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QUASICIRCLE BOUNDARIES AND EXOTIC
ALMOST-ISOMETRIES

by Jean-François LAFONT,
Benjamin SCHMIDT & Wouter VAN LIMBEEK (*)

Abstract. — We show that the limit set of an isometric and convex cocom-
pact action of a surface group on a proper geodesic hyperbolic metric space, when
equipped with a visual metric, is a Falconer–Marsh (weak) quasicircle. As a con-
sequence, the Hausdorff dimension of such a limit set determines its bi-Lipschitz
class. We give applications, including the existence of almost-isometries between
periodic negatively curved metrics on H2 that cannot be realized equivariantly.
Résumé. — Nous démontrons que l’ensemble limite d’une action isométrique

et convexe co-compacte d’un groupe de surface sur un espace hyperbolique, équipé
de sa métrique visuelle canonique, est un (faible) quasi-cercle au sens de Falconer
et Marsh. Ceci implique que ces métriques visuelles sur ces ensembles limites sont
classifiées, à équivalence bi-Lipschitz près, par leur dimension de Hausdorff. Nous
donnons plusiers consequences, y compris l’existence de presque-isométries entre
des paires de métriques périodiques sur H2 (malgré le faite qu’en général, il n’existe
pas de presque-isométrie équivariante).

1. Introduction

Consider a closed Riemannian manifold (M, g) with sectional curvatures
6 −1. The metric g lifts to a π1(M)-invariant metric g̃ on the universal
covering X, inducing an action of π1(M) on the boundary at infinity ∂X.
This boundary, equipped with a visual metric d∂ (see Definition 2.3), ex-
hibits fractal-like behavior as a consequence of this action. More generally,
this phenomenon occurs if π1(M) acts properly discontinuously and convex
cocompactly on a hyperbolic metric space X. Our first result follows this
general philosophy:

Keywords: Rigidity, quasi-isometry, almost-isometry, bi-Lipschitz map, boundary at in-
finity, quasi-circle, limit set, Hausdorff dimension.
Math. classification: 20F67, 51F99.
(*) J.-F. L. was partially supported by the NSF, under grants DMS-1207782, DMS-
1510640. B.S. was partially supported by the NSF, under grant DMS-1207655.
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Theorem 1.1. — Let Γ be a surface group acting isometrically, properly
discontinuously, and convex cocompactly on a proper geodesic hyperbolic
metric space (X, d). Then the limit set of this action, with a visual metric
d∂ , is a (weak) quasicircle in the sense of Falconer–Marsh.

The following results use the special case of Theorem 1.1 where (X, d)
is the universal cover of a closed surface equipped with a locally CAT(-1)
metric, and Γ acts on X by deck transformations.

Corollary 1.2. — Let (M1, d1), (M2, d2) be any pair of closed surfaces
equipped with locally CAT(-1) metrics, and let (Xi, d̃i) be their universal
covers. Then one can find real numbers 0 < λi 6 1, with max{λ1, λ2} = 1,
having the property that (X1, λ1d̃1) is almost-isometric to (X2, λ2d̃2).

Recall that an almost-isometry is a quasi-isometry with multiplicative
constant = 1. When M1,M2 are locally CAT(-1) manifolds, the existence
of an almost-isometry X1 → X2 sometimes forces the universal covers to be
isometric [12]. On the other hand, Corollary 1.2 yields examples of almost-
isometric universal covers that are not isometric – take for example d1 to
be Riemannian and d2 to be non-Riemannian.

Corollary 1.3. — LetM be a closed surface with Riemannian metrics
g1, g2 having curvatures 6 −1. Equip ∂X with the corresponding canonical
visual metrics d1 and d2. Then the following three statements are equiva-
lent:

(1) The topological entropies of the two geodesic flows on T 1M are
equal.

(2) The boundaries (∂X, d1) and (∂X, d2) are bi-Lipschitz equivalent.
(3) The universal covers (X, g̃1) and (X, g̃2) are almost-isometric.

By Corollary 1.2, given two negatively curved Riemannian metrics g1
and g2 on a closed surfaceM , after possibly scaling one of the metrics (and
also its area), the universal covers are almost-isometric. Our next result
shows that one can arrange for equal area examples with almost-isometric
universal covers.

Theorem 1.4. — Let M be a closed surface of genus > 2, and k > 1
an integer. One can find a k-dimensional family Fk of Riemannian metrics
on M, all of curvature 6 −1, with the following property. If g, h are any
two distinct metrics in Fk, then

• Area(M, g) = Area(M,h).
• the lifted metrics g̃, h̃ on the universal coverX are almost-isometric.
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• the lifted metrics g̃, h̃ on the universal cover X are not isometric.

The almost-isometries between the lifted metrics in Theorem 1.4 are ex-
otic in the sense that they cannot be realized equivariantly with respect to
the π1(M)-actions on X. Indeed, a π1(M)-equivariant almost-isometry be-
tween the two lifted metrics on X implies that the metrics onM have equal
marked length spectra (see [12], for example), and are therefore isometric
by [8, 16].
As a final application, we exhibit a gap phenomenon for the optimal mul-

tiplicative constant for quasi-isometries between certain periodic metrics.

Corollary 1.5. — Let (M1, d1), (M2, d2) be any pair of closed surfaces
equipped with locally CAT(-1) metrics, and assume that their universal
covers (Xi, d̃i) are not almost-isometric. Then there exists a constant ε > 0
with the property that any (C,K)-quasi-isometry from (X1, d1) to (X2, d2)
must satisfy C > 1 + ε.
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2. Background material

This section reviews the definitions and existing results used in our
proofs.

2.1. Convex cocompact actions

We refer the reader to [2, Section 1.8] for more details concerning this
subsection. Let a finitely generated group Γ act properly discontinuously
and isometrically on a proper geodesic hyperbolic metric spaceX with limit
set ΛΓ ⊂ ∂X.
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Definition 2.1. — The Γ-action onX is convex cocompact if it satisfies
any of the following equivalent conditions:

(1) the map Φ : Γ→ X given by Φ(g) := g(x) is quasi-isometric.
(2) the orbit of a point Γ · p is a quasi-convex subset of X.
(3) Γ acts cocompactly on the Gromov hull Q(ΛΓ) of its limit set (con-

sisting of all geodesics joining pairs of points in ΛΓ).

These conditions imply that Γ is δ-hyperbolic, and therefore has a Gro-
mov boundary ∂Γ. An important consequence of the action being convex
cocompact is that the limit set ΛΓ is homeomorphic to ∂Γ. If Γ is a surface
group, then ∂Γ is a topological circle.

2.2. Metrics on the boundary

We refer the reader to [5, Chapter III.H.3] for more details concern-
ing this subsection. Let X be a proper geodesic hyperbolic metric space
with boundary ∂X. Fix a basepoint w ∈ X. The Gromov product (·|·)w :
X ×X → R is defined by (p|q)w := 1

2 (d(w, p) + d(w, q)− d(p, q)) for each
p, q ∈ X, and extends to ∂X × ∂X by

(x, y)w := sup lim
n,m→∞

(xn|ym)w

where the supremum is over all sequences {xn} and {ym} in X such that
xn → x and ym → y. Given a basepoint w ∈ X and ε > 0, we set ρε(x, y) :=
e−ε(x|y)w . In general ρε may not define a metric on ∂X, so we define

dε(x, y) := inf
n∑
i=1

ρε(ξi, ξi−1),

where the infimum is taken over all finite chains x = ξ0, . . . ξn = y.

Proposition 2.2 (See [5, III.H.3.21]). — Fix w ∈ X. Then for ε > 0
sufficiently small, dε is a metric on ∂X. Further, dε is bi-Lipschitz equivalent
to ρε, i.e. there exists C > 0 such that for every x, y, we have

1
C
ρε(x, y) 6 dε(x, y) 6 Cρε(x, y).

Further the bi-Lipschitz class of dε is independent of w.

Definition 2.3. — With a slight abuse of language, we refer to the
family of bi-Lipschitz equivalent metrics dε obtained in Proposition 2.2
(with w varying in X) as the visual metric on ∂X with parameter ε.

If X is CAT(-1), then Bourdon showed that we can choose ε = 1 [3]. In
this case we refer to d1 as the canonical visual metric on ∂X.

ANNALES DE L’INSTITUT FOURIER
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Let Γ be a properly discontinuous group of isometries of X acting convex
cocompactly with limit set Λ ⊆ ∂X. Let s = Hdim(∂X) be the Hausdorff
dimension of a visual metric dε on ∂X, and Hs the corresponding Haus-
dorff measure. Then Hs is a finite measure, fully supported on Λ. The
Hausdorff dimension and measure can be estimated using the following re-
sult (see Patterson–Sullivan [19] and its verbatim extension to the Gromov
hyperbolic setting by Coornaert [7, Section 7]).

Theorem 2.4 (Patterson–Sullivan, Coornaert).

(i) s = ε lim
n→∞

1
n

log #{γ ∈ Γ | d(w, γw) 6 n}

(ii) There exists a constant C > 1 such that for each metric ball B(x, r)
in ∂X (with center x and radius r), C−1rs 6 Hs (B(x, r)) 6 Crs.

Remark 2.5. — When (M, g) is a closed Riemannian manifold with sec-
tional curvatures 6 −1, its universal Riemannian covering X is a CAT(-1)
space equipped with a geometric action of Γ = π1(M) by deck transforma-
tions. Hence we can equip ∂X with the canonical visual metric (i.e. ε = 1).
In this case, Sullivan (for Kleinian groups) and Otal and Peigné [17] proved
that s = h(g), where the latter denotes the topological entropy of the geo-
desic flow on the unit tangent bundle T 1(M).

2.3. (Weak) Quasicircles according to Falconer–Marsh

Next let us briefly review some notions and results of Falconer and
Marsh [9].

Definition 2.6 (Falconer–Marsh). — A metric space (C, d) is a quasi-
circle if

(i) C is homeomorphic to S1,
(ii) (expanding similarities) There exist a, b, r0 > 0 with the following

property. For any r < r0 and N ⊆ C with diam(N) = r, there
exists an expanding map f : N → C with expansion coefficient
between a

r and b
r , i.e. for all distinct x, y ∈ N , we have the estimate

a

r
6
d(f(x), f(y))

d(x, y) 6
b

r

Note that a, b are independent of the size of N , and of the choice
of points in N .

TOME 67 (2017), FASCICULE 2
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(iii) (contracting similarities) There exist c, r1 > 0 with the following
property. For any r < r1 and ball B ⊆ C with radius r, there exists
a map f : C → B ∩ C contracting no more than a factor cr.

Let s = Hdim(C) be the Hausdorff dimension of C, and Hs the corre-
sponding Hausdorff measure. The following alternate property to (iii) is
implied by (ii) and (iii):
(iiia) For any open U ⊆ C one has 0 < Hs(U) < ∞, and Hs(U) → 0 as

diam(U)→ 0.
The main result of Falconer–Marsh [9] is that two quasicircles C1 and

C2 are bi-Lipschitz equivalent if and only if their Hausdorff dimensions are
equal. While stated this way, their proof only uses conditions (i), (ii), and
(iiia). For this reason, we will say that a metric space (C, d) is a weak
quasicircle when conditions (i), (ii), and (iiia) are satisfied.

Theorem 2.7 (Falconer–Marsh). — Two weak quasicircles C1 and C2
are bi-Lipschitz equivalent if and only if their Hausdorff dimensions are
equal.

Remark 2.8. — In geometric function theory, the term quasicircle is
used for the image of S1 under a quasisymmetric map f . We will call these
quasisymmetric circles. Falconer–Marsh quasicircles form a strict subset
of the quasisymmetric circles. Indeed, a Falconer–Marsh quasicircle X has
the same Hausdorff dimension as the visual boundary Y of some nega-
tively curved surface. By Theorems 1.1 and 2.7, X and Y are bi-Lipschitz
equivalent. Since Y is a quasisymmetric circle, so is X. On the other hand,
Property (ii) of Falconer–Marsh quasicircles implies that any nonempty
open subset U of a Falconer–Marsh quasicircle X has the same Hausdorff
dimension as X, a property that quasisymmetric circles need not have
(see [18]).

2.4. Almost-isometries and the work of Bonk–Schramm

Now let us recall some results of Bonk and Schramm [1] that we will
need.

Definition 2.9. — A map f : X → Y between metric spaces (X, dX)
and (Y, dY ) is quasi-isometric if there exists constants C,K such that

1
C
dX(x, y)−K 6 dY (f(x), f(y)) 6 CdX(x, y) +K.

ANNALES DE L’INSTITUT FOURIER
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A map f : X → Y is coarsely onto if Y lies in a bounded neighborhood
of f(X). If the quasi-isometric map f is coarsely onto, then we call it a
quasi-isometry, and we say that X,Y are quasi-isometric. A map is almost-
isometric if it is quasi-isometric with multiplicative constant C = 1. An
almost-isometric map f : X → Y which is coarsely onto is called an almost-
isometry, in which case we say that X,Y are almost-isometric.

Special cases of the results in [1] relate the existence of almost-isometries
with metric properties of ∂X, as follows.

Theorem 2.10 (Bonk–Schramm). — Let X,Y be a pair of CAT(-1)
spaces. Then X,Y are almost-isometric if and only if the canonical visual
metrics on the boundaries ∂X, ∂Y are bi-Lipschitz homeomorphic to each
other.

The fact that an almost-isometry betweenX and Y induces a bi-Lipschitz
homeomorphism between the boundaries ∂X and ∂Y appears in [1, proof
of Theorem 6.5] – where it should be noted that, in the notation of their
proof, our more restrictive context corresponds to ε = ε′ = 1 and λ = 1.
As for the converse, the interested reader should consult [1, Theorem 7.4]
to see that a bi-Lipschitz map between boundaries ∂X and ∂Y induces
an almost-isometry between the metric spaces Con(X) and Con(Y ). The
comment following [1, Theorem 8.2] applies in our context where a = 1, so
that Con(X) and Con(Y ) are almost isometric to X and Y , respectively,
whence X and Y are almost-isometric.

3. Surface boundaries are (weak) quasicircles

Having covered the preliminaries, let us now give a proof of Theorem 1.1,
as well as the various corollaries.

Proof of Theorem 1.1. — Looking at Definition 2.6, there are three
properties to establish. Property (i) is obvious – see the discussion in Sec-
tion 2.1. If Γ acts cocompactly on X, then Property (ii) is a consequence
of the more general result of Bourdon and Kleiner – see [4, Section 3.1]. In
the convex cocompact case, let Y be the Gromov hull (in X) of the limit
set of Γ. Then the Bourdon–Kleiner argument with minor modifications
(using quasi-convexity of Y in X) applies to the Γ action on Y , and this
proves Property (ii) in general (an earlier version of this paper, available
on the arXiv [15], contains a more detailed discussion of this point).

TOME 67 (2017), FASCICULE 2



870 Jean-François LAFONT, Benjamin SCHMIDT & Wouter VAN LIMBEEK

Finally, property (iiia) is an immediate consequence of Theorem 2.4. We
conclude that the limit set is indeed a (weak) quasicircle in the sense of
Falconer–Marsh. �

The proof of all three corollaries are now completely straightforward.
Proof of Corollary 1.3. — Theorem 1.1 gives us that (∂X, d1) and

(∂X, d2) are weak quasicircles. Then Falconer and Marsh’s Theorem 2.7
and Remark 2.5 gives the equivalence of statements (1) and (2), while
Bonk and Schramm’s Theorem 2.10 gives the equivalence of statements (2)
and (3). �

Proof of Corollary 1.2. — When two metrics on X are related by a
scale factor λ, it easily follows from the formula for the canonical visual
metric that the Hausdorff dimension of the boundary at infinity scales by
1/λ. Note also that if (X, d) is CAT(-1) and 0 < λ 6 1, then the rescaled
metric (X,λd) is also CAT(-1). Corollary 1.2 then immediately follows by
combining our Theorem 1.1, Falconer and Marsh’s Theorem 2.7, and Bonk
and Schramm’s Theorem 2.10. �

Proof of Corollary 1.5. — Combining our Theorem 1.1, Falconer
and Marsh’s Theorem 2.7, and Bonk and Schramm’s Theorem 2.10, we
see that the boundaries at infinity (∂Xi, di) must have distinct Hausdorff
dimensions. Without loss of generality, let us assume Hdim(∂X1, d1) <

Hdim(∂X2, d2). If φ : X1 → X2 is a (C,K)-quasi-isometry, we want to
obtain a lower bound on C. But the quasi-isometry induces a homeomor-
phism ∂φ : ∂X1 → ∂X2 which, from the definition of the Gromov product,
has the property that

ρ2 (∂φ(x), ∂φ(y)) 6 eK · ρ1(x, y)C

for all x, y ∈ ∂X1. Because di and ρi are bi-Lipschitz equivalent, we obtain
the desired inequality

1 < Hdim(∂X2, d2)
Hdim(∂X1, d1) 6 C. �

4. Constructing exotic almost-isometries

This section is devoted to the proof of Theorem 1.4. In view of Corol-
lary 1.3, we want to produce a k-dimensional family Fk of equal area metrics
on a higher genus surface M , which all have the same topological entropy,
but whose lifts to the universal cover are not isometric to each other.

ANNALES DE L’INSTITUT FOURIER
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4.1. Perturbations of metrics

Start with a fixed reference hyperbolic metric g0 on M , normalized to
have constant curvature −2. Pick (k + 2) distinct points p1, . . . pk+2 ∈ M ,
and choose r2 smaller than the injectivity radius ofM and satisfying 2r2 <

infi6=j{d(pi, pj)}. Let Ui denote the open metric ball of radius r2 centered
at pi – note that the Ui are all isometric to each other, and are pairwise
disjoint. Now choose r1 < r2 so that the area of the ball of radius r1 is at
least 4/5 the area of the ball of radius r2. Denote by Vi ⊂ Ui the ball of
radius r1 centered at each pi.

We will vary the metric g0 by introducing a perturbation on each of
the Ui in the following manner. Let us choose a smooth bump function
ρ : [0,∞) → [0, 1] with the property that ρ|[0,r1] ≡ 1 and ρ|[r2,∞) ≡ 0.
Next define ui : M → [0, 1] via ui(x) := ρ (d(x, pi)). Given a parameter
~t := (t1, . . . , tk+2) ∈ Rk+2, define the function u~t : M → [0,∞) by setting
u~t := t1u1 + · · ·+ tk+2uk+2. Finally, we define the metric g~t := e2u~tg0 (and
note the identification g~0 = g0). The family Fk will be obtained by choosing
suitable values of ~t close to ~0.
Since the metric g~t is obtained by making a conformal change on each

Ui, and since the Ui are pairwise disjoint, we first analyze the behavior of
such a change on an individual Ui. To simplify notation, denote by V ⊂ U
open balls of radius r1 < r2 centered at a point p in the hyperbolic plane
H2
−2 of curvature −2, and set gt := e2tug0 where g0 is the hyperbolic metric

of curvature −2, and u : H2
−2 → [0,∞) is given by u(x) := ρ (d(p, x)). We

start with the easy:

Lemma 4.1. — As t→ 0, we have the following estimates:
(1) the curvatures K(gt) tend uniformly to −2.
(2) the area Area(U ; gt) of the ball U tends to Area(U ; g0).
(3) the area Area(V ; gt) of the ball V tends to Area(V ; g0).

Proof. — This is straightforward from the formulas expressing how cur-
vature and area change when one makes a conformal change of metric. We
have that the new curvature K(gt) is related to the old curvature K(g0)
via the formula

K(gt) = (e−2u)tK(g0)− t(e−2u)t∆u

where ∆u denotes the Laplacian of the function u in the hyperbolic metric
g0. As t tends to zero, it is clear that the expression on the right converges
to K(g0) uniformly, giving (1). Similarly, the area form dgt for the new

TOME 67 (2017), FASCICULE 2



872 Jean-François LAFONT, Benjamin SCHMIDT & Wouter VAN LIMBEEK

metric is related to the area form dg0 for the original metric via the formula
dgt = (e2u)tdg0 giving us (2) and (3). �

4.2. Lifted metrics are almost-isometric

Next we establish that, for suitable choices of the parameter ~t, we can
arrange for the lifted metrics to be almost-isometric. By Lemma 4.1, we
can take the parameters ~t close enough to ~0 to ensure that all the metrics
we consider have sectional curvatures 6 −1. Then from Corollary 1.3, it
suffices to consider values of the parameter ~t for which the corresponding
metrics have the same topological entropy for the geodesic flow on T 1M .
Notice that varying ~t near ~0 gives a C∞ family of perturbations of the
metric g0. Work of Katok, Knieper, Pollicott and Weiss [13, Theorem 2]
then implies that the topological entropy map h, when restricted to any
line l(s) through the origin ~0 in the ~t-space, is a C∞ map. Moreover the
derivative of h along the line is given by (see [14, Theorem 3])

∂

∂s

∣∣∣
s=0

h
(
gl(s)

)
= −h(g0)

2

∫
T 1M

∂

∂s

∣∣∣
s=0

gl(s)(v, v)dµ0

where T 1M denotes the unit tangent bundle of M with respect to the g0-
metric, and µ0 denotes the Margulis measure of g0 (the unique measure of
maximal entropy for the g0-geodesic flow on T 1M).
Consider the map F :Rk+2→R given by F (t1, . . . , tk+2) :=h(g(t1,...,tk+2)),

where h denotes the topological entropy of (the geodesic flow associated to)
a metric. Let us compute the directional derivative in the direction ∂

∂t1
:

∂F

∂t1
(0, . . . , 0) = d

dt

∣∣∣
t=0

h
(
g(t,0,...,0)

)
= −h(g0)

2

∫
T 1M

d

dt

∣∣∣
t=0

g(t,0,...,0)(v, v)dµ0

= −h(g0)
2

∫
T 1M

d

dt

∣∣∣
t=0

e2tu1

(
π(v)
)
dµ0

= −h(g0)
2

∫
T 1M

2u1
(
π(v)

)
dµ0

where π : T 1M → M is the projection from the unit tangent bundle onto
the surfaceM . Finally, we observe that by construction u1 is a non-negative
function, which is identically zero on the complement of U1, and identically
one on the set V1. Hence the integral above is positive, and we obtain
∂F
∂t1

(~0) < 0.
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Now, a similar calculation applied to each of the other coordinates gives
us the general formula for the directional derivative of F . The gradient of
F is given by the non-vanishing vector:

∇F = −h(g0)
∫
T 1M

〈u1
(
π(v)

)
, . . . , uk+2

(
π(v)

)
〉dµ0.

In fact, since each ui is supported solely on Ui, and each ui is defined as
ρ (d(pi, x)) on the Ui, each of the integrals in the expression for ∇F has
the same value. So ∇F is just a nonzero multiple of the vector 〈1, . . . , 1〉.
The implicit function theorem locally gives us an embedded codimension

one submanifold σ(z) (where z ∈ Rk+1, ||z|| < ε) in the (t1, . . . , tk+2)-space,
with normal vector 〈1, . . . , 1〉 at the point σ(~0) = ~0, on which the topological
entropy functional is constant. From Corollary 1.3, we see that the lifts of
these metrics to the universal cover are all pairwise almost-isometric.

4.3. Lifted metrics are not isometric

Lemma 4.2. — There is an ε > 0 so that if the parameters ~s =
(s1, . . . , sk+2) and ~t = (t1, . . . , tk+2) satisfy 0 < |si| < ε and 0 < |ti| < ε

and the lifted metrics (M̃, g̃~s) and (M̃, g̃~t) are isometric to each other, then
we must have an equality of sets {s1, . . . , sk+2} = {t1, . . . , tk+2}.

Proof. — By Lemma 4.1, it is possible to pick ε small enough so that,
for all parameters ~s,~t within the ε-ball around ~0, we have that

Area(Vi; g~t) >
3
4 Area(Uj ; g~s)

for every 1 6 i, j 6 k + 2.
Now let us assume that there is an isometry Φ : (M̃, g̃~s) → (M̃, g̃~t).

Observe that the lifted metrics have the following properties:
(i) on the complement of the lifts of the Ui, both metrics have curvature

identically −2.
(ii) on any lift of the set V1, the metric g̃~s has curvature identically
−2e−2s1 .

(iii) on any lift of the set Vi, the metric g̃~t has curvature identically
−2e−2ti .

Take a lift Ṽ1 of V1 in the source, and consider its image under Φ. The
metric in the source has curvature identically −2e−2s1 on this lift Ṽ1, and
since Φ is an isometry, the image set Φ(Ṽ1) must have the same curvature.
From property (i), we see that Φ(Ṽ1) must lie, as a set, inside the union
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of lifts of the Ui. Since Φ(Ṽ1) is path-connected, it must lie inside a single
connected lift Ũi of one of the Ui. But from the area estimate, we see that
for the Ṽi ⊂ Ũi inside the lift, one has that the intersection Φ(Ṽ1) ∩ Ṽi is
non-empty. Looking at the curvature of a point in the intersection, we see
that

−2e−2s1 = −2e−2ti

and hence that s1 = ti for some i. Applying the same argument to each of
si, ti completes the proof. �

Now pick a vector ~v = 〈v1, . . . , vk+2〉 with the property that v1 + · · · +
vk+2 = 0, and such that vi 6= vj for each i 6= j. Notice that the first
constraint just means that ~v · ∇F = 0, and hence that ~v is tangent to the
(k+ 1)-dimensional submanifold σ. So there exists a curve γ ⊂ σ satisfying
γ(0) = ~0, and γ′(0) = ~v. Notice that, from our second condition, when t ≈ 0
we have γ(t) ≈ (v1t, . . . , vk+2t), and hence the point γ(t) has all coordinates
distinct. It follows from Lemma 4.2 that, for any t ≈ 0 (t 6= 0), one can
find a small enough connected neighborhood Wt of γ(t) with the property
that all the metrics in that neighborhood have lifts to the universal cover
that are pairwise non-isometric.

4.4. Metrics with equal area

Now consider the smooth function

A : σ → R

defined by A(z) := Area(gσ(z)) for each z ∈ σ. The change of area formula
for a conformal change of metric (see the proof of Lemma 4.1) implies that
A is nonconstant on Wt. By Sard’s theorem, there is a regular value r
of A in the interval A(Wt). Then τ := A−1(r) is a smooth k-dimensional
submanifold of the (k+1)-dimensional manifold σ consisting of parameters
for area r metrics. A connected component Fk of Wt ∩A−1(r) satisfies all
of the constraints of Theorem 1.4.

5. Concluding remarks

As the reader undoubtedly noticed, our results rely heavily on the sur-
prising result of Falconer and Marsh. As such, it is very specific to the case
of circle boundaries – which essentially restricts us to surface groups (see
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Gabai [11]). In higher dimensions, we would not expect the bi-Lipschitz
class of a self-similar metric on a sphere to be classified by its Hausdorff
dimension. Thus, the following problem seems substantially more difficult.

Conjecture 5.1. — Let M be a smooth closed manifold of dimension
> 3, and assume that M supports a negatively curved Riemannian metric.
Then M supports a pair of equal volume Riemannian metrics g1, g2 with
curvatures 6 −1, and having the property that the Riemannian universal
covers (M̃, g̃i) are almost-isometric, but are not isometric.

In another direction, if one were to drop the dimension, then there are
many examples of 0-dimensional spaces having analogous self-similarity
properties (i.e. properties (ii), (iii) in Definition 2.6). The metrics on these
boundaries turn them into Cantor sets – and the classification of (metric)
Cantor sets up to bi-Lipschitz equivalence seems much more complex than
in the circle case (for some foundational results on this problem, see for
instance Falconer and Marsh [10] and Cooper and Pignatoro [6]). Of course,
from the viewpoint of boundaries, such spaces would typically arise as the
boundary at infinity of a metric tree T . This suggests the following:

Problem. — Study periodic metrics on trees up to the relation of
almost-isometry.

In particular, invariance of the metric under a cocompact group action
translates to additional constraints on the canonical visual metric on ∂T ,
e.g. the existence of a large (convergence) group action via conformal auto-
morphisms (compare with the main theorem in [6]). It would be interesting
to see if this makes the bi-Lipschitz classification problem any easier.
Finally, given a pair of quasi-isometric spaces, we can consider the collec-

tion of all quasi-isometries between them, and try to find the quasi-isometry
which has smallest multiplicative constant. More precisely, given a pair of
quasi-isometric metric spaces X1, X2, define the real number µ(X1, X2) to
be the infimum of the real numbers C with the property that there exists
some (C,K)-quasi-isometry from X1 to X2. We can now formulate the:

Problem. — Given a pair of quasi-isometric metric spaces X1, X2, can
one estimate µ(X1, X2)? Can one find a (C,K)-quasi-isometry from X1
to X2, where C = µ(X1, X2)? In particular, can one find a pair of quasi-
isometric spaces X1, X2 which are not almost-isometric, but which never-
theless satisfy µ(X1, X2) = 1?

Our Corollary 1.5 gives a complete answer in the case where the Xi are
universal covers of locally CAT(-1) metrics on surfaces – the real number
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µ(X1, X2) is exactly the ratio of the Hausdorff dimensions of the canonical
visual metrics on the boundary, and one can always find a quasi-isometry
with multiplicative constant µ(X1, X2). It is unclear what to expect in the
more general setting.
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