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DIFFERENTIATING THE STOCHASTIC ENTROPY
FOR COMPACT NEGATIVELY CURVED SPACES
UNDER CONFORMAL CHANGES

by Francois LEDRAPPIER & Lin SHU (*)

ABSTRACT. — We consider the universal cover of a closed connected Riemann-
ian manifold of negative sectional curvature. We show that the linear drift and
the stochastic entropy are differentiable under any C® one-parameter family of C3
conformal changes of the original metric.

RESUME. Nous considérons le revétement universel d’une variété compacte
connexe de courbure strictement négative et une variation & un parametre de classe
C3 de métriques C3 conformes & la métrique originale. Nous montrons que la vitesse
de fuite et ’entropie stochastique sont différentiables le long de cette courbe.

1. Introduction

Let (M, g) be an m-dimensional closed connected Riemannian manifold,
and 7 : (1\7, g) — (M, g) its universal cover endowed with the lifted Rie-
mannian metric. The fundamental group G = w1 (M) acts on M as isome-
tries such that M = M/G

We consider the Laplacian A := DivV on smooth functions on (M ,g) and
the corresponding heat kernel function p(t,z,y),t € Ry, x,y € M, which
is the fundamental solution to the heat equation % = Au. Denote by Vol
the Riemannian volume on M. The following quantities were introduced by
Guivarc’h ([17]) and Kaimanovich ([25]), respectively, and are independent
of z € M:

e the linear drift £ := lim; 4 oo %fd;(x,y)p(t, x,y) dVol(y),

Keywords: linear drift, negative curvature, stochastic entropy.
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e the stochastic entropy
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Let {g* = ¢*"g : |A| < 1} be a one-parameter family of conformal
changes of ¢° = g, where ¢*’s are real valued functions on M such that
(\, ) = p*(x) is C2 and ¢° = 0. Denote by £y, hy, respectively, the linear
drift and the stochastic entropy for (M, g*). We show

THEOREM 1.1. — Let (M,g) be a negatively curved closed connected
Riemannian manifold. With the above notation, the functions A — £, and
A = h, are differentiable at 0.

For each \ € (—1,1), let A* be the Laplacian of (M, g") with heat kernel
pMt,z,y),t € Ry, x,y € M, and the associated Brownian motion w), ¢ > 0.

The relation between Aignd A is easy to be formulated using g* = 62“’Ag:
for F a C? function on M,

AMF = %" (AF + (m — 2)(Vp*, VF),) = e 2 [ F,

where we still denote * its G-invariant extension to M. Let PMt,m,y),t €
R, ,z,y € M, be the heat kernel of the diffusion process @;,t > 0, corre-

sponding to the operator L* in (M7 g). We define

o Uy :=limy,yo0t [ d=(z, y)p* (t, z,y) dVol(y),
o hy=limyqo —1 [(InP N, 2,9))P (L, 2, y) dVol(y).

It is clear that the following hold true providing all the limits exist:

1 ~ 1~
(der/dN)r=o = lim +(6x = €3) + lim S(fx —Lo) =: (I), + (IL),,

1 N P B
(dha/dA)la=o = lim <(hx = ha) + lim 5-(hx = ho) =: (), + (IL),,.

Here, loosely speaking, (I), and (I), are the infinitesimal drift and en-
tropy affects of simultaneous metric change and time change of the diffu-
sion (when the generator of the diffusion changes from L* to A*), while
(IT), and (II),, are the infinitesimal responses to the adding of drifts to w}
(when the generator of the diffusion changes from A to L*).

To analyze (I), and (I),, we express the above linear drifts and sto-
chastic entropies using the geodesic spray, the Martin kernel and the exit
probability of the Brownian motion at infinity. It is known ([25]) that

(1.1) £, :/ (XM VA k) dm?, by :/ IV Ik} dm?,

0XOM 0 xXOM
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where Mj is a fundamental domain of M , OM is the geometric boundary
of M, X*(z,€) is the unit tangent vector of the §g*-geodesic starting from
x pointing at &, k(z) is the Martin kernel function of w;' and m* is the
harmonic measure associated with A*. (Exact definitions will appear in
Section 2.) Similar formulas also exist for 7. » and ﬁ,\ (see Propositions 2.9,
2.16 and (5.13)):

(1.2) 0 = /<X0,v0 In k) din®, hy = /||v0 In k2 ()2 din*,

where m? is the harmonic measure related to the operator L*. The quantity
(I),, turns out to be zero since the norm and the gradient changes cancel
with the measure change, while the Martin kernel function remains the
same under time rescaling of the diffusion process (see Section 5, (5.5)
and the paragraph after (5.3)). But the metric variation is more involved
in (I), as we can see from the formulas in (1.1) and (1.2) for ¢5 and Uy
In Section 4, using the (g, g*)-Morse correspondence maps (see [3, 16, 39]
and [12]), which are homeomorphisms between the unit tangent bundle
spaces in g and ¢* metrics sending g-geodesics to g*-geodesics, we are able
to identify the differential

(1.3) () @6 = lm 1+ (X0 - X’(2.6)).

0 A—0 A
where now X (,€) is the horizontal lift of X*(x, &) to T@@SM (see below
Section 2.4), using the stable and unstable Jacobi tensors and a family of
Jacobi fields arising naturally from the infinitesimal Morse correspondence
(Proposition 4.5 and Corollary 4.6). As a consequence, we can express (I),
using k2, m° and these terms (see the proof of Theorem 5.1).

If we continue to analyze (II), and (II), using (1.1) and (1.2), we have
the problem of showing the regularity in A of the gradient of the Martin
kernels. We avoid this by using an idea from Mathieu ([37]) to study (II),
and (IT), along the diffusion processes. For every point « € M and almost

every (a.e.) g-Brownian motion path w starting from z, it is known ([25])
that

- 0y _ : 1 0y _
(1.4) lim Edg(x,wt)—fo, t_liinoo—glnG(x,wt)—ho,

t—+oo

where G(-,-) on M x M denotes the Green function for §-Brownian motion.
A further study on the convergence of the limits of (1.4) in [31] showed that

TOME 67 (2017), FASCICULE 3
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there are positive numbers 0o, o1 so that the distributions of the variables

1
Zuou(w) = — |d5 (@) — tho]
(1.5) ”Olﬁ
Zpi(x) = [— InG(z,w?) — tho]

g 1\/7?
are asymptotically close to the normal distribution as ¢ goes to infinity.
Moreover, these limit theorems have some uniformity when we vary the
original metric locally in the space of negatively curved metrics. This allows
us to identify (IT), and (II), respectively with the limits

B (—=d(z, w?) — Eo(—=d(,62)),

L
\[ g \/g g
1 1
— InG(z,w?)) — Eo(—= In G(z,w?))),
\/E ( t )) 0( \/7? ( t )))
where we take \ = ﬁ:l/\/i and E) is the expectation with respect to the
transition probability of the L* process. (More details of the underlying

idea will be exposed in Section 3.1 after we introduce the corresponding

_(EA(

notations.) Note that all @} starting from z can be simultaneously rep-
resented as random processes on the probability space (©,Q) of a stan-
dard m-dimensional Euclidean Brownian motion. By using the Girsanov—
Cameron—-Martin formula on manifolds (cf. [10]), we are able to compare
E, with [Eg on the same probability space of continuous path spaces. As a
consequence, we show

(ID), = lim_Eo(Ze, M) and (1D, = lim Eo(Zy, M),

where each M; is a random process on (0, Q) recording the change of met-
rics along the trajectories of Brownian motion to be specified in Section 5.
We will further specify (II), and (II), in Theorem 5.1 using properties of
martingales and the Central Limit Theorems for the linear drift and the
stochastic entropy.

An immediate consequence of Theorem 1.1 is that Dy := hy/fy, which
is proportional () to the Hausdorff dimension of the distribution of the
Brownian motion w* at the infinity boundary of M ([30]), is also differen-
tiable in A. Let (M) be the manifold of negatively curved C® metrics on
M. Another consequence of Theorem 1.1 is that

THEOREM 1.2. — Let (M, g) be a negatively curved compact connected
Riemannian manifold. If it is locally symmetric, then for any C® curve

Wp A is % the Hausdorff dimension of the exit measure for the -Busemann distance
(cf. Section 3.1).

ANNALES DE L’INSTITUT FOURIER
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A€ (=1,1) = g* € R(M) of conformal changes of the metric g° = g with
constant volume,

(dhx/dN)[x=0 = 0, (dlx/dN)[x=0 = 0.

In case M is a Riemannian surface, the stochastic entropy remains the
same for g € V(M) with constant volume. This is because any g € (M)
is a conformal change of a metric with constant curvature by the Uni-
formization Theorem, metrics with the same constant curvature have the
same stochastic entropy by (1.1) and the constant curvature depends only
on the volume by the Gauss—Bonnet formula. Indeed, our formula (Theo-
rem 5.1, (5.2)) yields dhy/dA = 0 in the case of surfaces if the volume is
constant.

When M has dimension at least 3, it is interesting to know whether the
converse direction of Theorem 1.2 for the stochastic entropy holds. We have
the following question.

QUESTION. — Let (M,g) be a negatively curved compact connected
Riemannian manifold with dimension greater than 3. Do we have that
(M, g) is locally symmetric if and only if for any C3 curve A € (—1,1)
g* € R(M) of constant volume with ¢° = g, the mapping A\ +— h, is
differentiable and has a critical point at 07

We will present the proof of Theorem 1.1 and the above discussion in
a more general setting. Indeed, whereas the statements so far deal only
with the Brownian motion on M , proofs of the limit theorems such as (1.4)
or (1.5) involve the laminated Brownian motion associated with the stable
foliation of the geodesic flow on the unit tangent bundle ¢ : SM — M.
As recalled in Section 2.1, the stable foliation VW of the geodesic flow is
a Holder continuous lamination, the leaves of which are locally identified
with M. A differential operator £ on (the smooth functions on) SM with
continuous coefficients and £1 = 0 is said to be subordinate to the stable
foliation W, if for every smooth function F' on SM the value of L(F) at
v € SM only depends on the restriction of F to W#(v). We are led to
consider the family £* of subordinated operators to the stable foliation,
given, for F' smooth on SM, by

LF = AF + (m —2)(V(p* 0 ¢), VF),

where Laplacian, gradient and scalar product are taken along the leaves of
the lamination and for the metric lifted from the metric g on M. Diffusions
associated to a general subordinated operator of the form A + Y, where
Y is a laminated vector field, have been studied by Hamenstadt ([20]). We

TOME 67 (2017), FASCICULE 3
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recall her results and several tools in Section 2. In particular, the diffusions
associated to £* have a drift /5 and an entropy h, that coincide with
respectively £y and h,. Convergences (1.4) and (1.5) are now natural in this
framework. Then, our strategy is to construct all the laminated diffusions
associated to the different \ and starting from the same point on the same
probability space and to compute the necessary limits as expectations of
quantities on that probability space that are controlled by probabilistic
arguments. For each v € S M , the stable manifold W#(v) is identified with
M (or a Z quotient of M ).(2) As recalled in Subsection 2.5, the diffusions
are constructed on M as projections of solutions of stochastic differential
equations on the orthogonal frame bundle O(M ) with the property that
only the drift part depends on A (and on v). The quantities £, and hy can
be read now on the directing probability space, so that we can compute
(IT); and (IT)y, in Section 4. We cannot do this computation in such a direct
manner for a general perturbation A — g* € R(M) and this is the reason
why we restrict our analysis in this paper to the case of conformal change.
But the idea of analyzing the linear drift and the stochastic entropy using
the stochastic differential equations can be further polished to treat the
general case ([33]).

We thus will obtain explicit formulas for (dfy/d\)|x=0 and (dhy/d\)|r=o
in Theorem 5.1, which, in particular, will imply Theorem 1.1. Finally, The-
orem 1.2 can be deduced either using the formulas in Theorem 5.1 or merely
using Theorem 1.1 and the existing results concerning the regularity of vol-
ume entropy for compact negatively curved spaces under conformal changes
from [27, 28].

We will arrange the paper as follow. Section 2 is to introduce the linear
drift and stochastic entropy for a laminated diffusion of the unit tangent
bundle with generator A + Y ([20]) and to understand them by formulas
using pathwise limits and integral formulas at the boundary, respectively.
There are two key auxiliary properties for the computations of the differ-
entials of @‘,/ﬁ)‘ in A: one is the Central Limit Theorems for the linear drift
and the stochastic entropy; the other is the probabilistic pathwise relations
between the distributions of the diffusions of different generators. They will
be addressed in Subsections 2.5 and 2.6, respectively. In Section 3, we will
compute separately the differentials of the linear drift and the stochastic
entropy associated to a one-parameter of laminated diffusions with genera-
tors A+Y + Z*. Section 4 is to use the infinitesimal Morse correspondence

(2) When v is on a periodic orbit, then W#(v) is a cylinder identified with the quotient
of M by the action of one element of G represented by the closed geodesic.

ANNALES DE L’INSTITUT FOURIER
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([12]) to derive the differential \ X for any general C3 curve A — ¢*
contained in $(M). The last section is devoted to the proofs of Theorem 1.1
and Theorem 1.2 as was mentioned in the previous paragraph.

2. Foliated diffusions

In this section, we recall results from the literature and we fix notations
about the stable foliation in negative sectional curvature, the properties of
the diffusions subordinated to the stable foliation and the construction of
these diffusions as solutions of SDE.

2.1. Harmonic measures for the stable foliation

Recall that (M,g) is the universal cover space of (M, g), a negatively
curved m-dimensional closed connected Riemannian manifold with funda-
mental group G. Two geodesics in M are said to be equivalent if they remain
a bounded distance apart and the space of equivalent classes of unit speed
geodesics is the geometric boundary OM. For each (z,6) € M x OM, there
is a unique unit speed geodesic 7, ¢ starting from z belonging to [¢], the
equivalent class of §. The mapping § — 7, £(0) is a homeomorphism - !
between M and the unit sphere S, M in the tangent space at x to M. So
we will identify SM the unit tangent bundle of M with M x OM.

Consider the geodesic flow ®; on SM. For each v = = (z,¢€) € SM, its
stable manifold with respect to ®;, denoted W#(v), is the collection of
initial vectors w of geodesics vyw € [£] and can be identified with M x {&}.
Extend the action of G continuously to OM. Then SM , the unit tangent
bundle of M, can be identified with the quotient of M x OM under the
diagonal action of G. Clearly, for ¢ € G, Yp(W?(v)) = W?3(Dyp(v)) so
that the collection of W?*(v) defines a lamination W on SM, the so-called
stable foliation of SM. The leaves of the stable foliation W are discrete
quotients of M , which are naturally endowed with the Riemannian metric
induced from g. For v € SM, let W*5(v) be the leaf of W containing v.
Then W*(v) is a C? immersed submanifold of SM depending continuously
on v in the C%-topology ([44]). (More properties of the stable foliation and
of the geodesic flow will appear in Section 2.4.)

Let £ be an Markovian operator (i.e. £1 = 0) on (the smooth functions
on) SM with continuous coefficients which is subordinate to the stable

TOME 67 (2017), FASCICULE 3
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foliation W. A Borel measure m on SM is called £-harmonic if it satisfies
/ L(f) dm = 0

for every smooth function f on SM. If the restriction of £ to each leaf is
elliptic, it is true by [13] that there always exist harmonic measures and the
set of harmonic probability measures is a non-empty weak™ compact convex
set of measures on SM. A harmonic probability measure m is ergodic if it
is extremal among harmonic probability measures.

In this paper, we are interested in the case L = A + Y, where A is the
laminated Laplacian and Y is a section of the tangent bundle of W over
SM of class C*« for some k > 1 and o € [0,1) in the sense that Y and its
leafwise jets up to order k along the leaves of W are Holder continuous with
exponent « ([20]). Let m be an £-harmonic measure. We can characterize
it by describing its lift on SM.

Extend L to a G-equivariant operator on SM = M x &M which we shall
denote with the same symbol. It defines a Markovian family of probabilities
on SNL_, the space of paths of @ : [0, +00) — SM, equipped with the smallest
o-algebra A for which the projections R; : @ +— @(t) are measurable.
Indeed, for v = (z,€) € SM , let £, denote the laminated operator of £ on
W#(v). It can be regarded as an operator on M with corresponding heat
kernel functions py(t,y,2), t € Ry, y,z € M. Define

p(t, (l‘, 5)7 d(ya 77)) = pv(t, T, y)dVOI(y)fsf(n),

where J¢(-) is the Dirac function at . Then the diffusion process on W*(v)

with infinitesimal operator Ly is given by a Markovian family {IP’W}W€ Mxey

where for every ¢ > 0 and every Borel set A C M x OM we have

Pu (@5 3(0) € 4)) = [ pltw.d(y.m).
The following concerning £-harmonic measures holds true.

PROPOSITION 2.1 ([13, 20]). — Let m be the G-invariant measure which
extends an L-harmonic measure m on M x OM. Then

(i) the measure m satisfies, for all f € C2(M x dM),

L (L w6 ) dinge.o

MxoM

_ [A; f(@,€) di(e,€);

XM

ANNALES DE L’INSTITUT FOURIER
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(ii) the measure P = J Py dm(v) on Q. is invariant under the shift
map {04 }ier, on Q., where 0y(@(s)) = &(s +t) for s > 0 and
ey;

(iii) the measure m can be expressed locally at v = (z,§) € SM as
dm = k(y,n)(dy x dv(n)), where v is a finite measure on OM and,

for v-almost every n, k(y,n) is a positive function on M which
satisfies A(k(y,n)) — Div(k(y, n)Y (y,n)) = 0.

The group G acts naturally and discretely on the space fvl+ of continuous
paths in SM with quotient the space 24 of continuous paths in SM, and
this action commutes with the shift o;,t > 0. Therefore, the measure P
is the extension of a finite, shift invariant measure P on Q. Note that
SM can be identified with My x OM , where M is a fundamental domain
of M. Hence we can also identify 24 with the lift of its elements in Q.
starting from Mj. Elements in 24 will be denoted by w. We will also
clarify the notions whenever there is an ambiguity. In all the paper, we
will normalize the harmonic measure m to be a probability measure, so
that the measure P is also a probability measure. We denote by Ep the
corresponding expectation symbol.

Call L weakly coercive, if L., v € S M , are weakly coercive in the sense
that there are a number ¢ > 0 (independent of v) and, for each v, a
positive (Ly + €)-superharmonic function F' on M (i,e. (Ly +e)F > 0).
For instance, if Y = 0, then £ = A is weakly coercive and it has a unique
L-harmonic measure m, whose lift in .S M satisfies dm = dx x dm,, where
dx is proportional to the volume element and m,, is the hitting probability
at OM of the Brownian motion starting at x. Consequently, in this case, the
function k in Proposition 2.1 is the Martin kernel function. This relation is
not clear for general weakly coercive L.

2.2. Linear drift and stochastic entropy for laminated diffusions

Let m be an L-harmonic measure and m be its G-invariant extension
in SM. Choose a fundamental domain My of M and identify SM with
My % OM. Let dyy denote the leafwise metric on the stable foliation of
SM. Then it can be identified with d~gv on M on each leaf. We define

te(m):= lim ~ / (), (4, m)p(t, (. €), d(y,m)) dif(z,£),

0 XM

he(m) := lim - (np(t, (z,8), (y, )P, (z,£),d(y,n)) dm(z, ).

Mg XM

TOME 67 (2017), FASCICULE 3
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Equivalently, by using P in Proposition 2.1, we see that

/ L Aw(eO)w() )

|
g
I

E[;(m)

= EIJPoo % Ep(dw(w(0),w(t)))

t

and

|
g
|
\

he(m)= lim ~3 [ lnp(tw(0).w(t) dF)

(0)e My xOM

~ lim _% Es(In p(t, w(0), w(t))).

t——+oo

Call £.(m) the linear drift of £ for m, and hg(m) the (stochastic)
entropy of L for m. In case there is a unique £-harmonic measure m, we
will write £z := ¢z (m) and h, := hz(m) and call them the linear drift and
the (stochastic) entropy for L, respectively.

Clearly, ho(m) is nonnegative by definition. We are interested in the
case that hz(m) is positive. When £ = A, this is true ([25, Theorem 10]).
In general, there exist weakly coercive £’s which admit uncountably many
harmonic measures with zero entropy ([20]).

Let £ be such that Y*, the dual of Y in the cotangent bundle to the
stable foliation over SM, satisfies dY* = 0 leafwisely. Note that Y is a
section of the tangent bundle of W over SM of class C¥“ and that Y* is
a section of the cotangent bundle of W over SM of class C¥, the duality
being defined by the metric inherited from M. The hypothesis is that this
1-form, seen as a 1-form on M, is closed.

For v € SM, let X(v) be the tangent vector to W#(v) that projects on
v and let

pr(—(X,Y)) := sup {hu - /(Y, Y)du: pe ./\/l}

be the pressure of the function —(X,Y) on SM with respect to the geodesic
flow ®;, where M is the set of ®;-invariant probability measures on SM
and h,, is the entropy of p with respect to ®;. Then,

PropoOSITION 2.2 ([20]). — Let £L = A +Y be subordinated to the
stable foliation and such that Y*, the dual of Y in the cotangent bundle
to the stable foliation over SM, satisfies dY* = 0 leafwisely. Then, h,(m)
is positive if and only if pr(—(X,Y)) is positive, and each one of the two
positivity properties implies that L is weakly coercive, m is the unique
L-harmonic measure and {y(m) is positive.

ANNALES DE L’INSTITUT FOURIER
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In particular, when we consider A + Z*, where Z* := (m — 2)V(p” 0 ¢)
and ¢*’s are real valued functions on M such that (\,z) — ¢*(x) is C3
and ©° = 0, the pressure of —(Z*, X) is positive for A close enough to 0.

A nice property for the laminated diffusion associated with an Markovian
operator £ as in Proposition 2.2 with positive entropy is that the semi-
group oy, t > 0, of transformations of 2, has strong ergodic properties
with respect to the probability P. Recall that a measure preserving semi
flow o4, t > 0, of transformations of a probability space (2,PP) is called
mixing if for any bounded measurable functions Fi, F5 on §2,

t—lgknoo ]E[p(Fl (F2 e] O't)) = E]p(Fl)]EP(FQ)

PROPOSITION 2.3. — Let L = A+ Y be subordinated to the stable
foliation and such that Y*, the dual of Y in the cotangent bundle to the
stable foliation over SM, satisfies dY* = 0 leafwisely. Assume hp(m) is
positive. Let m be the unique invariant measure, P the associated proba-
bility measure on 4. The shift semi-flow oy,t > 0, is mixing on (Q4,P).

Proof. — The classical proof that a weakly coercive subordinated opera-
tor with positive entropy admits a unique harmonic measure (see [13], [31],
[48] for the case of A) shows in fact the mixing property if F; and F5 are
functions on 24 that depends only on the starting point of the path and
are continuous as functions on SM. The mixing property is extended first
to bounded measurable functions on 2, that depends only on the starting
point of the path by (L?, say) density, then to functions depending on a
finite number of coordinates in the space of paths by the Markov property
and finally to all bounded measurable functions by L? density. O

2.3. Linear drift and stochastic entropy for laminated diffusions:
pathwise limits

By ergodicity of the shift semi-flow, it is possible to evaluate the linear
drift and stochastic entropy along typical paths. Let £ = A+Y be such that
Y*, the dual of Y in the cotangent bundle to the stable foliation over SM,
satisfies dY* = 0 leafwisely and pr(—(X,Y)) > 0. Let m be the unique
L-harmonic measure. By Proposition 2.3 the measure P associated to m
is ergodic for the shift flow on Q4. The following well known fact follows
then from Kingman’s Subadditive Ergodic Theorem ([29]). For P-almost
all paths w € Q, we still denote by w its lift in Q with w(0) € My and

TOME 67 (2017), FASCICULE 3
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we have
(2.1) lim 1dy\;(w(O),w(t)) = L.

Similarly, we can characterize h, using the Green function along the tra-
jectories. For each v = (x,£) € M x M, we can regard L, as an operator

on M. Since it is W/egkly _coercive, there exists the corresponding Green
function Gy(+,+) on M x M, defined for x # y by

Gy(z,y) r=/ pv(t, x,y)dt.
0

Define the Green function G(-,-) on SM x SM as being

G((y.1), (2,)) == Gy (1, 2)8,(C), for (y,m), (,C) € SM,

where 0,(-) is the Dirac function at 1. We have the following proposition
concerning h,.

PROPOSITION 2.4. — Let L = A +Y be such that Y*, the dual of Y
in the cotangent bundle to the stable foliation over SM, satisfies dY* =0
leafwisely and pr(—(X,Y)) > 0. Then for P-a.e. paths w € Q, we have

(2.2) he = Jim_ _% In p(t, w(0), w(t)
. 1
(2.3) = t£+moo — In G(w(0), w(t)).

Contrarily to the distance, the function — In p is not elementarily subad-
ditive along the trajectories and the argument used to establish (2.1) has
to be modified. We will use the trick of [32] to show that there exists a
convex function hr(s), s > 0, such that for P-a.e. paths w € Q4 for any
s> 0,

) 1
(2.4) he(s) = tilgrnoo 7 Inp(st,w(0),w(t)).
Setting s = 1 in (2.4) gives that limy, 4o —1 In p(t,w(0),w(t)) exists and
is he(1). Moreover, he(1) < he by Fatou’s Lemma. Then, (2.3) and (2.2)
will follow once we show that for P-almost all paths w € Q,
1

. im —— =i > he.
(2.5) Jim — I G(w(0),w(t)) = nf {he(s)} > he

To show (2.4) and (2.5), we need some detailed descriptions of py (¢, x,y).

First, we have a variant of Moser’s parabolic Harnack inequality ([40])
(see [45, 46] and also [43]).
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LEMMA 2.5. — There exist A,¢ > 0 such that for any v € S]Tf, t>1,
3 <t <1, z2,y,y € M with d(z,2') <, d(y,y) <s,
(26> pv(t7l',y) > Apv(t - tlaxlvy,)'

Next, we have the exponential decay property of py(t, z,y) in time ¢.

LEMMA 2.6 ([20, p. 76]). — There exist B,¢ > 0 independent of v such
that

(2.7) pv(t,2,y) < B-e ', forally € M andt>1.
A Gaussian like upper bound for py (¢, x,y) is also valid.

LEMMA 2.7 ([43, Theorem 6.1]). — There exist constants C1,C2, K3

such that for any v.€ SM,t >0 and x,y € M, we have
1 d*(2,y)
exp |C1(1+ bt + /Kqt) — :

Vol(z, v/t) Vol(y, V) POl 1t Cot

Let b > 0 be an upper bound of ||Y||. We have the following lower bound
for py(t, z,y).

LEMMA 2.8 ([47, Theorem 3.1]). — Let f = VK(m — 1) + b, where
K > 0 is such that Ricci > —K(m — 1). Then for any v € SM, t,c > 0
and x,y € M, we have

(2.8) po(t,z,y)

_m 1 o 9 B2t B2 2mo
> (4xt) exp[—<4t+3\@>d (x,y)—4—(40+3>\/%}

Proof of Proposition 2.4. — We first show (2.4). Given s > 0, for w €
Q. , define

pv(t,z,y) <

F(s,w,1) = —In(p(st — 1,w(0), w(t)) - A),
where A = A2 inf__+~ Vol(B(z,¢)) and A, < are as in Lemma 2.5. Then for
t,t' > 1/s, we Oy,

F(s,w,t+t') < F(s,w,t) + F(s,00(w),t).
This follows by the semi-group property of p and (2.6) since
p(s(t+ 1) — 1,w(0),w(t + ')

= /p(st — %,w(o),z)p(st’ — %,z,w(t +t')) dz

2
> Ap(st — 1,w(0),w(t))p(st’ — 1, w(t), w(t +t')).

1 1
> / p(st — &, w(0), 2)p(st’ — =, z,w(t + 1)) da
B(w(t),s) 2
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For 0 <1 <t < +o0, by (2.8), there exists a constant C' > 0, depending
on t1,te and the curvature bounds, such that for any v € SM x,y € M
any t,tl NS t < NS tQ,

Cexp{ (1 )d2(x,y) <pv(tv‘ray)'

ag
i aan

As a consequence, we have

E ( sup F(s,w,t))
I+ L<t<2+ 5
sup d2(w(0),w(t))> —In(CA),

1 o
<o+ JE
s 3v2s <1+;<t<2+;

where the second expectation term is bounded by a multiple of its value
in a hyperbolic space with curvature the lower bound curvature of M and
is finite (cf. [8]). So by the Subadditive Ergodic Theorem applied to the
subadditive cocycle F(s,w,t), there exists hr(s) such that for P-a.e. w €
Q4, and for m-a.e. v,

1
he(s) = 75_lg_noo—flnp(st—l w(0),w(t))
. 1
(2.9) = Qim —= /M pv(t,z,y)Inpy(st — 1,2,y) dVol(y).

Using the semi-group property of p and (2.6) again, we obtain that for
0<a<l,sy,s >0,

p((as1 + (1 —a)s2)t — 1,w(0),w(t))
> Ap(asit — 1,w(0),w(at))p((1 — a)sat — 1, w(at),w(t)).

It follows that h.(-) is a convex function on R and hence is continuous.
This allows us to pick up a full measure set of w such that (2.4) holds true
for all positive s. Let D be a countable dense subset of R,;. There is a
measurable set E C Q4 with P(E) = 1 such that for w € E, (2.9) holds
true for any s € D. Let w € Q4 be such an orbit. Given any s; < s, let
t > 0 be large, then we have by (2.6) that

p(sit,w(0),w(t)) < AT (501 —1.w(0), w(t)).
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So for s’ < s < §"(s',s" € D), and w € E,
1
% "o < Tminf —=
he(s")+ (8" —s)InA < ltlglﬁgof tlnp(st,w(O),w(t))

1
< limsup — In p(st,w(0),w(t))

t—+oo

< he(s) — (s =) In A.

Letting s',s” go to s on both sides, it gives (2.4) by continuity of the
function h,. Moreover, given w € FE, the convergence is uniform for s in
any closed interval [sy, s2],0 < $1 < s3 < +00.

To show the first equality in (2.5), we use the observation that for any
te Ry,

“+ o0
G(w(0),w(t)) = t/ p(st,w(0),w(t)) ds.
0
Let so € (0,00) be such that hg(sg) = infssohe(s). For any € > 0, there
exists 0,0 < ¢ < ¢, such that for |s — so| < 8, hz(s) < he(so) + & Write
so+0
GOw®) >t [ plst.w(0).w(0) ds

1
so+%

and note that for 5o+ 1 < s < sg + 8, w € 2, we have as above by (2.6)
that

p(st, w(0),w(t)) > ACTOHp(set — 1,0(0), w ().

Moreover, for ¢ large enough and w € E, p(sot—1,w(0), w(t)) = et helso)te),
Therefore,

s 1/t
(G(w(O),w(t)))l/t > Mt A (/ A‘”ds) e (helso)te),
1/t

It follows that for w € F,

Jim sup — — In G (w(0), w(t)) < inf {hz(s)}.

t—4o00 t s>0

For the reverse inequality, we cut the integral f0+oc p(st,w(0),w(t)) ds
into three parts. Fix e; € (0,hz). We first claim that for s; > 0 small
enough, for P-a.e. paths w € Q, and ¢ large enough,

S1 1 .
(2.10) / p(st,w(0),w(t)) ds < Ee—(lnf‘g>o{ha(s)}—61)t.
0
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Indeed, by Lemma 2.7, there exists a constant C’ such that

S1 ’ S1 ]_ 2 (w ,w(t
/0 p(st,w(0),w(t)) ds < C’eCt/O We_d T s

1, C't 400

_ C'e / um/QHe*dz(w@/w(m“du
3 1/(s1t)

C'eClt a2 (w(0),w(1)

L Q (d2(w(0),w(t))) e CTert

(2.11)

N

where @ is some polynomial of degree [m/2] + 3. For P-a.e. paths w € O,
for large enough t,

2

It follows that for those paths, given 1 € (0,h), for any s; € (0, % .

m% the quantity in (2.11) is bounded from above by

£ CQ((0), (1)) - et lhetl =t

Consequently, (2.10) is satisfied for those paths, for ¢ large enough.
Then observe that for sa,¢ > 1, we have by (2.7) that

+oo +oo 1
/ p(st,w(0),w(t)) ds < B/ et ds = gBe_E”t.
S2

S2

So for any &1 € (0,hz), if s2 and ¢t are large enough, then

—_

+oo
/ p(st,w(0),w(t)) ds < Eef(infs>0{h£(5)}751)t'

S2

Moreover, using the uniform convergence in (2.4) on the interval [sq, s2],
we get, for w € FE and t large enough,

S92 X
/ p(st,w(0),w(t))ds < (s2 — 81)6_(mfs>°{h‘(s)}_%5l)t

< e (infeso{he(s)}—e1)t
Putting everything together, we obtain

liminf—%ln G(w(0),w(t)) = ;I;f(;{hg(s)}

t—+oo
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Finally, we have infsso{hs(s)} > hr since for any typical v € SM,

hels) —he = Jim_—1 [ poltsr,p)in 22D vy

t—4oo t pyv(t, z,y)
1 py(st,z,y)
> lim - [ pot,z,y) (1= 2T YN gyl
i [t (1= 2R ) avoly
> 0. O

2.4. Linear drift and stochastic entropy for laminated diffusions:
integral formulas

The interrelation between the underlying geometry of the manifold and
the linear drift and the stochastic entropy is not well exposed in the path-
wise limit expressions (2.1) and (2.3). The purpose of this subsection is to
establish the generalization of formulas (1.2) for the linear drift and the
stochastic entropy, respectively, and set up the corresponding notations.

We begin with .. We will express it using the Busemann function at
the geometric boundary and the £-harmonic measure. Recall the geometric
boundary OM of M is the collection of equivalent classes of geodesics,
where two geodesics 1, y2 of M are said to be equivalent (or asymptotic)
if sup,> d(71(t),72(t)) < +o00. Let L = A+Y be such that Y*, the dual of
Y in the cotangent bundle to the stable foliation over SM | satisfies dY™* = 0
leafwisely and pr(—(X,Y)) > 0. For P-a.e. paths w € Q. , w(t) converges to
the geometric boundary as ¢ goes to infinity ([20]), where we still denote by
w its projection to M. Let Vaus(0)w(o0) De the geodesic ray starting from w(0)
asymptotic to w(0o) := lims_, 4 oo w(t). Then, loosely speaking, w stays close
0 Vi (0),w(o0) (see Lemma 3.5). The Busemann function to be introduced
will be very helpful to record the movement of the ‘shadow’ of w(t) on
Yw(0),w(o0)-

Let 2 € M and define for Yy € M the Busemann function bs.y(2) on M
by letting

bey(2) ' =d(y,z) —d(y,x), for z € M.
The assignment of y — b, , is continuous, one-to-one and takes value in a
relatively compact set of functions for the topology of uniform convergence
on compact subsets of M. The Busemann compactification of M is the clo-
sure of M for that topology. In the negative curvature case, the Busemann
compactification coincides with the geometric compactification (see [4]). So
for each v = (z,€) € M x OM, the Busemann function at v, given by

by(z) := il_}m{ byy(2), for z € M,
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is well-defined. For points on the geodesic v, ¢, its Busemann function value
is negative its flow distance with z. In other words, for s,t > 0,

(2.12) by(V2,6(t)) = by (y26(s)) = s — ¢

The equation (2.12) continues to hold if we replace 7y, ¢ with geodesic 7, ¢
starting from z € M which is asymptotic to & ([9]). Note that the ab-
solute value of the difference of the Busemann function at two points are
always less than their distance. It follows that, if we consider the Busemann
function by as a function defined on W*(z,¢),

(2.13) Vby(2) = —X(z,€),

where X (z,€) is the tangent vector to W#*(v) which projects to (z,£) =
42,¢(0). This relationship explains why the Busemann function is involved
in the analysis of geometric and dynamical quantities: the variation of X
is related to variation of asymptotic geodesics, the theory of Jacobi fields;
while the vector field X on SM defines the geodesic flow.

We are going to use both interpretations of X to see how the linear drift
is related the geometry. Since we only discuss C® metrics in this paper, we
will state the results in this setting. But most results have corresponding
versions for C* metrics.

We begin with the theory of Jacobi fields and Jacobi tensors. Most nota-
tions will also be used in Section 4. Recall the Jacobi fields along a geodesic
~ are vector fields ¢ — J(t) € T,Y(t)]\? which describe infinitesimal varia-
tion of geodesics around «. It is well-known that J(t) satisfies the Jacobi
equation

(2.14) Va0 Vaw I (t) + R0, 4(0)3(8) = 0

and is uniquely determined by the values of J(0) and J’(0). (Here for vector
fields Y, Z along M , we denote Vy Z and R(Y, Z) the covariant derivative
and the curvature tensor associated to the Levi-Civita connection of g.)
Let N(v) be the normal bundle of ~:

N(y) = UerNi(7), where Ny(7) = {Y € Ty M : (Y,5(t)) = 0}.
It follows from (2.14) that if J(0) and J'(0) both belong to No(7y), then
J(t) and J'(t) both belong to N;(v), for all ¢t € R. Also, it is easy to deduce
from (2.14) that the Wronskian of two Jacobi fields J and J along ~:
W(J,J) = (J, Ty — (J,J)
is constant.
A (1,1)-tensor along v is a family V = {V(¢), t € R}, where V() is
an endomorphism of N¢(v) such that for any family Y; of parallel vectors
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along 1, the covariant derivative Vs (V (t)Y;) exists. The curvature tensor
R induces a symmetric (1, 1)-tensor along v by R(t)Y = R(Y,%(t))5(t). A
(1,1)-tensor V(¢) along  is called a Jacobi tensor if it satisfies

Vi Vi) V(t) + RV (¢) = 0.

If V(t) is a Jacobi tensor along ~y, then V(¢)Y; is a Jacobi field for any
parallel field Y;.

For each s > 0, v € SM, let Sy s be the Jacobi tensor along the geodesic
v with the boundary conditions Sy ¢(0) = Id and Sy s(s) = 0. Since (M,q)
has no conjugate points, the limit lim,_, 4. Sy s =: Sy exists ([15]). The
tensor Sy is called the stable tensor along the geodesic . Similarly, by re-
versing the time s, we obtain the unstable tensor U, along the geodesic 7y .

To relate the stable and unstable tensors to the dynamics of the geodesic
flow, we first recall the metric structure of the tangent space 1T M of
TM. For z € M and v e T, M an element w € T, TM is vertical if its
projection on T M vanishes. The vertical subspace V; is identified with
Tx]ﬁ . The connection defines a horizontal complement H.,, also identified
with Tx]Tj . This gives a horizontal /vertical Whitney sum decomposition

TTM = TM & TM.
Define the inner product on TTM by
(Y1, 21), (Ya, Z2)); := (Y1, Ya)5 + (21, Z2);

It induces a Riemannian metric on TM. , the so-called Sasaki metric. The
unit tangent bundle SM of the universal cover (M, g) is a subspace of T M
with tangent space

TwnySM ={(Y,2): Y,Z € T,M,Z L v}, forx € M,v € S, M.

Assume v = (z,v) € SM. Horizontal vectors in Ty SM correspond to
pairs (J(0),0). In particular, the geodesic spray X at v is the horizontal
vector associated with (v,0). A vertical vector in T3S M is a vector tangent
to S, M. It corresponds to a pair (0,.J(0)), with .J’(0) orthogonal to v. The
orthogonal space to Xy in TVSM corresponds to pairs (vi,va),v; € No(vy)
fori=1,2.

The dynamical feature of the Jacobi fields can be seen using the geodesic
flow on the unit tangent bundle. Let ®; be the time ¢ map of the geodesic
flow on SM , in coordinates,

®,(1,8) = (Y (t),€), ¥ (z,6) € SM.
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Let D®; be the tangent map of ®;. Then, if (J(0),J'(0)) is the horizon-
tal/vertical decomposition of w € T@@SM, (J(t),J'(t)) is the horizon-
tal/vertical decomposition of D®,w € Tq,t(x@SM.

Due to the negative curvature nature of the metric, the geodesic flow
on SM is Anosov: the tangent bundle T' SM decomposes into the Wit-
ney sum of three D®;-invariant subbundles E¢ & E* & E*", where E° is
the 1-dimensional subbundle tangent to the flow and E* and E*" are the
strongly contracting and expanding subbundles, respectively, so that there
are constants C, ¢ > 0 such that

(i) |[D®w]|| < Ce“||w| for w € E*, t > 0,
(ii) [|D®; 'w| < Ce=¢||w| for w € ESU, ¢ > 0.

For any geodesic v = (z,§) € SM, let Sy, Uy be the stable and unstable
tensors along 7, respectively. The stable subbundle E* at v is the graph
of the mapping S, (0), considered as a map from Ny(yy) to V; sending
Y to S,(0)Y, where No(vy) = {w,w € H,,w L X,}. Similarly, the
unstable subbundle E*" at v is the graph of the mapping U, (0) considered
as a map from Ny(7y) to Vi. Due to the Anosov property of the geodesic
flow, the distributions of E**, E** (and hence E¢@® E** E¢ @ E®") are Holder
continuous (this is first proved by Anosov ([2]), see [4, Proposition 4.4] for a
similar but simpler argument by Brin). As a consequence, the (1, 1)-tensors
Sy, 5S4, Uy, U, are also Holder continuous with respect to v.

We are in a situation to see the relation between the Busemann function
and the geodesic flow. Let ¢ € M be a reference point and for any § € oM

consider by, ¢(+) 1= lim,_,¢ by, ~(-). For any v = (z,£) € M x OM, the set

{(0:) + bay e(y) = g e(2)}

turns out to coincide with the strong stable manifold at v, denoted W32 (v),

which is

W*(v) = {(y,n) : lirgiup % log dist (®4(y, 1), P:(v)) < O} .
(The strong unstable manifold at v, denoted W3*(v), is defined by re-
versing the time.) In other words, the collection of the foot points y such
that (y,&) € W*5(x, ) form the stable horosphere, which is a level set of
Busemann function. Note that W#*(v) locally is a C? graph from E$* to
E; ©EY and is tangent to E3. So, by the Jacobian characterization of ES
of the previous paragraph and (2.13), it is true ([11, 21]) that

Voo (Vb e) (@) = =S(, ¢)(0)(W), Yw € T, M.
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Thus,
Agby e = —DivX = —Trace of 5[, ¢ (0),

which is the mean curvature of the horosphere W*%(x, £) at x. Note that
for each ¢ € G,

b e (VT) = brg e(T) + by—144,¢(20)-

Hence Agby, ¢ satisfies Ayrpbygpe = Dby ¢ and defines a function B on
the unit tangent bundle SM, which is called the Laplacian of the Busemann
function. The function B is a Holder continuous function on SM since the
distribution of strong stable tangent bundles is Holder continuous.

Now, we can state the integral formula for the linear drift.

PROPOSITION 2.9. — Let L = A+ Y be such that Y*, the dual of Y
in the cotangent bundle to the stable foliation over SM, satisfies dY™* =
leafwisely and pr(—(X,Y)) > 0. Then we have

(2.15) b = —/ _(DivX + (Y, X)) dm.
Mg xoM
(Observe that the classical formula (1.1) for the linear drift is obtained
from Proposition 2.9 by considering the metric ¢* and Y = 0.)

Proof. — For P-a.e. path w € 4, we still denote w its projection to M
and let v := w(0) and 7 := limy_, oo w(t) € OM. We see that when ¢ goes
to infinity, the process by (w(t)) —d(z, w(t)) converges P-a.e. to the a.e. finite
number —2(&|n),;, where

(2.16) (§n)e:= lim (y[2)s and (y|2).:=

y—E&,z—n % (d(x»y)‘Fd(x,Z)—d(y,z))

So for P-a.e. w € {14, we have
.1
Jim by (w(t) = L.

Using the fact that the £-diffusion has leafwise infinitesimal generator A+Y
and is ergodic with invariant measure m on SM, we obtain

1[0
le = lim 7/0 %bv(w(s)) ds

iy [eevmeena (= [ @ i)

. / _(DvX + (v, X)) din. 0

oXxXOM

|
3
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The negative of the logarithm of the Green function has a lot of properties
analogous to a distance function. First of all, let us recall some classical
results concerning Green functions from [1].

LEMMA 2.10 (see [1, Remark 3.1]). — Let L = A +Y be such that
Y*, the dual of Y in the cotangent bundle to the stable foliation over
SM, satisfies dY* = 0 leafwisely and pr(—(X,Y)) > 0 and let G(-,-) =
{Gv(-;)}, i be the Green function of L. There exists a constant ¢ €
(0,1) such that for any v € SM and any r,y,z € M with mutual distances
greater than 1,

(2.17) Gy(z,2) 2 coGy(x,y)Gy(y, 2).

For v,w € SIZ\AZ, T € M, the angle Z,(v,w) is the unique number 0 <
0 < 7 such that (v,w) = cosf. Given v € S, M and 0 < 6 < m, the set

Tp(v,0):={y € M UM : Zo(V,Y2,(0)) < 6}

is called the cone of vertex x, axis v, and angle ¢, where v, ,, is the geodesic
segment that starts at « and ends at y. For any s > 0, the cone I' with
vertex Yy (s) (where 7, is the geodesic starting at  with initial speed v),
axis 9y (s) and angle 6 is called the s-shifted cone of T'; (v, 8). The following
is a special case of the Ancona’s inequality at infinity ([1]).

LEMMA 2.11 (see [1, Theorem 1']). — Let £ and G be as in Lemma 2.10.
Let T':=T'4,(v,5) be a cone in M with vertex zg, axis v and angle 5 Let
I'1 be the 1-shifted cone of I' and x1 be the vertex of I'y. There exists a
constant ¢y such that for any v € SM, any ', all x € M\F and z € I'y,

(2.18) Gy(z,2) < 1Gy(x,21)Gy (20, 2).

We may assume ¢; = ¢ 1, where ¢ is as in Lemma 2.10. As a consequence
of Lemma 2.10 and Lemma 2.11, G is related to the distance d in the
following way.

LEMMA 2.12. — Let £ and G be as in Lemma 2.10. There exist positive
numbers co, c3, a2, g such that for any v € SM and any x,z € M with
d(z,z) > 1,

(219) 0267‘)‘2‘1@@) < GV(.’E,Z) < C3efa3d(w,z)'

Proof. — The upper bound of (2.19) was shown in [20, Corollary 4.8]
using Ancona’s inequality at infinity (cf. Lemma 2.11). For the lower bound,
we first observe that Lemma 2.10 also holds true if z, y, z satisfies d(z, z) >
1 and d(z,y) = 1. Indeed, by the classical Harnack inequality ([35]), there
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exists ¢4 € (0,1) such that for any v € SM and x,y,2 € M with d(z,2z) > 1
and d(z,y) <1,

(2.20) Gy (y,2) < Gy(z,2) < chGv(y,z).

Since d(x,y) = 1, by [1, Proposition 7], there is ¢5 € (0,1) (independent of
x,y) with

(2.21) cs < Gy(r,y) <cz 't

So, if ¢y < cqc5, then (2.17) holds true for z,y,z € M with d(z,z) > 1
and d(z,y) = 1. Now, for z,z € M with d(x,z) > 1, choose a sequence of
points z;,1 < 7 < n, on the geodesic segment v, , with z¢p = z,2, = 2,
d(zi,wi41) = 1,0 =0,--- ,n—2, and d(z,_1,2) € [1,2). Applying (2.17)
successively for x;, z;y1, 2z, we obtain

Gy(x,2) = Gy(Tn_1,2)(cocs)" ™t = eqcs(cocs)" 1 > eacs(coes) MY,

where, to derive the second inequality, we use (2.20) and the fact that the
lower bound of (2.21) holds for any =,y € M with d(x,y) < 1. The lower
bound estimation of (2.19) follows for ¢a = c4c5 and @y = —In¢ges. O

We may assume the constants ¢z, c3 in Lemma 2.12 are such that c; is
smaller than 1 and ¢3 = ¢; *. For each v € SM, z,z € M, let

—In(c2Gy(x,2)), ifd(z,z)>1;
—Inc,, otherwise.

Although dg, is always greater than the positive number min{as, —Inca}
by (2.19), we still call it a ‘Green metric’ for L, (after [6] for the hyperbolic
groups case) since it satisfies an almost triangle inequality in the following

sense.
LEMMA 2.13. — There exists a constant c¢s € (0,1) such that for all

z,y,z € M,

(2.22) da,(z,2) < dg,(z,y) + da, (y, 2) — Ince.

Proof. — If d(z, z) < 1, then (2.22) holds for ¢g = co. If 2, y, z have mu-
tual distances greater than 1, then (2.22) holds for ¢ = ¢y by Lemma 2.10.
If d(x,z) > 1 and d(y, z) < 1, using the classical Harnack inequality (2.20),
we have

Gv(z, 2) = cuGy(z,y)
and hence (2.22) holds with ¢ = ¢4 if, furthermore, d(z,y) > 1 or with
cg = cqcs otherwise. The case that d(x,z) > 1, d(z,y) < 1 can be treated
similarly. O
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By Lemma 2.12, dg, is comparable to the metric d for any z,z € M
with d(z,z) > 1:

(2.23) aszd(z,z) < dg,(,2) < agd(z,z) — 2Inc,.

Using Lemma 2.11, we can further obtain that dg, is almost additive along
the geodesics.

LEMMA 2.14. — Let £ and G be as in Lemma 2.10. There exists a
constant c¢; such that for any v € SM, any x,z € M and y in the geodesic
segment vy, , connecting x and z,

(2.24) lda, (z,y) + dg, (y, 2) — dg, (z,2)| < —lner.

Proof. — Let z,z € M and y belong to the geodesic segment 7, .. If
d(z,y),d(y, z) <1, then d(z, z) < 2 and, using (2.23), we obtain (2.24) with
cr = cde 22 Ifd(z,y) < land d(y,2) > 1 (or d(y, z) < 1 and d(z,y) > 1),
using Harnack’s inequality (2.20), we have (2.24) with ¢; = ¢ycy. Finally, if
x,vy, z have mutual distances greater than 1, we have by Lemma 2.10 and

Lemma 2.11 (where we can use Harnack’s inequality to replace Gy (z,x1)
in (2.18) by ¢; "Gy (x,z0)) that

In Gy(z,y) + InGy(y, 2) — In Gy(x, z)| < —In(creq)
and consequently,
lda, (z,y) + da, (y, 2) — da, (z,2)| < —In(cicacs). O
More is true, as we can see from Lemma 2.11 and Lemma 2.13 as well.

LEMMA 2.15. — Let £ and G be as in Lemma 2.10. There exists a
constant cg such that for any v.€ SM, if x,y,z € M are such that x and
z are separated by some cone I' with vertex y and angle and T'1, the

1-shifted cone of ', i.e., x € M\I‘, z €T'y, then
‘de (%y) + de(y7 Z) - de(xvz)| < _1n08'

s
2

The counterpart of the Busemann function for the analysis of the path-
wise limits for stochastic entropy is the Poisson kernel function. Let v =
(z,€) € M x OM. A Poisson kernel function ky(-,n) of L, at n € OM is a

positive Ly-harmonic function on M such that

kv(2,n) = L ky(y,n) = O(Gy(x,y)), asy =1 #n.
A point n € OM is a Martin point of L, if it satisfies the following proper-
ties:

(i) there exists a Poisson kernel function &y (-,7) of Ly at n,
(ii) the Poisson kernel function is unique, and
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(iii) if y, — m, then In Gy (-, yn) — In Gy (x,yn) — Inky(-,n) uniformly
on compact sets.

Since (M, g) is negatively curved and L, is weakly coercive, every point 7
of the geometric boundary &M is a Martin point by Ancona ([1]). Hence
kv(-,m) is also called the Martin kernel function at 7.

The function kv (-, ) should be understood as a function on W?(v) for all
7, i.e. it is identified with ky(¢4(-),n), where ¢ : SM — M is the projection
map. In case £ = A, all the ky(-,7n)’s are the same as k,(-), the Martin
kernel function on M associated to A. In general, ky may vary from leaf
to leaf.

Finally, we can state the integral formula for the stochastic entropy.

PROPOSITION 2.16. — Let L = A +Y be such that Y*, the dual of Y
in the cotangent bundle to the stable foliation over SM, satisfies dY* =0
leafwisely and pr(—(X,Y)) > 0. Then we have

(2.25) he :/ IVInky(z,€)|? dm.
Mg xoM
(Since each ky(-,7n) is a function on W#(v), in particular, when n = ¢,
its gradient (for the lifted metric from M to W*(v)) is a tangent vector to
W#(v). We also observe that the classical formula (1.1) for the stochastic
entropy is obtained from Proposition 2.16 by considering the metric g* and
Y =0)

Proof. — For P-a.e. path w € €, we still denote w its projection to M
and write v := w(0). When ¢ goes to infinity, we see that
limsup [In Gy (z,w(t)) — Inky(w(t), &)| < +o0.
t—+o0
Indeed, let z; be the point on the geodesic ray ()¢ closest to x. Then, as
t — +o0,

(2.26) Go(z,w(t)) = Gy(z, w(t)) < Cm

for all y on the geodesic going from w(t) to £, where < means up to some
multiplicative constant independent of ¢. The first < comes from Harnack
inequality using the fact that sup, d(z,z;) is finite P-almost everywhere.
(For P-a.e. w € Qp, n = limy_, 4 w(t) differs from ¢ and d(z, 2), as t —
400, tends to the distance between x and the geodesic asymptotic to £ and n
in opposite directions.) The second < comes from Ancona’s inequality ([1]).
Replace G (y, w(t))/Gv(y, 2¢) by its limit as y — £, which is &, ¢)(w(?),§),
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which is itself < ky (w(t), £) by Harnack inequality again. By (2.3), it follows
that, for P-a.e. w € 4,
) 1
tilgrnoo 5 Inky(w(t),£) = he.
Again, using the fact that the £-diffusion has leafwise infinitesimal gener-
ator A +Y and is ergodic, we obtain

. 1 ! 8
h[, — tl}gloo_;/o g(lnkv(w(s)vf)) dS

Il
g
I

P @) ks es).6) s

_ _/ (A +Y) (Inky)din

0xOM
- / |V inky ()| di.
Mo xaM

The last equality comes from the fact that the Martin kernel function
kyv(+, &) satisfies (A +Y)(ky(-,€)) =0. O

2.5. A Central limit theorem for the linear drift and the
stochastic entropy

With the help of the Busemann function and the Martin kernel function,
we can further describe the distributions of the pathwise limits for time
large. In this subsection, we recall the Central Limit Theorems for ¢, and
h, and the ingredients of the proof that we will use later.

PROPOSITION 2.17 ([20]). — Let £L = A+Y be such that Y*, the dual
of Y in the cotangent bundle to the stable foliation over SM, satisfies
dY* = 0 leafwisely and pr(—(X,Y)) > 0. Then there are positive numbers

oo and oy such that the distributions of the variables
1 1
dyw (w(0),w(t)) —tly] and In G(w(0),w(t)) + th
7 w(0) (1)) — te] and — In G(0), (1)) + the]

are asymptotically close to the normal distribution when t goes to infinity.

The proof of the proposition relies on the contraction property of the
action of the diffusion process on a certain space of Holder continuous
functions. Let @ (¢ > 0) be the action of [0, +00) on continuous functions
f on SM which describes the L-diffusion, i.e.,

Qu(f)(.€) = / _ Flw.mp(t, (@.€), d(y, n)),

Mo xdM
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where fdenotes the G-invariant extension of f to SM. For ¢ > 0, define a

norm || - ||, on the space of continuous functions f on SM by letting
1l = sup |z, 8)] + sup (2, &1) — F(@, &) exp(e(&1]&)a),
x, ,61,82

where (£1|€2), is defined as in (2.16), and let H, be the Banach space
of continuous functions f on SM with ||f]|, < +oo. It was shown ([20,
Theorem 5.13]) that for sufficiently small ¢ > 0, as t — oo, Q; converges to
the mapping f — [ f dm exponentially in ¢ for f € H,. As a consequence,
one concludes that for any f € H, with [ f dm =0, u = — O+Oo Qi f dt, is,
up to an additive constant function, the unique element in H, which solves
Lu = f ([20, Corollary 5.14]). Applying this property to b, and ky(:,&),
where we observe that both v — Aby, and v — Vinky (-, £) are G-invariant
and descend to Holder continuous functions on SM (see [3, 23] and [19],
respectively), we obtain two Holder continuous functions ug,u; on SM (or
on My x 8/]\2) such that

L(ug) = — (Div(X) + (¥, X)) + / _(Ov(X) + (1 X)) dia
= — (Div(X) + (Y, X)) — £z, by (2.15), and
L) = [[VInky(, )| - / IV Inke(- 0| din

= [Vinky (- &)|* = he, by (2.25),

where we continue to denote ug and wuq their G-invariant extensions to
SM. For each w € Q. belonging to a stable leaf of SM, we also de-
note w its projection to M. Then for f = —by + ug (or Inky (-, &) + u1),
flw(®)— f(w(0))— fot (Lf)(w(s)) ds is a martingale with increasing process
2|V f|I?(w(t)) dt. In other words, we have the following.

PROPOSITION 2.18 (cf. [31, Corollary 3]). — For any v = (z,§), the
process (ZY)cr, with w(0) = v [respectively, (Z})ier, with w(0) = v],
Z} = b0y (w(1)) + tle + uo(w(t)) — uo(w(0))
[respectively, Z{ :=Inky(w(t),&) + the +uy(w(t)) — ui(w(0))]
is a martingale with increasing process
2||X + Vug|*(w(t)) dt [respectively, 2|V Inky(-, &) + Vuy||*(w(t)) dt].
The last ingredient in the proof of Proposition 2.17 is a Central Limit

Theorem for martingales. See [18, Theorem 3.2] for the discrete case. The
arguments for the extension to the continuous case are for example in [22].
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LEMMA 2.19. — Let M = (My);>0 be a continuous, square-integrable
centered martingale with respect to an increasing filtration (§¢)i>0 of a
probability space, with stationary increments. Assume that My = 0 and

)-o

for some real number o2, where (M, M), denotes the quadratic variation of

M;. Then the laws of M,/ Vit converge in distribution to a centered normal

law with variance o2.

1
;(M,M)t—UQ

t—+4o00

(2.27) lim E (

Now we see that both Z? and Z;} are continuous and square integrable.
The respective average variances converge to, respectively, 02 and 0%, where

=2 X+ Vul am,
M,

0XdM

2
01

2/ |IVInky(+, &) + Vug ||* dm.
M

0XOM

By Proposition 2.3, the £-diffusion system is mixing, (2.27) holds for Z?
and Z! with ¢ = o( or oy, respectively. Hence both (1/(c0v/#))Z? and
(1/(o1V/t))Z} will converge to the normal distribution as ¢ tends to infinity.
Note that in the proof of Propositions 2.9 and 2.16 we have shown that for
P-a.e. w € Qy, by(w(t)) — dw(w(0),w(t)) converges to a finite number and
that

limsup | In Gy (w(0), w(t)) — Inky (w(?),&)| < +o0.

t——+oo
As a consequence, we see from Proposition 2.18 that the random variables
(1/(c0v1)) [dw(w(0), w(t)) — tle] and (1/(09v/t))ZY (vespectively, the ran-
dom variables (1/(o1v/)) [In G(w(0),w(t)) + the] and (1/(01v/1))Z}) have
the same asymptotical distribution, which is normal, when ¢ goes to infinity.

2.6. Construction of the diffusion processes

So far, we know that both the linear drift and the stochastic entropy
are quantities concerning the average behavior of diffusions and they can
be evaluated along typical paths. To see how they vary when we change
the generators of the diffusions from £ to £ + Z (which also fulfills the
requirement of Proposition 2.9 (or Proposition 2.16)), our very first step
is to understand the change of distributions of the corresponding diffusion
processes on the path spaces. For this, we use techniques of stochastic
differential equation (SDE) to construct on the same probability space all
the diffusion processes.
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We begin with the general theories of SDE on a smooth manifold N. Let
X1, -+ ,Xq,V be bounded C! vector fields on a C® Riemannian manifold
(N, {-,)). Let By = (B}, -+, B%) be a real d-dimensional Brownian mo-
tion on a probability space (0,F,F;, Q) with generator A. An N-valued
semimartingale x = (x;)¢cr, defined up to a stopping time 7 is said to be
a solution of the following Stratonovich SDE

d
(2.28) dx¢ = Xi(x;) 0 dBj + V(x) dt

i=1

up to 7 if for all f € C*(N),

t d t
fox) = fxa) + [ Y Xif(x)odBit [ Vi) ds 0<t <
0= 0
Call a second order differential operator A the generator of x if

t
f(xt)ff(xo)f/o Af(xs)ds, 0<t <,

is a local martingale for all f € C*°(IN). It is known (cf. [24]) that (2.28)
has a unique solution with a Hérmander type second order elliptic operator

generator
d
A=) X4V
i=1
If Xq,---, X4,V are such that the corresponding A is the Laplace operator

on N, then the solution of the SDE (2.28) generates the Brownian motion
on N. However, there is no general way of obtaining such a collection of
vector fields on a general Riemannian manifold.

To obtain the Brownian motion (x¢)icr, on N, we adopt the Eells-
Elworthy—Malliavin approach (cf. [10]) by constructing a canonical diffusion
on the frame bundle O(N). Let TO(N) be the tangent space of O(IN).
For x € N and w € O4(N), an element u € Ty, O(N) is vertical if its
projection on T, N vanishes. The canonical connection associated with the
metric defines a horizontal complement, identified with 7, IN. For a vector
v € T, N, H,, the horizontal lift of v to T O(IN), describes the infinitesimal
parallel transport of the frame w in the direction of v.

Suppose N has dimension m. Let B; = (B}, - - - , B/*) be a m-dimensional
Brownian motion on a probability space (0, F, F;, Q) with generator A.
Let {e;} be the standard orthonormal basis on R™. Then, we consider the
canonical diffusion on the orthonormal bundle O(N) given by the solution
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w; of the Stratonovich SDE

dw, = Y H;(w;) o dBj,
=1
Wo = W,

where H;(w;) is the horizontal lift of wye; to T\, O(IN). The Brownian
motion x = (X;);er, can be obtained as the projection on N of w; for any
choice of wq which projects to xo. We can regard x(-) as a measurable map
from © to Cx, (R4, N), the space of continuous functions p from Ry to N
with p(0) = xg. So
P:=Qkx 1)
gives the probability distribution of the Brownian motion paths in Q. For
any 7 € Ry, let Cx,([0,7],N) denote the space of continuous functions p
from [0, 7] to N with p(0) = x¢. Then x also induces a measurable map
X[0,7] © © = Cx, ([0, 7], N) which sends w to (x¢(w))¢cjo,-]- We see that
P, = Qxg.,)

describes the distribution probability of the Brownian motion paths on N
up to time 7.

More generally, we can obtain in the same way, and on the same prob-
ability space, a diffusion with generator A + Vi, where V; is a bounded

C! vector field on N. We denote by V' the horizontal lift of V; in O(IN).
Consider the Stratonovich SDE on O(N)

du; = ZHi(ut) odB} +Vi(uy) dt,
i=1
Uup = u.
Then, the diffusion process y = (y¢)ter, on N with infinitesimal generator
AN + V7 can be obtained as the projection on N of the solution u; for
any choice of uy which projects to yo. We call u; the horizontal lift of y;.
Let P! be the distribution of y in Cy, (R4, N) and let PL (7 € Ry) be the
distribution of (y¢(w))¢ejo,-] in Cy, ([0, 7], N), respectively. Then

P'=Q( "), Bl=Qygh)

We now express the relation between PL and P,, as described by the
Girsanov-Cameron-Martin formula. Let M} be the random process on R

satisfying M(l) = 1 and the Stratonovich SDE
? 1
+ Div <2V1 (xt)>> .

1 1
dMj = Mt1<2v1(xt),wt o dBt> - M; <H2V1(xt)
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Then

M! = exp {/Ot <;V1(xs(w))’ws(w) o st(w)>x5

) /0 (H;V1<x5<w)> 2+DiV(§V1(X5(°””>> ds}'

In the more familiar Ito’s stochastic integral form, we have

1
dM; = 3 M} (Vi(x;), w,dBy)x,

and
(2.29)

M= e {3 [ 0 we@iB @), — 1 [ Vi@l a5}

Since each Eg (exp{% fg V1 (xs(w))]? ds}) is finite, we have by Novikov
([41]), that M}, ¢ > 0, is a continuous (F;)-martingale, i.e.,

Eg (M%) =1 foreveryt >0,

where Eq is the expectation of a random variable with respect to Q. For
7 € Ry, let QL be the probability on ©, which is absolutely continuous
with respect to Q with

dQ;

dQ
Note that Mi is a martingale, so that the projection of Q! on the coordi-
nates up to 7/ < 7 is given by the same formula. A version of the Girsanov
theorem (cf. [10, Theorem 11B]) says that ((y:):e[o,-], Q) is isonomous to
((xt)tefo,r5 Q1) in the sense that for any finite numbers 71, -+ , 75 € [0, 7],

(The coeflicients in (2.29) differ from the ones in [10] because B; has gen-
erator A.) Let Q' be the probability on © associated with {Q}},cr, .
Then (2.30) intuitively means that by changing the measure Q on © to
Q!, x has the same distribution as (y, Q). As a consequence, we have
Pl = QL(x™!) for all 7 € Ry and hence

dP!

ﬁ (X[oy,,-]) = EQ (M,lr ‘]:(X[O,'r])) , a.S.,

where Eq(-|-) is the conditional expectation with respect to Q and F(xjo ;1)
is the smallest o-algebra on © for which the map x| ;] is measurable.

(w) = M7 (w).
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Let Va be another bounded C' vector field on N. Consider the diffu-
sion process z = (z;)ier, on N with the same initial point as y, but with
infinitesimal generator An + Vi + Va. Let P? be the distribution of z in
the space of continuous paths on N and let P2(7 € R, ) be the distribu-
tion of (z¢(w)):e0,r)- The Girsanov—Cameron-Martin formula on manifolds
(cf. [10, Theorem 11C]) says that P2 is absolutely continuous with respect
to PL with

2
(2'31) %(Y[o,r]) = E@ (M72' |]:(y[0,'r])> y .8,

where
M) = ep{ 5 [ @) @B @)y, - ] [ VeI ds)

and F(yo,r)) is the smallest o-algebra on © for which the map ypo - is
measurable.

3. Regularity of the linear drift and the stochastic entropy
for A+Y

Consider a one-parameter family of variations {£* = A +Y + Z* :
IA\| < 1} of £ with Z° = 0 and Z* twice differentiable in A\ so that
SUpe(—1,1) max{|| % Il, d;f; |} is finite. Assume each £* is subordinate to
the stable foliation, Y+ 2 is such that (Y +2*)*, the dual of (Y +Z?) in the
cotangent bundle to the stable foliation over SM, satisfies d(Y + Z*)* = 0
leafwisely and pr(—(X,Y + Z*)) > 0. Then each £* has a unique har-
monic measure. Hence the linear drift for £*, denoted £y := £, and the
stochastic entropy for £, denoted hy := hx, are well-defined. In this sec-
tion, we show the differentiability of £5 and k) in A at 0 (Theorem 3.3 and
Theorem 3.9).

Consider the diffusion process of the stable foliation of .S M corresponding
to L* (A € (=1,1)). Let By = (B},--- , B) be an m-dimensional Brownian
motion on a probability space (©,F, F;,Q) with generator A. For each
v = (z,§) € SM, W*(v) can be identified with M x {¢}, or simply M. So
for each A € (—1,1), there exists the diffusion process yg = (y4,)tcr, on
W$(v) starting from v with infinitesimal generator £3. Each yJ induces
a measurable map from © to Cy (R, W#(v)) C Q4 and @i\ = Q((yé)_l)
gives the distribution probability of y3 in Cy (R, W#(v)). For any 7 € R,
let ﬁiﬁ be the distribution of (y3 )iejo,r) in Cv([0,7], W*(v)). We have by
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=X
the Girsanov-Cameron-Martin formula on manifolds (2.31) that P,  is

absolutely continuous with respect to Py . with
=X

dIPv T A

(3.1) — (¥ 0.1) = Eq (MT|}—(y3,[0,~r])) ; as.,
dIPV,T

where

—A

M (w) =

1TAOoJuow wo—lTAOWQS
a3 [(@ 0 @B - 1 [ 1268 I s ),

uy , is the horizontal lift of y§ , to O(W*(v)) and F(y? [0,-]) is the smallest

o-algebra on © for which the map y? is measurable.

0,7
For each A € (—1,1), let m* be th[e u}nique L*-harmonic measure and
M be its G-invariant extension to SM. We see that P = f@i dm? (v)
is the shift invariant measure on §~2+ corresponding to m* and we restrict
P to Q. Consider the space ©® = SM x © with product o-algebra and
probability @)\, d@/\(v,g) = dQ(w) x dm*(v). Let y} : SM x © — SM
be such that
(3:2) Vi (v,w) =y (@), for (v,w) € SM x ©.

Then y* = (y))ier . defines a random process on the probability space

(e, @)\) with images in the space of continuous paths on the stable leaves
of SM.

Simply write y; = y{ and let u; be such that u,(v,w) = uf ,(w) for
(v,w) € ©. Denot((e) by (Z*)} := (dZ*/d)\)|x=0. We consider three random
variables on (0,Q ):

1t
g A CR AR AR

Z?,t = [dW(YO7Yt) - t‘gﬁo] )
Z) = — [Ldyoyn =1} - I G(yo,y¢) + theo]

where 1 is the characteristic function of the event E. We will prove the
following two Propositions separately in Sections 3.1 and 3.2.

(3.3)

PROPOSITION 3.1. — The laws of the random vectors (Z3 ,/v/t, M /V/t)

—0 . Lo . . .
under Q  converge in distribution as t tends to +o0o to a bivariate centered
normal law with some covariance matrix ¥,. The covariance matrices of

(Z%t/\/i, MY /\/t) under @0 converge to .
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PROPOSITION 3.2. — The laws of the random vectors (Zj, ,/v/t, M} /V/t)

=0 . .. . . .
under Q  converge in distribution as t tends to +o0o to a bivariate centered
normal law with some covariance matrix Y. The covariance matrices of

(Z?m/\/f7 MY /+/t) under @O converge to ¥j,.

3.1. The differential of the linear drift

For any A € (—1,1), let £5 be the linear drift of £*. The main result of
this subsection is the following.

THEOREM 3.3. — The function A — £y is differentiable at 0 with
T
D azo = o lm 7 Bae (Ze, M),

We fix a fundamental domain M, of M and identify Q4 with the lift
of its elements in €}, starting from Mj. In the following two subsections,
we restrict the probabilities on Q4 to Q4. For any 7 € R, recall that

P, _ is the distribution of (yo.0)teo,r) in Cy([0, 7], W#(v)). By an abuse of

v, T

. =A
notation, we can also regard P, . as a measure on {2, whose value only

depends on (w(t))sepo,r) for w = (w(t))ter, € Q4. Let @;\ = f@i,t dm?*(v).
Then )
B= Jim LB (dn((0).00)

t——+o0
We will prove Theorem 3.3 in two steps. Firstly, using negative curvature,
we find a finite number Dy such that for all A € [—d7, 1] (where §; is from
Lemma 3.4) and all £ > 0,

(34) |]E@/\ (dw(w(O),w(t))) - tZ)\| g D@.

In particular, for ¢t = A72,

‘AEPA (dw (w(0),w(A7?))) — 1@ < ADy.

A
Thanks to (3.4), the study of (dfy/d\)|x=0 reduces to the study of

lim (/\EPA (dy (w(0), w(A~2))) — ieo> .

A—0

Setting \ = il/\/f, the second step is to show

. t . ]- 0 —A\
(35) i (0 = 1 B (28,50,
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where

1 _
D)} i=Ex [ —= (dyw(w(0),w(t)) — € )
)= By (= (lwl0).(0) — o)
Using notations from the previous subsection, we know d@? / d@? is given
by MZ\ Each E\ is a random perturbation of the distribution P, on the
path space and at the scale of A = 1/v/¢, M? converge in distribution

MO 40 (M°)?)

—A
to as t goes to infinity. Consequently, %th - M, con-

verge in distribution to Z?eMU?éE@O((MO)Q), which can be identified with
limt_>+oo(1/t)E@o(Z2tM?) using Proposition 3.1 (see Lemma 3.8).

We therefore follow the above discussion and prove (3.4) and (3.5). Let
us first show that there is a finite number D, such that for all A € [—d7, 1]
and all ¢ > 0,

|Eos (dyw(@(0),w(t))) — 2] < De.

Since the £*-diffusion has leafwise infinitesimal generator £ and P* is
stationary, we have

E@A (bw(O) (w(t))) = ]Eﬁx (/0 %bw(o) (w(s)) ds)

B (2 o) ((5)) is)

t / _L3by dm*
M,

0XOM

= tly.
So, proving (3.4) reduces to showing that for all A € [—d1,01] and all ¢ > 0,
(3.6) Exn (| dw (w(0), () = buoy (w(t))]) < Dy,

which intuitively means that for all A, v, the £3-diffusion orbits w(t) does
not accumulates to the point & € M such that w(0) = v = (z,£). For
w € N4, we still denote w its projection to M. Then the leafwise distance
dy (w(0),w(t)) in (3.6) is just d(w(0),w(t)).

We first take a look at the distribution of w(oo) := lims_ 40 w(s) on
the boundary. Let x € M be a reference point and let ¢« > 0 be a positive
number. Define

di(C,m) = exp (—u(C|n)e), V¢ m € OM,
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where ({|n), is defined as in (2.16). If ¢ is small, each d. (-, ) (z € M,
t € (0,1p)) defines a distance on dM ([14]), the so-called ¢-Busemann dis-
tance, which is related to the Busemann functions since

by(y) = Cljgé ((CIn)y — (C|n)2), for any v = (z,€) € SM,y € M.

The following shadow lemma ([38, Lemma 2.14], see also [42]) says that
the £ -harmonic measure has a positive dimension on the boundary in a
uniform way.

LEMMA 3.4. — There are Dy, 01, 1,11 > 0 such that for all A € [—61, 41],
allve SM and all ( € OM, t > 0,

ﬁ‘); (dbzl (Caw(OO)) < eft) < Dlefozlt7
where we identify w(s) with its projection on M.

As a consequence, we see that for @A—almost all orbits w € Q4 the
distance between w(s) and 7,(0)w(sc), the geodesic connecting w(0) and
w(00), is bounded in the following sense.

LEMMA 3.5. — There exists a finite number Do such that for all A €
[—01,01] (where 07 is as in Lemma 3.4) and s € R,

EﬁA (d(w(s)vl‘/w(o),w(oo))) < Ds.

7A 9
Proof. — Extend P~ to a shift invariant probability measure P* on the
set of trajectories from R to SM, by

P o [ B ) dmw),
S M

where (@/)(\, is the probability describing the reversed £2-diffusion starting
from v. Then we have by invariance of P* that

(3.7) Ep (d(w(8); Yus(0).w(o0)))
= EE’J% (d(w(o)vvw(—s),w(oo)»

= [ (@0 00) U @IE R @) ).

Fix w(—s) = z at distance D from z, and let ¢ € OM be limy_, 4 o Va2 (1)
We estimate

/ A2, 7z w(00)) AP () = /

0

+oo _a
Pv(d(x,yz’w(oo)) > t) dt.

ANNALES DE L’INSTITUT FOURIER



DIFFERENTIATING THE STOCHASTIC ENTROPY 1151

For t > D, it is clear that @f\,(d(a:,’yz’w(oo)) > t) = 0. For t < D, if
d(Z, 7z ,w(00)) > t, then dif ((,w(o0)) < Ce~t for some constant C' and
hence we have by Lemma 3.4 that

PL(d(, 72 0(00)) > t) < CDje 1t

Therefore,

D
[ ) @) < [ D1
1
D
< D1 —arin g = Ds.
il

Using (3.7), we obtain that B (d(w(s),’yw(o)w(oo))) is bounded by D5 as
well. O

Now, using Lemmas 3.4 and 3.5, we prove in Lemma 3.6 that there
is a bounded square integrable difference between dy(w(0),w(s)) and
bu(0y(w(s)) for all s (cf. [37, Lemma 3.4]). This Lemma 3.6 implies (3.6)
and therefore concludes the proof of (3.4).

LEMMA 3.6. — There exists a finite number D3 such that for all A €
[—d1,01] (where &1 is as in Lemma 3.4) and s € R,

Exn (Jdw (@(0),0(5)) = bugo @(s))[*) < Ds.

Proof. — It is clear that
Eor (Jiw((0),(5)) ~ b @)[*) =1 [ (w(5)]¢)2 dEYe)dm’ v),

where w(0) = v = (z,€) and (w(s)|§)w = limy e (w(s)|y)w (see (2.16) for

the definition of (z|y), for x,y,z € M). So, it suffices to estimate

+o0 Foo
/ B ((w(s)] £)2 > 1) dt = / B ((w(s)|)e > V) dt.
0 0

For each ¢t > 0, divide the event {w € Qf : (w(s)[¢). > Vt} into two
sub-events

Ai(t) = {w € Qp : (W(9)[Ea > VA, (W(s)|w(0))s > i\/i},

Ax(t) = {w e (w()]6)a > VE, (W(8)|w(00)s < i\/i}.

. =A . . . .
We estimate P, (A;(t)), i = 1,2, successively. Since M is a closed connected
negatively curved Riemannian manifold, its universal cover M is Gromov
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hyperbolic in the sense that there exists 0 > 0 such that for any z1, 2o, z3 €
M,
(z1|22), = min{(z1|x3)z, (x2|x3)s} — 0.
So on each A (t), where t > 6462, we have
1

(€l (o)) > VI

Hence, by Lemma 3.4,

=X =X 1 =X

PL(A1(1) < P((€]w(o0))s > SvA) = Bl(d (w(00), ) < e 2vF)

< Dlefénozn/f7
where the last quantity is integrable with respect to ¢, independent of s.
For w € Ay(t),
dy (w(0),w(s)) = (w(s)]€)e > V.

On the other hand, the point y(s) on 7,(0),w(c) closest to w(s) satisfies

(wls)[9(5))e < (@(s)|0(00)e < 7V
So we must have .
d(w(s)v’)/w(()),w(oo)) > 5\/%

Hence,

< — 1
7B a0 de < [ B (d06) ) > 5VE) dt dind(v),

which, by the same argument as the one used in the proof of Lemma 3.5,
is bounded from above by some constant independent of s. |

To show lim; o (I); = limt_,+oo(1/t)E@o(Z8’tM?), we first prove
Proposition 3.1.

Proof of Proposition 3.1. — Let (y¢)ier, = (y"’t)vesﬂ,teﬂh as in (3.2)
be the £° diffusion process on stable foliations of SM. Define F; to be
the o-algebra on Q. generated by {@(ys);0 < s < t}, where @ is the
projection map from SM into the stable leaves of SM. Let (Zto)teR+, U
be as in Proposition 2.18. The process (Z?) is a centered (F;)-martingale

. . . o . =0
with stationary increments under P~ and it has the same law as (Z; )¢ecr,

—0
under Q ', where

Z, (v,w) = —by (yv,e (@) + tho + to(yv,i(w))) — uo(v).

Let (u;)ser, be the companion O(M)—valued diffusion of (y¢)¢cr, and let
G the o-algebra on C(R, O(M) x SM) generated by {(us,ys);0 < s < t}.
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The process MY in (3.3) is a (G;)-martingale. It is the differential process

of Mi in (3.1) in A evaluated at A = 0. Consider its conditional expectation
=0 ~
M, = Eg5 (M?|F(@(y0,))) -

where F(@(yjo,q)) is the smallest o-algebra on © for which the map
@ (¥[0,4) is measurable. Then the process M? is a centered (Fy)-martingale
on (Q+,@O) with stationary increments.

We will show (—Z9/v/1, M? /+/t) under P’ converge in distribution as
t tends to +o0o0 to a bivariate centered normal law with some covariance
matrix ¥, and the covariance matrices also converge to ¥,. Then Proposi-
tion 3.1 will follow by showing (Z9,/v't, M{/V/t) under Q" has the same
limit normal law as (fZ?/\/f,MS/\/E) under B'.

The pair (fZg,M?) is a centered martingale on (Q+,FO) with station-
ary increments. To show (—Z9/v/, M? /+/t) converge in distribution to a
bivariate centered normal vector, it suffices to show for any (a,b) € R?, the
combination —aZ?/\/t + bﬁ?/ V/t converge to a centered normal distribu-
tion. The martingales Z? and M, on (Q+,@0) have integrable increasing
process functions 2||X + Vug||? and [|(Z*)}||?, respectively. Using Schwarz
inequality, we conclude that —aZ? + bﬁ? also has an integrable increasing
process function. By Lemma 2.19, —aZ?/ \/i+bﬁf /v/t converge in distribu-
tion in P’ to a centered normal law with variance Yyla,b] = (a,b)(a,b)T
for some matrix ¥,. Since both Z? and M(t) have stationary increments, we
also have

1 —
Tela,b] = 7 Epo [(—aZ{ + bM))?], for all t € R

The condition (2.27) in Lemma 2.19 is satisfied since the increasing process
(—aZ® + bﬁ?,—azp + bﬁ9>n is a Birkhoff sum of a square integrable
function over a mixing system (Proposition 2.3). This shows Proposition 3.1
for the pair (—Z9/v/%, MS/\/Z) instead of the pair (Zg)t/\/f, MY/ V).

Recall that P-a.c. w € Q4 is such that by ) (w(t)) — dw(w(0),w(t))
converges to a finite number. Moreover, we have by Lemma 3.6 that

sup Ego (’th —i—f?’Q) < +00
t

and hence

1 —
E@o <t|Z2’t + Z?|2> — 0, as t — +oo0.
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Consequently, the pair (Z(Z,t /v, MY /4/t) under @0 has the same limit nor-
mal law as the pair (—Z9/v/1, M(t) /+/t) under P’ and its covariance matrix
under Q converges to ¥, as t goes to infinity as well. O

We state one more lemma from [5] on the limit of the expectations of a
class of random variables on a common probability space which converge
in distribution.

LeMMA 3.7 (cf. [5, Theorem 25.12]). — If the random variables X;
(t € R) on a common probability space converge to X in distribution,
and there exists some q > 1 such that sup, E, (|X¢|7) < +oo, then X is
integrable and

lim E, (X;) =E, (X).

t——+oo

By the above discussion, Theorem 3.3 follows from
LEMMA 3.8. — We have

1
lim (I), = lim (t)%(,(zgtmg).

t—+oo t—+4oo

Proof. — Let y = (y¢)ter, = (¥v,t)vesm,er, be the diffusion process
— —A
on (@,QO) corresponding to £°. We know from Section 2.6 that Py is

. . =0 .
absolutely continuous with respect to P, , with

4P
v,t _ —A
dIP’ (yV,[o t]) =Eq (Mt |]:(YV,[O,t])) )
where
—A
M; (w) =

oo{y [ 12 st @B Dy~ 1 [ 17 ) s .

Consequently we have

lim (1)) = lim B [ — (dw(w(0),w(t)) — tlo) dP““)”
t—+4o00 £ t—too T \/i ’ 0 dIF) o).t

t
= tilinoo Ego ( (dw(yo,yt) — tlo) '6(11)‘) ;

Sl=

where

;=5 [P wv By -1 [ 12200 s
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Let Z" be such that Z* = ANZMo+ A2Z". We calculate for A = 1/+/t that

m = 5 Y s [ (@ vy, — 4 [ 1R s

v <Z*<ys> w.dB,)y,

1 t — 1 LAY
—( - [ (@002 . ds+ g [ 12501 ds)
2t2 0 4t 0
1 1
e Love )+ g+ v,

R
where both (III)Z and (IV)Z converge almost surely to zero as ¢ goes to

—
infinity. Therefore, by Proposition 3.1, the variables %Zg,t - M, converge

—4Eg((M°)?)

in distribution to Z0 M?
variable with covariance matrix X,.
Indeed, to justify

, where (Z9,M") is a bivariate normal

1 — _1
lim (I)z = lim E— O(\/zzg,t . M?) :E@o (ZO M° 1E 0((M0) )),

t——+oo to+oo Q

we have by Lemma 3.7 that it suffices to show for ¢ = %,

/\q
)<+oo.

supIE <‘\[Z“ ;

By Holder’s inequality, we calculate that
A\ 1 3
)\ 2 t
< (‘ \[th )) < (EQO (t |Z27t| >) ~]E@0 (eG(IV)I/,)

=: (V); - (VI);,
where (V)z is uniformly bounded in ¢ by Proposition 3.1. For (VI)Z7 we use
the Girsanov—Cameron—Martin formula to conclude that

(VI); = Ego (exp {3 /0 t<ZA(ys(v, w)), s (v, w)dBs)y, (v.w)

-2 (120wl as))
< 55 (e {2 [ 120w as})
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for some probability measure Q on ©. Using again Z* = A(Z})) + ez
and that A\ = 1/v/t, we see that

t 2 i 2 t .
[ 12wl ds <3 [ 1@l ds+ 5 [ 12 as,
0 0 0

where the quantities on the right hand side of the inequality are uniformly
bounded in ¢. So (VI)Z is uniformly bounded in ¢t > 1 as well. Now, (3.5)
holds. The calculation is the same with A = —1/v/%.

Finally, since (Z9,M°) has a bivariate normal distribution, we have(®

0 042
o (150 O7) s i

which is lim;—, 4 oo (1/1) E@o(thM?) by Proposition 3.1. O

3.2. The differential of the stochastic entropy

For any A € (—1,1), let hy be the entropy of £*. In this subsection, we
establish the following formula for (dhy/d\)|x=o-

THEOREM 3.9. — The function A — hy is differentiable at 0 with
B oo = i 7 B ZhM)

Since ¢;,0 < ¢ < 8, and a9, az of Lemmas 2.10-2.15 depend only on the
geometry of M and the coefficients of L, we may assume the constants are
such that these lemmas hold true for every couple £*, G* with A € (—1,1).

For each A € (—1,1), by Lemma 2.22 and the Subadditive Ergodic The-

— —A
orem we obtain a constant hy o such that for P"-a.e. w € O,

1 _
lim 7 In G2 (w(0),w(t)) = hyxo, where v =w(0).

t—+oo

—\ —
For P"-a.e. w € €4, since w(t) converges to a point in OM as t tends to
infinity, we also have

(3.8) lim ~deg (w(0), w(t)) = Fox.

t—+oo t

(3) We leave the proof of the equality as an exercise. Let the couple (z, y) have a bivariate
centered normal distribution. By diagonalizing the covariance matrix, we may assume
that

z = cosfX —sinfY
y = sinfX + cos @Y,

where X and Y are independent centered normal distributions with variance o2 and 72
respectively. Then by independence, all Ezy, Ey? and Exze¥ are easy to compute and one

finds Exy = ]E(J:ey*]EyQ/z).
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The equation (3.8) continues to hold if we replace the pathwise limit by its

—X
expectation. Actually, since P” is a probability on €, using (2.23), we see
that

tefo,1]

Ez ( sup [dcg(w(0)7w(t))]2>

< 204%1%; (tzl[épl][dw(w(O),w(t))F) + 8(Incz)? < +o0.

So, using (2.22), we have by the Subadditive Ergodic Theorem that for
Ae(-1,1),

.1
t—lg—noo ; %A (dGS (UJ(O), w(t))) = h)\’o.

The main strategy to prove Theorem 3.9 is to split (hy — hg)/ into two
terms:

1 — — 1 — — 1 — _
X(h)‘ —ho) = X(hx —hxo) + X(h,\,o — ho) =: (1)2 + (H)Q,

then show limy_.q (1)2 =0 and limy_,g (11)2 = limy 400 (1/%) E@o(Z%tMg)
successively. Since dgo behaves in the same way as a distance function, the
terms EA,O and hq are the ‘linear drifts’ of the diffusions with respect these
‘distances’ in distributions P and @0, respectively. Hence limy ¢ (H)Z can
be evaluated by following the evaluation of (dfy/d\)|[x=o in Section 3.1.
The new term (1)2 represents the contribution of the of change of Green
‘metric’ between GO and G3. It turns out that this contribution is of order

A2 for C! drift change of £°. Consequently, we have the following.

LEMMA 3.10.
lim (I); = 0.

A—0

Proof. — For each A € (—1,1), recall that by Proposition 2.4 we have
—X
for P"-a.e. w € Q4, w(0) =: v,

1
hy = lim —;lnp(\,(t,w(()),w(t))

t—4o00

1
(39) = tin_— [ (o) p(t20) dy

t——+oo

Similarly, by the same proof as for Proposition 2.4, we have that

(3.10) E)\,O = SiI;%{EA,O(S)};
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where for P'-a.e. w € Q4, w(0) =: v,

Tiro(s) = lim —%lnpg(st,w(O),w(t))

t—+o0

(3.11) = tim 1 [ (g (stn,0) P26 0) dy,

t——+oo

—A
Since we are considering the pathwise limit on p? with respect to P, the
infimum in (3.10) is not necessarily obtained at s = 1. But we still have
lim supy o, (1)2 < 0 since

T 7 . 1 Pyt y) \ o
ix —hao = lim —— [ (In 22290 A d
AR iﬂ%{t_iﬂo t/(nzﬁ(st,x,y) py{t2,) dy
1 [ p%(st,z,y)
< lim — [ 2 (¢ d
igg{t;got/ oy oY) dy

:O’

where we use —Ina < a~! — 1 for a > 0 to derive the second inequality.
To show lim inf_,o+ (1)2 > 0, we observe that by (3.9), (3.10) and (3.11),

(3.12) iy — hao = hy — hao(1)

1 1 pf‘,(t,m,y) A
_tiufoo_t/cnpS(t,x,y) py(h ) dy.

We proceed to estimate In(pd(t,=,y)/pl(t,=,y)) using the Girsanov—
Cameron—Martin formula in Section 2.6. For v,w € SM, let Qy w: be
the collection of w € Q4 such that w(0) = v,w(t) = w. Since the space
), is separable, the measure P* disintegrates into a class of conditional

probabilities {PJ on Qy w,’s such that

Wt }V,WGSM

dP? pl(t,v,w)
3.13 E —L) ="
( ) B wt (dP?) pr(t, v, w)

Letting v = (z,£),w = (y,£) in (3.13), we obtain

0 0 0
Dy (ta Zz, y) deAt de t
(3.14) M2 g (Bpn [ ) | >Een [In L.
pé (t7 Z, y) vt deA/,t Vot dPx)z\,t

Recall that
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. . . = =A
where y* = (Yé’t)veSM7teR+ is the diffusion process on (©, Q") correspond-
ing to £* and

M) = e {5 [ (202 @B @)y

1 t
-1 [ -2
0
So we can further deduce from (3.14) that

otz y)

In
py(t,z,y)

> Epa

v, w,t

1 t
(Ber (-5 [ @020 ud By,
1 t
-1 122020 as | 752 000))

1 t
B, (o (1 [ 1202010 | 702 0.))

1
S = 2
> - (0P,

where the equality holds true since fg(ZA (y9.5),u3 dBg)ys s a centered
martingale and C is some constant which bounds the norm of dZ*/d\.
Reporting this in (3.12) gives

. A . 1 - N 1 . 2
— - —_ > = U.
lirg(l)rif Dy li\rg(l)r}rf 3 (hx — hayp) = 1 h)\rri%lip()\C )=0

We prove in the same way (with switched arguments) that

lim (I)} = 0. 0
g (=0

The analysis of (11)2 is analogous to that was used for (dfy/d\)|x=o. We
first find a finite number Dj, such that for A € [—d1, 1] (where §; is from
Lemma 3.4) and all t € Ry,

(3.15) Bz (dag (w(0),w(t)) — thro| < Dh.
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Indeed, using again the fact that the £ -diffusion has leafwise infinitesimal
generator £ and P? is stationary, we have

0

ds

Epr (~nk((0,) = Ep (- | t
5 (- | LM A (w(s)) i)

/ L3 k%) dm*
M M

0XOM

(k2w (s). &) ds)

Il
|
~

= tﬁ)\70.
So (3.15) will be a simple consequence of the following lemma.

LEMMA 3.11. — There exists a finite number 133 such that for all A €
[—(51, (51] and t € R+,

En (}dcg(w(O),w(t)) +1nk3(w(t),§)|2) < Ds.

Proof. — For v = (x,§) € SM7 w € Q. starting from v, t > 0, we
continue to denote w its projection to M. Let z¢(w) be the point on the
geodesic ray 7, (¢),¢ closest to z. We will divide 2 into four events Aj(t),
1 <7 < 4, and show there exists a finite l~)g such that

L = Epn (|dog (@(0), w(®) + kS (@(0), )" - Laye ) < D

Let A/ (t) be the event that d(w(0),w(t)) > 1 and d(w(0), z¢(w)) < 1. For
w € A{(t), using Harnack’s inequality (2.20) and Lemma 2.14, we easily
specify the constant ratios involved in (2.26) and obtain Iy < (In(cacier))?.

Let A4 (t) be the collection of w such that d(w(0),w(t)) and d(w(0), z:(w))
are both greater than 1 and z;(w) # w(t). For such w, we first have by
Lemma 2.15 that
(3.16) |dgo (w(0),w(t)) — dgo (w(0), z¢(w)) — dgo (w(t), ze(w))| < —Incs.
For dgo (w(t), 2¢:(w)), it is true by Lemma 2.14 that

|dG3 (w(t), zt(w)) + In G?,(y, w(t)) —1n Gg(y, zt(w))| < —lney,

where y is an arbitrary point on 7, (¢ far away from z;(w). Then we use
Lemma 2.15 to replace In G2 (y, 2 (w)) by In G (y, w(0))—In G2 (2 (w), w(0)),
which, by letting y tend to £, gives

|deo (w(t), 2¢(w)) + In kY (w(t),€)| < —In(eres) + [In GY(w(0), 2¢(w))| -
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This, together with (3.16), further implies
|dgo (w(0), w(t)) + InkY(w(t),&)| < —In(cacrcd) + 2 [In GY(w(0), 2 (w))]
< —In(c5ered) + 2a0d(w(0), 2 (W)).

Since M is 5-Gromov hyperbolic for some ¢ > 0, it is true (cf. [26, Propo-
sition 2.1]) that

d(z,vy,2) < (y|2)e + 49, for any z,y, 2z € M.

Consequently, we have

(3.17) d(w(0), z;(w)) < (W(t)|€)w(o)+40 = % |[d(w(0),w(t)) — by (w(t))|+49.
Using Lemma 3.6, we finally obtain

I, <2 (820 — ln(cgcw%))2 +2a3Ds.

Let A%(t) be the collection of w such that d(w(0),w(t)) > 1 and z(w) =
w(t). Let 7:;(15),5 be the two sided extension of the geodesic v, ;)¢ and let
21(w) € Y4)¢ De the point closet to w(0). Then z{(w) = 2 (w) on v, ¢
For w € A4(t), using (2.20) if d(z;(w),w(t)) < 1 (or using Lemma 2.15,
otherwise), we see that

dag (w(0),w(t)) < deg (w(0), 21(w)) + day (21 (w), w(t)) — In(escs)

az (d(w(0), 2;(w)) + d(#(w),w(?))) — In(c3eacs)
3ad(w(0), Yu(r).e) — In(cieacs)

gag |d(w(0),w(t)) — by (w(t))] + 12026 — In(cyeacs),

//\

N

N

where we use (3.17) to derive the last inequality. Choose y € 7,,@),¢ With
d(w(0),y) and d(w(t),y) greater than 1. Similarly, using Lemma 2.15, and
then Lemma 2.14, we have

o S0
G («(0),9)
= |day (w(0),y) — dey (w(t), )|
< —Incg + |dag (W(0), z;(w)) + dag (2 (w), y) — dag (W (1), y)]
< — In(eres) + dag ((0), 24()) + dag (41 (w), ()
g |d(w(0),w(t)) — by (w(t))| + 12020 — In(cseres).

Letting y tend to £, we obtain

|ln kg(w(t),g)‘ < gag |d(w(0),w(t)) — by (w(t))| + 12a26 — In(cyercs).

<

| W

TOME 67 (2017), FASCICULE 3



1162 Francois LEDRAPPIER & Lin SHU

Thus, using Lemma 3.6 again, we obtain

I, < E ((3@2 1d(w(0), w(t)) — by (W(t))| + 2406 — 1n(c§c4c7c§))2)

< 18a3D5 +2 (2406 — ln(c§C4C7c§))2 .

Finally, let A)(t) be the event that d(w(0),w(t)) < 1. Then, by the
classical Harnack inequality (2.20), Iy < (—In(cacq))?. O
As before, (3.15) reduces the proof of Theorem 3.9 to showing
. t 1 0 nfO
i (1)

where

(3.18) (11D}, = B (;E (dag (w(0), w(t)) — th0)> .

The proof is completely parallel to the computation of lim;_, 4o (I)Z. We
prove Proposition 3.2 first.

Proof of Proposition 3.2. — Let (Fy)icr,, (MS)t€R+ be defined as in
the proof of Proposition 3.1. The process MS is a centered (F})-martingale

40
on (4,P") with stationary increments. Let (Z{)icr, , u1 be as in Propo-
sition 2.18. The process (Z;)icr, is also a centered (Fy)-martingale on

=0, . . . . =l
(24,P") with stationary increments and it has the same law as (Z; );er.

under @O, where
—1 —
Z,(v,w) =Inky (yv,t(w),&) +tho +ui (yv,e(w)) —u1 (v).

The pair (—Z%,M?) is a centered martingale on (Q.HFO) with station-
ary increments and integrable increasing process function. As before, it
follows that for (a,b) € R%, —aZ}//t + bﬁg /\/t converge in distribution
in P° to a centered normal law with variance Yhla,b] = (a,b)X4(a,b)T for
some matrix Yj,. Therefore, (—Z}/v/t, MS /\/t) converge in distribution to
a centered normal vector with covariance Xj,. Since both Z} and M? have
stationary increments, we also have

1 .
Zala,b] = ; Ego [(~aZ} + DML)2], for all t € Ry

This shows Proposition 3.2 for the pair (—Z}/v/%, Mf/\/i) instead of the
pair (Zj,/Vt, M}/ V).

Recall that for P'-a.e. orbits w € Qy,

lim sup | In G0y (2, w(t)) — In ko) (w(t),§)| < +oo0.

t—+oo
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We have by Lemma 3.11 that
sng@qu?L,t +ZH2) < +o00.
Therefore,
]E@o(%|z?ht +z;|2) — 0, as t = +o0.
Consequently, the pair (Zj ,/ Vt,MY?/4/t) under @0 has the same limit nor-

—o0 —0

mal law as the pair (—Z}/v/t,M, /v/t) under P and its covariance matrix
—o

under Q converges to X, as t goes to infinity as well. g

Finally, Theorem 3.9 follows from

LEMMA 3.12. — limy o0 (M)}, = limy, o0 (1/8)Ego (Z) ,MY), where
(III)Z is defined in (3.18).

Proof. — Let y = (yt)ier, = (Yv,t)vesn,ier, be the diffusion process

on (O, @0) corresponding to £° defined in Section 2.6. Using the Girsanov—
Cameron—Martin formula for d@it / d@&t (see (3.1)), we have

—A
1 = APy0)
lim (ID)! = lim Eoo [ — (dgo (w(0),w(t)) — thy) ——=2t
t—+o0 R e P \/{5( v )dpg(o),t
. 1 —\ —A\
= tim_ B (7 (dog o). 3:(v) — ) T} ()
. 1 o =
- e ()

where we identify y;(v,w)) € M x {¢} with its projection point on M. As
before, by Proposition 3.2, the variables %Z?L’t M, converge in distribu-

0_ 1 _ 042
tion to Z%eM 3B (M) ), where (Z?l7 M?) is a bivariate centered normal
variable with covariance matrix >j,.

Again, we have by Proposition 3.2 and the same reasoning as in the proof

of Lemma 3.8 that
3
)\ 2
) < +00.

1 _
sup E—~ —7% M
tP Q° O\/Z h,t t

It follows from Lemma 3.7 that

1 — 1
ti@w (1)} = tEeroo Ego (\/EZ?” M?) = Ego (Z26M0 2%0((1\/10)2)) .
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Finally, using the fact that (Z9, M) has a bivariate normal distribution,
we have again
1

Bgo (2™ H D) Z g zgm0),

which is limt_>+oo(1/t)E@o (Zg’tM?) by Proposition 3.2. O

4. Infinitesimal Morse correspondence

In this section, we study the limit (1.3) and give an expression for the
derivative of the geodesic spray when the metric varies in R(M).

Let (M, g) be a negatively curved closed connected m-dimensional Rie-
mannian manifold as before. Let M be the geometric boundary of the
universal cover space (M ,9). We can identify M x M with SJTligv, the unit

tangent bundle of M in metric g, by sending (z,£) to the unit tangent
vector of the g-geodesic starting at x pointing at &.

Let A € (—=1,1) = ¢ be a one-parameter family of C® metrics on M
of negative curvature with ¢° = g. Denote by g* the G-invariant exten-
sion of g)‘ to M. For each A, the geometric boundary of (M,3"), de-
noted 8Mgk, can be identified with OM since the identity isomorphism

from G = 71 (M) to itself induces a homeomorphism between (’9Z\7~ and

aM So each (x,&) € M x &M is also associated with the § > geodesw spray

g . (z, ), the horizontal vector in TTM which projects to the unit tangent
vector of the g*-geodesic starting at 2 pointing towards &. Our very first
step to study the differentiability of the linear drift under a one-parameter
family of conformal changes g* of g is to understand the differentiable
dependence of the geodesic sprays YEA (z,€) on the parameter \.

For each g*, there exist (g,g")-Morse correspondence ([3, 16, 39]), the
homeomorphisms from SM, to SMgx sending a g geodesic on M to a g
geodesic on M. The (g, g*)-Morse correspondence is not unique, but any
two such maps only differ by shifts in the geodesic flow directions (i.e.,
if F1,Fy are two (g, g")-Morse correspondence maps, then there exists a
real valued function t(-) on SM, such that F; ' o Fh(v) = @0, (v) for
v € SM,), where ® is the geodesic flow map on SM, ([3, 16, 39], see [12,
Theorem 1.1]).

Let us construct a (g, g*)-Morse correspondence map by lifting the sys-
tems to their universal cover spaces as in [16]. For an oriented geodesic «y in
(]T/f, g), denote by 07 (v) € 8M5 and 0~ () € GM; the asymptotic classes
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of its positive and negative directions. The map v — (97 (v),07(v)) €
aM»gv X 8M'gv establishes a homeomorphism between the set of all oriented
geodesics in (M, §) and 82(M;) = (81\75 X 6]T4ﬁgv)\{(§,§) : €€ aM;}_ So
the natural homeomorphism D* : 92 (Z/\ng) — 92 (],\Zgy) induced from the
identity isomorphism from G to itself can be viewed as a homeomorphism
between the sets of oriented geodesics in (M, g) and (M, ). Realize points
from SM; by pairs (,y), where ~ is an oriented geodesic and y € =y, and

define a map FX Sﬂg — SMEA by sending (v,y) € S]T/[/; to

FA(’Y& y) = (D)\(V)ay/)a

where 3/ is the intersection point of D*(v) and the hypersurface {expng :
Y Lv}, where v is the vector in Sy/M; pointing at &7 (). The map F)isa
homeomorphism since both g and g* are of negative curvature. Returning
to SMy and SMx, we obtain a map F A, Given any sufficiently small e,
if g* is in a sufficiently small C3-neighborhood of g, then F* is the only
(g, 9*)-Morse correspondence map such that the footpoint of F*(v) belongs
to the hypersurface of points {exp, Y : Y Lv,[|Y|[y < €}.

Regard SM» as a subset of TM and let FEAR SMyn — SMy be the
projection map sending v to v/||v||;. The map 7* records the direction
information of the vectors of SMyx in SM,. Let F*: SM, — SMgyx be
the (g, g*)-Morse correspondence map obtained as above. We obtain a one-
parameter family of homeomorphisms 7* o F* from S Mg to SMy. By using
the implicit function theorem, de la Llave-Marco-Moriyén [36, Theorem
A.1] improved the differentiable dependence of 7* o F* on the parameter .

THEOREM 4.1 (cf. [12, Theorem 2.1]). — There exists a C* neighbor-
hood of g so that for any C® one-parameter family of C® metrics A\ €
(—1,1) = g¢* in it with ¢° = g, the map X\ — 7 o F* is C® with values
in the Banach manifold of continuous maps SM, — SM,. The tangent to
the curve ™ o F* is a continuous vector field =y on SM,.

Following Fathi-Flaminio [12], we will call E := Zy in Theorem 4.1 the
infinitesimal Morse correspondence at g for the curve g*. It was shown
in [12] that the vector field = only depends on g and the differential of g*
in A at 0. More precisely, the horizontal and the vertical components of =
are described by:

THEOREM 4.2 ([12, Proposition 2.7]). — Let = be the infinitesimal
Morse correspondence at g for the curve ¢* and let =, be the restriction
of the horizontal component of = to a unit speed g-geodesic y. Then E., is
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the unique bounded solution of the equation
(4.1) VEE, + R(E,,4)7 + Dsd = (059,907 =0

satisfying (Z,%) = 0 along v, where ¥(t) = %'y(t), V and R are the Levi-
Civita connection and curvature tensor of metric g, V* is the Levi-Civita
connection of the metric g* and I' = 9\V*|x—o. The vertical component of

= in T(SM,) is given by V4E,.

We will still denote by = the G-invariant extension to TSM; of the

infinitesimal Morse-correspondence at g for the curve ¢*. For any geodesic
v in (M,q), let N(v) be the normal bundle of ~:

N(7) = UterNe(7),
where Ny(v) = (5(t))* = {E ¢ T’y(t)M: (E,9(t)) = 0}.

The one-parameter family of vectors along v arising in equation (4.1)
(4.2) T(t) := 5% = sy )9) (1)), LR,

is such that Y(¢) belongs to N¢(v) for all ¢. The restriction of the infini-
tesimal Morse correspondence to v is (2, V4Z,), with both 2, and V4=,
belonging to N(y) as well. In the following, we will specify 2, and V;=,
using T and a special coordinate system of N¢(v)’s arising from the stable
and unstable Jacobi fields along ~.

Let v = (x,v) be a point in TM. Recall from Subsection 2.3 the Defini-
tion (2.14) of Jacobi Fields, Jacobi tensors and, for v € SM, of the stable
and unstable tensors along v, denoted S5 and Us,.

For each v € SM, the vectors (Y, S,(0)Y), Y € Nyo(v), (or (Y,U,(0)Y))
generate TWES (or TWE™). As a consequence of the Anosov property of
the geodesic flow on SM, the operator (U, (0) — S,,(0)) is positive and
symmetric (see [7]). Hence we can choose vectors Zy,- -, Z;,—1 to form a
basis of Ng(7y) so that

(4.3) (U(0) = Sy (0))Zi, Z5) = dij.
Let Jy, -+, Jom_2 be the Jacobi fields with

(Zit1-m, Uy (0)Tiy1-m), ifi€{m,---,2m—2}.

(7i(0), 7;(0)) = {
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Since the Wronskian of two Jacobi fields remains constant along geodesics,
we have
(4.4)
0, ifi,7€{1,---,m—1}ori,5 € {m, --,2m—2};
W (i ;) = ] { } ] { ¥
—0ij41-m, ifie{l,---,m—1}and je€ {m, --,2m—2}.
Equivalently, we write Jg for the matrix with column vectors(Jy, -+, Jym—1)
and J, for the matrix with column vectors (Jy,: -+, Jam—2), then (4.4)
gives

(4.5) J:J, =J,) Ty, w=soru, and J;J. — (J)*'Js = —1d.

The collection (J;(t), JI(t)), i = 1,---,m — 1, (respectively (J;(t), J/(t)),

i=m,---,2m—2) generate T’ W::j( 0 (respectively TW;’,‘( t)). Consequently,

any V(t) = (Vi(t), Va(t)) € TTM along v with V;(t) € Ny(7), i = 1,2, can
be expressed as

0 = 3 w00, K@), Vil = 3 b (000, J10),

where (a;(t),b;(t)),i = 1,---,m—1, are 2m — 2 real numbers. Writing them
as two column vectors a(t), b(t), we write any such V(¢) as

V() = (Ju(8)a(t), TL(0)a(t)) + (Ju(6)b(0), T (£)5(1))-

To specify the infinitesimal Morse correspondence Z at g for the curve g*,

it suffices to find the coefficients @(t), b(t) for the restriction of Z along any
g-geodesic .

PRrROPOSITION 4.3. — Let Z be the infinitesimal Morse correspondence
at g for a C® one-parameter family of C® metrics g* with g° = g. Then the
restriction of Z to a g-geodesic vy is

(T (0)a(t), IL(B)at) + (Fu()b(0), I, (0)b(1))
with
t . “+o0
(4.6) at) :/ I ()Y (s) ds, b(t) :/ Ji(s)Y(s) ds,
—o0 t
where Y (s) is given by (4.2).

Proof. — By the construction of Morse correspondence, for any

g-geodesic v, the value of = along v, denoted Z(vy), belongs to N(y) x N (7).

—

So, there are d(t),b(t),t € R, such that
E(y) = (s(0)at), IB)a(0) + (Fu(t)b(t), T, (1)b(2)).
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The horizontal part 2, of Z(v) is J4(t)a@(t)+J.(¢)b(t). On the other hand,
the vertical part of Z(v) is J/(t)a(t) + I/, (¢)b(t), which, by Theorem 4.2, is
also

-

V5=, = JL(0at) + I (05(t) + (0@ (1) + Tu(O)V (2).
So we must have
(4.7) Js()a'(t) + Ju () (t) = 0.

Differentiating V4,2, = J.(t)d(t) + J/ (t)b(t) along ~ and reporting it
n (4.1), we obtain

—

IO () + T, (OF (1) + I (Da(t) + I (6)b(t)
+ R(t)Js(t)a(t

=
Nt
_|_
j=]
-
\_/
A
Nt
S
A~
~
~—
Il
|
|_.§
—~
~
~—

which simplifies to
(4.8) IO (8) + I, (Y (£) = =T(1)

by the defining property of Jacobi fields. Using (4.5), we solve @, v
from (4.7), (4.8) with

(4.9) =T b=-JT

Note that J,(—o00) = J5(+00) = 0. Finally, we recover @(t), b(t) from (4.9)
by integration. O

For any s € R, let (K, K.) be the unique Jacobi field along a g-geodesic
~ such that

Ki(s)=7"(s) and Ks(s)=0.
Then
(Ks(0), K4 (0)) = (D®,)™" (0, T(s)) .
We further express = using K,’s by specifying the value of Z((0)) for any

g-geodesic .

ANNALES DE L’INSTITUT FOURIER



DIFFERENTIATING THE STOCHASTIC ENTROPY 1169

PROPOSITION 4.4. — Let = be the infinitesimal Morse correspondence
at g for a C* one-parameter family of C® metrics g* with g° = g. Then for
the g-geodesic v with 4(0) = v:

0

=,(0) = (U(0) — S,(0))"" [ |00 - voK. o) ds
—+oo
+ [0 - S )K.0) ds|.
0

0

(V5E:)(0) = Sy (0)(Uy(0) - S'V(O))’l/_ (K(0) = UL (0)K,(0)) ds
+oo
+ UL (0)(U(0) - S'V(O))’l/o (K5(0) = S,(0)K(0)) ds.

Proof. — By Proposition 4.3, for any g-geodesic ~,
E(7(0)) = (E4(0), (V4E1)(0))
= (3(0)(0) + 3.(0)5(0), IL(0)a(0) + T, (0)5(0))
where @(0),b(0) are given by (4.6). We first express @(0) using K,’s. Let
s < 0. The Wronskian between K, and any unstable Jacobi fields are
preserved along the geodesics and must have the same value at y(s) and
+(0). This gives
TL(9)Y(s) = TL0)KL(0) — (I)"(0)K(0).
Consequently,
(IH)HO)IL()Y(s) = KL (0) — (I)7H(0)(T})"(0)K(0)
=K, (0) — U3 (0)K,(0),

where we use the fact that J/ (0) = U, (0)J,(0) for the second equality. So

we have
0

30) = 3,00) [ (K4(0) - U3(0)K.(0)) ds.

— 00
Similarly, for any s > 0, a comparison of the Wronskian between K and
any stable Jacobi fields at time s and 0 gives

I ()Y (s) = JL(0)KL(0) — (I)"(0)K,(0).
As a consequence, we have
(J5)7H0)IZ(s)X(s) = K (0) = (I2)7H0)(J)* (0)K,5(0)
=K (0) — S, (0)K,(0),
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which gives
- Foo
0= 3:(0) [ (K,0) - SLO)K.(0) ds.
0
The formula for Z(v(0)) follows by using Js(0) = J,,(0) and J,(0)J%(0) =
(U (0) — S5(0)) O

A dynamical point of view of the integrability of the integrals in Propo-
sition 4.4 is that (KL(0) — U,(0)K(0)) (s < 0) is the stable vertical
part of (D®,)~!(0,T(s)) and hence decays exponentially when s goes to
—o0, while (K%(0) — S, (0)K;(0)) (s > 0) is the unstable vertical part of
(D®;)~1 (0,7 (s)) and thus decays exponentially when s goes to +oo.

For any curve A € (—1,1) = C\ € N (or C* € N) on some Riemannian
manifold N, we write (Cy)h := (dCx/d\)|x=o (or (C*)j := (dC*/d\)|r=0)

- 7
whenever the differential exists. We can put a formula concerning ngvA)
0
for any C® curve g* in R(M) with ¢° = g.

PROPOSITION 4.5. — Let (M,g) be a negatively curved closed con-
nected m-dimensional Riemannian manifold. Then for any C? one-para-
meter family of C® metrics A € (—1,1) — ¢ in it with ¢° = g, the map
A Y’gy (x,€) is differentiable at A\ = 0 for each v = (z,£) with

(%), .0 = (0. (%50l v+ [ 04000 - sti0m(0) as).

~_Proof. — Express the homeomorphism F> as a map from M x M to
M x (‘9M;A with

FMa,€) = (f2(2),€), V(,€) € SM,

where fg‘ records the change of footpoint of the (g, g*)-Morse correspon-
dence F*. We have

1 (K5 0,6 - (0,0)

1 [~ X (@,6) 1 Xpd
=3 (Xw(%f) - |X<£>||> T3 <||X<s> il ’f)>

I

=:(a)x + (b)x.
o /
When A tends to zero, (a)y tends to (0, (HX;A ||)O (v)v). For (b)», we can
_ YEA (.73, f) . .
transport X~(z, ) to —"———— along two pieces of curves: the first is to
7 X, ()l
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follow the footpoint of the inverse of the (g*, g)-Morse correspondence from
YE(I,@ to Yg((fg‘)*l(x),ﬁ) with the constraint that the vector remains

within TW*(z,{); the second is to use the (g%, g)-Morse correspondence

— A\ —1 X?]'A (:Ca 6)
from ngv((f5 )" H(x),€) to Hii By Theorem 4.1 and Theorem 4.2,

P (377€)||~
the second curve is C'! and E‘]che deri\g/ative is (E4,(0), V4,2, (0)), which
is also (J5(0)a@(0),J.(0)@(0)) 4 (Ju(0)b(0), I, (0)b(0)) with @(0),b(0) from
Proposition 4.3. The horizontal projection of the first curve is the reverse
of the second one; so it is also C! and the horizontal part of the deriva-
tive is —=,,(0). Since it belongs to TW*(x,&) which is a graph over the
horizontal plane, the vertical part is also C* and the derivative is given by

54 (0)(=E4,(0))- So,

lim (b)5 = (0, (V5,55,)(0) = 54(0)Z,,(0))
= (0, (U}(0) — 84,(0))3.,(0)5(0)),

which, by our choice of J,,(0) = J5(0) and the defining property of J,(0)
in (4.3), is

(0007 050) = (0. [ a0 - st as). O

COROLLARY 4.6. — Let (M, g) be a negatively curved closed connected
Riemannian manifold and let A € (—1,1) = ¢* € R(M) be a C? curve
of C?3 conformal changes of the metric ¢° = g. The map A\ — Ygx (x,8) is
differentiable for each v = (x,§) with

(%) 6= (0-pesv+ [ a0 - S,0)K.0) ds).

where ¢ : M — R is such that g* = 62>‘W+0(>‘2)g, ¢ denotes the projections

¢:SM — M and ¢ : SM — M, and (K,(0),K,(0)) = (D®,)~1 (0,Y(s))

Proof. — Let A € (—1,1) — ¢* be such that ¢* = 2" g. Clearly,

_ o ’

I fg3|\fgv = ¢=¢"°? and hence (||X*§A||»gv> (V)v = —po ¢ v. Write (-, )
0

for the g*-inner product and let V* denote the associated Levi-Civita

connection (we simply write (-,-) and V when A = 0). Each V* is tor-

sion free and preserves the metric inner product. Using these two proper-

ties, we obtain Koszul’s formula, which says for any smooth vector fields
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X,Y,Z on M,

(4.10) 2(VXY, Z) = X(Y, Z)x + Y(X, Z)x — Z(X,Y)x
+ <[X7 Y]a Z>>\ - <[X7 Z]’Y>>\ - <D/7 Z]aX>)\
Note that g* = 62“"%@55, which means (-, )\ = 62@A0¢<~, -). So, if we multiply

both sides of (4.10) with ¢=2¢"°% and compare it with the expression (4.10)
for V, we obtain

2(VyY, Z)
= ¢ 290 (D °9)(Y, Z) + (Dy 2 *¥)(X, Z) — (D762 °*)(X.Y)
XY, Z)+Y (X, 2) = Z(X,Y) +([X, Y], Z) — (X, Z), )~ ([V. 2], X)
=2(Dx¢ 0 9)(Y, Z) +2(Dy¢* 0 6)(X, Z) =2(Dz¢™ 0 $)(X,Y)
+2(VxY, Z).
Since Z is arbitrary, this implies
VXY = VxY = (Dx¢g* 0 9)Y + (Dyp* 0 9)X — (X,Y) Vi 0 ¢
for any two smooth vector fields X,Y on M. As a consequence, we have
I'xY = (Dxpo )Y +(Dypod)X — (X,Y)Vypo .

In particular, I's¥ = 2(Vpo ¢, ¥)§ — Vo ¢ and the equation (4.1) reduces
to
VZE, +R(Ey,9)7 — Voo b+ (Voo g, 4)f = 0.

/

The formula for (YEJO (z, &) follows immediately by Proposition 4.5. O

5. Proof of the main theorems

Let A € (—=1,1) = g* € R(M) be a C? curve of C* conformal changes of
the metric ¢° = g. We simply use the superscript A (A # 0) for X, m, m, k,
P to indicate that the metric used is ¢*, for instance, m* is the harmonic
measure for the laminated Laplacian in metric g*. The corresponding quan-
tities for g will appear without superscripts. Let A € (—1,1) = ¢* be such
that ¢g* = ewxg. For each A\, we have

AN = 26" (A + (m— 2)V<p)‘) =: e_QWAL)\.

Let £* := A + Z* with Z* = (m — 2)Vy?* o ¢. Leafwisely, Z* is the dual
of the closed form (m — 2)dyp™* o ¢. Moreover, the pressure of the function
—(X, Z%) is positive. Therefore, there exists § > 0 such that for |\ < 4,
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the pressure of the function —(X, Z?*) is still positive, so that the results
of Section 3 apply to L for \ € (—0,+6). Note that 7y and hy defined
in Section 1 are just the linear drift and the stochastic entropy for the
operator L£> with respect to metric g. Let £5 and h) be the linear drift
and entropy for (M, g*) as were defined in Section 1. From the results in
Sections 3 and 4, the following limits considered in Section 1 exist:

1 ~ o1~
(dlr/dN)la=o = lim <(6y = £3) + lim +(0x — bo) =: (I), + (II),,

o1 ~ o1~
(dha/dN)|amo = lim < (hx = ha) + lim < (hx = ho) =t (I),, + (II),,.

This shows the differentiability in A at 0 of A — £5 and A — hy (Theo-
rem 1.1). In this section, we give more details and formulas for the deriva-
tive. Namely, we prove the following Theorem

THEOREM 5.1. — Let (M, g) be a negatively curved compact connected
m-dimensional Riemannian manifold and let A € (—1,1) — g* = e2¢'g e
R(M) be a C3 curve of C* conformal changes of the metric g° = g with
constant volume. Let ¢ be such that g* = 62’\“’+O()‘2)g. With the above
notations, the following holds true.

(i) The function \ — £y is differentiable at 0 with
(5.1)
J— +OO
(x)o =/ ~<90 ° (Z5X+/0 (KL(0)— Szm,f) (0)K;(0))ds, VIn kv> dm
M,

0X8M

+(m—2)/ _pod (Vuy+ X,Vinky) dm,
MgxoM

where (K, (0), K.(0))=(D®,)71(0,Y(s)) with T = —Vp+(Vp,¥)%
along the g-geodesic v with 4(0) = (x, ) and g is the function de-
fined before Proposition 2.18.

(ii) The function A — hy is differentiable at 0 with

(5.2) (hx)y = (m — 2)/ po¢ (V(ug +1nky),Vink,) dm,

SM

where u; is the function defined before Proposition 2.18.

Proof. — Observe firstly that since g* has constant volume, m J dVol =
(Vol(M, g)‘))é = 0 and therefore

(5.3) /SM<po¢dm = 0.

We derive the formula for (hy)j first. Let m* be the G-invariant exten-
sion to SM of the harmonic measure corresponding to £* with respect to
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metric g. Then dm* = 6_2¢A°¢dﬁl’\, where ¢ also denotes its G-invariant
extension to M. Moreover, since there is only a time change between the
leafwise diffusion processes with infinitesimal operators L* and A, the leaf-
wise Martin kernel functions of the two operators are the same. (Indeed,
because £ only differs from A* by multiplication by a positive function,
the leafwise positive harmonic functions of the two generators are the same.
In particular, the minimal leafwise positive harmonic functions normalized
at © = ¢(v) are the same for £» and A*. It is known ([1, Theorem 3])
that the leafwise Martin kernel functions kX(-,&) of £* (or A*) can be
characterized as minimal leafwise positive £ (or A*)-harmonic functions
normalized at = such that kJ(y,&) goes to zero when y tends to a point
in the boundary different from £. Thus, the two Martin kernel functions
coincide.) Using Proposition 2.16, we obtain

6.4) o= [ IV WO di = [ 20|V ik, O] ai,

whereas here, and hereafter, the integrals with respect to m* and m*

are always taken on My X OM and we will omit the subscript of fM or

whenever there is no ambiguity. As before, kJ(-,7) should be understood
as a function on W#(v) for all n, in particular, for n = £. Then its gradient
(for the lifted metric from M to W#(v)) is a tangent vector to W#(v).
We also know k3(y, 1) = k;(y), where k;) is the Martin kernel function on
M for the g*-Laplacian. Of our special interest is k2(-, &), which we will
abbreviate as k2 in the following context.

For (hy)g, we have

(ha)o = lim + (hA — ) + lim + (hx — ho) =: (1)}, + (II),,,

if both limits exist. It is easy to see (I), = 0 since by Proposition 2.16
and (5.4),

(D

hm(/nvnnwxf)nm . /||v01ni&<x5>||od )

1
= lim /X(e*m" °b _ 20" °N) |V In k (x, €)||* dm?,

A—0

where we use VA In k) (z,¢) = e~207°0V In ky(x, &) and |V Inkd(z,€)|3 =
€270 ||V In kX (x, €)||2. Thus,

(5.5) (1), = 0.
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For (IT),,, we have by Theorem 3.9 that it equals to

. 1
(1) e

Recall that x; belongs to W?*(x¢). The process

t
(5:6) Z} = fitx) ~ fulxa) = [ (Af)x.) ds,

0
where f; = —Inky, —u; and v = x(¢ and the function w; is such that
(5.7) Auy = [|[VInky||* = ho

is a martingale with increasing process 2|V Inky + Vu||?(x;) dt. It is true
by Proposition 3.2 that

. 1 o . 1 7l
i 3B (2 M0 = lim_; Bg (ZM)),

where

1

M, = 5/0 ((ZM)(Xs), WsdBy)x. -

Note that (Z*)j, the G-invariant extension of (m —2)Vpo ¢, is a gradient
field. So, if we write ¢ = %(m — 2)p o ¢, we have by Ito’s formula that

t
69 M = 6x) — bi0) — [ (B0)(x,) ds

0
is a martingale with increasing process 2[[V¢[|*. Using (5.6), (5.8) and a

straightforward computation using integration by parts formula for (aZ} +
bM;)?, a,b =0 or 1, we obtain

ZIM, = 2/0 (V f1, Vb)(xs) ds

and hence
o1 5 .
tilgloog]E@(ngt) = 2/<Vf1,Vw) dm
= —2/(V In ky, V1)) dim — 2/(Vu1,V1/)> dm.
Here,

—2/<v1nkv,w> dffl=2/ Div(V4) dm

SM

=<m—2>/ Alpod)dm =0,
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where the first equality is the integration by parts formula and m is identi-
fied with the restriction of m to My x M, and the last one holds because
m is A-harmonic. We finally obtain

(ha)) = —(m—2)/ (Vur, Vi o 6) dm.

SM

Observe that:
2(Vu1,Vpo ¢) = Alurpo @) — A(ur)po ¢ —uiApo ¢
(5.9) = Alurpod) —po¢|VInky[® + hop o ¢ —uApo ¢,

where we use the defining property (5.7) of u;. When we take the integral
of (5.9) with respect to m, the first term vanishes because m is A harmonic,
the second term gives — [ o ¢[|VInky||? dm, the third term vanishes
by (5.3). Finally for the last term, by using the integration by parts formula:

(5.10) / uAv dm :/ vAu dm + 2/ v(Vu,Vinky) dm,
SM SM SM

we have

/ u1Ap o ¢ dm :/ wo¢(Auy +2(Vuy,Vinky)) dm
SM

SM

_ / 006 (|VInky|? +2(Vuy, Vinky)) dm.
SM
Next, we derive the formula for (£,);. Clearly,
1 ~ 1~
(6)o = lim ~(€x = £3) + lim +(€x = bo) = (I), + (IT),,

if both limits exist. Here the £, » defined in the introduction is just the linear
drift for the operator £* with respect to metric g. The (IT) , term can be
analyzed similarly as above for (II),. Indeed, by Theorem 3.3, (II), =
lim¢ 400 (1/¢)Eg(Ze,eMy). The process

(5.11) 70 = fo(xe) — folxo) - /0 (A fo)(x) ds,

where fy = by — ug and the function ug is such that

(512) AUO = 7D1V(X) — fo

is a martingale with increasing process 2||X + Vug||?(x;) dt. It is true by
Proposition 3.1 that

1
lim *E*(Z[’tMt) =

. 1 70
t—too t Q t—1}+oo gE@(Zt Mt)7
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where My, by (5.8), is a martingale with increasing process 2|V 2. So
using (5.8), (5.11) and a straightforward computation using integration by
parts formula for (aZ? + bM;)?, a,b = 0 or 1, we obtain

t
ZiM, =2 [ (Y10, V0)(x.) ds
0
and hence (recall that Vb, = —X (v), see (2.13))

B

AT
_ 2/<Vf0,w> din
— (m—2) (/(X, V(pod)) dir + /<w07 V(pod)) dﬁl) .
Using the formula Div(po ¢ X) = ¢ o ¢ DivX + (V(p o ¢), X), we obtain
/<Xv<¢o¢)> i = /(Div(gpo¢Y) o ¢ DIvE) din
_ _/<p0¢(<f,v1nkv> 4 DivX) dim,

where we used the foliated integration by parts formula [DivY dm =
— [{Y,VInky) dim. Observe that:

2(Vug, V(p o ¢)) = Aug po ¢) — Aug)p 0 ¢ —ugA(p o ¢)

= A(ug po @)+ o dDiv(X) + lyp o — ugA(p o d),

where we use the defining property (5.12) of ug. When we report in the
integration 2 [(Vug, V(oo ¢)) dm, the first term vanishes because m is A
harmonic, the second term is — [ popAug dm by (5.12) and the third term
vanishes by (5.3). Again, using the integration by parts formula (5.10) for
JuoA(p o ¢) dm, we have

/(VuO,V(go 0@)) dm = —/(p o ¢(Aug + (Vug, VInk)) dm.
Finally, we obtain
(I1), = (m— 2)/<p o ¢ (Aug + DivX + (Vug + X,VInk,)) dm
= (m— 2)/<po ¢(Vug + X,Vinky) dm,

where the last equality holds by using (5.12) and (5.3).
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For (I),, we first observe the convergence of Martin kernels and har-
monic measures. For any (z,§) =: v € M x OM , the Martin kernel func-
tion k(y, &) converges to ky(y, &) pointwisely as A goes to zero. For small
A and fixed x, the function £ — VIn ki,g is Holder continuous on OM for
some uniform exponent ([19]). As a consequence, we have the convergence

of VIn k) (and hence V* In k) to V In ky when A tends to zero. By unique-

A

ness, the harmonic measure m* converges weakly to m (A — 0) as well.

By Proposition 2.9,
0y = /(Y/\,VAlnk(}),\ din* = /<Y*,v1nk3> i,
Thus,
1 — — ~
(D), = lim ~ [ (X =X"),Vink,) dm
A—0
1/ [ — L
+ lim ~ (/(X, Vinkd) dm* — £A>
A=0 A
=: (IIT), + (IV)Z ,
if (IIT), and (IV), exist. The quantity (III),, by Corollary 4.6, is
/<_<p 06 X +/ (K(0) — S%,(0)K, (0)) ds, V In ky) din.
0
By Proposition 2.9,
h=— / (DivX + (2, X)) di.
For (IV),, let us first calculate [ DivX dm*. We have
/ DivX dm’ = / e 2" °DivX dm’
- / e 207D X din® + / (DivY— Div’\Y> dm
— / e~ 209D X dm? — m / (V(* 0 ¢), X) dm*,

where the last equality holds since (Div* — Div)(-) = m(V(p* o0 ¢, ) for
= eQ‘pAg. Note that

DivA(e_wkod)Y) = e 209D Y — 26_29”A°¢<V’\(<p’\ 0 ¢), X).
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So we have
/ DivX dm?*

= / Div? (e 2¢"°¢X) dm* + / 2= 200 (VAN 6 ¢, X)) din

—m / (V(p* 0 ), X) di®

—/<Y, VA k), din — (m—2)/(V(gp’\oq§),Y> d
_/<Y,v1nk3> dr?l’\—(m—Q)/<V(<p’\o¢),Y> i,

where, for the second equality, we use the leafwise integration by parts
formula fDiv)‘Y dm’ = - [(Y, Y, VA In k() dm?. This gives

(5.13) 0, = /(Y,wn kD) dm

Finally, we obtain

(IV), = lim §<62‘“°¢ — 1)(X,VInk}) dm*
—

:2/@o¢<Y,V1nkv> dm. O

Proof of Theorem 1.2. — Let (M,g) be a negatively curved compact
connected Riemannian manifold. Define the volume entropy v, by:
In Vol(B
vy = lim In Vol(B(x, 7)) (m,r))’
r—+00 T
where B(z, r) is the ball of radius r in M. we have Ly < vy, hy < g (see [34]
and the references within). In particular, if A € (—1,1) = ¢g* € R(M) is a
C? curve of conformal changes of the metric ¢° = g,

2
ng § Ug/\7 hg/\ g Ug)"

Assume (M, ¢°) is locally symmetric. Then £, = vgo and hgpo = vﬁo.
Moreover it is known (Katok [27]) that vy is a global minimum of the
volume entropy among metrics g which are conformal to ¢ and have the
same volume and (Katok-Knieper-Pollicott~Weiss [28]) that A +— vy is

differentiable. In particular v, is critical at A = 0. Since, by Theorem 1.1,

g
Lgx and hgx are differentiable at A = 0, they have to be critical as well. [
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Remark 5.2. — We can also show Theorem 1.2 using the formulas in
Theorem 5.1. Indeed, the conclusion for the stochastic entropy follows
from (5.2) since for a locally symmetric space, the solutions u; to (5.7)
are constant ([31]) and ||V Inky||? is also constant. The derivative is pro-
portional to [ ¢ o ¢ dm, which vanishes by (5.3).

We also see that the stochastic entropy depends only on the volume
for surfaces (m = 2). For the drift ¢, it is true that for a locally symmetric
space, V In k, = —¢Vb, everywhere. The solutions ug to (5.12) are constant
for a locally symmetric space as well ([31]). So (5.1) reduces to

+oo
(0 = — / _pod ! / (K,(0) — S,(0)K+(0)) ds, VIn k) dif,

0XxXOM

which is zero because the vector f0+°° (KL(0)—S,(0)K4(0)) ds is orthogonal
to v and hence is orthogonal to VIn k.
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