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LOCALLY CONFORMALLY BERWALD MANIFOLDS
AND COMPACT QUOTIENTS OF REDUCIBLE

MANIFOLDS BY HOMOTHETIES

by Vladimir S. MATVEEV & Yuri NIKOLAYEVSKY (*)

Abstract. — We study locally conformally Berwald metrics on closed mani-
folds which are not globally conformally Berwald. We prove that the characteriza-
tion of such metrics is equivalent to characterizing incomplete, simply-connected,
Riemannian manifolds with reducible holonomy group whose quotient by a group
of homotheties is closed. We further prove a de Rham type splitting theorem which
states that if such a manifold is analytic, it is isometric to the Riemannian product
of a Euclidean space and an incomplete manifold.
Résumé. — Nous étudions des métriques qui sont localement, mais pas glo-

balement conformément Berwaldiennes. Nous démontrons que la caractérisation
de telles métriques est équivalente à la caractérisation des variétés Riemanniennes
incomplètes et simplement connexes qui ont un groupe d’holonomie réductible tel
que le quotient par un groupe d’homothéthies est fermé. De plus, nous démontrons
un théorème de décomposition du type de Rham disant que si une telle variété est
analytique, elle est isométrique à un produit Riemannien d’un espace Euclidien et
d’une variété incomplète.

1. Introduction

A Finsler metric on a manifold M of dimension n > 2 is a continuous
function F : TM → [0,∞) that is smooth on the slit tangent bundle
TM0 = TM \ (the zero section) and such that for every point x ∈ M

the restriction Fx := F|TxM is a Minkowski norm, that is, Fx is positive
homogenous and convex and it vanishes only at v = 0:
(a) Fx(λ · v) = λ · Fx(v) for any λ > 0.

Keywords: Finsler manifold, Berwald manifold, homothety group, reducible holonomy.
Math. classification: 53C60, 53C22, 53B40, 53C29.
(*) The first author was partially supported by DFG (GK 1523), DAAD and FSU Jena.
The second author was partially supported by ARC Discovery grant DP130103485.



844 Vladimir S. MATVEEV & Yuri NIKOLAYEVSKY

(b) Fx(v + u) 6 Fx(v) + Fx(u).
(c) Fx(v) = 0 ⇒ v = 0.

We do not require that the metric is reversible, i.e., that Fx(v) = Fx(−v),
and that it is strictly convex, i.e., that the second differential d2 ((Fx)2) is
positive definite.
We will assume all the objects in this paper to be at least as smooth

as we need for the proofs, and all the manifolds under consideration to be
connected.

We say that a Finsler metric F is Berwald, if there exists a torsion free
affine connection ∇ on M whose parallel transport preserves F : if γ is a
smooth path in M with the endpoints x and y, and Pγ : TxM → TyM is
the ∇-parallel transport along γ, then

(1.1) Fy(Pγ(v)) = Fx(v)

for all v ∈ TxM.

A Riemannian metric g = gij viewed as a Finsler metrics with Fx(v) =√
gij(x)vivj is Berwald, with the associated connection ∇ the Levi-Civita

connection. A simple example of a Berwald non-Riemannian metric is a
Minkowski metric on Rn obtained by the following procedure: take a non-
Euclidean Minkowski norm F0 on Rn and define the Finsler metric on Rn
by setting Fx(v) = F0(v), for all x ∈ Rn. The resulting metric is clearly a
Berwald metric whose associated connection is the flat connection on Rn.
We say that a Finsler metric F is locally conformally Berwald, if for every

point x ∈ M there exist a neighborhood U(x) and a positive function
λ : U(x) → R such that the conformally related Finsler metric λF is
Berwald. We say that a Finsler metric F is globally conformally Berwald,
if such a function λ exists on the whole manifold.
In this paper we study locally conformally Berwald closed manifolds

which are not globally conformally Berwald. The simplest example of such
a manifold is given below; more complicated and interesting examples can
be constructed from the Riemannian metrics in [6] using the approach from
Section 2.

Example 1.1. — Let F be an arbitrary Minkowski metric on Rn. Con-
sider the mapping

α : Rn \ {0} → Rn \ {0}, x 7→ qx,

where q 6= 1 is positive. This mapping generates a free, discrete action of the
group Z on Rn\{0}. The quotient spaceM = (Rn\{0})/Z is diffeomorphic
to Sn−1 × S1. Since the group Z acts by isometries of the metric 1

‖x‖F ,
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LOCALLY CONFORMALLY BERWALD MANIFOLDS 845

the metric 1
‖x‖F induces a Finsler metric on M . Since the metric 1

‖x‖F is
conformally related to the Berwald (even Minkowski) metric F , the induced
metric on M is locally conformally Berwald. The Minkowsky metric F
restricted to Rn \ {0} is clearly not complete, which, as we explain later,
implies that the quotient is not a globally conformally Berwald manifold,
see Corollary 2.8.

Our first result, Theorem 1.2 below, reduces the study of locally, but
not globally, conformally Berwald closed manifolds to the following purely
Riemannian problem.

Problem. — Characterize closed quotients of simply-connected incom-
plete Riemannian manifolds with reducible holonomy group by a free action
of a group of homotheties.

A diffeomorphism φ of a Riemannian manifold (M̃, g) is called a ho-
mothety, if the pullback φ∗g is a constant multiple of g; if φ∗g = g, the
homothety is an isometry.

Theorem 1.2. — Let M be a smooth manifold with universal cover M̃
and let G = π1(M). The following two properties are equivalent.
(1) M admits a locally conformally Berwald Finsler metric which is not

globally conformally Berwald.
(2) M̃ admits an incomplete Riemannian metric g with reducible holo-

nomy group such that G acts on M̃ by homotheties.

It is relatively easy to see and will be explained in the proof of Theo-
rem 1.2 that if G is a discrete, cocompact group of homotheties freely acting
on a complete manifold, then G consists only of isometries. So the assump-
tion of incompleteness in Theorem 1.2(2) can be replaced by requiring that
the group G contains not only isometries, which is sometimes termed by
saying that the homothety group G is essential.

The proof of Theorem 1.2 which we give in Section 2 is constructive
in the both directions. Note that our construction of a locally reducible,
incomplete metric g on M̃ from a locally, but not globally, conformally
Berwald metric F produces a unique metric, up to a constant multiple.
Other constructions are possible, but the resulting metrics on M̃ are some-
how “related” and depend on a finite number of constants. Meanwhile, the
construction in the opposite direction depends on a more or less arbitrary
choice of a norm on a finite-dimensional space (see Example 2.2); so, al-
though the resulting locally conformally Berwald metrics are related – for
example they have the same canonical connection (Corollary 2.4) – but still
there is an infinite-dimensional freedom in choosing such a metric.

TOME 67 (2017), FASCICULE 2



846 Vladimir S. MATVEEV & Yuri NIKOLAYEVSKY

The above Problem was studied in the literature, see e.g. the recent
paper [1] and references therein. Actually, it was believed (see [1, Conjec-
ture 1.3]) that if a quotient of an incomplete, simply-connected, Riemann-
ian manifold (M̃, g) by a free, discrete action of a group G of homotheties
is compact, then g is flat. Would this conjecture be true, a complete de-
scription of locally, but not globally conformally Berwald manifolds, would
follow from [4], see [7, §5] for details. Unfortunately, a counterexample
to this conjecture was constructed in [6]. Our second result states that
certain phenomena observed in that counterexample are present in every
(real-analytic) metric of this class – we prove the following de Rham type
splitting theorem.

Theorem 1.3. — Let (M̃, g) be an incomplete real-analytic simply-
connected Riemannian manifold whose holonomy group is reducible. Let G
be a freely, discretely acting group of homotheties such that the quotient
M = M̃/G is compact. Assume the metric g is not flat. Then (M̃, g) is
isometric to the direct product (Rk, gstandard)× (N,h), for some k > 1 and
some Riemannian manifold (N,h) (which is automatically neither complete
nor flat).

2. Proof of Theorem 1.2

2.1. Plan of proof

In Section 2.2 we recall the definition and the main properties of the
Binet-Legendre metric and the description of Berwald metrics using the
Binet-Legendre metric. That description will immediately produce the main
construction in the proof of implication (2) =⇒ (1) of Theorem 1.2, though
to prove that the resulting metric is indeed locally, but not globally Berwald,
we will need results of the following sections.
In Section 2.3 we prove, for conformally Berwald non-Riemannian Finsler

metrics, the existence of a unique affine torsion-free connection, the canon-
ical connection, whose parallel transport preserves any Berwald metric in
the conformal class. This will follow from the results of Cs. Vincze [14, 15];
we will give a new, shorter proof using the Binet-Legendre metric.
In Section 2.4 we show that if our manifold is closed, the canonical con-

nection has reducible holonomy group. We also show that the connection
is complete if and only if the metric is globally conformally Berwald. This
will give us all the ingredients for the proof of Theorem 1.2 in Section 2.5.

ANNALES DE L’INSTITUT FOURIER



LOCALLY CONFORMALLY BERWALD MANIFOLDS 847

2.2. The Binet-Legendre Metric and its properties for Berwald
non-Riemannian metrics

One of Riemannian metrics which can be constructed from a given Finsler
metric F is the Binet-Legendre metric gF . The construction goes as follows.
For every x ∈ M , consider the convex set Kx := {v ∈ TxM | Fx(v) 6 1}
and choose an arbitrary (linear) volume form Ω on TxM . Introduce an
inner product g∗x on T ∗xM by setting

g∗x(ξ, η) := n+ 2
VolΩ(Kx)

∫
Kx

ξ(v)η(v)dΩ

for two linear forms ξ, η ∈ T ∗xM .
It is not difficult to show (or see [7] for details) that
• g∗x is bilinear, symmetric and positive definite;
• g∗x does not depend on the choice of the (linear) volume form Ωx;
• g∗x smoothly depends on x, if F is smooth (or even partially smooth,
see [7]);

• g∗x behaves as a (2, 0)-tensor under coordinate changes.
The Binet-Legendre metric gF associated to the Finsler metric F is the
Riemannian metric dual to g∗. The construction first appeared in [3]; it
was then rediscovered in [7] and has been used there to solve several well-
known problems.
The Binet-Legendre metric is a useful tool in the study of Berwald Finsler

metrics; for example, with its help one can give shorter proofs of some of
the classical results of Szabó [12] and Vincze [13]. We start by observing
that for a Berwald metric F , its associated connection ∇ is the Levi-Civita
connection of the Binet-Legendre metric gF . Indeed, let γ be a smooth path
with the endpoint x, y ∈ M and let Pγ : TxM → TyM be the ∇-parallel
transport along γ. Then (1.1) implies Pγ(Kx) = Ky. Since the construction
of the Binet-Legendre metric only requires the linear structure and the set
K, the linear map Pγ sends the Binet-Legendre metric at x to the Binet-
Legendre metric at y. So gF is parallel relative to ∇ implying that ∇ is the
Levi-Civita connection of gF .
Consider now the restricted holonomy group Hol0x(∇), the subgroup of

End(TxM) generated by parallel transports Pγ along contractible loops γ
starting (and ending) at x. It is a subgroup of the (full) holonomy group
Holx(∇) which is generated by parallel transports Pγ along all (not nec-
essarily contractible) loops γ starting and ending at x. Clearly, if ∇ is the
associated connection of a Berwald metric F , then Hol0x(∇) preserves Fx
and therefore gF (x), and hence Hol0x(∇) ⊆ SO(TxM, gF (x)).

TOME 67 (2017), FASCICULE 2



848 Vladimir S. MATVEEV & Yuri NIKOLAYEVSKY

Suppose that Hol0x(∇) acts transitively on the unit gF -sphere in TxM .
Then the ratio (Fx(v))2

gF (v,v) does not depend on the point v on the sphere. Since
it is homogeneous of order zero, it is constant on the whole slit tangent
space TxM \ {0}. Then the restriction of F to TxM is a constant multiple
of
√
g(v, v), which implies that F is a Riemannian metric.

If the restricted holonomy group does not act transitively on the unit
sphere, then by the classical result of Berger [2] and Simons [11] either
Hol0x(∇) is reducible (which implies that locally gF is a direct product), or
gF is the metric of a locally symmetric space of rank greater than 1.
Note also that if the restricted holonomy group of a non-flat Riemannian

metric is reducible, then the full holonomy group is not transitive on the
unit sphere. Indeed, in this case there exists an orthogonal decomposition
TxM = V0⊕V1⊕. . .⊕Vm of the tangent space as the direct sum of invariant
subspaces (we assume that the action on V0 is trivial and the decomposition
is maximal). The action of the holonomy group may permute the invariant
subspaces (with some restrictions; for example, the permuted subspaces
must have the same dimension and the “flat” subspace V0 remains stable),
but can not change the decomposition.
Now, if the holonomy group of the Levi-Civita connection ∇ of a Rie-

mannian metric g is not transitive on the unit sphere in TxM , then there
exists a Berwald non-Riemannian Finsler metric whose associated connec-
tion is ∇. Indeed, take a Holx-invariant norm Fx on TxM and extend it to
the tangent space TyM at an arbitrary point y ∈M by a parallel transport
Pγ along a curve γ connecting x and y. Since the norm is invariant with
respect to the holonomy group, the construction does not depend on the
choice of γ. Moreover, the resulting metric is smooth and is preserved by
∇-parallel transport, that is, is a Berwald metric. Of course, for this con-
struction to work, one needs to explain why there exists a Holx-invariant
norm. We will not need such an explanation in the case of locally symmet-
ric metrics g (which was the hard part of the proof of [12, Theorem 1]); let
us only mention that many such norms exist and that their construction
can be easily done using Chevalley’s polynomials which are preserved by
the holonomy group, see e.g. [8, 9]. We will however need the construc-
tion of the Holx-invariant norm in the case where the restricted holonomy
group is reducible (similar to the construction in [12]); we start with a sim-
ple local example, whose easy generalization will be used in the proof of
Theorem 1.2.

Example 2.1. — Consider the direct product (M1×M2, g1 + g2) of two
Riemannian manifolds (M1, g1) and (M2, g2). The tangent space at a point

ANNALES DE L’INSTITUT FOURIER



LOCALLY CONFORMALLY BERWALD MANIFOLDS 849

(x1, x2) ∈ M1 × M2 naturally splits into the direct sum of Tx1M1 and
Tx2M2.
Given a reversible Minkowski norm N on R2, define the Finsler metric

F by
F(x1,x2)(v1 + v2) = N(‖v1‖, ‖v2‖),

where ‖vi‖ is the gi-norm of a vector vi tangent to Mi. Since the parallel
transport in the Levi-Civita connection of g preserves the metrics g1 and
g2 and the property of a vector to be tangent to Mi, it also preserves the
Finsler metric F ; hence F is Berwald.

Example 2.1 can be easily generalized to the direct product of k Rie-
mannian manifolds. If k = 1, we obtain Riemannian metrics (which are, of
course, Berwald), and if k = n, we obtain, at least locally, all the (reversible)
Minkowski metrics. One can also slightly modify Example 2.1 to obtain,
locally, all the Minkowski metrics. Indeed, if a metric gi on Mi is flat, then
we do not need reversibility of N with respect to the i-th coordinate.

The construction in the following example essentially proves the impli-
cation (2) =⇒ (1) of Theorem 1.2.

Example 2.2. — Suppose (M̃, g) is an incomplete, simply-connected
Riemannian manifold whose holonomy group is reducible. For any x ∈ M̃
we have a decomposition

(2.1) TxM̃ = V0 ⊕ V1 ⊕ . . .⊕ Vm,

where the subspaces Vi are Holx-invariant, the action of Holx on V0 is
trivial (V0 may have dimension 0) and the action on each of the components
V1, . . . , Vm is irreducible.
Choose a reversible, non-Euclidean norm N on Rm+1, and use it to con-

struct a norm Fx on TxM̃ by setting

Fx(v0 + v1 + . . .+ vm) = N(‖v0‖, . . . , ‖vm‖),

were vi ∈ Vi and ‖vi‖ is the g-norm. The norm Fx is Holx-invariant and
therefore induces a Berwald Finsler metric F on M̃ , whose associated con-
nection is the Levi-Civita connection of g.
Now suppose a group G acts freely and discretely on M̃ by homoth-

eties of g and let M = M̃/G. The differential of an element φ ∈ G re-
spects the splitting (2.1) in the following sense: it sends V0(x) to V0(φ(x)),
and sends every Vi(x), i > 0, to some Vj(φ(x)), j > 0, of the same di-
mension. We now impose the following additional assumption on N : for
any i, j > 0 such that dimVi = dimVj , we require N to be invariant

TOME 67 (2017), FASCICULE 2
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with respect to the interchanging of the (i + 1)-st and (j + 1)-st coordi-
nates: N(. . . , ‖vi‖, . . . , ‖vj‖, . . . ) = N(. . . , ‖vj‖, . . . , ‖vi‖, . . . ). This guar-
antees that any φ ∈ G is also a homothety of F . Then we can find a
smooth positive function f on M̃ such that G acts by isometries of the
Finsler metric F ′ = fF . The projection of F ′ to M is then a locally con-
formally Berwald metric. Moreover, since the associated connection of F
is not complete, that metric is not globally conformally Berwald; this will
follow from Theorem 2.7 below.

2.3. The canonical connection for a conformally Berwald
non-Riemannian metric

We start with giving a new proof of the following well-known result; our
proof is more Riemannian and requires no Finsler technique.

Theorem 2.3 (Cs. Vincze, [14, 15]). — Let F be a Berwald metric on a
connected manifold of dimension n > 2. Assume that a conformally related
metric F̃ = eϕF is also Berwald. Then either F is a Riemannian metric, or
ϕ is a constant.

Proof. — The Binet-Legendre metrics g := gF and g̃ := gF̃ are related
by g̃ = e2ϕg. The conformal class of both metrics F and F̃ is preserved by
parallel transports for the Levi-Civita connections of both g and g̃. Take
a point x, a tangent vector v ∈ TxM and a smooth curve γ(t), where
t ∈ [0, ε] is an arclength parameter, with γ(0) = x, γ̇(0) = v. Consider
the composition of the parallel transport along γ from x to γ(ε) using
the Levi-Civita connection of g with the parallel transport along the same
curve γ, but in the opposite direction, from γ(ε) to x, and using the Levi-
Civita connection of g̃. The resulting endomorphism Φε of TxM preserves
the conformal class of Fx, hence multiplies Fx by a constant. On the other
hand, for small ε we have Φε = id + εL+ o(ε), where the transformation L
of TxM is generated by the difference of connections, which for conformally
related metrics is given by

(2.2) Γ̃kij − Γkij = δki ∂jϕ+ δkj ∂iϕ− gij∇kϕ,

and hence is represented by the matrix

Lki = vj(Γ̃kij−Γkij) = vj(δki ϕ,j+δkj ϕ,i−gijϕ k
, ) = dϕ(v)δki +vkϕ,i−viϕ k

, ,

which must lie in the Lie algebra of the Lie group of linear transformations
preserving the conformal class of Fx. Thus, for any v ∈ TxM the Finsler

ANNALES DE L’INSTITUT FOURIER



LOCALLY CONFORMALLY BERWALD MANIFOLDS 851

metric Fx is invariant with respect to the rotation generated by the skew-
symmetric matrix vkϕ,j−vjϕ k

, . It follows that Fx is rotationally-symmetric
with respect to the group SO(n− 1) of rotations around ϕ k

, = grad(ϕ).
We see that if F is not Riemannian and dϕ 6= 0, then the direction of the

vector field grad(ϕ) is uniquely determined by F . Hence, the g-unit vector
field in that direction is parallel relative to the Levi-Civita connection of
g. Then the distribution D = ker dϕ orthogonal to grad(ϕ), is integrable
and totally geodesic, hence for any vector field v ∈ D we have ∇vv ∈ D.
Swapping the metrics g and g̃, we obtain, by a similar argument, that
∇̃vv ∈ D. So for any vector field v ∈ D we obtain

∇̃vv −∇vv ∈ D,

which implies in view of (2.2) that grad(ϕ) = 0. Finally, the metric F is
Riemannian, or ϕ = const. �

Corollary 2.4. — Let (M,F ) be a locally conformally Berwald non-
Riemannian manifold. Then there exists an unique affine, torsion-free con-
nection whose parallel transport preserves any Berwald metric in the con-
formal class.

We call this connection the canonical connection on a locally conformally
Berwald non-Riemannian manifold (M,F ).
Proof. — By Theorem 2.3, all Berwald metrics in a (non-Riemannian)

conformal class are proportional, so their Binet-Legendre metrics are pro-
portional, and hence their Levi-Civita connections (which are the associ-
ated connections of the corresponding Berwald metrics) are equal. �

Corollary 2.5. — A locally conformally Berwald metric on a simply-
connected manifold M̃ is globally conformally Berwald.

Proof. — If the metric is Riemannian, it is nothing to prove. If it is
not, then by Theorem 2.3, the set of conformally Berwald metrics in the
conformal class can be identified with sections of a one-dimensional (R>0)-
bundle over the manifold; Berwald metrics in the conformal class corre-
spond to parallel sections of a certain linear connection. Since by construc-
tion there exist local parallel sections, the existence of a global parallel
section (i.e., of a Berwald metric in the conformal class) follows from the
simply-connectedness of M̃ . �

Corollary 2.6. — Let (M,F ) be a simply-connected conformally Ber-
wald non-Riemannian metric, and F̃ be a Berwald metric in the conformal
class (F̃ exists by Corollary 2.5). Then any conformal transformation of
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F , i.e., any diffeomorphism ϕ : M → M that sends F to a conformally
equivalent metric, is a homothety of F̃ , and therefore is a homothety of its
Binet-Legendre metric gF̃ .

Proof. — The conformal transformation ϕ maps F̃ to a Berwald metric
which is conformally equivalent to F . By Theorem 2.3, it is a constant
multiple of F̃ . �

2.4. Incompleteness and reducibility of a locally conformally
Berwald metric on a closed manifold

Suppose now the manifold M is closed (compact, with no boundary).

Theorem 2.7. — Let (M,F ) be a closed, locally conformally Berwald
non-Riemannian manifold. The canonical connection is complete if and only
if the manifold is globally conformally Berwald.

Proof. — The sufficiency is obvious: if the metric F is globally confor-
mally Berwald, then the associated connection is the Levi-Civita connection
of a Riemannian metric on a closed manifold and is therefore complete.
To prove the necessity we show that if the canonical connection is com-

plete then the manifold is globally conformally Berwald. Consider the uni-
versal cover M̃ and the action of the fundamental group π1(M) on M̃ by
deck transformations. By Corollary 2.5, there exists a Berwald metric F̃ on
M̃ in the conformal class of the lift of the metric F . By Corollary 2.6, the
action of the fundamental group π1(M) on M̃ is the action by homotheties
of the Binet-Legendre metric gF̃ on M̃ .

By assumption, the lift of the canonical connection is complete. Then
the Binet-Legendre metric gF̃ is also complete. If there is an element of
π1(M) which acts by a homothety φ with coefficient k ∈ (0, 1), then φ has
a fixed point, which contradicts the fact that the action of π1(M) is free.
Therefore π1(M) acts by isometries of (M̃, gF̃ ) and of (M̃, F̃ ). Then the
metric F̃ projects to a Berwald metric on M . �

Corollary 2.8. — The locally conformally Berwald metric from Ex-
ample 1.1 is not globally conformally Berwald.

Proof. — The (lift of the) canonical connection is the standard flat con-
nection on Rn, which is clearly not complete, since we removed the ori-
gin. �
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From Section 2.2 we know that the Binet-Legendre metric of a non-
Riemannian Berwald Finsler metric either has a reducible restricted holo-
nomy group or is a locally symmetric Riemannian metric of rank at least
2. The next theorem shows that the second possibility can never happen
in our settings.
Theorem 2.9. — Let (M,F ) be a closed, locally conformally Berwald

manifold, which is not globally conformally Berwald. Then the restricted
holonomy group of the canonical connection is reducible.
Proof. — As (M,F ) is not globally conformally Berwald, it is non-Rie-

mannian. Furtermore, the universal cover (M̃, F̃ ) is globally conformally
Berwald by Corollary 2.5, so there exists a Berwald metric F ′ on M̃ con-
formally equivalent to F̃ . If the restricted holonomy group of the canonical
connection for (M,F ) is irreducible, then the Binet-Legendre metric gF ′ is
a locally symmetric Riemannian metric. Then the squared norm ‖RF ′‖2 of
the curvature tensor of gF ′ is constant on M̃ and is positive, as g is not flat.
If an element of π1(M) acts by a homothety φ with coefficient k, we get
‖Rφ∗F ′‖2 = ‖RkF ′‖2 = k−2‖RF ′‖2. Therefore π1(M) acts by isometries of
(M̃, F ′). Then the metric F ′ projects to a Berwald metric on M which is
conformally equivalent to F . �

2.5. Proof of Theorem 1.2

The implication (2) =⇒ (1) follows from the construction in Example 2.2
and Theorem 2.7.
To prove the implication (1) =⇒ (2), consider a locally, but not globally,

Berwald non-Riemannian metric F on M . By Corollary 2.5, there exists a
Berwald metric F̃ on the universal cover M̃ such that F̃ lies in conformal
class of the lift of F . We denote by g the Binet-Legendre metric of F̃ .
By Corollary 2.6, the deck transformation action of the fundamental group
π1(M) on M̃ is homothetic with respect to g. By Theorem 2.7, the metric g
is not complete. Finally, by Theorem 2.9, the metric has reducible restricted
holonomy group. �

3. Proof of Theorem 1.3
3.1. Plan of proof

Let (M̃, g) be a simply-connected, connected, incomplete Riemannian
manifold whose holonomy group is reducible, and let G be a group of ho-
motheties of (M̃, g) which acts freely, discretely and in such a way that the
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quotientM = M̃/G is a closed manifold; we denote by π : M̃ →M = M̃/G

the natural projection.
We want to show that (M̃, g) is globally isometric to the direct product

(Rk, gstandard) × (N,h). As we will see, the assumption of real analyticity
of the metric which we imposed in the theorem, is not necessary until the
very end of the proof (and we hope that the conclusion remains true without
it – see the Remark at the end of Section 3.4).
Since the holonomy group is reducible, (M̃, g) carries two orthogonal,

totally geodesic, G-ivariant foliations F1 and F2 (of positive dimension; we
do not assume that the foliations are irreducible. Without loss of generality
we assume that G preserves the foliations; one can always achieve that by
passing to a subgroup of G of finite index). We denote by Fi(x) the leaf of
Fi, i = 1, 2, passing through x ∈ M̃ . Let gi, i = 1, 2, be the restrictions of
the metric g to the leaves of the foliations Fi, i = 1, 2, and Ri, i = 1, 2,
the squared norms of the curvature tensors of gi, respectively.
Let d be the distance function on (M̃, g) and M the metric completion

of (M̃, g). Denote M∞ = M \ M̃ and consider the positive function

d∞ : M̃ → R>0, x 7→ inf{d(x, y) | y ∈M∞}.

By the triangle inequality, the function d∞ is continuous.
For x ∈ M̃ , let p ∈ M∞ be such that d(x, p) = d∞(x) (in M), and let

γ : [0, d∞(x)]→M be a continuous map such that the restriction γ|[0,d∞(x))
is a geodesic of M̃ parametrized by arc length. We call γ a minimal
g-geodesic connecting x to p, or simply a minimal geodesic starting at x.

The proof is based on the following two propositions.

Proposition 3.1. — At every point x ∈ M̃ we have either R1(x) = 0
or R2(x) = 0 (or both). More precisely, if there exists a minimal geodesic
γ starting at x, which does not lie in the leaf of Fi passing through x, then
Ri = 0 in a neighborhood of x in M̃ .

Proposition 3.2. — Suppose a minimal geodesic γ starting at x ∈ M̃
lies on the leaf F2(x) (respectively, F1(x)). Then the leaf F1(x) (respec-
tively, F2(x)) is complete and flat and the restriction of d∞ to it is a
constant.

Once these two propositions are proved, the theorem easily follows. In-
deed, by the assumption, the metric g is not flat. Then there is a point
x ∈ M̃ where one of the curvatures, say R2(x), is nonzero, which by Propo-
sition 3.1 implies that for any y close to x, any minimal geodesic γ starting
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at y lies on the leaf F2(y). Then by Proposition 3.2, the leaf F1(y) is com-
plete and flat. Then by real analyticity, all leaves of F1 are complete and
flat and the theorem follows from [10, Theorem 1].
In the remaining part of the paper we prove the propositions. First in

Section 3.2 we introduce and study the Fried metric, which will play an
important role in the proof. Then in Section 3.3 we prove Proposition 3.1,
and in Section 3.4, Proposition 3.2.

3.2. The Fried metric

Consider a (continuous) Riemannian metric gF on M̃ which is confor-
mally equivalent to g with the coefficient

( 1
d∞

)2:
gF :=

( 1
d∞

)2
g.

We will call gF the Fried metric, because it is a generalization of a metric
introduced by D. Fried in [4] (whose paper actually contains many ideas
we use in the proofs), and will denote dF the distance function relative to
that metric. (In this section we are not working with the Binet-Legendre
metric, so that using the notation gF for the Fried metric should create no
ambiguity).
It is easy to see that gF is G-invariant, which implies that it induces

a Riemannian metric on M = M̃/G. We keep the notation gF for the
projection of gF to M , and dF for the distance function on (M, gF ). Note
that (M, gF ) is a complete C0-Riemannian manifold.

Lemma 3.3.
(a) For any x, y ∈ M̃ we have

d(x, y) 6 d∞(x)(edF (x,y) − 1).

(b) For any x, y ∈ M̃ with d(x, y) < d∞(x) we have

d(x, y) > d∞(x)(1− e−dF (x,y)).

Proof.
(a) — Let dF (x, y) = a. Consider a minimizing geodesic γ relative to

gF connecting x and y. We parameterize γ by the arclength parameter
t relative to g. Let ` be its g-length and γ(0) = x and γ(`) = y. By
construction,

(3.1)
∫ `

0

1
d∞(γ(t))dt 6 a.
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By the triangle inequality we have
1

d∞(γ(t)) >
1

d∞(x)+d(x,γ(t)) >
1

d∞(x)+t .

Combining this with (3.1) we obtain∫ `

0

1
d∞(x)+tdt 6 a,

so d∞(x)+`
d∞(x) 6 ea. As ` > d(x, y) we get 1

d∞(x)d(x, y) 6 `
d∞(x) 6 ea − 1, as

required.
(b) — Let d(x, y) = ` < d∞(x). Consider a minimizing geodesic γ rela-

tive to g connecting x and y. We parameterize γ by the arclength parameter
t relative to g so that γ(0) = x and γ(`) = y. By the triangle inequality we
have d∞(γ(t)) > d∞(x)− t. Then

dF (x, y) 6
∫ `

0

1
d∞(γ(t))dt 6

∫ `

0

1
d∞(x)−tdt = ln d∞(x)

d∞(x)− ` ,

and the claim follows. �

We also need the following lemma which is close to [1, Lemmas 4.2,4.3].

Lemma 3.4. — Suppose at a point x ∈ M̃ the exponential map is de-
fined on an open ball of radius r > 0 in TxM̃ . Suppose d(x, y) = ` < r and
γ : [0, `]→ M̃ is a shortest (arclength parameterized) geodesic with γ(0) =
x, γ(`) = y. Let v = γ̇(0). Denote vi, i = 1, 2, the projections of v to the
tangent spaces to the leaves of Fi passing through x respectively. Then the
geodesic γ1(t) := expx(tv1) is defined for all t ∈ [0, `] and lies on F1. More-
over, if T (t) is the parallel vector field along γ1(t) with T (0) = v2, then the
map Φ : (t, s) 7→ expγ1(t)(sT (t)) is defined for all (t, s) ∈ [0, `]×[0, `], and its
image is a flat totally geodesic immersed submanifold of M̃ with boundary
(“rectangle”). In particular, d(x,Φ(t, s)) 6

√
(t‖v1‖)2 + (s‖v2‖)2.

Proof. — The first claim (that γ1(t) is defined for all t ∈ [0, `] and lies
on F1) is obvious, as ‖v1‖ 6 ` < r, and F1 is totally geodesic. The second
claim is trivial for v1 = 0 or v2 = 0 since in these cases the rectangle
degenerates to a naturally parameterized geodesic of length ` < r lying on
one of the leaves.
Suppose v1, v2 6= 0. Then Φ(0, s) is defined for s ∈ [0, `]. By compactness,

there is an open neighborhood of the segment Φ(0, [0, `]) which is isometric
to the product of a small ball around x on F1 and the segment [0, `]. It
follows that Φ(t, [0, `]) is defined for all t ∈ [0, ε) for some ε > 0, and its
image is a flat totally geodesic rectangle in (M̃, g). Then for every (t, s) ∈
[0, ε) × [0, `] we have d(x,Φ(t, s))2 6 (t‖v1‖)2 + (s‖v2‖)2. Let ε′ be the
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supremum of such ε. Suppose that ε′ < ` and let s′ ∈ (0, `] be the supremum
of those s for which Φ(ε′, s) is defined (so that “Φ(ε′, s′) lies on the metric
boundary of (M̃, g)”). But then the sequence of points Φ(ε′ − 1

n , s
′) is a

Cauchy sequence and d(x,Φ(ε′− 1
n , s
′)) 6 (((ε′− 1

n )‖v1‖)2+(s′‖v2‖)2)1/2 6
(ε′‖v1‖)2 +(`‖v2‖)2)1/2 < `, which contradicts the fact that expx is defined
on the open ball of radius r > `. �

3.3. Proof of Proposition 3.1

Take an arbitrary point x ∈ M̃ . Let p ∈M∞ be such that d(x, p) = d∞(x)
(in M) and let γ : [0, d∞(x)] → M be a minimal g-geodesic connecting x
with p. Let t ∈ [0, d∞(x)] be the g-natural parameter on γ so that γ(0) = x

and γ(d∞(x)) = p. Note that the g-exponential map at x is defined on the
ball of radius d∞(x) in TxM̃ . Denote its image B ⊂ M̃ ; note that p lies on
the metric boundary of B.

Let v := γ̇(0) be the initial velocity vector of γ and let α ∈ [0, π2 ] be
the angle which v makes with F1. As F1 is g-totally geodesic, the angle
between γ(t) and F1 remains constant. In particular, if α = 0 (respectively,
α = π

2 ), then γ lies on F1 (respectively, on F2).

Lemma 3.5. — Suppose α 6= 0. Then there exists t0 ∈ (0, d∞(x)) and
ε > 0 such that at all the points in the open ε-neighborhood of the segment
γ(t0, d∞(x)) relative to dF we have R1 = 0.

Proof. — We first note that choosing ε to be smaller than ln 2 we obtain
that our neighborhood entirely lies in B, by Lemma 3.3(a) and the triangle
inequality.
Furthermore, as π : M̃ → M is a dF -Riemannian cover and as M is

compact, there exists δ > 0 such that whenever dF (y, z) < δ for y, z ∈ M̃ ,
we have dF (π(y), π(z)) = dF (y, z) (take δ to be half the injectivity radius
of (M,dF )).
Now take ε = min( 1

3 ln 2, 1
2δ). By way of contradiction, suppose that

there exists an increasing sequence of points ti ∈ (0, d∞(x)) converging to
d∞(x) such that the ε-neighborhood of each of the points γ(ti) relative to
dF contains a point with R1 6= 0. AsM is compact, we can assume (passing
to a subsequence if necessary) that all the points π(γ(ti)) lie in an open
ball Bε(z) centered at some z ∈M of radius ε relative to (M,dF ). Lifting
up to M̃ we obtain a sequence of points zi ∈ M̃ such that γ(ti) lies in the
open dF -ball of radius ε centered at zi. Then by the choice of ε, the open
dF -ball of radius 2ε centered at zi entirely lies in B and contains the open

TOME 67 (2017), FASCICULE 2



858 Vladimir S. MATVEEV & Yuri NIKOLAYEVSKY

dF -balls of radius ε centered at γ(ti). Moreover, such balls are pairwise
disjoint and the restriction of π to each of them is a global dF -isometry.
As π(zi) = z, there exists a sequence hi of elements in G such that

hi(z1) = zi. Note that every hi acts on M̃ as an isometry of dF and as a
homothety of d with the coefficient ki = d∞(zi)/d∞(z1). By Lemma 3.3(a)
and by our construction we have d∞(zi) 6 d(γ(ti), zi) + d∞(γ(ti)) 6
d∞(γ(ti))eε = (d∞(x) − ti)eε. Passing to a subsequence if necessary we
can assume that ki monotonically decrease to zero. Now by our assump-
tion the dF -ball of radius 2ε centered at z1 contains a point w such that
R1(w) = c > 0. Then the point wi = hi(w) lies in the dF -ball of radius 2ε
centered at zi and we have R1(wi) = k−2

i c→∞.
Note that dF (γ(ti), wi) 6 dF (γ(ti), zi) + dF (zi, wi) < 3ε, therefore by

Lemma 3.3(a) d(γ(ti), wi) < d∞(γ(ti))(e3ε − 1) < d∞(γ(ti)) by the choice
of ε. Applying Lemma 3.4 to the point γ(ti) and a shortest g-geodesic
joining γ(ti) and wi we find that there is a geodesic Γ1 of length less than
d∞(γ(ti)) with endpoints γ(ti) and some pi lying on the leaf F1(γ(ti))
and another geodesic joining the points wi and pi lying on the leaf of F2.
We get R1(pi) = R1(wi) = k−2

i c. Now applying Lemma 3.4 to the point
x and the geodesic segment γ([0, ti]) we find that there is a geodesic of
length d∞(x) cosα with endpoints x and some qi lying on the leaf F1(x)
and another geodesic Γ2 joining the points qi and γ(ti) lying on the leaf
of F2. Moreover, again by Lemma 3.4, for any point y ∈ Γ2, we have
d(x, y) 6 d(x, γ(ti)), so d∞(y) > d∞(γ(ti)) by the triangle inequality. It
follows that for all y ∈ Γ2, the map expy is defined on an open ball of
radius d∞(γ(ti)). Then by [1, Lemma 4.3(i)] (the proof of which for our
M̃ is identical to that for M0) there is a geodesic lying in a leaf of F2 and
joining the point pi with a point ui lying on the leaf F1(qi) (= F1(x)). Note
that R1(ui) = R1(pi) = R1(wi) = k−2

i c and that there is a geodesic of F1
joining the points qi and ui whose length is equal to the length of Γ1 (“the
projection” of Γ1 along Γ2), so that d(qi, ui) < d∞(γ(ti)) = d∞(x)− ti. It
follows that when i tends to infinity, the points ui converge to the limit
limi→∞ qi = limi→∞ expx(tiv1) = expx(d∞(x)v1), which lies inB as ‖v1‖ <
1. On the other hand, R(ui) = k−2

i c→∞, a contradiction. �

We continue with the proof of the proposition. Note that if α = 0, then
the geodesic γ lies on the leaf of F1(x). It follows that R2 is constant along
γ, so the proof is finished by Lemma 3.5. Similar arguments work for α = π

2 .
We therefore assume that α ∈ (0, π2 ), so that γ does not lie on any leaf.
As it now follows from Lemma 3.5, there is a point t0 ∈ [0, d∞(x)) and
a number ε > 0 such that the dF -tube of radius ε around the segment
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γ([t0, d∞(x))) is g-flat. Now for a point γ(t), t ∈ [t0, d∞(x)) let y ∈ M̃

satisfy d(γ(t), y) < (1 − e−ε)d∞(γ(t)). Then by Lemma 3.3(b) we have
dF (γ(t), y) < ε. Therefore the open g-ball of radius (1 − e−ε)d∞(γ(t))
centered at γ(t) lies in the open gF -ball of radius ε centered at γ(t). It
follows that the open dF -tube of radius ε around the segment γ([t0, d∞(x)))
contains the union of open g-balls B(1−e−ε)d∞(γ(t))(γ(t)), and moreover, the
metric g on this union is flat. It follows that this union contains an open
(solid) Euclidean cone of revolution C of height d∞(x)− t0, with the apex
at p whose axes is the Euclidean segment γ((t0, d∞(x))) and with the angle
β = arcsin(1− e−ε) between the axis and the directrix. We also note that
by Lemma 3.3(a), the cone C contains a dF -neighborhood of γ((t0, d∞(x)))
of radius ε′, where eε′ − 1 < 1− e−ε (note that this implies ε′ < ε).
Now, similar to the proof of Lemma 3.5, take an increasing sequence of

points ti ∈ (t0, d∞(x)) such that the points π(γ(ti)) converge to a certain
point z ∈ M relative to (M, gF ) and additionally such that the (dF -)unit
tangent vectors Vi to π ◦ γ at the points π(γ(ti)) converge to a certain unit
vector V ∈ TvM (in the topology of the dF -unit tangent bundle of M).
We can assume that dF (z, π(γ(ti))) < 1

2ε
′. Lifting up to M̃ we obtain a

sequence of points zi = hi(z1) (such that π(zi) = z and that hi ∈ G) and
a sequence of open dF -balls Bi of radius 1

2ε
′ centered at zi and containing

γ(ti). Note that all the balls Bi lie in C. Moreover, as g and gF are con-
formally equivalent, we obtain that the unit tangent vectors γ̇(ti) converge
(after parallel translation to some fixed point relative to the flat metric
of C) to a certain fixed vector. We can now additionally require that the
angle between γ̇(ti) and γ̇(tj) is less than 1

4β (passing to a subsequence, if
necessary). Now take j � i and consider the image of the geodesic segment
γ([0, ti]) under the action of the element hjh−1

i . This element acts as an
isometry of (M̃, dF ); it maps zi to zj and hence the ball Bi onto the ball
Bj , and therefore the point γ(ti) to a certain point yi in Bj . By construc-
tion, yi ∈ C and moreover, the image of the segment γ([0, ti]) under hjh−1

i

is a geodesic of (M̃, g) which starts at yi with the tangent vector −γ̇(ti)
and of length kjk−1

i ti, where ki is the homothety coefficient of hi (relative
to (M̃, g)). Taking j very large we can make this length arbitrarily small,
and moreover, as the tangent vector to the g-geodesic hjh−1

i γ([0, ti]) at yi
makes an angle less than 1

2β with the axis of the cone C, we obtain that the
whole image hjh−1

i γ([0, ti]) lies entirely in C. It follows that the curvature
of (M̃, g) at the point hjh−1

i (x) = hjh
−1
i γ(0) vanishes, hence it also does

at x. �
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3.4. Proof of Proposition 3.2

In our assumptions, the function R2 has the same nonzero value at all the
points of F1(x). By Proposition 3.1 it follows that all the minimal geodesics
joining the points of F1(x) to the metric boundary M∞ lie in the leaves of
F2.

Let τ : (a, b) → M̃ be a naturally parameterized (g-)geodesic segment
lying on F1(x) such that m := inf(d∞(τ(t)) : t ∈ (a, b)) > 0. Denote
l(t) := d∞(τ(t)). Choose an arbitrary open subinterval I ⊂ (a, b) whose
length is strictly smaller than m. The union of all such intervals I covers
(a, b).

Now take arbitrary t1, t2 ∈ I and denote xi = τ(ti). For every unit vector
X1 ∈ Tx1F2 consider the geodesic ρ : [0, l(t1)) → M̃ such that ρ(0) =
x1, ρ

′(0) = X1. The geodesic ρ lies on the leaf F2(x1) and is well-defined,
as the exponential map at x1. Let X2 ∈ Tx2F2 be the unit vector obtained
by parallel translation of X1 along τ([t1, t2]). By Lemma 3.4 we find that
the geodesic expx2(sX2) is defined for all s <

√
l(t1)2 − (t2 − t1)2. As X1 ∈

Tx1F2 was arbitrary and as the shortest geodesic joining x2 to M∞ lies in
F2(x2), it follows that l(t2) >

√
l(t1)2 − (t2 − t1)2, so that l(t1)2− l(t2)2 6

(t2 − t1)2. Interchanging the roles of t1, t2 we obtain |l(t1)2 − l(t2)2| 6
(t1− t2)2. Subdividing the segment (t1, t2) into n equal subsegments we get
by the triangle inequality that |l(t1)2− l(t2)2| 6 1

n (t1− t2)2, for any n ∈ N.
It follows that the restriction of l to I is constant, hence l is constant on
the whole (a, b). Therefore the restriction of d∞ to every geodesic segment
τ(a, b) lying on leaf of F1(x) such that inf(d∞(τ(t)) : t ∈ (a, b)) > 0
is constant, hence by continuity of d∞ and connectedness of F1(x), the
restriction of d∞ to F1(x) is constant.
Furthermore, the fact that F1(x) is flat directly follows from Proposi-

tion 3.1. The fact that it is complete follows from the fact that the expo-
nential map on F1(x) is defined on the ball of radius d∞(x) > 0 at every
point of F1(x). �

Remark. — The above proof of Proposition 3.2 completes the proof
of Theorem 1.3. Note that neither of Propositions 3.1 and 3.2 relies on
the analyticity assumption, and one may expect that Theorem 1.3 still
holds if we drop it. Assuming that M̃ is just smooth, one can establish the
following two facts: first, the easy fact that “the limit” of minimal geodesics
is a minimal geodesic, and second, that if there are more than one minimal
geodesic starting at a given point, and one of them is tangent to a leaf of
Fi, then all the others also do. It then follows from Proposition 3.2 that
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the closures of the points at which the minimal geodesics lie on F1 and on
F2 are disjoint. So to prove the theorem in the smooth case, one needs to
show that the following is impossible: we have two disjoint closed sets made
of complete flat leaves of F1 and of complete flat leaves of F2, respectively,
and an open flat domain in between.(1)
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