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THE GRUNWALD PROBLEM AND APPROXIMATION
PROPERTIES FOR HOMOGENEOUS SPACES

by Cyril DEMARCHE,
Giancarlo LUCCHINI ARTECHE & Danny NEFTIN (*)

Abstract. — Given a group G and a number field K, the Grunwald problem
asks whether given field extensions of completions of K at finitely many places
can be approximated by a single field extension of K with Galois group G. This
can be viewed as the case of constant groups G in the more general problem of
determining for which K-groups G the variety SLn/G has weak approximation. We
show that away from an explicit set of bad places both problems have an affirmative
answer for iterated semidirect products with abelian kernel. Furthermore, we give
counterexamples to both assertions at bad places. These turn out to be the first
examples of transcendental Brauer–Manin obstructions to weak approximation for
homogeneous spaces.
Résumé. — Pour un groupe G et un corps de nombres K, le problème de

Grunwald est le suivant : étant données des extensions des complétés de K en un
ensemble fini de places, peut-on les approcher de façon simultanée par une seule
extension de K de groupe de Galois G ? Cela peut être interprété comme un cas
particulier de la question plus générale de déterminer pour quels K-groupes G la
variété SLn/G vérifie l’approximation faible. Nous démontrons qu’en dehors d’un
ensemble explicite de mauvaises places, ces deux problèmes ont une réponse positive
pour les groupes obtenus par des produits semi-directs itérés à noyau abélien. En
outre, nous donnons des contre-exemples aux deux affirmations dans l’ensemble des
mauvaises places. Ceux-ci sont par ailleurs les premiers exemples d’obstructions de
Brauer–Manin transcendantes à l’approximation faible pour les espaces homogènes.
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1. Introduction

The Grunwald–Wang theorem has fundamental applications to the struc-
ture theory of finite dimensional semisimple algebras, cf. [12, Ch. 18], and
provides an answer for abelian groups G to the more general Grunwald
problem. The latter is an inverse Galois problem of increasing interest due
to its recently studied connections with the regular inverse Galois problem
and with weak approximation, cf. [3, 6].
Fix a number field K, let Kv denote the completion of K at a place v,

and Gal(K) denote its absolute Galois group. Let G be a finite group, and
S a finite set of places of K. The Grunwald problem then asks whether
every prescribed local Galois extensions L(v)/Kv, v ∈ S, with embeddings
Gal(L(v)/Kv) ↪→ G can be approximated by a global extension L/K with
Galois group G. More precisely:

Grunwald Problem. — Is the restriction map

Hom(Gal(K), G)→
∏
v∈S

Hom(Gal(Kv), G)/ ∼

surjective?

Here φ1 ∼ φ2 if φ1 = gφ2g
−1 for some g ∈ G. Note that the quotient by

∼ is necessary since the decomposition group of a place v of K is defined
up to conjugation.

Families of groups G and number fields K for which (G,K, S) has an af-
firmative answer to the Grunwald problem for every S include: (1) abelian
groups of odd order over every number field, by the Grunwald–Wang the-
orem [5, 16]; (2) solvable groups of order prime to the number of roots
of unity in K, by Neukirch’s theorem [10]; and (3) groups with a generic
extension over K, by Saltman’s theorem [13].

Recent results by Dèbes-Ghazi on the inverse Galois problem [3] and by
Harari on weak approximation for homogeneous spaces [6], suggest that for
every finite group G there exists a finite set T := T (G,K) of “bad places” of
K such that the Grunwald problem has an affirmative answer for (G,K, S)
for every set S that is disjoint from T . In fact, the existence of such a
set T is implied by a conjecture of Colliot-Thélène on the Brauer–Manin
obstruction for rationally connected varieties. The connection is done by
considering the following more general version of the Grunwald problem
for finite K-groups G.

ANNALES DE L’INSTITUT FOURIER



THE GRUNWALD PROBLEM AND APPROXIMATION PROPERTIES 1011

Approximation property. — A K-group G has (weak) approxima-
tion in a set S of places of K if the natural restriction map

H1(K,G)→
∏
v∈S

H1(Kv, G),

is surjective. We shall say G has approximation away from T , if G has
approximation in S for every finite set S of places of K that is disjoint
from T .

The approximation property for every finite S ⊂ ΩK is equivalent to
weak approximation for certain homogeneous spaces (hence its name), see
Section 2.5. Moreover, for constant groups G, it is equivalent to a positive
answer to the Grunwald problem for (G,K, S), see Section 2.3.
The existence of a finite set T of “bad places” away from which the

approximation property holds is expected to hold for arbitrary finite K-
groups, and is strongly related with arithmetic properties of homogeneous
spaces. Moreover, the existence of such a set T for K-groups has been
proved over arbitrary number fields K for: (1) abelian K-groups G by
Wang, cf. [16]; (2) iterated semidirect products G = A1o (A2o · · ·oAr) of
abelian K-groups by Harari, cf. [6]; and (3) solvable K-groups G of order
prime to the number of roots of unity in an extension of K splitting G by
the second author (here T = ∅, cf. [8]).

Ever since Wang’s work on the subject, triples (G,K, S) having a neg-
ative answer to the Grunwald problem (and thus not having the approxi-
mation property) are known to exist. However, it is unclear what the set
T = T (G,K) should be. In fact, there is no explicit description of a set T
even for basic groups such as semidirect products of two abelian p-groups.

This paper gives both affirmative and negative answers to the Grun-
wald problem and the approximation property, suggesting that the set
T = T (G,K) can always be taken to be the union of the places of K which
divide the order of G and those which ramify in the minimal extension
splitting G.

1.1. Main results

We give a precise description of the set T of “bad places” for iterated
semidirect products of abelian groups, complementing Harari’s result [6,
Thm. 1].

Theorem 1.1. — Let K be a number field and G be a finite K-group
which is an iterated semidirect product G = A1o (A2o · · ·oAr) of abelian
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1012 Cyril DEMARCHE, Giancarlo LUCCHINI ARTECHE & Danny NEFTIN

K-groups. Let L/K be an extension splitting G, and T the set of places
that either divide the order of G, or ramify in L. Then G has approximation
away from T .

If G is constant, L = K and hence the only condition on places v ∈ S
is to be prime to the order of G. The Grunwald problem has then an
affirmative answer for such (G,K, S). The family of iterated semidirect
products of abelian groups contains the dihedral groups, the Heisenberg
groups of order p3, and the p-Sylow subgroups of the symmetric groups,
cf. [17], of GLn(Fq), and of other classical groups over Fq when q is prime
to p, cf. [7].

In an opposite scenario, when S consists of the primes of K dividing the
order of G and G is constant, we give the following examples in which the
approximation property doesn’t hold. Recall that a bicyclic group is either
cyclic or a direct product of two cyclic groups.

Theorem 1.2. — Let K be a number field and G a finite abelian p-
group that is not bicyclic. Assume that G is a Galois group over some
completion of K (which a fortiori divides p) and let S be the finite set of
places of K lying above p. Then there exists an abelian G-module A (of
order a power of p) such that if we consider E := A o G as a constant
K-group and K contains sufficiently many roots of unity, the map

H1(K,E)→
∏
v∈S

H1(Kv, E),

is not surjective.

In contrast to Wang’s counterexamples, here the set S consists of the
primes of K dividing any given rational prime p, as requested in [3, Sec-
tion 1.6] by Dèbes-Ghazi. Examples of constant p-groups that do not admit
the approximation property at the places dividing a given prime p were
also given over K = Q(µp) by the first author in [4, §6, Prop. 2], where
an algebraic Brauer–Manin obstruction to the approximation property is
given. However, in contrast with [6, §5], [4] and [9, §5.2], which study
algebraic Brauer–Manin obstructions, Theorem 1.2 provides examples in
which the approximation property doesn’t hold and the algebraic Brauer–
Manin obstruction vanishes, giving the first examples of a transcendental
Brauer–Manin obstruction to weak approximation on homogeneous spaces,
see Example 5.4.

ANNALES DE L’INSTITUT FOURIER
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1.2. Tame problems

The above results suggest that the answer to the Grunwald problem is
affirmative away from a particular set of bad primes:

Tame approximation problem. — Does the approximation property
hold for every finite K-group G and every finite set S of places of K that
are prime to its order and are unramified in an extension splitting G?

Here we do not consider the extension C/R to be ramified, hence the
question about real approximation (i.e. having the approximation property
for the set S of archimedean places), asked years ago by Borovoi, is included
in this last one.
Negative answers to these questions are unknown, and a complete af-

firmative answer is currently out of reach, as it implies a solution to the
inverse Galois problem (see [6, §4]). In view of Theorem 1.1 and its proof, it
seems reasonable to conjecture that the answer is affirmative for all solvable
groups.

Acknowledgements

The authors would like to thank David Harari for being at the origin
of this collaboration. The third author would like to thank Pierre Dèbes,
David Saltman, Nguyêñ Duy Tân and Jack Sonn for helpful discussions.

2. Preliminaries

2.1. Global and local Galois groups

All throughout this text, K denotes a number field, ΩK is the set of
places of K and, for v ∈ ΩK , Kv denotes the completion of K in v. For any
Galois extension L/K we denote by Gal(L/K) the corresponding Galois
group, and by Gal(K) the absolute Galois group. Throughout the text, we
fix an embedding of Gal(Kv) in Gal(K) and identify it with its image for
each v ∈ ΩK .

For a finite place v ∈ ΩK , let Ktr
v be the maximal tamely ramified exten-

sion of Kv, let Γv := Gal(Ktr
v /Kv) be the tame Galois group and Wv :=

Gal(Ktr
v ) the wild ramification group. Recall that the tame inertia group

Tv := Gal(Ktr
v /K

un
v ) is a procyclic normal subgroup of Γv of order prime

TOME 67 (2017), FASCICULE 3
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to v; Let τv be a generator of Tv. The quotient Γv/Tv ∼= Gal(Kun
v /Kv) ∼= Ẑ

is generated by a lift σv of the Frobenius automorphism.
We let σv ∈ Γv be a preimage of σv. Note that σv is defined up to

conjugation and that its action by conjugation on Tv is equivalent to its
action on roots of unity, that is, σvτvσ−1

v = τ qv
v where qv is the cardinality

of the residue field of Kv, see [11, §7.5].
For archimedean v, let σv be the generator of Gal(Kv) and put τv = 1,

so that Γv := Gal(Kv) and Tv = 〈τv〉 = {1}.

2.2. K-groups

A finite K-group G is a finite group scheme over K. Since K is of charac-
teristic 0, there is an equivalence of categories between finite group schemes
over K and finite Gal(K)-groups. Identifying the two, we shall write G for
the set of its geometric points. An extension L/K is said to split G if
G ×K L is a constant L-group, i.e. if the Galois group Gal(L) ⊂ Gal(K)
acts trivially on G. We also need the following notion of “bad places” for
such G:

Definition 2.1. — Let K be a number field, G be a finite K-group and
L/K the minimal extension splitting G. We define the set of “bad places”
BadG ⊂ ΩK as the union of the set of places dividing the order of G and
the places ramified in L/K.

Note that the minimal extension splitting G always exists. Indeed, the
action of Gal(K) on G is a (continuous) morphism Gal(K)→ Aut(G) and
the minimal extension splitting G is given by the kernel of this morphism.

2.3. Cohomology

Recall [14, I, §5] that for a field K and a K-group G, the set H1(K,G)
is defined as the quotient of the set of 1-cocycles (also called crossed ho-
momorphisms)

Z1(K,G) := {a : Gal(K)→G continuous | aστ = aσ aσ τ , ∀σ, τ ∈Gal(K)},

by the equivalence

a ∼ b ⇔ ∃ g ∈ G such that aσ = gbσ gσ −1, ∀σ ∈ Gal(K).

ANNALES DE L’INSTITUT FOURIER
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Hence for a constant K-group G, the set H1(K,G) is the set of continuous
group homomorphisms Gal(K)→ G modulo conjugation in G. In particu-
lar, the Grunwald problem for (G,K, S) is equivalent to the approximation
property for G constant. If L/K is an extension splitting G, then Gal(L/K)
acts on G and one may similarly define the set H1(L/K,G), which embeds
into H1(K,G) by inflation.

A class α ∈ H1(K,G) is denoted by [a] if it corresponds to the class of
the cocycle a. For α ∈ H1(K,G), we denote by αv its image under the
restriction map Resv : H1(K,G)→ H1(Kv, G).

2.4. Twisting

We recall briefly the basic properties of twisting. For further details
see [14, §I.5]. Let Γ be a profinite group and G be a discrete Γ-group.
Assume that G and Γ act both on the left on some object X in a compati-
ble way, that is, (σ g · x) = gσ · xσ for σ ∈ Γ, g ∈ G, x ∈ X. Given a cocycle
a ∈ Z1(Γ, G), define a new action of Γ on X by twisting the first action as
follows:

xσ∗ := aσ · xσ .

Such a twisted object, denoted by Xa , still has an action of G. However,
the latter is not necessarily compatible with the action of Γ. To fix this,
one twists also the action of Γ on G. To do so it suffices to view G as acting
on itself by conjugation, and repeat the same construction, so that

gσ∗ := aσ gσ a−1
σ .

This twist of G, denoted by Ga , is a Γ-group which acts on Xa compatibly
with the Γ-action.
This construction takes principal homogeneous spaces under G to prin-

cipal homogeneous spaces under Ga . More precisely, one has [14, I.5.3,
Prop. 35bis]:

Proposition 2.2. — Let a ∈ Z1(Γ, G) and let G′ = Ga . The map

ta : Z1(Γ, G′)→ Z1(Γ, G) : a′ 7→ (σ 7→ a′σaσ),

is a bijection which moreover induces a bijection

τa : H1(Γ, G′)→ H1(Γ, G),

sending the trivial element of H1(Γ, G′) to the class of a in H1(Γ, G).

TOME 67 (2017), FASCICULE 3



1016 Cyril DEMARCHE, Giancarlo LUCCHINI ARTECHE & Danny NEFTIN

An exact sequence of Γ-groups such as 1→ H → E → G→ 1 gives rise
to an exact sequence of pointed sets, cf. [14, I.5.5, Prop. 38]:

(2.1) H1(Γ, H)→ H1(Γ, E)→ H1(Γ, G),

which means that the elements in H1(Γ, E) falling onto the trivial element
of H1(Γ, G) are precisely those coming from H1(Γ, H).
Let e ∈ Z1(Γ, E) and let g be its image in Z1(Γ, G). To study the fiber

of the class [e] ∈ H1(Γ, E), that is, the fiber above [g] ∈ H1(Γ, G), one uses
twisting. Since E acts on E, on G and on H by conjugation, one may twist
all three groups by e, getting an exact sequence

1→ He → Ee → eG→ 1

and the following commutative diagram of pointed sets with exact se-
quences:

H1(Γ, H) // H1(Γ, E) //

τ−1
e

��

H1(Γ, G)

τ−1
g

��
H1(Γ, He ) // H1(Γ, Ee ) // H1(Γ, Gg ).

Note that the twisted form of G is denoted by Gg instead of Ge , since E
acts on G via its own image in G. Since the lower row is exact and since the
τ ’s are bijections sending [g] and [e] to the trivial elements, we now know
that the fiber over [g] is in bijection with the image of the set H1(Γ, He ) in
H1(Γ, Ee ). Note also that in general there is no vertical arrow at the level
of H (as Proposition 2.2 applies only to twists by a group acting on itself
by conjugation).
Two elements in H1(Γ, H) are mapped under (2.1) to the same element

of H1(Γ, E) if and only if they lie in the same orbit of H0(Γ, G), [14, I.5.5,
Prop. 39]. Here an element g ∈ H0(Γ, G) = GΓ acts on H1(Γ, H) by sending
a class [a] ∈ H1(Γ, H) to the class of the cocycle

(2.2) (g · a)σ = eaσ e−1σ

where e ∈ E is a preimage of g.

2.5. Homogeneous spaces

Let us now recall the notion of weak approximation forK-varieties. LetX
then be a (smooth, geometrically integral) K-variety such that X(K) 6= ∅.

ANNALES DE L’INSTITUT FOURIER



THE GRUNWALD PROBLEM AND APPROXIMATION PROPERTIES 1017

Definition 2.3. — Let S ⊂ ΩK be a finite set of places of K. We say
that X has approximation in S if X(K) is dense in the product

∏
S X(Kv).

We say that X has weak approximation away from T ⊂ ΩK if X has
approximation in S for all finite S ⊂ ΩKrT . Equivalently, one can demand
X(K) to be dense in the product

∏
ΩKrT X(Kv). The set T is usually

refered to as the set of “bad places”.
We say that X has weak approximation if one can take T = ∅.

Let us briefly recall the Brauer–Manin obstruction to weak approxima-
tion, cf. [15, §5.1] for details. For X a (smooth, geometrically integral)
K-variety, consider its unramified Brauer group BrunX, as well as the sub-
group of its “algebraic” elements Brun,alX := ker[BrunX → Brun(X×KK̄)].
Denote, for v ∈ ΩK , invv : BrKv → Q/Z the Hasse invariant map. Finally,
denote by X(KΩ) the product

∏
ΩK

X(Kv) in which X(K) embeds diago-
nally. Then one can define the set X(KΩ)Brun (resp. X(KΩ)Brun,al) as the
subset of all families of points (Pv)v∈ΩK

∈ X(KΩ) such that∑
v∈ΩK

invv(α(Pv)) = 0, for all α ∈ BrunX (resp. α ∈ Brun,alX),

where α(Pv) ∈ BrKv denotes the evaluation of α at the point Pv and the
sum, which a priori is infinite, is actually finite for elements α ∈ BrunX.
The following inclusions then hold:

X(K) ⊆ X(KΩ)Brun ⊆ X(KΩ)Brun,al ⊆ X(KΩ).

If X(KΩ)Brun 6= X(KΩ) (resp. X(KΩ)Brun,al 6= X(KΩ)) one says that there
is a Brauer–Manin obstruction (resp. an algebraic Brauer–Manin obstruc-
tion) to weak approximation. A Brauer–Manin obstruction that is not al-
gebraic is called transcendental.
A conjecture by Colliot-Thélène [1, Introduction] says that the Brauer–

Manin obstruction to weak approximation should be the only obstruction
for rationally connected varieties, that is, X(K) = X(KΩ)Brun . Now, given
a finite K-group G, one can always embed it into SLn for some n and con-
sider the homogeneous space X = SLn/G, which is unirational (since SLn
is itself a rational variety) and hence rationally connected. In [6, Thm. 1],
Harari proved that if G is an iterated semidirect product of abelian groups,
then we do have X(K) = X(KΩ)Brun . The fact that this theorem implies
the approximation property away from a finite set T of places as we claimed
in §1 follows from the finiteness of BrunX/BrK, cf. [2, Prop. 5.1(iii)], and
from [6, §1.2] or [8, §1]:

TOME 67 (2017), FASCICULE 3



1018 Cyril DEMARCHE, Giancarlo LUCCHINI ARTECHE & Danny NEFTIN

Proposition 2.4. — Let G a be K-group embedded into SLn and put
X := SLn/G. Let S ⊂ ΩK be a finite set of places of K. Then X has
approximation in S if and only if the natural map

H1(K,G)→
∏
v∈S

H1(Kv, G),

is surjective.

Note that this result proves in particular that approximation properties
for varieties such as X = SLn/G depend only on G, i.e. they are indepen-
dent of the embedding of G and even on the dimension of X since there is
no condition on n, justifying the definition of the approximation property
in §1.
The tame approximation problem is thus equivalent to determining

whether G (or X = SLn/G) has weak approximation away from T = BadG.
Note that a positive answer to this question does not necessarily imply a
positive answer to Colliot-Thélène’s conjecture forX = SLn/G. Conversely,
if the conjecture were true, we would only get the existence of a finite set
TBr of bad places. However, not enough is known on the unramified Brauer
group of X in order to show that TBr = BadG.

2.6. Poitou–Tate

We next recall the obstruction to weak approximation for finite abelian
K-groups. Let A be a finite abelian K-group and let Â = Hom(A,Gm) be
its Cartier dual, which is also a finite abelian K-group.
Let Kun

v denote the maximal unramified extension and Ktr
v its max-

imal tamely ramified extension. Recall [14, II, §6] that for every finite
place v such that Gal(Kun

v ) acts trivially on A, the unramified cohomol-
ogy H1

un(Kv, A) is defined as the image of the group H1(Kun
v /Kv, A) un-

der inflation to H1(Kv, A). One can consider then the restricted product∏∐
ΩK

H1(Kv, A) with respect to these subgroups. It is well known that the
product of the restriction maps Resv sends H1(K,A) into

∏∐
ΩK

H1(Kv, A).
A classical result by Poitou and Tate [14, II.6.3] gives a perfect pairing

(2.3)
∏∐
ΩK

H1(Kv, A)×
∏∐
ΩK

H1(Kv, Â)→ Q/Z,

defined via local pairings and such that the image of H1(K,A) is the orthog-
onal complement of the image of H1(K, Â) for this pairing. A classic con-
sequence of these is the following well-known proposition [11, Lem. 9.2.2].

ANNALES DE L’INSTITUT FOURIER
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For a subset S of ΩK , let X1
S(K,G) := {α ∈ H1(K,G) |αv = 1, ∀ v 6∈S},

and let X1(K,G) := X1
∅(K,G).

Proposition 2.5. — Let A be a finite abelian K-group and S ⊂ ΩK
be a finite set of places. Then there is a pairing∏

v∈S
H1(Kv, A)×X1

S(K, Â)→ Q/Z,

such that its right kernel is X1(K, Â) and its left kernel is the image of
the restriction map

H1(K,A)→
∏
v∈S

H1(Kv, A)

In particular, A has approximation in S if and only ifX1
S(K,Â)=X1(K,Â).

We shall use the following property of X1
S(K, · ) to descend to finite

extensions:

Lemma 2.6. — Let A be a finite abelian K-group. Let L/K be a Galois
extension splitting A. Then for any finite S ⊂ ΩK , X1

S(K,A) is contained
in the image of H1(L/K,A) by the inflation map.

Proof. — Since Gal(L) acts trivially on A, we have the following com-
mutative diagram with exact rows:

1 // H1(L/K,A) inf // H1(K,A)

��

Res // H1(L,A)

��∏
v∈ΩK

H1(Kv, A) Res //
∏
w∈ΩL

H1(Lw, A).

Since L splits A, the H1’s on the right hand side of the diagram are actually
groups of homomorphisms. Restricting a class α ∈X1

S(K,A) to H1(L,A),
we get a homomorphism Gal(L)→ A that is trivial everywhere locally ex-
cept for the finitely many w ∈ ΩL that lie above S ⊂ ΩK . By Chebotarev’s
density theorem it is the trivial morphism. Thus by exactness, α comes
from H1(L/K,A). �

3. Reocurrence

The main idea in proving Theorem 1.1 is to show that, given a finite
K-group G of order n and a finite place v 6∈ BadG, there are infinitely

TOME 67 (2017), FASCICULE 3



1020 Cyril DEMARCHE, Giancarlo LUCCHINI ARTECHE & Danny NEFTIN

many other places w such that H1(Kv, G) ∼= H1(Kw, G). In the particular
case of a constant group, this infinite set of places will only depend on v

and n. Hence, for a place v prime to n, a group G of order n will appear
as a Galois group over Kv if and only if it appears over Kw.
Let us start by proving that, for finite places not in BadG, the set

H1(Kv, G) depends only on the tamely ramified part Γv = Gal(Ktr
v /Kv).

Recall that Γv is generated by a lift σv of the Frobenius and a generator
of the inertia group τv, as in §2.1. For every place v, we fix a choice of σv
and τv and keep it all throughout the text.

Lemma 3.1. — Let G be a finite K-group of order n and let v ∈ ΩK
be a place outside BadG. Denote by Tnv the subgroup of Γv generated by
τnv . Then there is an isomorphism H1(Kv, G) ∼= H1(Γv/Tnv , G) given by
inflation.

Proof. — The statement is trivial for archimedean v, so we may assume
that v is finite. Since the wild ramification subgroup Wv 6 Gal(Kv) acts
trivially on G, the inflation-restriction sequence gives:

1→ H1(Γv, G) inf−−→ H1(Kv, G) Res−−→ H1(Wv, G),

and H1(Wv, G) is the set of morphisms Wv → G up to conjugation. Since
Wv is a pro-p group with p not dividing n, there are no such nontrivial
morphisms and hence H1(Kv, G) ∼= H1(Γv, G).
Consider now a class α ∈ H1(Γv, G). Since v is unramified in the minimal

extension splitting G, Tv also acts trivially on G and hence α restricts to
a morphism (up to conjugation) from Tv to G. It is then evident that this
morphism is trivial over Tnv . The same inflation-restriction argument then
gives

H1(Kv, G) ∼= H1(Γv/Tnv , G). �

The following reocurrence result generalizes the statement given in the
beginning of the section.

Proposition 3.2. — Let G be a finite K-group of order n, L/K a
Galois extension splitting G and let v ∈ ΩK be either an archimedean
place or a finite place which is unramified in L and does not divide n
(in particular, v 6∈ BadG). Then there exist infinitely many finite places
w 6∈ BadG for which:

(1) the decomposition groups of v and w in Gal(L/K) are conjugate;
(2) there is an epimorphism φ : Γw/Tnw � Γv/Tnv given by φ(σw) =

σv, φ(τw) = τv, which is moreover an isomorphism if v is finite.
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The epimorphism φ induces a monomorphism φ∗ : H1(Kv,G) ↪→H1(Kw,G),
which is moreover an isomorphism if v is finite.

Proof. — By Chebotarev’s density theorem applied to the Galois exten-
sion L(µn)/K (which is unramified in v) there are infinitely many places
w 6∈ BadG for which the image of the decomposition group in Gal(L(µn)/K)
is generated by the image of σw and is conjugate to the image of σv. In
particular, we get that these groups are conjugate in Gal(L/K).

If v is finite, the images of σv and σw coincide in the quotient
Gal(K(µn)/K) and hence their residue degrees qv, qw, respectively, are
congruent mod n. Moreover, recall that the group Γv/Tnv has the following
presentation:

〈σv, τv |σvτvσ−1
v = τ qv

v , τnv = 1〉.

Since qw ≡ qv mod n, we get an isomorphism φ : Γw/Tnw → Γv/Tnv by
setting φ(σw) = σv and φ(τw) = τv. If v is archimedean, the same definition
gives an epimorphism φ : Γw/Tnw → Gal(Kv) since σ2

v = τv = 1.
Let ρ ∈ Gal(K) be an element for which σw coincides with ρσvρ

−1 in
Gal(L/K). Denote by ρG the Kv-group where σ ∈ Gal(Kv) acts on G by
g 7→ gρσρ−1 and note that this action coincides with that of Gal(Kw) on G.
Consider the maps

H1(Γv/Tnv , G) ρ∗−→ H1(Γv/Tnv , Gρ ) φ∗−→ H1(Γw/Tnw , G),

where ρ∗ is a canonical isomorphism defined at the level of cocycles by the
identity on Γv/Tnv and by sending g ∈ G to gρ . We abusively denote by φ∗
the whole composition. Then evidently φ∗ is an isomorphism if v is finite
and injective as an inflation morphism if v is archimedean. Recall finally
that by Lemma 3.1, we have H1(Kv, G) ∼= H1(Γv/Tnv , G) for finite v and
Γv/Tnv = Gal(Kv) for archimedean v, hence the result. �

We finally give a particular application necessary for the proof of Theo-
rem 1.1:

Lemma 3.3. — Let G, L/K, v, w, φ and φ∗ be as given by Proposi-
tion 3.2. Let α ∈ H1(Kv, G) and assume that there exists a class β = [b] ∈
H1(K,G) such that βv = α, βw = φ∗α and such that the group morphism
Gal(L)→ G obtained by restriction of b to Gal(L) is surjective. Denote by
L′ the extension defined by the kernel of this morphism. Then the decom-
position groups of v and w in Gal(L′/K) are conjugate.

We first note that L′/K is indeed Galois:
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Lemma 3.4. — Let G be a K-group and L/K be a Galois extension
splitting G. Let b ∈ Z1(K,G) and L′/L be the field fixed by the kernel of
the restriction of b to Gal(L). Then L′ is Galois over K.

Proof. — Let τ ∈ Gal(L′) and σ ∈ Gal(K). Then

bστσ−1 = bσ bσ τ bστσ−1 −1
σ .

Since L/K is Galois and τ ∈ Gal(L′) ⊆ Gal(L), we get στσ−1 ∈ Gal(L),
hence it acts trivially on bσ. As bτ = 1 by definition of L′, we get bστσ−1 = 1,
which proves that στσ−1 ∈ Gal(L′) and thus L′/K is Galois. �

Proof of Lemma 3.3. — We first show that the decomposition groups
of v and w in Gal(L′/K) are quotients of Γv/Tnv and Γw/Tnw . Indeed, this
holds for archimedean v since Gal(Kv) = Γv/Tnv . For finite v and w, L′/K is
tamely ramified since L/K is unramified and L′/L is of degree n and hence
prime to v and w. Since the restriction of b to Tv and Tw is a morphism, it
must be trivial on Tnv and Tnw , i.e. Tnv , Tnw ⊂ Gal(L′), proving the claim.
Denote then (abusively) by σv, σw, τv, τw, the images in Gal(L′/K) of

these elements. Recall that by the proof of Proposition 3.2, there exists
an element ρ ∈ Gal(K) such that σw coincides with ρσvρ−1 in Gal(L/K).
Also note that ρτvρ−1 = τw = 1 in Gal(L/K). We claim that we may
choose ρ so that bρ = 1. Note that bχρ = bχbρ for χ ∈ Gal(L). Since b
is surjective when restricted to Gal(L), there exists χ ∈ Gal(L) such that
bχ = b−1

ρ so that bχρ = 1. Since χ ∈ Gal(L), we have that σw coincides
with (χρ)σv(χρ)−1 in Gal(L/K), proving the claim.
The isomorphism φ∗ between H1(Kv, G) and H1(Kw, G) is given at the

level of cocycles by the morphisms ρ∗ : G → G and φ : Γw/Tnw → Γv/Tnv ,
which satisfy ρ∗(g) = gρ , φ(σw) = σv, and φ(τw) = τv. In particular, if
α = [a] for a ∈ Z1(Γv/Tnv , G), then φ∗α = [a′] with a′σw

= aρ σv
and

a′τw
= aρ τv

.
Now, since βv = α and βw = φ∗α, we know that there exist g, g′ ∈ G

such that

(ρ gbσv gσv −1) = aρ σv
= a′σw

= g′bσw g′
σw −1

,

(ρ gbτvg
−1) = aρ τv

= a′τw
= g′bτwg

′−1
.

Since b restricted to Gal(L′/L) is an isomorphism by hypothesis, there are
unique χ, χ′ ∈ Gal(L′/L) such that bχ = g, bχ′ = g′, so that

(3.1)
bρ χ bρ σv

bρσv −1
χ = bχ′bσw bσw −1

χ′ ,

bρ χ bρ τv
bρ −1
χ = bχ′bτw

b−1
χ′ .
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Note now that since bρ = 1, we have bρηρ−1 = bρ η for every η ∈ Gal(L′/L),
so in particular for η = χ, τv, and χ−1. Noting that

ρGal(L′/L)ρ−1 ⊆ Gal(L′/L),

since L/K is Galois, that the restriction of b to Gal(L′/L) is a homomor-
phism, and putting ρ0 := χ′

−1
ρχ ∈ Gal(L′/K), (3.1) gives bρ0τvρ

−1
0

= bτw

and hence ρ0τvρ
−1
0 = τw in Gal(L′/L) ⊂ Gal(L′/K).

Finally, we claim that ρ0σvρ
−1
0 = σw in Gal(L′/K). Since χ, χ′ ∈ Gal(L),

we already know that σw and ρ0σvρ
−1
0 coincide on Gal(L/K) and hence

act equally on G. Thus, on the one hand, (3.1) gives

bρ0 bρ σv
bσw −1
ρ0

= bσw
.

On the other hand, we have ρ0σvρ
−1
0 = ψσw for some ψ ∈ Gal(L′/L).

Applying b to this equality another direct computation gives

bρ0 bρ σv
bσw −1
ρ0

= bψbσw
.

From the two last equalities we get that bψ = 1. Since b is an isomorphism
over Gal(L′/L), we get ψ = 1, proving the claim. Thus conjugation by ρ0
sends the decomposition group of v in L′/K to that of w. �

4. Weak approximation away from BadG

We now restate and prove Theorem 1.1 in the language of approximation
properties. Recall that, given a K-group G, BadG denotes the set of bad
places associated to it, cf. Definition 2.1.

Theorem 4.1. — Let K be a number field and G be a finite K-group
with weak approximation away from BadG. Then every semidirect product
E = AoG with A an abelian K-group has weak approximation away from
BadE .

Remark 4.2. — Note that this result does imply Theorem 1.1. Indeed,
one can prove it by induction starting with the fact that the trivial group
has weak approximation.

Proof of Theorem 4.1. — Consider a finite set of places S ⊂ ΩK not
meeting BadE and local classes βv ∈ H1(Kv, E) for v ∈ S. We will find a
global class β ∈ H1(K,E) mapping to the βv’s in three steps:

Step 1. — Constructing a class β′ ∈ H1(K,E) with prescribed images
in H1(Kv, G) for v in S ∪ S′ for a suitable S′.
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We have the following commutative diagram of pointed sets with exact
rows:

(4.1)

H1(K,A)

��

// H1(K,E)

��

// H1(K,G)
ww

��∏
v∈ΩK

H1(Kv, A) //
∏
v∈ΩK

H1(Kv, E) //
∏
v∈ΩK

H1(Kv, G),
zz

where the arrows going left are set-theoretical sections induced by a fixed
section G→ E.
The βv’s give us images γv ∈ H1(Kv, G) for v ∈ S. Let n = |E| and

L a Galois extension splitting E. Then, by Proposition 3.2 applied to the
extension L(µn)/K (which splits G), we know that for every v ∈ S there
exist places v′ 6∈ S ∪ BadE for which there are inclusions

φ∗v : H1(Kv, G) ↪→ H1(Kv′ , G).

Choose one such v′ for each v ∈ S and denote by S′ the set of these places.
We may assume that all the v′ are different since we have an infinite choice
at each time. Define then γv′ := φ∗v(γv) ∈ H1(Kv′ , G).

Since we’ve chosen these new places away from BadE ⊃ BadG, we know
by hypothesis that there exists a global class γ ∈ H1(K,G) mapping onto
γv for every v ∈ S ∪ S′. Moreover, we may assume that the restriction
of a cocycle c ∈ Z1(K,G), representing γ, to Gal(L(µn)) is surjective:
Indeed by Chebotarev’s density theorem, there are infinitely many places
w 6∈ S ∪ S′ ∪ BadE totally split in L(µn), so in particular such that G is
constant over Kw; then, for each element g ∈ G we may choose one such
w and an unramified class γw ∈ H1(Kw, G) represented by a morphism
sending σw to g, so that all w’s are distinct; then finally, adding these local
conditions to S∪S′ forces c to be surjective when restricted to Gal(L(µn)).
Let β′ be the image of γ in H1(K,E) via the section of diagram (4.1).

Viewing G as a subgroup of E, the class β′ is represented by the same
cocycle c.

Step 2: Twisting. — We twist by c to look for a class in H1(K,E)
satisfying the necessary prescribed local conditions in S.
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Let us now twist diagram (4.1) by the cocycle c representing β′. This
gives us the following new diagram with exact rows

(4.2)

H1(K, Ac )

��

// H1(K, Ec )

��

// H1(K, Gc )

��∏
v∈ΩK

H1(Kv, Ac ) //
∏
v∈ΩK

H1(Kv, Ec ) //
∏
v∈ΩK

H1(Kv, Gc ).

For every cohomology class ξ in a set of diagram (4.1), we denote by cξ its
twisted image in the corresponding set of diagram (4.2).
Since the images of βv and β′ coincide on H1(Kv, G) for v ∈ S by con-

struction and β′c is trivial by the very definition of twisting, we know by
exactness that βc v ∈ H1(Kv, Ec ) comes from an element αv ∈ H1(Kv, Ac ).

It suffices then to find a global class α ∈ H1(K, Ac ) mapping onto αv for
v ∈ S to conclude. Indeed, the image of α in H1(K, Ec ) would then map
onto the βc v’s for v ∈ S and hence its preimage in H1(K,E) by the twisting
morphism would map onto the βv’s as desired. Thus, in order to conclude,
it will suffice by Proposition 2.5 to prove that X1

S(K, Âc ) = X1(K, Âc ).

Step 3: Proof of X1
S(K, Âc ) = X1(K, Âc ). — Consider a class α in

X1
S(K, Âc ), i.e. a class in H1(K, Âc ) such that its image αv ∈ H1(Kv, Âc )

is trivial for every v 6∈ S, so in particular for v′ ∈ S′. We must show that
αv = 0 for v ∈ S too.
Fix then v ∈ S and its corresponding v′ ∈ S′. Lemma 3.3 applies in this

context to the local classes γv and γv′ = φ∗v(γv), the global class γ and the
extension L(µn)/K. By the lemma the decomposition groups of v and v′
in Gal(L′/K) are conjugate, where L′ is the extension of L(µn) given by
the kernel of c restricted to Gal(L(µn)). Note moreover that L′ splits Âc .
Indeed, since |A| divides n we have Âc = Hom(cA,µn) and since L′ contains
µn, then this amounts to L′ splitting Ac . The latter holds since the action
of σ ∈ Gal(K) on a ∈ Ac is given by cσ aσ c−1

σ , where aσ denotes the action
of σ on a as an element of A. Since c is trivial over Gal(L′) and L′ clearly
splits A, we get then our claim. In particular, by Lemma 2.6, we know that
the whole group X1

S(K, Âc ) comes by inflation from H1(L′/K, Âc ).
Our element α ∈X1

S(K, Âc ) comes then from H1(L′/K, Âc ) and hence
αv comes from H1(L′(v)

/Kv, Âc ), where L′(v) denotes the (unique) exten-
sion of Kv induced by L′/K. The same goes for v′. Since the decomposition
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groups of v and v′ are conjugate in Gal(L′/K), there is a canonical isomor-
phism

H1(L′(v)
/Kv, Âc ) ∼−→ H1(L′(v

′)
/Kv′ , Âc ),

which is compatible with the restrictions from H1(L′/K, Âc ). But α is in
X1

S(K, Âc ) and v′ 6∈ S, so that αv′ = 0 and hence αv = 0 too. Since the
same argument works for every v ∈ S, we deduce that α ∈ X1(K, Âc ),
proving the claim. �

5. Counterexamples to weak approximation

In this section we show that Theorem 4.1 is sharp in the sense that one
cannot expect to get approximation (or to solve the Grunwald problem) on
the set of bad places.

Recall that a group is bicyclic if and only if it is cyclic or a direct product
of two cyclic groups. For a finite group G and a finite G-module A, we let

X1
bic(G,A) := ker

H1(G,A)→
∏

H∈bic(G)

H1(H,A)

 ,
where bic(G) denotes the set of bicyclic subgroups of G.

Theorem 5.1. — Let G be a finite abelian group, K a number field,
and S a finite set of places of K. Let A be a finite G-module and E = AoG
a constant K-group. Assume:

(1) K contains the exp(A)-th roots of unity;
(2) there exists v0 ∈ S such that G is a Galois group over Kv0 ;
(3) S contains all the places of K dividing the order of G;
(4) X1

bic(G, Â) 6= 0 (in particular G is not bicyclic).
Then the map H1(K,E)→

∏
v∈S H1(Kv, E) is nonsurjective.

Remark 5.2. — Note that, given the structure of local Galois groups
recalled in Section 2.1, Condition (4) implies that the place v0 in Condi-
tion (2) must divide the order of G.

Corollary 5.3. — Assume in addition that K contains the exp(E)-th
roots of unity, then there is a transcendental Brauer–Manin obstruction to
weak approximation on X := SLn/E.

Proof. — Indeed, Theorem 5.1 and Proposition 2.4 tell us that X does
not have approximation in S and hence it doesn’t have weak approxima-
tion. Now, by [6, Thm. 1] the Brauer–Manin obstruction to weak approx-
imation for such a variety is the only obstruction, whereas the formula
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given in [9, Prop. 5.9] tells us that the algebraic part of BrunX is trivial,
hence the lack of weak approximation for X cannot be explained by alge-
braic obstructions. The Brauer–Manin obstruction must then come from
transcendental elements of BrunX. �

Example 5.4. — Let p be a prime number and let G := (Z/pZ)3. Let
A := Î, where I is the augmentation ideal of (Z/p3Z)[G]. There is a natural
action of G on A and E := AoG is a group of order p3p3 . Define K to be
Q(ζp4) and S to be the unique place of K dividing p. By Lemma 5.5 here
below, we have X1

bic(G, Â) 6= 0 and it is easy to see that all the other
assumptions of Corollary 5.3 are satisfied, hence the group E provides
the first explicit example of a transcendental Brauer–Manin obstruction
to weak approximation on a homogeneous space.

Lemma 5.5. — Let G be a finite group of order n which is not bicyclic,
let R be the group ring (Z/nZ)[G] and ICR the augmentation ideal. Then
X1

bic(G, I) is nontrivial.

Proof. — For a G-module A, denote by Ĥ0(G,A) the Tate cohomology
group AG/NG(A) where NG(A) := {

∑
σ∈G aσ | a ∈ A}. Put B := R/I ∼=

Z/nZ. Since R is an induced H-module for any subgroup H 6 G, we have
Ĥ0(H,B) ∼= H1(H, I) and hence X1

bic(G, I) is isomorphic to

X0
bic(G,B) = ker

Ĥ0(G,B)→
∏

H∈bic(G)

Ĥ0(H,B)

 .
Since Ĥ0(H,B) ∼= Z/|H|Z for every H 6 G, and since G 6∈ bic(G), we
have:

X0
bic(G,B) ∼= ker

Z/nZ→ ∏
H∈bic(G)

Z/|H|Z

 6= 0.

�

Proof of Theorem 5.1. — We divide the proof into five steps.

Step 1: Setup. — We construct local classes in H1(Kv, G), the fibers
of which will contain elements that cannot be approximated by a global
element in H1(K,E).
By Condition (2), there exists an epimorphism cv0 : Gal(Kv0) → G.

Since G is abelian and constant, Hom(Gal(K), G) = Z1(K,G) = H1(K,G)
and their equivalents for theKv’s. One can then look at cv0 as an element of
H1(Kv0 , G). We will omit these identifications from now on and abusively
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use the same letters for cocycles and cohomology classes for G. For v in
S r {v0}, let cv := 0 ∈ H1(Kv, G).
Fix a section s : G→ E of the following exact sequence

(5.1)
1 // A // E

π // G //

s
||

1.

Consider s(cv) ∈ Z1(Kv, E), which we still denote abusively by cv by look-
ing at G as a subgroup of E via s, and let βv := [cv] ∈ H1(Kv, E). If
(βv)v∈S is not contained in the image of the restriction map

H1(K,E)→
∏
S

H1(Kv, E),

then we are done. So we can assume that there exists β ∈ H1(K,E) lifting
the βv’s for all v ∈ S. Up to replacing β by s(π(β)), one can assume that
β = s(c) for some c ∈ H1(K,G) lifting the cv’s for v ∈ S. Making once
again an abuse of notation, we’ll write β = [c], viewing c as an element of
Z1(K,E).

Step 2: Twisting. — To study the fibers over cv, v ∈ S, we twist the
exact sequence (5.1) by the cocycle c. We get the following twisted exact
sequence:

1 // Ac // Ec // Gc //
zz

1,

where we immediately remark that Gc = G since G is abelian. Moreover,
since c takes values in G, the section s is still well defined on these twisted
forms.
By definition of twisting, the action of Gal(K) on Ac is given by compo-

sition of the morphism c : Gal(K) → G with the morphism G → Aut(A)
defining the action of G on A.

Step 3: Defining unattainable classes in H1(Kv, E). — By Condition (1)
of Theorem 5.1, we know that Â = Hom(A,Q/Z) and the same goes for
its twisted version Ac . Since both G and Gal(K) act trivially on Q/Z, the
action of Gal(K) on Âc corresponds via c with the action of G on Â, so
that we get a pullback morphism c∗ : H1(G, Â)→ H1(K, Âc ).

Note that since G is abelian, Condition (3) of Theorem 5.1 and the
structure of local Galois groups imply that the image of c : Gal(K) → G

restricted to Gal(Kv) is a bicyclic subgroup, for all cocycles c ∈ Z1(K,G)
and all places v 6∈ S. Therefore, for any c ∈ Z1(K,G), the morphism c∗

restricts to a morphism

c∗ : X1
bic(G, Â)→X1

S(K, Âc ).
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Condition (4) tells us now that there exists γ 6= 0 ∈X1
bic(G, Â). Since c

lifts cv0 , and the latter was chosen to be surjective, cmust also be surjective.
Hence the above map c∗ is an inflation map and is therefore injective, so
that c∗(γ) 6= 0 ∈X1

S(K, Âc ).
In addition since cv0 is surjective, one has by inflation that c∗(γ)v0 6= 0

in H1(Kv0 , Âc ), hence c∗(γ) 6∈X1(K, Âc ). By Proposition 2.5, there exists
therefore (αv)v∈S ∈

∏
S H1(Kv, Ac ) which is not in the image of H1(K, Ac ).

Note also that c∗(γ)v = 0 for all v ∈ Sr {v0} since cv = 0 for these places,
hence we can assume that αv = 0 for all v 6= v0.

Consider now the image in
∏
S H1(Kv, Ec ) of (αv)v∈S . The twisting bi-

jection H1(·, Ec )→ H1(·, E) tells us that this element is the twist ( β′vc )v∈S
of an element (β′v)v∈S ∈

∏
S H1(Kv, E). We claim that (β′v)v∈S is not in

the image of H1(K,E).

Step 4: Compatibility between twists and obstructions. — To prove the
latter claim, we first show a certain compatibility relation between the
maps c∗ and c′

∗ for every two classes c and c′ in Z1(K,G) = H1(K,G)
such that cv = c′v in H1(Kv, G) for all v ∈ S. Namely, we claim that there
are canonical isomorphisms iv : H1(Kv, Ac ) ∼−→ H1(Kv, Ac′ ) for v ∈ S such
that the following diagram
(5.2)

X1
S(K, Âc )×

∏
S H1(Kv, Ac )

〈 , 〉c //

∏
iv

��

Q/Z

X1
bic(G, Â)

c∗ 33

c′∗

++
X1

S(K, Âc′ )×
∏
S H1(Kv, Ac′ )

〈 , 〉c′ // Q/Z,

is commutative in the following sense: for all γ ∈ X1
bic(G, Â) and all

(αv)v∈S in
∏
S H1(Kv, Ac ), one has

〈c∗γ, (αv)〉c = 〈c′∗γ, (iv(αv))〉c′ ∈ Q/Z.

The left-hand side arrows in the diagram were defined in Step 3, while the
right-hand side arrows are given by Proposition 2.5. Now, for v ∈ S, since
cv = c′v as cocycles, there exists a natural isomorphism of Gal(Kv)-modules
cA→ c′A (given by the identity map) that induces a group isomorphism

iv : H1(Kv, Ac )→ H1(Kv, Ac′ ).
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Similarly, one can consider the dual isomorphism Âc′ → Âc which induces
a corresponding isomorphism îv : H1(Kv, Âc′ )→ H1(Kv, Âc ) such that

H1(Kv, Âc )

X1
bic(G, Â)

c∗v 44

c′∗v
**
H1(Kv, Âc′ ) ,

îv

OO

is commutative. Hence the claim reduces to the commutativity of the fol-
lowing diagram

H1(Kv, Âc )×H1(Kv, Ac )
〈 , 〉c //

iv

��

Q/Z

H1(Kv, Âc′ )×H1(Kv, Ac′ )
〈 , 〉c′ //

îv

OO

Q/Z ,

which is just the functoriality of cup-product (or of local duality), proving
the claim.

Step 5: Proving that the local classes are globally unattainable. — As-
sume on the contrary that there exists β′ = [b′] ∈ H1(K,E) lifting the β′v’s
for all v ∈ S. Define c′ := π(β′) ∈ Z1(K,G) = H1(K,G) and consider the
class β′′ := s(π(β′)) = [c′] ∈ H1(K,E) (we are once again doing an abuse
of notation with c′).

Let us now twist the exact sequence (5.1) by the cocycle c′, so that we
get the following twisted exact sequence:

(5.3) 1 // Ac′ // Ec′ // Gc′ //
zz

1.

where we remark once again that Gc′ = G and that the section s is still
well defined on these twisted forms.
Since β′ and β′′ = [c′] have the same image in H1(K,G), we know

that β′c′ must come from an element α′ ∈ H1(K, Ac′ ) and that its image
(α′v)v∈S ∈

∏
S H1(K, Ac′ ) maps to ( β′c′ v)v∈S ∈

∏
S H1(K, Ec′ ). In particu-

lar, since (α′v)v∈S comes from a global element, we know by Proposition 2.5
that

(5.4) (α′v)v∈S is orthogonal to X1
S(K, Âc′ ) .

Consider now Diagram (5.2) and the element (αv)v∈S ∈
∏
S H1(Kv, Ac )

from Step 3. By construction, this element is not orthogonal to c∗(γ) and
hence its image (iv(αv))v∈S ∈

∏
S H1(K, Ac′ ) is not orthogonal to c′∗(γ).
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The two elements (iv(αv))v∈S and (α′v)v∈S have the same image in∏
v∈S H1(Kv, Ec′ ) by construction (recall that cv = c′v for v ∈ S and

hence β′c v = β′c′ v). Thus, (iv(αv))v∈S and (α′v)v∈S differ by an action
(as described in (2.2), §2.4) of an element of the group

Coker
(∏
v∈S

H0(Kv, Eb′ )→
∏
v∈S

H0(Kv, Gc′ )
)
.

We denote by (gv)v∈S ∈
∏
S H0(Kv, Gc′ ) a lift of this element.

Now, for all v ∈ S r {v0}, we have by construction β′v = 1 ∈ H1(Kv, E)
and hence b′ (and a fortiori c′) is trivial over Gal(Kv) since E is constant.
The map H0(Kv, Eb′ )→ H0(Kv, Gc′ ) corresponds then to E → G, which is
surjective. Therefore, iv(αv) = α′v and H0(Kv, Gc′ ) acts trivially on iv(αv)
for these v. Finally, the map H0(K, Gc′ )→ H0(Kv0 , Gc′ ) is clearly surjective
(recall that Gc′ = G and hence both groups are equal to G and the map
is the identity), hence gv0 lifts to an element g ∈ H0(K,G). We conclude
then that g · (iv(αv))v∈S = (α′v)v∈S .
Note that the natural paring Ac′ × Âc′ → Gm is invariant under the

morphism (g, ĝ−1) : Ac′ × Âc′ → Ac′ × Âc′ given by (a, f)→ (g · a, ĝ−1 · f),
where ĝ : Âc′ → Âc′ is the dual map to g : Ac′ → Ac′ defined by the conju-
gation action of G on Ac′ . By functoriality of cup products [11, Prop. 1.4.2],
the cup product H1(Kv, Ac′ )×H1(Kv, Âc′ )→ Q/Z is also invariant under
the morphism induced by (g, ĝ−1). Since (iv(αv))v∈S is not orthogonal to
c′
∗(γ), it follows that g · (iv(αv))v∈S is not orthogonal to ĝ−1(c′∗(γ)). But

as c′∗(γ) is in X1
S(K, Âc′ ) so is ĝ−1(c′∗(γ)), hence we finally get that

g · (iv(αv))v∈S = (α′v)v∈S is not orthogonal to X1
S(K, Âc′ ),

contradicting (5.4). �
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