following diagram:

H1(XK ,Λ)(1) = H1(Xk, RΨΛ)(1) β−−−−→
⊕
x∈Σ

(R1ΦF)x(1)yN y⊕Nx

H1(XK ,Λ) = H1(Xk, RΨΛ) β′←−−−−
⊕
x∈Σ

H1
x(Xk, RΨΛ).

Then we have an explicit description of the map N .

Theorem 4.1 (Picard–Lefschetz formula [10]). — With notation as
above, we have the following formula:

N(t`(σ)a) = (σ − 1)a for a ∈ H1(XK ,Λ) and σ ∈ I.

Let B be the set of irreducible components of Xk. Define the modules X
and X̂ by the exact sequences

0 −→ X −→
⊕
x∈Σ

Z′(x) −→ ZB −→ Z −→ 0

and
0 −→ Z −→ ZB −→

⊕
x∈Σ

Z(x) −→ X̂ −→ 0.

Then the monodromy pairing

u : X⊗ X→ Z

is given by the diagram
X −−−−→

⊕
x∈Σ Z′(x)yu∗ y⊕x∈Σ

φx

X̂ ←−−−−
⊕

x∈Σ Z(x).
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Also we have

X⊗ Λ = Im
[
H1(XK ,Λ)(1)→

⊕
x∈Σ

(R1ΦΛ)x(1)
]

and

X̂⊗ Λ = Coker
[
H0(X̃k,Λ)→

⊕
x∈Σ

H1
x(Xk, RΨΛ)

]
.

Therefore we obtain the diagram

H1(XK ,Λ)(1) −−−−→ X⊗ Λ −−−−→
⊕
x∈Σ

(R1ΦΛ)x(1)yN yu∗⊗Λ
y⊕Nx

H1(XK ,Λ) ←−−−− X̂⊗ Λ ←−−−−
⊕
x∈Σ

H1
x(Xk, RΨΛ).

Note that the cokernel of u∗ is the group of connected components.
Let F be a locally constant Z`-sheaf on X. The cospecialization exact

sequence is

0 −→ H0(X̃k, RΨF) −→ H0(X̃k, i
∗F) −→

⊕
x∈Σ

H1
x(Xk, RΨ(F))

β′−→ H1(XK ,F)−→H1(Xk, i
∗F) −→ 0.

Now we define the cocharacter group by

X̂(F) := Im(β′).

Then we have a canonical isomorphism (R1ΦF)x ' (R1ΦΛ)x ⊗ Fx and a
natural map H1

x(Xk, RΨΛ) ⊗ Fx → H1
x(Xk, RΨ(F)). These maps give a

generalization of the monodromy pairing

λ : X(F)→ X̂(F)

by composition of the maps

H1(XK ,F)(1) −−−−→ X(F) −−−−→
⊕
x∈Σ

(R1ΦF)x(1)yN yλ y⊕Nx⊗1

H1(XK ,F) ←−−−− X̂(F) ←−−−−
⊕
x∈Σ

H1
x(Xk, RΨF).

Then the monodromy operator N is described by the Picard–Lefschetz
formula:

N(t`(σ)a) = (σ − 1)a for a ∈ H1(XK ,F) and σ ∈ I.
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We define the component group by

Φ(F) := Coker
[
λ : X(F)→ X̂(F)

]
.

5. Cohomology of Shimura curves

Let M be a positive integer and M = M+M− an integer decomposition
of M such that M− > 1 is a square-free product of an even number of
primes and (M+,M−) = 1. Let B′ be the indefinite quaternion algebra
over Q with discriminant M−. Fix a prime p dividing M−. Let B be the
definite quaternion algebra over Q with discriminant M−/p. We fix a Q-
embedding t′ : K ↪→ B′ and an isomorphism ϕB,B′ : B̂(p) ∼= B̂′(p). Also we
fix an Eichler order RM+ of level M+ in B.

5.1. Moduli interpretation of Shimura curves

Fix a maximal order OB′ of B′.
Let S be a Z[1/M ]-scheme. A triple (A, ι, C) is called an abelian surface

with quaternionic multiplication with level M+-structure over S if
(1) A is an abelian scheme over S of relative dimension 2,
(2) ι : OB′ → EndS(A) is an inclusion defining an action of OB′ on A,
(3) C is a subgroup scheme of A of order (M+)2 which is stable and

locally cyclic under the action of OB′ .
We denote by FM+,M− the functor from the category of schemes over
Z[1/M ] to the category of sets which associates to a scheme S the set
of isomorphism classes of abelian surfaces with quaternionic multiplication
with levelM+-structure over S. IfM− is strictly greater than 1, the functor
FM+,M− is coarsely representable by a scheme XM+,M− over Z[1/M ] with
smooth fibers. The scheme XM+,M− is a smooth projective geometrically
connected curve over Z[1/M ].

Let d > 1 be an integer relatively prime to M and S a Z[1/Md]-scheme.
A quadruple (A, ι, C, ν) is called an abelian surface with quaternionic mul-
tiplication by OB′ with level M+-structure and full level d-structure if
(A, ι, C) is a triple as above and

ν : (OB′/dOB′)S → A[d]

is an OB′ -equivariant isomorphism from the constant group scheme (OB′/
dOB′)S to the group scheme of d-division points of A.
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If d > 4, we have a fine moduli scheme representing the functor FM+,M−,d

from the category of schemes over Z[1/Md] to the category of sets which
associates to a scheme S the set of isomorphism classes of abelian surfaces
with quaternionic multiplication with level M+-structure over S and full
level d-structure. We denote it by XM+,M−,d. Then the Shimura curve
XM+,M−,d is a smooth projective curve over Z[1/Md]. We have a natural
Galois covering

ψ : XM+,M−,d → XM+,M−

with Galois group Gd isomorphic to G′d/{±1}, where

G′d := (OB′/dOB′)× ' (R′/dR′)×

obtained by forgetting the level d-structure. We set

Ud =
{
g = (gv)v ∈ R̂×M+

∣∣∣∣ gv ≡ (1 0
0 1

)
mod d if v | d

}
.

The complex uniformization of the Shimura curve X = XM+,M−d is given
by

X(C) = B′
×\(Cr R)× B̂′

×
/U ′d,

where U ′d = ϕB,B′(U (p)
d )OB′p . For z

′ ∈ C and b′ ∈ B̂′×, we will denote by
[z′, b′]C the point on X(C) represented by (z′, b′).

For a prime q dividing M+, we can consider a model of X = XM+,M−,d

over Zq using a variant of the moduli functor FM+,M−,d. The resulting
canonical model XZq is a nodal model, that is,

(1) XZq is proper and flat over Zq, and its generic fiber is X,
(2) the irreducible components of the special fiber XFq are smooth, and

the only singularities of XFq are ordinary double points.
For a prime p which divides M−, one may define a model XZp of X over
Zp via moduli scheme. The model XZp is a nodal model. Moreover, the
irreducible components of XFp are rational curves.

5.2. p-adic uniformization of Shimura curves

Let Hp be the Drinfeld’s p-adic upper half plane. Then Cp-valued points
of Hp are given by Hp(Cp) = P1(Cp) r P1(Qp). Let Ĥp be a formal model
of Hp and there is a natural action of B× on Ĥp via ιp. Fix a nodal model
XZp . Write X̂Zp for the formal completion of XZp along its special fiber.
Then X̂Zp is canonically identified with

B×\Ĥp⊗̂Zp Ẑur
p × B̂(p)×/U

(p)
d ,
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where the action of b ∈ B× on Ẑur
p is given by FrobordpN(b)

p ([7, Theo-
rem 5.2]). Let Xan be the rigid analytification of XZp ⊗ Qp, then Xan is
identified with

B×\Hp⊗̂QpQ̂ur
p × B̂(p)×/U

(p)
d ,

and XZp(Cp) is identified with

B×\Hp(Cp)×B̂(p)×/U
(p)
d .

5.3. Bad reduction of Shimura curves

Fix a quadratic unramified extension Qp2 of Qp which is unique up to
isomorphism. We denote the ring of integer of Qp2 by Zp2 and the residue
field by Fp2 . For p|M−, the dual graph Gp(X) of the special fiber of XZp2

is defined to be the finite graph determined by the following properties.
(1) The set of vertices V(Gp) is the set of irreducible components of

special fiber XFp2 .
(2) The set of edges E(Gp) is the set of singular points of XFp2 .
(3) Two vertices v and v′ are joined by an edge if v and v′ intersect at

the singular point e.
Then the dual graph Gp(X) is identified with Tp/Γ, where Tp =
(Ep(Tp),Vp(Tp)) is the Bruhat–Tits tree for PGL2(Qp), and the p-adic uni-
formization of X̂Zp induces the following identifications:

(1) The set E(Gp) is identified with the double coset space B×\B̂×/
Ud(p), where

Ud(p) =
{
g = (gv)v ∈ Ud

∣∣∣∣ gp ≡ (∗ ∗0 ∗

)
mod p

}
.

(2) The set V(Gp) is identified with (B×\B̂×/Ud)× Z/2Z.

5.4. CM points on Shimura curves

Let z′ be a point in C r R fixed by ι∞(K×) ⊂ GL2(R). We define the
set of CM points unramified at p on the Shimura curve X by

CMp−ur
K (X) =

{
[z′, b′]C

∣∣∣ b′ ∈ B̂′×, b′p = 1
}
⊂ X(Kab).

Let recK : K̂× → Gal(Kab/K) be the geometrically normalized reciprocity
map. Then by Shimura’s reciprocity law we have

recK(a)[z′, b′]C = [z′, t′(a)b′]C.

Hence one has ιp : CMp−ur
K (X) ↪→ X(Kp).
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5.5. Ribet’s exact sequence for higher weight modular forms

Let k be a positive even integer. Let Fk be the lisse `-adic sheaf on the
Shimura curve X = XM+,M−,d which is defined in Diamond–Taylor [13,
§3]. We will use the sheaf F = Fk(k−2

2 )⊗O.
Denote the character group and the cocharacter group associated to the

integral model XZp of the Shimura curve XM+,M−,d and the sheaf F by
Xp(M+,M−, d) and X̂p(M+,M−, d). Also we denote by Φp(M+,M−, d)
the component group. Let Σp = Σp(M+,M−, d) be the set of singular
points of the special fiber of XZp at p.
We fix a prime q dividingM− such that q 6= p. Let T be the Hecke algebra

acting on the character group Xp(M+,M−, d). Let T′ be the Hecke algebra
acting on Xq(M+pq,M−/pq, d). Let T′′ be the Hecke algebra acting on
Xq(M+q,M−/pq, d)2 and let T̃ be the polynomial ring with Z-coefficient
generated by indeterminates T̃v for v -Md and Ũv for v|Md.

Proposition 5.1. — Let m be a non-Eisenstein maximal ideal.
(1) (Ribet’s exact sequence) There is a Hecke equivariant exact

sequences

0→ X̂q(M+q,M−/pq, d)2
m

→ X̂q(M+pq,M−/pq, d)m → X̂p(M+,M−, d)m → 0

and

0→ Xp(M+,M−, d)m → Xq(M+pq,M−/pq, d)m
→ Xq(M+q,M−/pq, d)2

m → 0.

(2) The action of U ′p ∈ T′ on Xq(M+q,M−/pq, d)2 is given by (x, y) 7→
(T ′′p x− p−

k−4
2 y, pk−1x).

Proof. — These results are explained in Rajaei [33, §3.2]. �

The Hecke algebra T′ is isomorphic to the Hecke algebra acting on
SBk (Ud,O), the space of quaternionic modular forms on B of level Ud. The
Hecke algebra T is isomorphic to the Hecke algebra acting on SB′k (U ′d,O).
Also the Hecke algebra T′′ is isomorphic to the Hecke algebra acting on the
space of quaternionic modular forms on B′ of level U ′d which are old at p.

Lemma 5.2. — There is a canonical map

ωp : Ker[sp(1)]→ Φp(M+,M−, d),

where sp(1) : H2(XZp ⊗ Fp2 ,F)(1) → H2(XZp ⊗ Qp2 ,F)(1) is the
specialization map.
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Proof. — For c ∈ Ker(sp(1)), let c̃ be a lift of c by the map⊕
x∈Σp

(R1ΦF)x(1)→ H2(XZp ⊗ Fp2 ,F)(1).

Then the monodromy pairing induces the map⊕
x∈Σp

(R1ΦF)x(1)→
⊕
x∈Σp

H1
x(XZp ⊗ Fp2 , RΨF).

Also we have a natural surjective map

H1
x(XZp ⊗ Fp2 , RΨF)→ X̂p(M+,M−, d)→ Φp(M+,M−, d).

Moreover one can see that the image of c̃ in the component group via the
composition of the two maps above does not depend on the choice of lift
of c. Then we define ωp(c) by the natural image of c̃. �

Proposition 5.3. — Let m be a non-Eisenstein maximal ideal. Then
the map ωp induces a T̃-equivariant isomorphism

ωp : Xq(M+q,M−/pq, d)m × Xq(M+q,M−/pq, d)m/((U ′p)2 − pk−2)
→ Φp(M+,M−, d)m.

Proof. — Write Xp for Xp(M+,M−, d)m, X′q for Xq(M+pq,M−/pq, d)m
and X′′q for Xq(M+q,M−/pq, d)m. Let

λ′′q : X′′q × X′′q → X̂′′q × X̂′′q
and

λ′q : X′q → X̂′q
be the monodromy pairings, hence the cokernels are Φ′′q×Φ′′q and Φ′q, where
Φ′′q = Φq(M+q,M−/pq, d)m and Φ′q = Φq(M+pq,M−/pq, d)m. Let

i : Xp → X′q
be the map as in the second exact sequence of Proposition 5.1(1) and

(5.1) δ∨∗ : X̂′′q × X̂′′q → X̂′q/λ′q(i(Xp))

the map obtained by the first exact sequence of Proposition 5.1(1). Then
the cokernel of δ∨∗ is Φp = Φp(M+,M−, d)m. Let

j0 : X′′q × X′′q → X̂′q/λ′q(i(Xp)).

be the composition of the map λ′′q with ξ : X̂′′q × X̂′′q → X̂′q as in the
first exact sequence of Proposition 5.1(1). Moreover we define the map
σ : X′′q × X′′q → X′′q × X′′q by

(x, y) 7→ ((p+ 1)x+ T ′′p y, p
k−2

2 Tpx+ (p+ 1)y).
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One obtains a commutative diagram

0 −−−−→ X′′q × X′′q
λq−−−−→ X̂′′q × X̂′′q −−−−→ Φ′′q × Φ′′q −−−−→ 0yσ yδ∨∗ y

0 −−−−→ X′′q × X′′q
j0−−−−→ X̂′q/λ′q(i(Xp)) −−−−→ Φ′q −−−−→ 0.

In fact Φ′q = Φ′′q = 0. A direct calculation shows that the composition of
the morphism

(x, y) 7→ (−p
k−2

2 x, T ′′p x− p−
k−2

2 y)
of X′′q × X′′q with σ gives the action of (U ′p)2 − pk−2. By the snake lemma,
we have the isomorphism

X′′q × X′′q/((U ′p)2 − pk−2)→ Φp(M+,M−, d)m. �

5.6. Integral Hodge theory following Jordan–Livné

In this section, we give a different description of the component groups
following Jordan–Livné [21]. Let XZp be the integral model of the Shimura
curve XM+,M−,d over Zp discussed in the beginning of §5.1. Let Xs be the
special fiber of Xur

Zp = XZp ⊗ Zur
p and Xη the generic fiber. Define

C0(Gp,F) :=
⊕
y∈I

Fy (∼= H2(Xs,F)(1))

and

C1(Gp,F) :=
⊕
x∈Σp

Fx

∼= ⊕
x∈Σp

(R1ΦF)x(1)

 ,

where Gp = Gp(X) is the dual graph of the special fiber of XZp and I is
the set of irreducible components of Xs. We fix an orientation of Gp, that
is, a pair of maps s, t : E(Gp)→ V(Gp) such that s(e) and t(e) are the end
of the edge e. Consider the map

d : C0(Gp,F)→ C1(Gp,F)

defined by (y 7→ fy) 7→ (x 7→ ft(x)− fs(x)), where fy ∈ Fy and ft(x), fs(x) ∈
Fx = H0

x(s(x), r∗F)(1) = H0
x(t(x), r∗F)(1) (where r∗ : X̃s → Xs is the

normalization map). Note that r∗F is a constant sheaf on t(x)∪s(x). Then
we define the cohomology Hi(Gp,F) by the exact sequence

0→ H0(Gp,F)→ C0(Gp,F) d→ C1(Gp,F)→ H1(Gp,F)→ 0.
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On the other hand, we consider the map

δ : C1(Gp,F)→ C0(Gp,F)

defined by (x 7→ fx) 7→ (y 7→
∑
t(x)=y fx). The Laplacian � = �i :

Ci(Gp,F)→ Ci(Gp,F) is defined by �i = dδ + δd. Hence we have �0 = δd

and �1 = dδ. A cochain c is called harmonic if �ic = 0. Let Hi be the
O-module of all harmonic cochains.

Definition 5.4. — We set

Φ′p(M+,M−, d) := H1(Gp,F)/H1

and
Φ′′p(M+,M−, d) := δC1(Gp,F)/�0C

0(Gp,F).

Remark 5.5. — The definition of Φ′′ is different from the notation used
in Jordan–Livné [21]. The definition of Φ′ corresponds to the Grothendieck’s
description of the component group and the definition of Φ′′ corresponds
to the Raynaud’s description of the component group.

Recall that ωp is the map defined in Lemma 5.2.

Lemma 5.6 ([21, Proposition 2.14]). — There are canonical identifica-
tions

Φ′p(M+,M−, d) ∼= Φ′′p(M+,M−, d) ∼= Φp(M+,M−, d).
In particular, the map ωp is surjective.

Now for each irreducible component Y we fix a non-singular point PY on
Y . Let x̃ be a closed point of Xη such that x = x̃ mod p is non-singular.
We may assume that x = PY for some irreducible component Y . Denote

H2
x̃(Xη,F)(1)0 := Ker

[
H2
x̃(Xη,F)(1)→ H2(Xη,F)(1)

]
.

Lemma 5.7. — There exists a natural map

H2
x̃(Xη,F)→ H2

x(Xs, RΨF).

Proof. — Let z be the Zur
p -valued point of X determined by x̃. Let j′ :

x̃ → z, i′ : x → z and ix̃ : x̃ → Xη be canonical maps. Also define ix and
iz similarly. Then by definition one has

H2
x̃(Xη, j

∗
F) = H2(x̃, Ri!x̃j

∗
F)

and this is isomorphic to H2(x, i′∗Rj′∗Ri
!
x̃j
∗
F). It is known that the last co-

homology group is isomorphic to H2(x, i′∗Ri!zRj∗j
∗
F) (See Fu [14, Propo-

sition 8.4.9]). Therefore using the adjunction morphism we have a natural
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map

H2(x, i′∗Ri!zRj∗j
∗
F)→ H2(x,Ri!xi

∗
Rj∗j

∗
F) = H2

x(Xs, i
∗
Rj∗j

∗
F). �

We define the reduction map redp : H2
x̃(Xη,F)(1)0 → H2(Xs, i

∗F)(1) by
the composition of the maps

H2
x̃(Xη,F)(1)0 −→ H2

x(Xs, RΨF)(1)
'−→ H2

x(Xs, i
∗F)(1)

↪→
⊕
Y ∈I

H2
PY (Xs, i

∗F)(1)

'−→ H2(Xs, i
∗F)(1),

where the first map is obtained by the above lemma and the second map
is the inverse of the specialization map

sp(1)x : H2
x(Xs, i

∗F)(1)→ H2
x(Xs, RΨF)(1)

(since x is a smooth point, sp(1)x is an isomorphism). Then the image of
the reduction map is contained in the kernel of the specialization map

sp(1) : H2(Xs, i
∗F)(1)→ H2(Xs, RΨF)(1).

Using the identification of component groups, we define the map

dp : H2
x̃(Xη,F)(1)0 → Φp(M+,M−, d)

by the composition of the maps

H2
x̃(Xη,F)(1)0 redp−→ Ker[sp(1)] '−→ δC1(Gp,F)

→ Φ′′p(M+,M−, d) ∼= Φp(M+,M−, d).

Combining these facts, we have the following proposition.

Proposition 5.8. — For c ∈ H2
x̃(Xη,F)(1)0, we have

dp(c) = ωp(redp(c)).

Proof. — By the definition of the maps, it suffices to show that ωp can
be identified with the map

κ : Ker[sp(1)] '−→ δC1(Gp,F)→ Φ′′p(M+,M−, d) ∼= Φp(M+,M−, d).

By Lemma 5.6, the map ωp can be identified with the natural quotient
map. Therefore the map ωp coincides with κ. �
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6. Level raising of modular forms

In this section, we prove a level raising result for modular forms on
quaternion algebras.

6.1. A freeness result for the space of modular forms

Let N be a positive integer and N = N+N− a integer factorization of
N , where N− is a square-free product of an odd number of primes. Let
f̂ : B×\B̂× → Lk−2(O) be a λ-adically normalized `-adic modular form
corresponding to f via the Jacquet–Langlands correspondence. Let q be a
prime number dividing N− and p a prime number which does not divide N .
Let B′ be the indefinite quaternion algebra over Q with discriminant pN−.
Choose a positive integer d such that (d,Np) = 1 and ` - #(OB′/dOB′)×.
Write TBk (N+) (resp. TB′k (N+)) for the Hecke algebra acting on the space of
`-adic modular forms SBk (N+,O) (resp. SB′k (N+,O)). Set T = TBk (N+)O
and T[p] = TB′k (N+)O. We denote by tv and uv (resp. Tv and Uv) the
Hecke operators in T (resp. T[p]). The modular form f̂ yields a surjective
homomorphism

λf : T→ On.
We write If for the kernel of λf , and m for the unique maximal ideal of T
containing If .

Proposition 6.1. — Assume that the residual Galois representation
ρf satisfies (CR+). Then SBk (N+,O)m is a cyclic Tm-module.

Proof. — Since this proposition follows from the same argument as in [8,
Proof of Proposition 6.8] and [36, §2 and §3], we only give a sketch of the
proof. LetM+ be an integer such that (M+, N−) = 1 and letM = M+N−.
Write S(M) = SBk (M+,O). Let T(M) be the Hecke algebra generated over
O by the Hecke operators Tq for q - M and Uq for q | M in EndO S(M).
Let λπ′ : T(N) → O be the O-algebra homomorphism induced by π′. We
denote by N(ρf ) the Artin conductor of ρf . Let N−1 be the product of
prime factors of N− but not dividing N(ρf ). We set N∅ = N(ρf )N−1 . By
level lowering and raising, there exists a modular lifting λ∅ : T(N∅) → O
such that λ∅(Tq) = λπ′(Tq) mod mO for all q - N . We write

N = N∅
∏
q

qmq .
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Let Σ be a set of prime factors of N/N∅ and set NΣ = N∅
∏
q∈Σ q

mq . Let
mΣ be the maximal ideal of T(NΣ) generated by mO, Tq−λ∅(Tq) for q - NΣ
and Uq − λπ′(Uq) for q | NΣ. Let TΣ = T(NΣ)mΣ be the localization at
mΣ. Similarly, we denote the localization of S(NΣ) at mΣ by SΣ. By [8,
Lemma 6.3], we have a surjection TΣ � T∅. Let λΣ : TΣ → T∅

λ∅−→ O be
the composition and IλΣ the kernel of λΣ. Set

SΣ[λΣ] = {x ∈ SΣ | IλΣx = 0}

and

SΣ[λΣ]⊥ = {x ∈ SΣ ⊗O E | 〈x, y〉RΣ
= 1 for all y ∈ SΣ[λΣ]},

where RΣ = RNΣ/N− is an Eichler order of level NΣ/N
−. Then SΣ[λΣ]⊥ ⊃

SΣ[λΣ]. We define the congruence module of λΣ by C(NΣ) = SΣ[λΣ]⊥/
SΣ[λΣ] and the congruence ideal of λΣ by ηΣ = λΣ(AnnTΣ(IλΣ)).
LetMFQ`,O,k denote the abelian category whose objects are finite length

O-modules D together with a distinguished submodule D0 and FrobQ`⊗1-
semilinear maps ϕ1−k : D → D and ϕ0 : D0 → D such that

• ϕ1−k|D0 = `k−1ϕ0,
• Imϕ1−k + Imϕ0 = D.

Then there is a fully faithful, Z`-length preserving, O-additive, contra-
variant functor M from MFQ`,O,k to the category of continuous
O[Gal(Q`/Q`)]-modules with essential image closed under the formation of
sub-objects.
Consider the functor DΣ from the category of local Noetherian complete

O-algebra with the residue field kO = O/mO to the category of sets which
sends A with the maximal ideal mA to the isomorphism class of deforma-
tions ρ : Gal(Q/Q)→ GL2(A) of ρf satisfying

(1) det ρ = ε`, where ε` : Gal(Q/Q) → Z×` is the `-adic cyclotomic
character,

(2) ρ is minimally ramified outside N−1 Σ,
(3) for each finite length quotient A/I of A the O[Gal(Q`/Q`)]-module

(A/I)2 is isomorphic to M(D) for some object D ofMFQ`,O,k,
(4) for q||NΣ/N∅, there exists a unramified character δq : Gal(Qq/

Qq)→ A× such that

ρ|Gal(Qq/Qq) ∼
(
δ−1
q ε` ∗
0 δq

)
and δq(Frobq) ≡ 1 mod mA, and
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(5) if q | N−1 , then ρ|Gal(Qq/Qq) satisfies

ρ|Gal(Qq/Qq) ∼
(
±ε` ∗

0 ±1

)
with ∗ ∈ mA.

Under the assumption (CR+), it is known that DΣ is represented by the
universal deformation

ρRΣ : Gal(Q/Q)→ GL2(RΣ).

Then the universality of RΣ gives rise to surjections of O-algebras RΣ � R∅
and RΣ � TΣ by [8, Lemma 6.5] and [36, Lemma 2.1]. Let ℘Σ be the kernel
of the O-algebra homomorphism

RΣ → R∅ → T∅
λ∅−→ O.

By the Taylor–Wiles argument in [36, §2], we deduce that S(N∅)m∅ is a
free T∅-module of rank one and

#(℘∅/℘2
∅) = #C(N∅) = #(O/η∅).

Using the argument in [36, §3], we have

#(℘Q2/℘
2
Q2

) = #C(NQ2) = #(O/ηQ2),

where Q2 is the set of prime factors q | N/N∅ with mq = 2. By [8,
Lemma 6.4] and [8, Corollary 6.7], the above equality implies

#(℘Σ/℘
2
Σ) | #C(NΣ) | #(O/ηΣ).

Then the proposition follows from [12, Theorem 2.4]. �

Proposition 6.2. — Let ψf : SBk (N+,O)� O be the map defined by
h 7→ ψf (h) := 〈f̂ , h〉R, where R = RN+ . Then ψf induces an isomorphism

ψf : SBk (N+,O)/If
'→ On.

Proof. — By Proposition 6.1, SBk (N+,O)m is a cyclic Tm-module. Hence
SBk (N+,O)/If is generated by a modular form g. Since ψf is surjective and
the Hecke operators in T are self-adjoint with respect to the pairing 〈 , 〉R,
we have that ψf (g) = 〈f, g〉R ∈ O×n and the annihilator of g in T is If .
Therefore we have an isomorphism SBk (N+,O)/If ∼= T/If ∼= On. �
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6.2. Level raising

Theorem 6.3. — Let p be an n-admissible prime. Assume that the
residual Galois representation ρf satisfies (CR+). Then

(1) There exists a surjective homomorphism

λ
[p]
f : T[p] → On

such that λ[p]
f (Tq) = λf (tq) for all q - Np, λ[p]

f (Uq) = λf (uq) for all
q | N , and λ[p]

f (Up) = ε ·p k−2
2 , where ε = ±1 is such that λn divides

p
k
2 + p

k−2
2 − ε · λf (tp).

(2) Let I [p]
f ⊂ T[p] denote the kernel of the homomorphism λ

[p]
f and

Φp(N+, N−p) the component group associated to the Shimura curve
XN+,N−p and the lisse sheaf F. Then there is a group isomorphism

Φp(N+, N−p)/I [p]
f
∼= SBk (N+,O)/If

ψf∼= On.

Proof. — Let B′ be the indefinite quaternion algebra over Q of discrim-
inant N−/q and R′N+q an Eichler order of level N+q. Denote the Shimura
curve associated to U ′d by XU ′

d
. Also we write the character group for the

Shimura curve XU ′
d
and the lisse `-adic sheaf F at q by Xq(U ′d). Let Σq(U ′d)

be the set of singular points on the special fiber of XU ′
d
. Moreover since

Σq(U ′d) is identified with B×\B̂×/Ud, we obtain the identification⊕
x∈Σq(U ′d)

(R1ΦF)x ∼=
⊕

x∈Σq(U ′d)

Lk(O) ∼= SBk (Ud,O).

Taking R̂×N+/Ud-invariant part, we obtain the Hecke-equivariant isomor-
phism ⊕

x∈Σq

(R1ΦF)x ∼= SBk (N+,O),

where Σq is the set of singular points on the special fiber of a model of
XN+q,N−/q. By [33, Proposition 5], we have

Xq(N+q,N−/q)m ∼=

⊕
x∈Σq

(R1ΦF)x


m

.

Therefore by Proposition 6.1 one obtains the isomorphism

Xq(N+q,N−/q)2/If ' O2
n.
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We denote by T ′v and U ′v the Hecke operators in T[p]. There is an action of
T[p] on Xq(N+q,N−/q)2 induced by tv for v - Np and uv for v | N and the
Hecke operator U ′p acts via the formula

(x, y) 7→ (T ′′p x− p−
k−4

2 y, pk−1x).

Since p is n-admissible, the action of tp modulo If is given by ε·(p k2 +p k−2
2 ).

Then the determinant of U ′p + ε · p k−2
2 is 2pk(1 + p). Hence U ′p + ε · p k−2

2 is
invertible on Xq(N+q,N−/q)2/If . These facts yields an isomorphism

Xq(N+q,N−/q)2/〈If , U ′p − ε · p
k−2

2 〉

' Xq(N+q,N−/q)2/〈If , (U ′p)2 − pk−2〉 ' On.

Thus, the action of T[p] on Xq(N+q,N−/q)2/〈If , U ′p− ε ·p
k−2

2 〉 is given via
a surjective homomorphism

λ′f : T[p] → On.

Denote the kernel of λ′f by I ′f . Then Propositions 5.1, 5.3 and the residual
irreducibility of m imply the existence of an isomorphism

Φp(N+, N−p)/I ′f ' Xq(N+q,N−/q)2/〈If , (U ′p)2 − pk−2〉.

This shows that λ′f factors through T which gives λ[p]
f and Φp(N+, N−p)/

I [p]
f is isomorphic to On. Let m[p] be the maximal ideal of T[p] containing
I [p]
f . The embedding SBk (N+,O)m[p] ↪→ SBk (N+,O)⊕2

m[p] given by x 7→ (x, 0)
induces an isomorphism

SBk (N+,O)m[p]/(εTp − p
k
2 − p

k−2
2 ) ∼= SBk (N+,O)⊕2

m[p]/(U ′p − εp
k−2

2 ).

Therefore we have

Φp(N+, N−p)/I [p]
f
∼= SBk (N+,O)/If

ψf∼= On. �

Write X [p]
d for the Shimura curve XN+,N−p,d, Xd,p for Xp(N+, N−p, d),

X̂d,p for X̂p(N+, N−p, d) and Φd,p for Φp(N+, N−p, d). Also write X [p] for
the Shimura curve XN+,N−p, Xp for Xp(N+, N−p), X̂p for X̂p(N+, N−p)
and Φp for Φp(N+, N−p).

Proposition 6.4. — Let p be an n-admissible prime. Under the as-
sumption (CR+), the Galois representations H1(X [p] ⊗ Q,F)(1)/I [p]

f and
Tf,n are isomorphic.
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Proof. — Let m
[p]
f be the maximal ideal containing I [p]

f . Then T[p]/m
[p]
f

is isomorphic to O1 = F. First we will show that H1(X [p] ⊗ Q,F)(1)/m[p]
f

is isomorphic to Tf,1. By (4.1) and the fact H1(X [p]
Zp ⊗ Fp2 ,F) ∼= X̂p (see

Rajaei [33, p. 52 (3.5)]), one obtains an exact sequence

(6.1) 0→ (X̂p/m[p]
f )⊗µλ → H1(X [p]⊗Qp2 ,F)/m[p]

f ⊗µλ → Xp/m[p]
f → 0,

where µλ = Zp(1) ⊗ O/λO. Taking the Galois cohomology over Qp2 , we
have the exact sequence

Xp/m[p]
f →H

1(Qp2 , (X̂p/m[p]
f )⊗µλ)→ H1(Qp2 , H1(X [p]⊗Qp2 ,F)/m[p]

f ⊗µλ).

Since p is an admissible prime, λ does not divide p2− 1, hence we have the
identification

H1(Qp2 , X̂p/mfp ⊗ µλ) ∼= X̂p/m[p]
f .

By the main theorem of [6] and the Eichler–Shimura relation, H1(X [p]⊗
Q,F)(1)/m[p]

f is semisimple over F[Gal(Q/Q)], we have that

H1(X [p] ⊗Q,F)(1)/m[p]
f
∼= (Tf,1)r

for some r > 1. Therefore H1(Qp2 , H1(X [p]⊗Qp2 ,F)(1)/m[p]
f ) is isomorphic

to H1(Qp2 , Tf,1)r. By Lemma 3.5, the F-vector space H1(Qp2 , Tf,1)r is 2r-
dimensional. We claim that

(6.2) dimF Xp/m[p]
f > r.

To see this, assume that dimF Xp/m[p]
f 6 r − 1. Then we have dimF X̂p/

m
[p]
f > r + 1 by the exact sequence (6.1), which implies dimF Φp/m[p]

f > 2
by the definition of the component group. This gives a contradiction.
By the Picard–Lefschetz formula, the monodromy operator N is de-

scribed as N(a ⊗ t`(σ)) = σ(a) − a for all a ∈ H1(X [p] ⊗ Qp2 ,F)(1)/m[p]
f

and σ ∈ I. One notices that the monodromy operator N acts on each piece
Tf,1, thus N defines the map N : Tf,1(−1)⊗ µλ → Tf,1(−1).

Lemma 6.5. — The map N : Tf,1(−1) ⊗ µλ → Tf,1(−1) is the zero
map. Equivalently, the monodromy pairing is the zero map. In particular,
X̂p/m[p]

f is isomorphic to Φp/m[p]
f .

Proof. — If N is non-trivial, we have the inequality

dimF Im
[
N : H1(Qp2 , Tf,1(−1))r → H1(Qp2 , Tf,1)r

]
> r.

The definition of the monodromy pairing implies

Im(N) = Im
[
λp : Xp/m[p]

f → X̂p/m[p]
f

]
,
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where λp is the monodromy pairing and its cokernel is the component group
Φp/m[p]

f . Since

dimF X̂p/m[p]
f − dimF Im(N) = dimF Φp/m[p]

f = 1,

we have the inequality dimF X̂p/m[p]
f > r + 1 by (6.2). Hence one obtains

dimFH
1(X [p] ⊗Qp2 ,F)(1)/m[p]

f > 2r + 1.

This gives a contradiction. �

Since λ - (p2 − 1), we have the identifications

H1(Qp2 ,Xp/m[p]
f ) = Homunr(Gal(Qp2/Qp2),Xp/m[p]

f )

= Hom(O/λO,Xp/m[p]
f ).

Therefore we have the exact sequence
(6.3)

Φp/m[p]
f → H1(Qp2 , H1(X [p] ⊗Qp2 ,F)(1)/m[p]

f )→ H1
unr(Qp2 ,Xp/m[p]

f ),

where Φp/m[p]
f is a quotient of Φp/m[p]

f . Recall that H1(Qp2 , H1(X [p] ⊗
Qp2 ,F)(1)/m[p]

f ) can be decomposed as the direct sum of two r-dimensional
subspaces. Furthermore, one subspace is generated by unramified coho-
mology classes and the other by ramified cohomology classes. By The-
orem 6.3, the group Φp/m[p]

f is isomorphic to O/λO. Hence by the ex-
act sequence (6.3) we have r = 1 and Φp/m[p]

f
∼= Φp/m[p]

f . Therefore
H1(X [p] ⊗Q,F)(1)/m[p]

f is isomorphic to Tf,1.
Next we show that H1(X [p] ⊗Q,F)(1)/I [p]

f is isomorphic to Tf,n. There
is a natural Gal(Q/Q)-equivariant projection

H1(X [p] ⊗Q,F)(1)/I [p]
f → H1(X [p] ⊗Q,F)(1)/m[p]

f .

By the exact sequence

0→ X̂p(1)/I [p]
f → H1(X [p] ⊗Qp2 ,F)(1)/I [p]

f → Xp/I [p]
f → 0

and the fact that the group Φp/I [p]
f is isomorphic to On, we can take

an element t1 in H1(X [p] ⊗ Q,F)(1)/I [p]
f which generates a subgroup C

isomorphic to On. Hence we can choose t1, t2 ∈ H1(X [p] ⊗ Q,F)(1)/I [p]
f

such that H1(X [p]⊗Q,F)(1)/I [p]
f
∼= On · t1

⊕
Or · t2 with r 6 n. Since the

restriction of the residual Galois representation ρf to the absolute Galois
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group of Q(
√

(−1) `−1
2 `) is absolutely irreducible by (CR+)(2), ρf is also

absolutely irreducible. Thus one has

ρf (F[GQ]) = EndF(Tf,1) = EndO(H1(X [p] ⊗Q,F)(1)/m[p]
f ).

Therefore there exist h ∈ ρf (F[GQ]) such that ht2 = at1 +bt2 with a ∈ O×,
b ∈ O. This implies r = n and H1(X [p] ⊗ Q,F)(1)/I [p]

f is isomorphic to
O2
n. Hence, H1(X [p] ⊗Q,F)(1)/I [p]

f is isomorphic to Tf,n. �

Let OK,m = Z + mOK be the order of the imaginary quadratic field K
of conductor m. Let Km be the ring class field of K of conductor m. Write
Φp,m for

⊕
p|p Φp, where the sum is taken over the primes p of Km and

Φp denotes the component group associated to the Shimura curve X [p] and
the lisse sheaf F at p. Since the prime p is inert in K, it splits completely
in Km/K. Hence, the choice of a prime of Km above p identifies Φp,m with
Φp[Gm]. Therefore, we have an isomorphism

Φp,m/I [p]
f
∼= On[Gm].

For X = X [p] or X [p]
d , let Xη be the generic fiber of XZp ⊗ Zur

p and Xs the
special fiber. For a Qur

p -valued point x on X, denote

H2
x(Xη,F)(1)0 := Ker[H2

x(Xη,F)(1)→ H2(Xη,F)(1)→ H2(Xη,F)(1)].

Then we have a canonical map

H2
x(Xη,F)(1)0 → H2(Xη,F)(1)0 := Ker[H2(Xη,F)(1)→ H2(Xη,F)(1)].

Let IQp be the inertia group and ItQp the tame inertia. By the Hochschild–
Serre spectral sequence

Ei,j2 = Hi(IQp , Hj(Xη,F)(1))⇒ Hi+j(Xη,F)(1)

we obtain a map H2(Xη,F)(1)0 → H1(IQp , H1(Xη,F)(1)). Assume that
d > 4. Since X [p]

d,Zp is semistable, RΨF is tame (Illusie [16, Theorem 1.2]).
Therefore this map induces

α : H2(X [p]
d,η,F)(1)0

→ H1(ItQp , H
1(X [p]

d,s, RΨF)(1)) ∼= H1(ItQp , H
1(X [p]

d,η,F)(1)).

On the other hand, we have a map

H2
x(X [p]

d,η,F)(1)0 → H1(ItQp , H
1(X [p]

d,η,F)(1))

by the composition

H2
x(X [p]

d,η,F)(1)0−→H2
x(X [p]

d,η,F)(1)0 dp−→ Φd,p
β−→ H1(ItQp , H

1(X [p]
d,η,F)(1)),
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where the map β is induced by the monodromy pairing

H0(ItQp ,Xd,p)(∼= Xd,p)
λ→ H1(ItQp , H

1(X [p]
d,s, i

∗F)(1))(∼= X̂d,p)

→ H1(ItQp , H
1(X [p]

d,η,F)(1)).

Theorem 6.6.
(1) Let x be a Qur

p -valued point on X [p] such that x mod p is a non-
singular point. Then, there is a commutative diagram

H2
x(X [p]

η ,F)(1)0 −−−−→ H2(X [p]
η ,F)(1)0y yα

Φp
β−−−−→ H1(ItQp , H

1(X [p]
η ,F)(1)).

(2) The map β induces an isomorphism

Φp/I [p]
f ' H

1
sing(Qp2 , Tf,n).

Proof. — For the first part, it is enough to show the commutativity of
the following diagram:

H2(X [p]
s , i∗F)(1)0 sp(1)−−−−→ H2(X [p]

η ,F)(1)0yωp yα
Φp

β−−−−→ H1(ItQp , H
1(X [p]

η ,F)(1)).

Fix a topological generator σ of the tame inertia ItQp . First we work with
the Shimura curve X [p]

d instead of X [p]. By [34, Lemma 1.6], we have a
distinguished triangle

→ i∗Rj∗Λ→ RΨΛ σ−1−→ RΨΛ +1→,

where Λ = Z`. Since the action of σ on i∗F is trivial and F is extended to
the model of X smoothly, we have an isomorphism i∗F ⊗ RΨΛ ∼= RΨF.
Therefore one has a distinguished triangle

→ i∗Rj∗F → RΨF
σ−1−→ RΨF

+1→ .

Let γ be the composition of morphisms

RΦF →
⊕
x∈Σ

(RΦF)x
⊕

x
Var(σ)x
−→

⊕
x∈Σ

ix∗i
!
xRΨF

adj−→ RΨF.
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Then we have the following commutative diagram:

−−−−→ i∗F −−−−→ RΨF −−−−→ RΦF
+1−−−−→y ∥∥∥ yγ

−−−−→ i∗Rj∗F −−−−→ RΨF
σ−1−−−−→ RΨF

+1−−−−→ .

Taking cohomology Hi(X [p]
d,s,−), one has the following commutative dia-

gram:

H1(X [p]
d,s,RΨF) //H1(X [p]

d,s,RΦF)

γ′

��

//H2(X [p]
d,s,i

∗F)

∼=
��

//H2(X [p]
d,s,RΨF)

H1(X [p]
d,s,RΨF) //H1(X [p]

d,s,RΨF) //H2(X [p]
d,s,i

∗Rj∗F) //H2(X [p]
d,s,RΨF)

H1(X [p]
d,η,F) σ−1 //H1(X [p]

d,η,F) δ // H2(X [p]
d,η,F) //H2(X [p]

d,η,F),

where γ′ is the composition of morphisms

H1(X [p]
d,s, RΦF) =

⊕
x∈Σ

(RΦF)x
Var(σ)−→

⊕
x∈Σ

H1
x(X

[p]
d,s, RΨF)→H1(X [p]

d,s, RΨF).

Then one can see that δ : H1(X [p]
d,η,F) → H2(X [p]

d,η,F) factors through
the coinvariant H1(X [p]

d,η,F)σ−1 ∼= H1(ItQp , H
1(X [p]

d,η,F)) and the map

H1(ItQp , H
1(X [p]

d,η,F))→ H2(X [p]
d,η,F)

coincides with the inverse of the map obtained via the Hochschild–Serre
spectral sequence. Applying the projector εd defined by

εd := 1
#Gd

∑
g∈Gd

g ∈ Q[Gd],

the first part of the theorem follows. Since Tf,n is unramified at p and λ

does not divide p, one has

H1(IQp , H1(X [p]
η ,F)(1)/I [p]

f ) ∼= H1(ItQp , H
1(X [p]

η ,F)(1)/I [p]
f ).

Therefore the second part follows from the discussions in the proof of Propo-
sition 6.4 and the discussion after Lemma 6.5. �
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7. Kuga–Sato varieties and CM-cycles

7.1. The `-adic Abel–Jacobi map

Here we recall some basic facts on `-adic Abel–Jacobi map following
Jannsen ([19], [20]).
Let Y be a proper smooth variety over a field F of characteristic zero.

For an integer i > 0, write CHi(Y ) for the Chow group of algebraic cycles
defined over F of codimension i on Y modulo rational equivalence. Fix a
rational prime `. Then one may define the cycle class map

cl` : CHi(Y )→ H2i(YF ,Z`(i))
GF

and we denote by CHi(Y )0 its kernel. Note that this definition does not
depend on the choice of the prime ` by the Lefschetz principle and the
comparison theorem between étale cohomology and singular cohomology.
The cycle class map cl` factors through H2i(Y, Z`(i)), then the

Hochschild–Serre spectral sequence

Hi(F,Hj(YF ,Z`(k)))⇒ Hi+j(Y,Z`(k))

induces the `-adic Abel–Jacobi map

AJ` : CHi(Y )0 → H1(F,H2i−1(YF ,Z`(k))).

By Jannsen [19] we have the following geometric description of the `-adic
Abel–Jacobi map. Let Z be a homologically trivial cycle on X defined over
F of codimension i representing an element in CHi(Y )0. Then the image
of Z under the `-adic Abel–Jacobi map is represented by the pull-back of
the extension of GF -modules

0→ H2i−1(YF ,Z`(i))→ H2i−1(YF \ |ZF |,Z`(i))

→ Ker
[
H2i
|Z
F
|(YF ,Z`(i))→ H2i(YF ,Z`(i))

]
→ 0

by the map Z` → H2i
|Z
F
|(YF ,Z`(i)) sending 1 to b(Z), where b(Z) is the

cohomology class of ZF .

7.2. Kuga–Sato varieties over Shimura curves

To construct global cohomology classes in H1(Km, Tf,n) we will use the
image of algebraic cycles on Kuga–Sato varieties under the `-adic Abel–
Jacobi map. We keep the assumptions and notations as in §5. Now we
suppose that d is a prime greater than 3 which splits in K and is prime to
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N`p. Let π : A[p]
d → X

[p]
d be the universal abelian surface over the Shimura

curve X [p]
d . Then we define the Kuga–Sato variety

πk : W [p]
k,d → X

[p]
d

by the k−2
2 -fold fiber product over X [p]

d of A[p]
d with itself.

Since the action of OB′ on A
[p]
d induces an action of B′× on Riπ∗Q`, one

may define
L2 :=

⋂
b∈B′

Ker
[
b− 1 : R2π∗Q` → R2π∗Q`

]
following Iovita–Spiess [17]. For an integer m > 2, let

∆m : Symm L2 → Symm−2 L2(−2)

be the Laplace operator symbolically given by

∆m(x1 · · ·xm) =
∑

16i<j6m
(xi, xj)x1 · · · x̂i · · · x̂j · · ·xm,

where ( , ) is the non-degenerate pairing

( , ) : L2 × L2 ↪→ R2π∗Q` ⊗R2π∗Q`
∪→ R4π∗Q`

Tr→ Q`(−2).

Let Lk−2 denote the kernel of ∆ k−2
2
.

Then there exists a projector εk defined as in Scholl [35] (see also Iovita–
Spiess[17, §10]) such that

εd · εkHk−1(W [p]
k,d ⊗Q,Q`)⊗Q` E

∼= εdH
1(X [p]

d ⊗Q,Lk−2)⊗Q` E

∼= H1(X [p] ⊗Q,F)(1)⊗O E,

where εd is the projector defined by

εd = 1
#Gd

∑
g∈Gd

g ∈ Q[Gd].

Note that

εkH
k−1(W [p]

k,d ⊗Q,Q`) ' εkH∗(W [p]
k,d ⊗Q,Q`).

7.3. Description on CM points

By the moduli interpretation of the Shimura curve X [p], a point on X [p]

is represented by a triple (A, ι, C). For m > 0, there exists a point Pm =
(Am, ιm, Cm) such that End(Pm) is isomorphic to OK,m, where End(Pm)
is the ring of endomorphisms of Am which commutes with the action of ιm
and respect the level structure Cm and OK,m is the order of K of conductor
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m. The point Pm is called a CM point of level m. By the theory of complex
multiplication, such a point Pm is defined over Km, where Km is the ring
class field of K of conductor m.
Using the complex uniformization of the Shimura curve X [p], the CM

points of level m are defined by

Pm(a) :=
[
(z′, ϕB,B′(a(p)ςτN

+
))
]
C
∈ X [p](C)

for each a ∈ K̂×. By Shimura’s reciprocity law, one has

Pm(a) ∈ CMp−ur
K (X [p]) ∩X [p](Km)

and Pm(a)σ = Pm(ab) for σ = recK(b) ∈ Gm. Set Pm = Pm(1).

7.4. Definition of CM cycles

Here we construct CM cycles following Besser [3], Nekovář [27] and
Iovita–Spiess [17]. Let X = XN+,N− be the Shimura curve defined in §4
and let Pm = (Am, ιm, Cm) be a CM point of level m. Then Am is de-
fined over the ring class field Km. Write NS(Am) for the Néron–Severi
group of Am. There is a natural right B′×-action on NS(Am)Q given by
L · b = Nrd(b)−1ιm(b)∗(L) for b ∈ B′× and L ∈ NS(Am)Q. Note that our
normalization is different from the action used in [17].
Since End(Pm) ' OK,m and Am has endomorphism by the maximal

order OB′ , Am has endomorphisms by an order OB′ ⊗OK,m in B′ ⊗K '
M2(K). Hence Am is isogenous to a product Em × Em, where Em is an
elliptic curve with complex multiplication by OK,m. Write Γm for the graph
of m

√
DK . Then, define Zm to be the image of the divisor [Γm] − [Em ×

0] − m2|DK |[0 × Em] in NS(Am). It lies in the free rank one Z-module
〈[Em × 0], [0× Em],∆Em〉

⊥ ⊂ NS(Am), where ∆Em is the diagonal.

Proposition 7.1. — Assume that A has complex multiplication by
OK,m. Then there exists an element ym in NS(A)⊗Q such that

(1) ιm(b)∗(ym) = ym for any b ∈ B′×,
(2) The self-intersection number of ym is 2DK .

Moreover, ym is uniquely determined up to sign by these properties.

Proof. — This is a direct generalization of [17, Proposition 8.2]. In par-
ticular, ym = m−1Zm satisfies the properties. �
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Remark 7.2. — Since we use a different normalization for the action of
B′
× on NS(Am)Q from [17], the formula (1) in Proposition 7.1 is different

from the corresponding formula in [17, Proposition 8.2].

Let t denote the number of prime divisors of Np, hm the class number of
Km. Then there are exactly 2thm CM points of conductorm (see Bertolini–
Darmon [1] for details).
LetW be the Atkin–Lehner group of order 2t generated by all the Atkin–

Lehner involutions W+
q with q | N+ and W−q with q | N−p. Write Gm for

the Galois group Gal(Km/K). One can identify the Galois group Gm with
Pic(OK,m) via the geometrically normalized reciprocity map recK : K̂× →
Gal(Kab/K) which sends a prime ideal p to the geometric Frobenius at p.
The group Pic(OK,m)×W acts simply transitively on the set of CM points.

Recall that d > 4 is an integer relatively prime to Np and

π : A = A
[p]
d → X

[p]
d

is the universal abelian surface and

ψ : X [p]
d → X [p]

the natural morphism. Let Pm = Pm(1) be the CM point of level m defined
as above and let P̃m be any point on X

[p]
d such that ψ(P̃m) = Pm. The

fiber A
P̃m

= π−1(P̃m) is an abelian surface with EndOB′ (AP̃m) ' OK,m.
By Proposition 7.1, there exist an element ym ∈ NS(A

P̃m
)Q satisfying

(1) ιm(b)∗(ym) = ym for any b ∈ B′×,
(2) The self-intersection number of ym is 2DK .

which is uniquely determined up to sign.
Let Y

P̃m
be an element of ε4CH1(A

P̃m
)Q representing y

P̃m
. One may

choose the elements Y
P̃m

in such a way that

g∗(YP̃m) = Y
g∗(P̃m) for all P̃m ∈ ψ−1(Pm) and g ∈ Gd,

where g : A
P̃m
→ A

P̃m
is the automorphism induced by g ∈ Gd.

Let jk,m : A
k−2

2

P̃m
↪→ A

k−2
2 = W

[p]
k,d be the inclusion of the fiber over P̃m

into the Kuga–Sato variety. We define the element Z
P̃m

of εd · ε4CH2(A⊗
Km)Q as the image of Y

P̃m
under the composition

ε4CH
1(A

P̃m
)Q

j4,m−→ ε4CH
2(A⊗Km)Q

εd−→ εd · ε4CH2(A⊗Km)Q.

We require that the elements Y
P̃m

are compatible with the action of W ×
Pic(OK,m) (see Iovita–Spiess [17, p. 366] for details). Then we define the
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CM cycle Z
k−2

2
m of level m by setting

Z
k−2

2
m := εd · εk(jk,m)∗(Y

k−2
2

P̃m
)

∈ εd · εkCHk/2(W [p]
k,d ⊗Km)Q ⊂ CHk/2(W [p]

k,d ⊗Km)Q.

8. Construction of Euler systems and the explicit
reciprocity law

8.1. Construction of special cohomology classes

Let p be an n-admissible prime. Here we give a description of the image
of CM cycles under the `-adic Abel–Jacobi map following Nekovář [28].
Write Zm for the CM cycle of level m. Let κ[p]

d (m) be the image of CM
cycle Z

k−2
2

m under the `-adic Abel–Jacobi map

εk ◦AJ`,E : CHk/2(W [p]
k,d ⊗Km)E → H1(Km, H

1(X [p]
d ⊗Km,F)(1))E .

By the construction of the cohomology class, we have the following lemma.

Lemma 8.1. — The global cohomology class κ[p](m) := εdκ
[p]
d (m) be-

longs to H1(Km, H
1(X [p] ⊗Km,F)(1)).

Let P̃m be a lift of the CM point Pm of level m. Let

cl` : CH
k−2

2 (A
k−2

2

P̃m
)→ εkH

k−2(A
k−2

2

P̃m
⊗Km,Z`(

k − 2
2 ))GKm

be the cycle class map. Then εd · εkHk−2(A
k−2

2

P̃m
⊗ Km,Z`(k−2

2 ))GKmO is
isomorphic to H2

Pm
(X [p] ⊗Km,F)(1)GKm . By an argument similar to the

one in the proof of [28, (2.4) Proposition (2)], one can show that the image
of Y = Y

k−2
2

P̃m
is represented by the pull-back of the extension

0→ H1(X [p]
d ⊗Km,F)(1)→ H1(X [p]

d ⊗Km \ P̃m ⊗Km,F)(1)

→ H2
P̃m⊗Km

(X [p]
d ⊗Km,F)(1)GKm → 0

by the map O → H2
P̃m⊗Km

(X [p]
d ⊗ Km,F)(1)GKm sending 1 to εkb(Y ),

where b(Y ) is the cohomology class of YKm . We will compute the image

εd · εkb(Y ) ∈ H2
Pm⊗Km

(X [p] ⊗Km,F)(1).
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Recall that there is an elliptic curve Em with complex multiplication by
OK,m defined over Km such that A

P̃m
is isogenous to Em ×Em. Then the

Künneth formula and antisymmetrization gives a projection

prk : Hk−2
(
A
k−2

2

P̃m
⊗Km,Z`

(
k − 2

2

))
→ H1(Em ⊗Km,Z`)⊗k−2

(
k − 2

2

)
→ (Symk−2H1(Em ⊗Km,Z`))

(
k − 2

2

)
.

One obtains that the element εkcl`(Y ) belongs to the space

(Symk−2H1(Em ⊗Km,Q`))(k/2− 1).

There exists a B×` ' B′
×
` ' GL2(Q`)-equivariant isomorphism

(Symk−2H1(Em ⊗Km,Q`))
(
k − 2

2

)
'−→ (Symk−2H1(Em ⊗Km,p,Q`))

(
k − 2

2

)
'−→ (Symk−2H1(Em ⊗ Fp2 ,Q`))

(
k − 2

2

)
'−→ Lk(Q`)

which preserves the intersection pairing. Therefore, we have an identifica-
tion

H2
P̃m⊗Qp2

(X [p]
d ⊗Qp2 ,F)(1) ∼= H2

P̃m⊗Fp2
(X [p]

d,Zp ⊗ Fp2 ,F)(1) ∼= Lk(O),

where P̃m = P̃m mod p.

Lemma 8.2. — The image of εd · εkcl`(Y ) in Lk(Q`) is given by v∗0 up
to sign.

Proof. — This follows from the fact that both elements satisfy the same
properties:

(1) εd · εkcl`(Y ) and v∗0 are eigenvectors for the action of K with eigen-
value 1,

(2) 〈εd · εkcl`(Y ), εd · εkcl`(Y )〉 = 〈v∗0,v∗0〉 = Dk−2
K .

These properties characterize an element in Lk(Q`) up to sign. �
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By Proposition 6.4, we have an isomorphism H1(X [p]⊗Km,F(1))/I [p]
f '

Tf,n as Gal(Km/Km)-modules, therefore κ[p](m) defines a cohomology class
κ

[p]
f,n(m) in H1(Km, Tf,n).

8.2. The explicit reciprocity law

By Theorem 6.6 and the description of the `-adic Abel–Jacobi map con-
sidered in the previous section, we have a commutative diagram

CHk/2(W [p]
k,d ⊗Km)O

εd·εkAJ`−−−−−−→ H1(Km, H
1(X [p] ⊗Km,F)(1))

εd·εkcl`
y yres⊕

p|pH
2(X [p] ⊗Km,p,F)(1) ωp−−−−→ H1

sing(Km,p, Tf,n).

Proposition 8.3. — For sufficiently large m, there exists a positive
integer M such that

redλn(κ[p]
f,n+M (m)) ∈ H1

p (Km, Tf,n),

where p is an n+M -admissible prime.

Proof. — For v|dN+, by Lemma 3.3 and [4, Corollary 5.2] we have

redλn(resvκ[p]
f,n+M (m)) ∈ H1

f (Km,v, Tf,n)

for sufficiently large M . For v|N−, since H0(Km,v, Af ) is finite,

H2(Km,v, Tf ) = Hom(H0(Km,v, Af ), E/O)

is also finite. Hence for sufficiently large M , λMH2(Km,v, Tf ) = 0. The
commutative diagram

0 −−−−→ Tf
×λn+M

−−−−−→ Tf
redλn+M−−−−−−→ Tf,n −−−−→ 0

×λM
y y=

yredλn

0 −−−−→ Tf
×λn−−−−→ Tf

redλn−−−−→ Tf,n −−−−→ 0
gives rise to

H1(Km,v, Tf )
redλn+M−−−−−−→ H1(Km,v, Tf,n) −−−−→ H2(Km,v, Tf )[λn+M ]

=
y yredλn

y×λM
H1(Km,v, Tf ) redλn−−−−→ H1(Km,v, Tf,n) −−−−→ H2(Km,v, Tf )[λn].
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Therefore by the definition of H1
f (Km,v, Tf,n) and the fact that

H1
f (Km,v, Vf ) = H1(Km,v, Vf )

(see Besser [4, Proposition 4.1 (2)]), we have

redλn(resv(κ[p]
f,n+M (m))) ∈ H1

f (Km,v, Tf,n).

For v - Nd`p, the CM cycle Z
k−2

2 is unramified at v, hence the class
redλn(κ[p]

f,n+M (m)) is also unramified at v. For the case v|`, the Galois
representation H1(X [p]

Km
,F(1)) is crystalline, since the Kuga–Sato variety

W
[p]
k,d has good reduction at v. Hence by Nekovář [29, Theorem 3.1(1)] and

Nizioł [32, Theorem 3.2] the image of the `-adic Abel–Jacobi map is con-
tained inH1

f (also see Nekovář [29, Theorem 3.1(2)] and Nekovář–Nizioł [31,
Theorem B] for the general case). Therefore one has

redλn(resv(κ[p]
f,n+M (m))) ∈ H1

f (Km,v, H
1(X [p] ⊗Km,v,F)(1)/I [p]

f ).

Since the prime ` is greater than k − 1, one can use the Fontaine–Laffaille
theory. Choose a Galois-stable lattice T in a crystalline representation of
GKm,v such that T/λnT ∼= H1(X [p]⊗Km,v,F)(1)/I [p]

f . Denote T1 = T and
T2 = Tf . Let Di be a strongly divisible O-lattice in Dcris(Vi) = DdR(Vi)
(the equality follows from the facts that Km,v = Qp2 is an unramified
extension of Qp and Vi are crystalline) for i = 1, 2, where Vi = Ti ⊗O E.
Define Dk/2

i = Di ∩Dk/2
dR (Vi) and φk/2 = λ−k/2φ, where φ is the Frobenius

morphism. By the Fontaine–Laffaille theory, we have isomorphisms D1/

λnD1 ∼= D2/λ
nD2 and Dk/2

1 /λnD
k/2
1
∼= D

k/2
2 /λnD

k/2
2 . Moreover by Bloch–

Kato [5, Lemma 4.5 (c)], h1(Di) = Coker[Dk/2
i

1−φk/2→ Di] is isomorphic to
H1
f (Km,v, Ti). From these facts, it is easy to see

H1
f (Km,v, H

1(X [p] ⊗Km,v,F)(1)/I [p]
f ) ∼= H1

f (Km,v, Tf,n)

for v|`. Therefore we have redλn(resv(κ[p]
f,n+M (m))) ∈ H1

f (Km,v, Tf,n) for
v|`. This completes the proof. �

The relation between the image of the CM cycle in H1
sing(Km,p, Tf,n) and

the theta element Θ(fπ′) is given by the following theorem.

Theorem 8.4. — There exists a constant u ∈ O×n such that

∂p(redλn(κ[p]
n+M (m))) ≡ u ·Θ(fπ′) mod λn.
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Proof. — By Theorem 6.3, Theorem 6.6 and Lemma 8.2, one has

∂p(κ[p]
f,n+M (m)) =

∑
[a]∈Gm

〈v∗0 , f̂(xm(a)τN
+

)〉k · [a]m = Θ(fπ′) ∈ On+M [Gm]

up to O×n+M . Therefore the natural image of ∂p(κ[p]
f,n+M (m)) in On[Gm]

satisfies the same property. �

Now, our main result (Theorem 1.1) follows from Proposition 8.3, The-
orem 3.8 and Theorem 8.4

Remark 8.5. — Assume that ρf is ramified at all primes dividing N−.
Then we have

Ωπ,N− = u · Ωcan
f for some u ∈ O×.

This fact follows from Proposition 6.1 and the argument in [8, Proof of
Proposition 6.1].
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