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ENRICHED CURVES AND THEIR TROPICAL
COUNTERPART

by Alex C. ABREU & Marco PACINI (*)

Abstract. — In her Ph.D. thesis, Mainò introduced the notion of enriched
structure on stable curves and constructed their moduli space. In this paper we give
a tropical notion of enriched structure on tropical curves and construct a moduli
space parametrizing these objects. Moreover, we use this construction to give a
toric description of the scheme parametrizing enriched structures on a fixed stable
curve.
Résumé. — Dans sa thèse, Mainò a introduit la notion de structure enrichie

sur les courbes stables et elle a construit leur espace des modules. Dans cet article,
nous donnons une notion tropicale de structure enrichie sur les courbes tropicales
et nous construisons un espace de modules qui paramètre ces objets. De plus, nous
utilisons cette construction pour donner une description torique du schéma qui
paramètre les structures enrichies sur une courbe stable fixée.

1. Introduction

This paper is devoted to the study of enriched curves. The main moti-
vation behind the definition of enriched stable curve is given by the the-
ory of limit linear series. One of the techniques to study linear series on
smooth curves is to degenerate the curve to a singular one and then, by
understanding the properties of the limits, recover properties of the ini-
tial smooth curve. However, a typical phenomenon which occurs when one
considers the degeneration of an object from a smooth curve to a singu-
lar one, is that the limit often depends on the chosen degeneration. As a
consequence, the theory of limit linear series was originally only developed
in [15] for curves of compact type, for which the limit does not depend on
the degeneration.

Keywords: Enriched curve, tropical curve, moduli space.
Math. classification: 14H10, 14T05.
(*) The second author was partially supported by CNPq, processo 304044/2013-0.



690 Alex C. ABREU & Marco PACINI

To take in account this phenomenon, Mainò in [21] introduced the notion
of enriched stable curve. An enriched stable curve is, essentially, the datum
of a stable curve together with a direction in which to smooth the curve.
She also constructed the moduli space Eg parametrizing enriched stable
curves of genus g. The space Eg is not proper, and it would be interesting
to find a modular compactification of Eg. Nevertheless, there is a natural
compactification Eg of Eg obtained via blowups of the moduli spaceMg of
Deligne–Mumford stable curves of genus g.
We point out that the notion of enriched curve also appears in [17],

with a slightly different approach, to study limits of Weierstrass points for
nodal curves with two components. Also, the theory of limit linear series
saw important progress in the last two decades, for instance see [16], [24],
[25] and [26].

This paper was originally motivated by the attempt to give an answer
to the following problems.

(1) Find a modular description of the natural compactification Eg, or,
at least, of the fiber of Eg →Mg over a point inMg.

(2) Give the tropical equivalent of an enriched curve of genus g and
construct the moduli space Etropg parametrizing these objects.

(3) Establish the relationship between Etropg and M trop
g , the moduli

space parametrizing tropical curves of genus g.
(4) Use the tropical setting to give a toric description of the fiber of
Eg →Mg over a point inMg.

Recently, tropical geometry has proven to be a promising tool for solv-
ing problems in algebraic geometry and many analogies have been made
between algebraic and tropical geometry. For instance, see [2], [4], [6], [7],
[12], [22] and [23]. Hence, a solution to the last three problems may lead to
a solution of the first one.

In this paper we just deal with tropical geometry in dimension one, i.e.,
with tropical curves. A tropical curve is a vertex weighted (multi-)graph
(Γ, w), where w : V (Γ)→ Z>0 is the weight function, together with a func-
tion l : E(Γ)→ R>0, where E(Γ) is the set of edges of Γ, called the length
function of (Γ, w, l).
In [6], Brannetti, Melo and Viviani showed that the moduli space M trop

g

of tropical curves of genus g and the moduli space Atropg of tropical prin-
cipally polarized abelian varieties of dimension g can be constructed as
stacky fans, and defined the tropical Torelli map between these two spaces.
A stacky fan is, set-theoretically, a disjoint union of cells, where each cell
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ENRICHED CURVES AND THEIR TROPICAL COUNTERPART 691

is an open rational cone modulo the action of some finite group (see Sec-
tion 2.5 for a precise definition). The cells ofM trop

g parametrize the tropical
curves (Γ, w, l) with fixed underlying vertex weighted graph (Γ, w), hence
they can be identified with R|E(Γ)|

>0 /Aut(Γ, w).
Since Eg is a blowup ofMg, by analogy with the theory of toric blowups,

it is expected that the stacky fan Etropg cited in Problem (2) is a “refine-
ment” of M trop

g , i.e., there is a set-theoretically bijection Etropg → M trop
g ,

such that the image of every cell of Etropg is contained in a cell of M trop
g .

Moreover, since a cell R|E(Γ)|
>0 /Aut(Γ, w) of M trop

g parametrizes tropical
curves with fixed underlying graph by varying the length function, a re-
finement of such a cell is just a disjoint union

RE(Γ)
>0 /Aut(Γ, w) =

∐
p∈P

Cp,

where each Cp can be obtained simply by imposing linear inequalities on
the lengths of the edges. Hence, a tropical enriched curve is just a tropical
curve together with a preorder on its set of edges (see Definition 3.1 and
Section 4).
Our first result, contained in Theorem 4.4 and which solves Problems (2)

and (3), can be stated as follows.

Theorem 1.1. — There exists a stacky fan Etropg parametrizing tropical
enriched curves of genus g, whose cells parametrize tropical enriched curves
with fixed underlying vertex weighted graph and preorder. Moreover there
exists a natural forgetful map of stacky fans Etropg → M trop

g which is a
set-theoretical bijection.

In fact, the refinement of R|E(Γ)|
>0 /Aut(Γ, w) comes from a refinement of

R|E(Γ)|
>0 , see Proposition 3.16, and such a refinement gives rise to a fan ΣΓ,

see Definition 3.20. Using this fan we can construct a toric variety for any
given stable curve Y with dual graph Γ. In this toric variety we consider a
distinguished invariant toric subvariety, which we call EY , see Section 5 for
the precise construction.
We can state our next result, which answers to Problem (4) and which

is contained in Theorem 5.8 and Corollary 5.9, as follows.

Theorem 1.2. — If Y is a stable curve with no nontrivial automor-
phisms, then the toric variety EY is isomorphic to the fiber of Eg → Mg

over the point [Y ] ∈Mg.

TOME 67 (2017), FASCICULE 2



692 Alex C. ABREU & Marco PACINI

This result suggests that our definition of tropical enriched curve should
be the correct tropical equivalent of an enriched curve, as defined by Mainò.
In [1], Abramovich, Caporaso and Payne exhibited a geometrically mean-
ingful connection betweenMg and M trop

g , where M trop

g is the compactifi-
cation of M trop

g constructed by Caporaso in [7, Theorem 3.30] by means of
extended tropical curves of genus g. Building on this work, several similar
results for various moduli spaces recently appeared, for instance see [11],
[10] and [27]. Following the work of Caporaso, it should be possible to
construct a compactification Etropg of Etropg , and hence investigate similar
connections between Eg and Etropg .

Finally, in Theorem 5.5 and Corollary 5.7, we give a more concrete de-
scription of EY as follows.

Theorem 1.3. — Given a stable curve Y with n nodes and dual graph
Γ, there exist subspaces Vi ⊂ Cn, which can be explicitly described in terms
of Γ, such that the natural rational morphism

P(Cn) 99K
∏
P(Cn/Vi).

has image isomorphic to EY . Moreover, one can find explicit equations of
such an image. If Γ is biconnected, then the induced map P(Cn) 99K EY is
birational.

We believe that the above result can be used to solve the weak part of
Problem (1). Indeed, the images in the above theorem have been modularly
described by Li in [20], although this description is not explicitly related
to enriched curves. It is also interesting to note that the equations of EY
are similar to the ones found by Batyrev and Blume in [5, Corollary 1.16]
describing toric varieties associated to root systems.
This paper is structured as follows. In Section 2 we recall the following

basic tools used throughout the paper. First, we start with the definition of
preorder, fixing some notation, and introducing some terminology in graph
theory. Second, we review some of the theory of toric varieties. Then we
recall some of the results about enriched structures contained in [21]. Fi-
nally, we define stacky fans following [6]. In Section 3 we define enriched
graphs and prove several results that lay the foundations for the follow-
ing two sections. In Section 4 we define enriched tropical curves and prove
Theorem 1.1. In Section 5, we define the toric variety EY and prove Theo-
rems 1.2 and 1.3. Finally, in Section 6, we make some considerations about
a future work related to Problem (1).
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2. Preliminaries

2.1. Preorders

A preorder on a set E is a binary relation . satisfying the following
properties:

(1) a . a, for all a ∈ E.
(2) if a . b and b . c then a . c for all a, b, c ∈ E.
If a preorder also satisfies the property:
(3) if a . b and b . a then a = b,

then it is called a partial order, and denoted by 6. Moreover if every two
elements on E are comparable then the partial order is called a total order.

Since in this paper we will vary the preorder on a set E, we will often
denote a preorder by p and its relation by .p. Two elements a and b are
called incomparable by p if neither a .p b nor b .p a. Given a subset S of
the preordered set (E, p), we define the preorder p|S as the restriction of p
to S.
Given a preordered set (E,.p), an upper set (with respect to p) is a

subset S ⊂ E such that if a ∈ S and a .p b then b ∈ S. A lower set (with
respect to p) is a subset S ⊂ E such that if b ∈ S and a .p b then a ∈ S.
Clearly, the complement of an upper set is a lower set and vice versa. A
preorder p on E induces a topology where the closed sets are the upper
sets. Hence, we say that an upper set is irreducible if it is so in such a
topology.
Given a preorder p on a set E, we define the equivalence relation ∼p on

E as a ∼p b if and only if a .p b and b .p a. We will write a <p b if
a .p b and a �p b. Let Ep denote the quotient E/ ∼p, and [a]p denote the
equivalence class of an element a of E. Clearly p induces a partial order 6p
on the set Ep.

Given a finite partially ordered set (E, p), we define the Hasse diagram
of (E, p) as the directed graph whose vertices are the elements of E and
with a direct edge from a to b if and only if a <p b and there is no element
c ∈ E such that a <p c <p b.
Throughout the paper, for a given set E and a ring R we will define the

free R-module

(2.1) RE :=
⊕
e∈E

R · e.

We will often write an element ⊕xe · e ∈ RE as (xe)e∈E . We call (xe) the
coordinates of this element.

TOME 67 (2017), FASCICULE 2



694 Alex C. ABREU & Marco PACINI

2.2. Graphs

Let Γ be a graph. We denote by E(Γ) the set of edges of Γ and by V (Γ) its
set of vertices. If Γ is connected, a vertex of Γ is called a separating vertex
if there is a loop attached to it (and at least one more edge attached to it)
or the graph becomes nonconnected after its removal; if Γ is nonconnected
a separating vertex of Γ is a separating vertex of one of its connected
components. The valence of a vertex v is the number of edges incident
to v. We say that Γ is k-regular if all its vertices have valence k. If Γ is
2-regular and connected then it is called a circular graph. A cycle of Γ is
a circular subgraph of Γ. Given a set of vertices V ⊂ V (Γ) we denote by
Γ(V ) the subgraph of Γ whose set of vertices is V and whose edges are the
edges of Γ connecting two vertices (possibly the same vertex, in the case of
a loop) in V .

We call Γ biconnected if it is connected and has no separating vertices.
A biconnected component of Γ is a maximal biconnected subgraph of Γ.
Equivalently a biconnected component of Γ can be defined as (the graph
induced by) a maximal set of edges such that any two edges lie on a cycle
of Γ (see [13, p. 558]). We note that each loop together with its vertex
is a biconnected component. Any connected graph decomposes uniquely
into a tree of biconnected components. In particular, each edge belongs to
a unique biconnected component, although vertices can belong to several
biconnected components.

Assume that Γ is connected. Given a nontrivial partition V (Γ) = V ∪V c,
the set E(V, V c) of edges joining a vertex in V with one in V c is called
a cut of Γ. A bond is a minimal cut, i.e., such that Γ(V ) and Γ(V c) are
connected graphs. Given two cuts E(V1, V

c
1 ) and E(V2, V

c
2 ) with V1∩V2 = ∅

we define the sum E(V1, V
c
1 ) + E(V2, V

c
2 ) as the cut E(V1 ∪ V2, V

c
1 ∩ V c2 ).

Note that the condition of V1 and V2 to be disjoint is necessary to have a
well defined operation. In particular the equation B3 = B1 +B2 will mean
that B1 = E(V1, V

c
1 ) and B2 = E(V2, V

c
2 ), with V1 and V2 disjoint.

A vertex weighted graph is a pair (Γ, w), where Γ is a connected graph
and w is a function w : V (Γ) → Z>0 (In this paper the labels will be
nonnegative integers), called the labeling function. The genus of the vertex
weighted graph is defined as

∑
v∈V (Γ) w(v) + b1(Γ), where b1(Γ) is its first

Betti number. A vertex weighted graph is stable if every vertex of weight
0 has valence at least 3 and every vertex of weight 1 has valence at least 1.

Given a subset S ⊂ E(Γ), we define the graph Γ/S as the graph obtained
by contracting all edges in S. We say that a graph Γ specializes to a graph
Γ′ if there exists S ⊂ E(Γ) such that Γ′ = Γ/S.

ANNALES DE L’INSTITUT FOURIER
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We finish this subsection with the following two simple lemmas.

Lemma 2.1. — Let Γ be a connected graph and V := {v1, . . . , vk} be
a subset of V (Γ). Then there exists a (nonunique) partition V1, . . . , Vk of
V (Γ) such that vi ∈ Vi and Γ(Vi) is connected.

Proof. — Let Γ1, . . . ,Γm be the connected components of Γ(V c). Since
Γ is connected, for each j = 1, . . . ,m there exists an edge ej ∈ E(Γ) with
one vertex in V (Γj) and the other one equal to vlj for some lj = 1, . . . , k.
Then the result follows by defining

Vi := {vi} ∪
⋃
j;lj=i

V (Γj). �

Lemma 2.2. — If Γ is biconnected, then for any two edges e1 and e2 of
Γ there exists a bond B of Γ that contains both e1 and e2.

Proof. — Choose a cycle v1, v2, . . . , vk of Γ such that e1 connects v1 and
v2 and e2 connects vj and vj+1 for some j = 2, . . . , k, where vk+1 = v1.
Then by Lemma 2.1 there exists a partition V1, . . . , Vk of V (Γ) such that
Γ(Vi) is connected and vi ∈ Vi. Now, define V :=

⋃j
i=2 Vi. Clearly Γ(V )

and Γ(V c) are connected hence B = E(V, V c) is a bond of Γ that contains
both e1 and e2. �

2.3. Toric varieties

For the theory of toric varieties we refer to [14]. We outline here some of
the constructions we will use throughout the paper.

A toric variety X of dimension n is a normal variety with an embedding
T ↪→ X of the n-dimensional torus T together with an action of T on X
that preserves the action of T on itself. A map of toric varieties X → X ′

is called toric if it respects the torus actions on both X and X ′.
Given a lattice N = Zn and its dual M := N∨, we define NR := N ⊗ R

and MR := M ⊗ R. Given a finite set S ⊂ NR we define

cone(S) :=
{∑
s∈S

λss

∣∣∣∣λs > 0
}
.

A subset σ ⊂ NR is called a polyhedral cone if σ = cone(S) for some finite
set S ⊂ NR. If there exists S ⊂ N with σ = cone(S) then σ is called
rational.

TOME 67 (2017), FASCICULE 2



696 Alex C. ABREU & Marco PACINI

Every polyhedral cone is the intersection of finitely many closed half-
spaces. The dimension of σ, denoted dim(σ), is the dimension of the min-
imal linear subspace containing σ, usually denoted span(σ). The relative
interior int(σ) is the interior of σ inside this linear subspace. A face of σ is
the intersection of σ with some linear subspace H ⊂ Rn of codimension one
such that σ is contained in one of the closed half-spaces determined by H.
A face of σ is also a polyhedral cone. If τ is a face of σ then we write τ ≺ σ.
A face of dimension one of σ is called a ray. In the case that σ is rational,
such a ray has a minimal generator u ∈ N called the ray generator. We
define σ(1) as the set of ray generators of σ.A rational cone is smooth if its
ray generators can be completed to a base of N .

The dual cone of σ is the cone

σ∨ := {m ∈MR | 〈m,u〉 > 0 for every u ∈ σ}.

Associated to a rational polyhedral cone σ there is an affine toric variety
X(σ) whose ring of regular functions is C[σ∨∩M ]. Hence the ring of rational
functions is C[M ]. Moreover X(σ) is smooth if and only if σ is smooth.

A fan Σ is a collection of cones of Rn such that the following conditions
hold

(i) if σ ∈ Σ then τ ∈ Σ for every τ ≺ σ;
(ii) if σ, τ ∈ Σ then σ ∩ τ is a face of both σ and τ .

The support of Σ is the union of all cones σ ∈ Σ. A fan is called complete
if its support is all Rn. Associated to a fan Σ there is a toric variety X(Σ)
obtained by glueing the affine toric varieties X(σ) for every σ ∈ Σ. For
every cone σ ∈ Σ there exists an associated subvariety V (σ) ⊂ X(Σ) of
codimension dim(σ) which is invariant under the action of the torus.

Remark 2.3. — Given a cone τ ∈ Σ the invariant subvariety V (τ) is a
toric variety, and its fan can be obtained as follows. Let Nτ := span(τ)∩N
be the sublattice induced by τ and f : N → N(τ) := N/Nτ be the quotient.
Then, by [14, Proposition 3.2.7], the fan of V (τ) is the fan

Star(τ) := {f(σ) | τ ≺ σ ∈ Σ}.

Given two fans Σ ⊂ NR and Σ′ ⊂ N ′R, and an integral map r : NR → N ′R
such that for every σ ∈ Σ there exists σ′ ∈ Σ′ such that r(σ) ⊂ σ′, then
there is an associated toric map φr : X(Σ)→ X(Σ′). If both Σ and Σ′ are
complete and r is an inclusion (resp. surjection) then φr is an immersion
(resp. surjection).

Definition 2.4. — Given a smooth cone σ and a face τ ≺ σ with
dimension at least 2, we define the fan Σ?σ(τ) as follows. Let uτ be the sum

ANNALES DE L’INSTITUT FOURIER
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of all ray generators of τ , i.e.,

uτ :=
∑
u∈τ(1)

u.

Then we set

Σ?σ(τ) := {cone(S) |S ⊂ {uτ} ∪ σ(1), τ(1) 6⊂ S}.

Moreover, given a smooth fan Σ and τ ∈ Σ we define the star subdivision
of Σ relative to τ as the fan

Σ?(τ) := {σ ∈ Σ | τ 6⊂ σ} ∪
⋃
τ⊂σ

Σ?σ(τ).

Remark 2.5. — Let Σi be fans in NR, such that Σ =
⋃

Σi is a fan, and
let τ ∈ Σ be a cone with dimension at least two. Then

Σ?(τ) =
⋃
τ∈Σi

Σ?i (τ) ∪
⋃
τ /∈Σi

Σi.

Remark 2.6. — Let Σi be fans in Ni,R and Σ :=
∏

Σi be the induced
fan in NR, where N =

∏
Ni. Consider τ ∈ Σ1 and let τ ′ = τ ×

∏
i>1{0} be

the image of τ via the natural inclusion N1,R → NR. Then

Σ?(τ ′) = Σ?1(τ)×
∏
i>1

Σi.

The blowup of a toric variety X(Σ) along the invariant subvariety V (τ)
for τ ∈ Σ is also a toric variety with fan Σ?(τ), see [14, Section 3.3].
Given a cone σ ⊂ NR and a vector v ∈ NR\span(σ), we define

cone(σ, v) = cone({v} ∪ σ(1)).

Given a proper primitive inclusion N ′ ⊂ N , a fan Σ in N ′R and a vector
v ∈ N\N ′ we define the fan

(2.2) fan(Σ, v) = Σ ∪
⋃
σ∈Σ
{cone(σ, v)}.

Proposition 2.7. — Given a proper primitive inclusion N ′ ⊂ N , a fan
Σ in N ′R, a vector v ∈ N\N ′ and τ ∈ Σ of dimension at least two, we have

fan(Σ, v)?(τ) = fan(Σ?(τ), v).

TOME 67 (2017), FASCICULE 2



698 Alex C. ABREU & Marco PACINI

Proof. — By Definition 2.4, we have that

fan(Σ, v)?(τ) = {σ ∈ fan(Σ, v) | τ 6⊂ σ} ∪
⋃
τ⊂σ

σ∈fan(Σ,v)

Σ?σ(τ)

= {σ ∈ Σ | τ 6⊂ σ} ∪ {cone(σ, v) |σ ∈ Σ, τ 6⊂ σ}∪

∪
⋃
τ⊂σ
σ∈Σ

Σ?σ(τ) ∪
⋃
τ⊂σ
σ∈Σ

Σ?cone(σ,v)(τ).

Since

Σ?cone(σ,v)(τ) = {cone(S) |S ⊂ {uτ} ∪ σ(1) ∪ {v}, τ(1) 6⊂ S}
= {cone(S) |S ⊂ {uτ} ∪ σ(1), τ(1) 6⊂ S}∪
∪ {cone(S) |S ⊂ {uτ} ∪ σ(1) ∪ {v}, τ(1) 6⊂ S, v ∈ S}

= Σ?σ(τ) ∪ {cone(S ∪ {v}) |S ⊂ {uτ} ∪ σ(1), τ(1) 6⊂ S}
= Σ?σ(τ) ∪ {cone(σ′, v) |σ′ ∈ Σ?σ(τ)},

we have

fan(Σ, v)?(τ) = {σ ∈ Σ | τ 6⊂ σ} ∪
⋃
τ⊂σ
σ∈Σ

Σ?σ(τ)

∪ {cone(σ, v) |σ ∈ Σ, τ 6⊂ σ} ∪
⋃
τ⊂σ
σ∈Σ

{cone(σ′, v) |σ′ ∈ Σ?σ(τ)}

= Σ?(τ) ∪ {cone(σ′, v) |σ′ ∈ Σ?(τ)}
= fan(Σ?(τ), v),

which finishes the proof. �

2.4. Enriched structures

In this section we give an overview of the theory of enriched curves
introduced by Mainò in [21]. We also refer to [17] for a different approach
to the theory.

A curve is a connected, projective, reduced scheme of dimension 1 over
C all of whose singularities are nodes. A curve is stable if its automor-
phism group is finite. Let Y be a stable curve with irreducible components
Y1, . . . , Yγ . For every i = 1, . . . , γ define ∆Yi := Yi∩Y ci , where Y ci := Y \Yi.
A regular smoothing of Y is a proper flat family Y → B, where Y is smooth,
B = Spec(C[[t]]) and Y is isomorphic to the special fiber.

ANNALES DE L’INSTITUT FOURIER
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Definition 2.8. — An enriched structure over Y is a γ-tuple L :=
(L1, L2, . . . , Lγ) of invertible sheaves on Y such that there exists a regular
smoothing Y → B of Y with Li = OY(Yi)|Y for i = 1, . . . , γ. An enriched
curve is a pair (Y,L) where Y is a stable curve and L is an enriched structure
on Y .

Equivalently, by [21, Proposition 3.16], one can define an enriched struc-
ture as a γ-tuple L := (L1, . . . , Lγ) of invertible sheaves on Y such that

(i) Li|Yi
= OYi

(−∆Yi
) and Li|Y c

i
= OY c

i
(∆Yi

).
(ii) ⊗γi=1Li = OY .

For each i = 1, . . . , γ we have a natural exact sequence

0 −→ (C∗)|∆Yi
|−ci −→ Pic(Y ) −→ Pic(Yi)× Pic(Y ci ) −→ 0,

where ci is the number of connected components of the subcurve Y ci . Since,
by Condition (i) above, the invertible sheaf Li has fixed restrictions to
Yi and Y ci the torus (C∗)|∆Yi

|−1 parametrizes all the possible choices for
Li. Moreover, imposing Condition (ii), we get equations describing the
variety of enriched structures in

∏
(C∗)|∆Yi

|−1. Indeed, the space of enriched
structures can be described by the following proposition, proved in [21,
Proposition 3.14]

Proposition 2.9. — Let Y be a stable curve with irreducible compo-
nents Y1, . . . , Yγ and δ nodes, ρ of which are external nodes, i.e., belong
to some ∆Yi

. Then all possible enriched structures on Y form a principal
(C?)n-homogeneous space of dimension n = ρ+ γ −

∑γ
i=1 ci − 1, where ci

is the number of connected components of the subcurve Y ci .

Let VY be the space of versal deformations of Y (for more details see [3,
Section 11.3]). A stable curve is called relevant if its dual graph is bicon-
nected. Consider the subspaces of VY called the relevant loci

Ri = {[C] ∈ VY |C is a relevant curve, with i nodes}

for i = 1, . . . , 3g−3. For some i the relevant locus Ri can be empty. There-
fore let im > im−1 > . . . > i1 be the indices such that Rij is nonempty.
Also note that R1 is a Cartier divisor in VY usually denoted ∆0. We then
define the Mainò blowup π : B → VY as the chain of blowups:

π : B := B1
φ1−→ B2

φ2−→ · · · φm−2−−−→ Bm−1
φm−1−−−→ Bm

φm−−→ Bm+1 := VY

where φj : Bj → Bj+1 is the blowup of

π−1
j+1(Rij )
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where πn+1 = idVY
and πj−1 = φj−1πj . Define R̃ij := π−1(Rij ) and

B′ :=
{
B\
⋃m−1
j=1 R̃ij if Y has biconnected dual graph;

B\
⋃m
j=1 R̃ij otherwise.

Also let π′ := π|B′ .
The following theorem gives another description of the space of enriched

structures using the deformation space of Y . For a proof see [21, Theo-
rem 5.4].

Theorem 2.10. — Let Y be a stable curve. Then the space of enriched
structures on Y is isomorphic to π′−1([Y ]).

The construction above can be reproduced to blowupMg instead of VY ,
given rise to a space Eg and to a map Eg →Mg. The space Eg parametrizes
genus-g stable curves with enriched structures. Moreover, if Y is a stable
curve with no nontrivial automorphisms, then the fiber of Eg →Mg over
[Y ] ∈ Mg is the same as the fiber π′−1([Y ]). We refer to [21, Chapter 5]
for more details.

2.5. Stacky fans and tropical curves

In this section we review the definition of stacky fans and the cell de-
scription of the moduli spaceM trop

g parametrizing tropical curves. We refer
the reader to [6] for more details.

Definition 2.11. — Let {Kj ⊂ Rmj}j∈J be a finite collection of ra-
tional open polyhedral cones such that dimKj = mj . Moreover, for each
cone Kj ⊂ Rmj , let Gj be a group and ρj : Gj → GLmj

(Zmj ) a homomor-
phism such that ρj(Gj) stabilizes the cone Kj under its natural action on
Rmj . Therefore Gj acts on Kj (resp. Kj), via the homomorphism ρj , and
we denote the quotient by Kj/Gj (resp. Kj/Gj), endowed with the quo-
tient topology. A topological space K is said to be a stacky fan with cells
{Kj/Gj}j∈J if there exist continuous maps αj : Kj/Gj → K satisfying the
following properties:

(i) The restriction of αj toKj/Gj is an homeomorphism onto its image;
(ii) K =

∐
j αj(Kj/Gj) (set-theoretically);

(iii) For any j1, j2 ∈ J , the natural inclusion map

αj1(Kj1/Gj1) ∩ αj2(Kj2/Gj2) ↪→ αj2(Kj2/Gj2)
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is induced by an integral linear map L : Rmj1 → Rmj2 , i.e., there
exists a commutative diagram

αj1(Kj1/Gj1) ∩ αj2(Kj2/Gj2) �
�
//

� v

))

αj1(Kj1/Gj1) Kj1
oooo � � //

��

Rmj1

L

��

αj2(Kj2/Gj2) Kj2
oooo � � // Rmj2

The dimension of K is the greatest dimension of its cells. We say that a
cell is maximal if it is not contained in the closure of any other cell. The
stacky fan K is said to be of pure dimension if all its maximal cells have
dimension equal to the dimension of K. A generic point of K is a point
contained in a cell of maximal dimension.
Assume that K is a stacky fan of pure dimension n. The cells of dimension

n − 1 are called codimension one cells. The stacky fan K is said to be
connected through codimension one if for any two maximal cells Kj/Gj
and Kj′/Gj′ one can find a sequence of maximal cells

Kj/Gj =: Kj0/Gj0 ,Kj1/Gj1 , . . . ,Kjr/Gjr := Kj′/Gj′

such that for any i := 0, . . . , r−1 the two consecutive maximal cellsKji
/Gji

and Kji+1/Gji+1 have a common codimension one cell in their closure.

Definition 2.12. — Let K and K′ be stacky fans with cells {Kj/Gj}
and {K ′i/Hi} where {Kj ⊂ Rmj} and {K ′i ⊂ Rm

′
i}, respectively. A contin-

uous map π : K → K′ is said to be a map of stacky fans if for every cell
Kj/Gj of K there exists a cell K ′i/Hi of K′ such that

(i) π(Kj/Gj) ⊂ K ′i/Hi;
(ii) π : Kj/Gj → K ′i/Hi is induced by an integral linear function

Lj,i : Rmj → Rm
′
i ,

i.e., there exists a commutative diagram

Kj/Gj

π

��

Kj
oooo � � //

Lj,i

��

Rmj

Lj,i

��

K ′i/Hi K ′i
oooo � � // Rm′i

We say that the map π is full if it sends every cell Kj/Gj of K surjectively
onto some cell K ′i/Hi of K′. We say that π is of degree one if for every
generic point Q ∈ K ′i/Hi ⊂ K′ the inverse image π−1(Q) consists of a
single point P ∈ Kj/Gj ⊂ K and the integral linear function Lj,i inducing
π : Kj/Gj → K ′i/Hi is primitive (i.e., L−1

j,i (Zm′i) ⊂ Zmj ).
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A stable tropical curve is a 3-tuple (Γ, w, l), where (Γ, w) is a vertex
weighted stable graph and l is a function l : E(Γ)→ R>0 called the length
function. The genus of a tropical stable curve is the genus of the underlying
vertex weighted graph.

Given a vertex weighted graph (Γ, w), to parametrize stable tropical
curves with (Γ, w) as its underlying vertex weighted graph, we just have
to assign lengths to each edge of Γ. Then it is clear that such a datum is
parametrized by the space

RE(Γ)
>0 /Aut(Γ, w).

In fact, we have the following theorem, proved in [6, Theorem 3.2.4].

Theorem 2.13. — There exists a stacky fan M trop
g whose points are in

bijection with stable tropical curves of genus g, and whose cells are of the
form

RE(Γ)
>0 /Aut(Γ, w).

3. Enriched graphs

In this section we define enriched structures on a graph and prove several
results that will be used in the next sections. The definition of an enriched
structure is recursive. The propositions in the first part of the section will
be devoted to give a more concrete description of this notion. In the second
part of the section we prove Propositions 3.17 and 3.24 that will translate
to Theorems 4.4 and 5.8, respectively.

3.1. Definition and basic properties.

Definition 3.1. — An enriched graph is a pair (Γ, p), where Γ is a
graph and p is a preorder on the set of edges E(Γ), satisfying one of the
following conditions:

(1) The graph Γ has only one edge (or is without edges) and the pre-
order is the trivial one;

(2) The graph Γ is biconnected, has at least two edges and there is a
nonempty lower set S ⊂ E(Γ) such that e .p e′ for all e ∈ S and
e′ ∈ E(Γ), and such that (Γ/S, p|E(Γ/S)) is an enriched graph;

(3) The graph Γ has biconnected components Γ1, . . . ,Γm, with m > 2,
so that E(Γ) =

∐
E(Γi), the pairs (Γi, p|E(Γi)) are enriched graphs,

and edges e, e′ belonging to different components Γi and Γj are
incomparable by p.

ANNALES DE L’INSTITUT FOURIER



ENRICHED CURVES AND THEIR TROPICAL COUNTERPART 703

Recall that a preorder p on E(Γ) induces a equivalence relation ∼p, as de-
fined in Section 2.1. Then the second condition is equivalent to the following
condition:

(2 ′) The graph Γ is biconnected, has at least two edges and there is an
equivalence class [e]p, such that e .p e′ for every e′ ∈ E(Γ) and
(Γ/[e]p, p|E(Γ/[e]p)) is an enriched graph.

If (Γ, p) is an enriched graph, we say that p is an enriched structure on
Γ. Moreover, if p is a partial order, then we say that the enriched graph
(Γ, p) is generic and that p is a generic enriched structure on Γ. We also
note that the second condition implies that, if Γ is biconnected, then E(Γ)
is irreducible with respect to the topology induced by p, while the third
condition implies that E(Γi) are the connected components of E(Γ) in the
topology induced by p. Furthermore, if Γ is biconnected there is a canonical
enriched structure p on Γ given by e ∼p e′ for every e, e′ ∈ Γ (in fact (Γ, p)
clearly satisfies Condition (2) in Definition 3.1 for S = E(Γ)).

Example 3.2. — Let Γ be the graph in Figure 3.1. Let us construct
enriched structures p1, p2 and p3 on Γ. Since Γ is biconnected, we first
choose a set S ⊂ E(Γ) to be a lower set and then iterate the process
following Conditions (1), (2) and (3) in Definition 3.1.

•

• •

e1

e2

e3 e4

Figure 3.1. The graph Γ.

• Choose S = {e1}. The graph Γ1 := Γ/{e1} is not biconnected.
Then, by Condition (3), it is enough to find enriched structures for
each one of its biconnected components Γ2 and Γ3, where E(Γ2) =
{e2} and E(Γ3) = {e3, e4}. The enriched structure on Γ2 is the
trivial one by Condition (1). Now for Γ3 we have to choose again
a lower set of E(Γ3) = {e3, e4}. We choose {e3} to be such a lower
set. The enriched structure on Γ3/{e3} is the trivial one. Hence, an
enriched structure p1 on Γ is given by the relations:

e1 .p1 e2 and e1 .p1 e3 .p1 e4.
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• Choose S = {e3}. The graph Γ1 := Γ/{e3} is still biconnected. We
have to choose a lower set of E(Γ1). We choose {e1} to be such a
lower set. Now the graph Γ2 := Γ1/{e1} is not biconnected. The bi-
connected components of Γ2 have only one edge, hence the enriched
structures on them are trivial. Therefore, an enriched structure p2
on Γ is given by the relations:

e3 .p2 e1 .p2 e2 and e3 .p2 e1 .p2 e4.

• Choose S = {e1, e3}. The graph Γ1 := Γ/S is not biconnected. The
biconnected components of Γ1 have only one edge, hence the en-
riched structures on them are trivial. Therefore, an enriched struc-
ture p3 on Γ is given by the relations:

e1 ∼p3 e3 .p3 e2 and e1 ∼p3 e3 .p3 e4.

We note that p1 and p2 are generic, while p3 is not.

Example 3.3. — If Γ is a circular graph, then a generic enriched struc-
ture is simply a total order of E(Γ).

Example 3.4. — If Γ is a graph with two vertices and no loops, then
an enriched structure p is simply the choice of a subset S ⊂ E(Γ), where
e .p e′ for every e ∈ S and e′ ∈ E(Γ).

We will often use the following key proposition without explicitly men-
tioning it.

Proposition 3.5. — Given an enriched graph (Γ, p) and a nonempty
lower set S ⊂ E(Γ) with respect to p, then (Γ/S, p|E(Γ/S)) is an enriched
graph.

Proof. — The proof is by induction on the number of edges of Γ. If Γ
has only one edge, or no edges, the result is trivial.
If Γ is not biconnected, then it has biconnected components Γ1, . . . ,Γm,

and Γ/S has biconnected components Γ′1, . . . ,Γ′k where each Γ′j is a bi-
connected component of some unique Γi/(E(Γi) ∩ S). By Condition (3) in
Definition 3.1 we have that (Γi, p|E(Γi)) is an enriched graph and the set
E(Γi)∩ S is a lower set. Hence, by the induction hypothesis, (Γi/(E(Γi)∩
S), p|E(Γi)\S) is an enriched graph, and again by Condition (3) we have
that (Γ′i, p|E(Γ′

i
)) is an enriched graph. Finally, Condition (3) one more

time implies that (Γ/S, p|E(Γ/S)) is an enriched graph.
If Γ is biconnected, then, by Condition (2′) in Definition 3.1, there exists

an equivalence class [e]p such that e .p e′ for every e′ ∈ E(Γ); in par-
ticular [e]p ⊂ S. Contracting all edges in [e]p, we have an enriched graph
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(Γ/[e]p, p|E(Γ/[e]p)) and a lower set S\[e]p ⊂ E(Γ/[e]p). If S\[e]p is empty,
then S = [e]p, and the result follows by Condition (2′) in Definition 3.1.
Otherwise, Γ/S = (Γ/[e]p)/(S\[e]p), and then the result follows by the
induction hypothesis applied to (Γ/[e]p, p|E(Γ/[e]p)) and S\[e]p. �

Proposition 3.6. — Given an enriched graph (Γ, p), if e1, e2 and e3
are edges in Γ such that e1 .p e3 and e2 .p e3 then either e1 .p e2 or
e2 .p e1.

Proof. — The proof is by induction on the number of edges. If Γ has
only one edge, or no edges, the result is trivial.
If Γ is not biconnected, then, by Condition (3) in Definition 3.1, the

edges e1, e2 and e3 all belong to the same biconnected component, then
the induction hypothesis applies.
If Γ is biconnected, then, by Condition (2) in Definition 3.1, there exists

a lower set S ⊂ E(Γ) such that e .p e′ for every e ∈ S and e′ ∈ E(Γ).
If ei ∈ S for some i = 1, 2, 3, then the result is clear. Otherwise the edges
e1, e2 and e3 belong to the enriched graph (Γ/S, p|E(Γ/S)) and the result
follows again by the induction hypothesis. �

Corollary 3.7. — Given an enriched graph (Γ, p), the connected com-
ponents of the Hasse diagram of E(Γ)p are rooted trees, where the roots
are the classes of the elements of E(Γ) which are minimal with respect to p.

Given an enriched graph (Γ, p), we define the rank of p as

rank(p) := #E(Γ)p.

If (Γ, p) is generic, then rank(p) = |E(Γ)|. We say that two equivalence
classes [e1]p and [e2]p are consecutive if there is a directed edge from [e1]p
to [e2]p in the Hasse diagram of E(Γ)p, i.e., e1 <p e2 and there exists no
edge e3 such that e1 <p e3 <p e2.
The following proposition describes how enriched structures behave when

restricted to bonds of the graph Γ. This proposition will later translate to
Proposition 5.4.

Proposition 3.8. — Given an enriched graph (Γ, p) and a bond B of
Γ, there exists a nonempty lower set T ⊂ B with respect to p|B such that
e .p e′ for every e ∈ T and e′ ∈ B.

Proof. — The proof is by induction on the number of edges. If Γ has
only one edge, or no edges, the result is trivial.
If Γ is not biconnected then a bond of Γ is a bond of some biconnected

component, then the result follows by induction.
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If Γ is biconnected, then, by Condition (2) in Definition 3.1, there exists
a lower set S ⊂ E(Γ) such that e .p e′ for every e ∈ S and e′ ∈ E(Γ). If
S∩B is nonempty then the set T := S∩B is clearly a lower set with respect
to p|B that satisfies e .p e′ for every e ∈ T and e′ ∈ B. If S ∩ B = ∅ then
B is a bond of Γ/S and the result follows by the induction hypothesis. �

Conversely, let B be the set of all bonds of Γ. Choose a collection T =
(TB)B∈B of nonempty subsets TB ⊂ B for every B ∈ B, and define the
preorder pT as the transitive closure of the relations e .pT e′ for every
B ∈ B, e ∈ TB , e′ ∈ B.

Proposition 3.9. — Let Γ be a graph and let B be the set of all bonds
of Γ. Given a collection T = (TB)B∈B of nonempty subsets TB ⊂ B, the
induced preorder pT is an enriched structure on Γ.

Proof. — The proof is by induction on the number of edges. If Γ has
only one edge, or no edges, the result is trivial.
If Γ is not biconnected, then, by Condition (3) in Definition 3.1 and the

fact that each bond is contained in a biconnected component, the induction
hypothesis applies.

If Γ is biconnected, then let S ⊂ E(Γ) be a minimal nonempty lower set
with respect to pT , i.e., a lower set S such that if e, e′ ∈ S then e ∼pT e′.
We will now check Condition (2) in Definition 3.1. Fix e ∈ S and e′ ∈ E(Γ).
By Lemma 2.2 there exists a bond B such that e, e′ ∈ B. If e ∈ TB , then
e .pT e

′ and we are done. If e /∈ TB , then there exists e1 ∈ TB and hence
e1 .pT e and e1 .pT e

′. This implies that e1 ∈ S, because S is a lower set,
whence e1 ∼pT e, because S is minimal, and we get that e .pT e′.

Finally, contract all edges in S. We have that every bond of Γ/S is a
bond of Γ which does not intersect S. Hence the collection T restricts to
a collection of nonempty subsets of bonds of Γ/S which, by the induction
hypothesis, induces an enriched structure q on Γ/S. Clearly q = pT |E(Γ/S)
which proves that pT is an enriched structure on Γ. �

Now, we will define the meaning of specialization for enriched graphs in
analogy to the specialization of graphs.

Definition 3.10. — Given enriched graphs (Γ, p) and (Γ′, p′) we say
that (Γ, p) specializes to (Γ′, p′) if the following conditions hold.

(1) The graph Γ specializes to Γ′. In particular E(Γ′) ⊂ E(Γ).
(2) For e, e′ ∈ E(Γ) such that e .p e′ and e′ /∈ E(Γ′), we have e /∈

E(Γ′).
(3) For e, e′ ∈ E(Γ′) such that e .p e′, we have e .p′ e′.
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In particular there is a (possibly empty) lower set S ⊂ E(Γ) with respect
to p such that Γ′ = Γ/S. We use the notation (Γ, p)  (Γ′, p′) to mean
that (Γ, p) specializes to (Γ′, p′).

We note that given a lower set S of an enriched graph (Γ, p), then (Γ, p)
specializes to the enriched graph (Γ/S, p|E(Γ/S)). Moreover if (Γ, p) special-
izes to (Γ′, p′) and (Γ′, p′) specializes to (Γ′′, p′′) then (Γ, p) specializes to
(Γ′′, p′′).

Given a specialization (Γ, p) (Γ, p′) there is a surjective map E(Γ)p →
E(Γ)p′ ; in particular rank(p′) 6 rank(p). The case rank(p′) = rank(p) − 1
will be an important one because every specialization can be obtained as
a chain of specializations each one of which decreases the rank by one, as
Proposition 3.12 will illustrate.

Lemma 3.11. — Given an enriched graph (Γ, p) and two consecutive
equivalence classes [e1]p and [e2]p, there exists an enriched graph (Γ, p′)
such that e .p′ e′ if and only if e .p e′ or {e, e′} ⊂ [e1]p∪[e2]p. In particular
(Γ, p) specializes to (Γ, p′) and we call such a specialization simple.

Proof. — Define p′ as in the statement. We just have to prove that p′
is an enriched structure on Γ. We proceed by induction on the number of
edges of Γ. The minimum number of edges of Γ is two, in which case the
result is trivial.
If Γ is not biconnected, then [e1]p and [e2]p are sets of edges of the same

biconnected component Γ1 of Γ, and the result follows by the induction
hypothesis applied to Γ1.
If Γ is biconnected, by Condition (2′) in Definition 3.1 there exists an

edge e such that e .p e′ for every e′ ∈ E(Γ) and (Γ/[e]p, p|E(Γ/[e]p)) is an
enriched graph. We now divide the proof in two cases.
In the first case we have [e1]p = [e]p. Then, by the definition of p′, we

have [e]p′ = [e1]p ∪ [e2]p, and e satisfies e .p′ e′ for every e′ ∈ E(Γ).
Since [e1]p and [e2]p are consecutive, we see that [e]p′ = [e1]p ∪ [e2]p is a
lower set with respect to p, hence (Γ/[e]p′ , p|E(Γ/[e]p′ )) is an enriched graph.
Moreover we have p′|E(Γ/[e]p′ ) = p|E(Γ/[e]p′ ) by the construction of p′, then
(Γ/[e]p′ , p′|E(Γ/[e]p′ )) is an enriched graph, and hence so is (Γ, p′).

In the second case we have e1 /∈ [e]p, and then [e]p = [e]p′ . Recall that
(Γ/[e]p, q) is an enriched graph, where q := p|E(Γ/[e]p). Therefore [e1]q =
[e1]p and [e2]q = [e2]p are consecutive equivalence classes in (Γ/[e]p, q),
and hence, by the induction hypothesis, there exists an enriched graph
(Γ/[e]p, q′) satisfying e .q′ e′ if and only if e .q e′ or {e, e′} ∈ [e1]q ∪
[e2]q. To conclude the proof, just note that q′ = p′|E(Γ/[e]p′ ) (recall that
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[e]p = [e]p′), and e .p′ e′ for every e′ ∈ E(Γ), hence (Γ, p′) is an enriched
graph. �

Proposition 3.12. — If the enriched graph (Γ, p) specializes to (Γ, p′)
then either p = p′ or there exists a simple specialization (Γ, p)  (Γ, p1)
such that (Γ, p1) specializes to (Γ, p′). Moreover the specialization (Γ, p) 
(Γ, p′) is simple if and only if rank(p′) = rank(p)− 1.

Proof. — Let E(Γ)p → E(Γ)p′ be the induced surjective map. Either this
map is a bijection and hence p = p′, or there exist two different equivalence
classes [e1]p and [e2]p with the same image, or equivalently e1 ∼p′ e2. If
we can find two such classes that are consecutive with respect to p then
applying the construction in Lemma 3.11 we get the result. We prove that
there exist such consecutive classes by induction on the number of edges of
Γ. If Γ has only one edge, or no edges, the result is trivial.
If Γ is not biconnected, then we have specializations

(Γi, p|E(Γi)) (Γi, p′|E(Γi)),

for each one of its biconnected components Γ1, . . .Γm. By the induction
hypothesis, either p|E(Γi) = p′|E(Γi) for every i and so p = p′ or there exists
one such i and a simple specialization (Γi, p|E(Γi))  (Γi, pi,1) such that
(Γi, pi,1) specializes to (Γi, p′|E(Γi)). In this case just set p1 as the enriched
structure on Γ such that p1|E(Γj) = p|E(Γj) for j 6= i and p1|E(Γi) = pi,1.
If Γ is biconnected, by Condition (2′) in Definition 3.1 there exists an

edge e ∈ E(Γ) such that e .p e′ for every e′ ∈ E(Γ). We have two cases.
In the first case there exists [e1]p such that e1 ∼p′ e and e1 �p e. We have
[e]p <p [e1]p and hence we can find [e2]p such that [e]p <p [e2]p .p [e1]p
(and hence e ∼p′ e2), with [e]p and [e2]p consecutive.
In the second case, we have [e]p = [e]p′ , then both equivalence classes

satisfy Condition (2′) in Definition 3.1. Hence (Γ/[e]p, p|E(Γ/[e]p)) specializes
to the enriched graph (Γ/[e]p, p′|E(Γ/[e]p)) and, by the induction hypothesis,
we can find two consecutive equivalence classes [e1]p and [e2]p with the same
image, as required.
If (Γ, p)  (Γ, p′) is simple then there exist only two classes [e1]p and

[e2]p with the same image via the map E(Γ)p → E(Γ)p′ , hence rank(p′) =
rank(p) − 1. Finally, the fact that any specialization is a composition of
simple specializations implies that a specialization which lowers the rank
by 1 is simple. �

Corollary 3.13. — Given a specialization i : (Γ, p) (Γ′, p′) there is
a natural inclusion E(Γ′)p′ ↪→ E(Γ)p, where the class [e′]p′ maps to the
class of the minimal edge e (with respect to p) such that e ∼p′ e′.
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Proof. — First we can reduce to the case where Γ = Γ′. Indeed, there is
a lower set S ⊂ E(Γ) with respect to p such that Γ′ = Γ/S and hence we
can factor i as

(Γ, p) (Γ′, p|E(Γ′)) (Γ′, p′).
Since S is a union of equivalence classes in E(Γ)p, we have a natural injec-
tion

E(Γ′)p|E(Γ′)
↪→ E(Γ)p,

because every equivalence class in E(Γ′)p|E(Γ′)
is an equivalence class in

E(Γ)p which is not contained in S.
We will now proceed by induction. By Lemma 3.11, if i is simple, then

there exist two consecutive classes [e1]p and [e2]p such that there is a
bijection E(Γ)p\{[e1]p, [e2]p} → E(Γ)p′\{[e1]p′}. Now to define the map
E(Γ)p′ ↪→ E(Γ)p one just uses this bijection and define the image of [e1]p′
as [e1]p (the minimal of the consecutive classes). If i is not simple, then by
Proposition 3.12 we can factor it through

(Γ, p) (Γ, p1) (Γ, p′)

where the first specialization is simple. By the induction hypothesis there
exists a map E(Γ)p′ ↪→ E(Γ)p1 and by the initial case we have the map
E(Γ)p1 ↪→ E(Γ)p.

Clearly this map defined inductively satisfies the minimality condition
in the statement. The proof is complete. �

3.2. Graphs and their fans.

Given an enriched graph (Γ, p), we define the cone K(Γ, p) ⊂ RE(Γ)
>0 as

the cone satisfying the linear relations xe 6 xe′ when e .p e′ with equality
if and only if e ∼p e′. Here (xe)e∈E(Γ) are the coordinates of RE(Γ). It is
easy to see that

(3.1) dimK(Γ, p) = rank(p)

The purpose of this subsection is to study the geometric properties of
the cones K(Γ, p). We begin by proving that we can restrict ourselves to
the case in which Γ is biconnected.

Lemma 3.14. — If Γ has biconnected components Γ1, . . . ,Γm, then for
every enriched structure p on Γ we have

K(Γ, p) =
m∏
i=1

K(Γi, pi)
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where pi is the restriction of p to E(Γi).

Proof. — We have a map

K(Γ, p) −→
m∏
i=1
RE(Γi)
>0

(xe)e∈E(Γ) 7−→
∏

(xe)e∈E(Γi).

Clearly this map is injective. Since the preorder pi is the restriction of the
preorder p and p only compares edges in the same set E(Γi), the image of
this map is

m∏
i=1

K(Γi, pi). �

Lemma 3.15. — Let Γ be a biconnected graph and (xe) be a point of
RE(Γ)
>0 . Define the subset S ⊂ E(Γ) of the elements e ∈ E(Γ) such that xe

is minimum, i.e., xe 6 xe′ for every e′ ∈ E(Γ). If p is an enriched structure
on Γ and (xe) ∈ K(Γ, p), then S satisfies Condition (2) in Definition 3.1.
In particular, S does not depend on the choice of the point (xe) inside
K(Γ, p).

Proof. — Let e be an edge such that xe is minimum. By Condition (2′)
in Definition 3.1, there is an equivalence class [e0]p such that e0 .p e′ for
every e′ ∈ E(Γ). Hence we have xe0 6 xe, by the definition of the cone
K(Γ, p). Since xe is minimum, we must have equality xe = xe0 and then
e ∼p e0, which implies [e]p = [e0]p. Moreover, if e′ ∼p e0, then we have
xe′ = xe. Hence S = [e0]p and satisfies Condition (2) in Definition 3.1. �

Now, we begin to prove that the cones K(Γ, p) will induce a fan. We
start with the following proposition.

Proposition 3.16. — Given a graph Γ then RE(Γ)
>0 is the disjoint union

of K(Γ, p) where p runs through all enriched structures on Γ.

Proof. — The proof is by induction on the number of edges. If Γ has
only one edge, or no edges, the result is trivial. Assume now that Γ has at
least two edges.
If Γ is not biconnected, with biconnected components Γ1, . . . ,Γm, then

RE(Γ)
>0 =

∏
RE(Γi)
>0 . By the induction hypothesis we get

RE(Γi)
>0 =

∐
pi

K(Γi, pi),
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where the disjoint union is over every enriched structure pi on Γi. Hence,

(3.2) RE(Γ)
>0 =

∐
(p1,...,pm)

m∏
i=1

K(Γi, pi)

where the disjoint union is over all tuples (pi), pi an enriched structure
on Γi. Since, by Definition 3.1, every enriched structure p on Γ is induced
by its restrictions pi on Γi, and, conversely, every tuple (pi) induces an
enriched structure p on Γ, the disjoint union in Equation (3.2) is a disjoint
union over every enriched structure p on Γ, therefore we have

RE(Γ)
>0 =

∐
p

m∏
i=1

K(Γi, p|E(Γi)) =
∐
p

K(Γ, p),

where the last equation is the result of Lemma 3.14.
If Γ is biconnected, let us first prove that the cones K(Γ, p) and K(Γ, p′)

are disjoint for p 6= p′. Indeed, assume, by contradiction, that there is an
element (xe)e∈E(Γ) in both cones.
Since (xe) belongs to both cones K(Γ, p) and K(Γ, p′), defining S as in

Lemma 3.15, we get that S satisfies Condition (2) in Definition 3.1 for both
(Γ, p) and (Γ, p′). Hence, we get that (Γ/S, q) and (Γ/S, q′) are enriched
graphs, where q and q′ are the restrictions of p and p′ to Γ/S. Moreover,
the element (xe′)e′∈E(Γ/S) belongs to both conesK(Γ/S, q) andK(Γ/S, q′).
By the induction hypothesis, q and q′ must be the same, hence p = p′, a
contradiction.
All that is left to prove is that every element (xe) ∈ RE(Γ)

>0 belongs to
some coneK(Γ, p). Define S as in Lemma 3.15. By the induction hypothesis,
there exists an enriched structure q on Γ/S such that the cone K(Γ/S, q)
contains the element (xe′)e′∈E(Γ/S). Then let p be the preorder on Γ defined
as e .p e′ if and only if e ∈ S or e .q e′. It is clear that p is an enriched
structure on Γ and (xe) ∈ K(Γ, p). �

We now consider the closure K(Γ, p) of K(Γ, p) in RE(Γ). By Proposi-
tion 3.16 it is expected that these closures form a fan. However, we are
still missing some cones corresponding to the faces of K(Γ, p) contained in
the hyperplanes xe = 0. These missing cones can be recovered by consider-
ing specializations of graphs. The following observation together with the
following two propositions address this problem.
Clearly the cone K(Γ, p) is given by the linear relations 0 6 xe 6 xe′ if

e .p e′. Given a specialization i : (Γ, p)  (Γ′, p′) there exists an integral
linear injective map

(3.3) i : RE(Γ′) → RE(Γ)
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induced by the natural inclusion E(Γ′) ⊂ E(Γ). Note that i only depends
on the specialization of graphs Γ Γ′. In particular, when Γ = Γ′, then i
is the identity.

Proposition 3.17. — Given an enriched graph (Γ, p) the cone K(Γ, p)
is the disjoint union

∐
i(K(Γ′, p′)) for (Γ′, p′) running through all special-

izations i : (Γ, p) (Γ′, p′).

Proof. — The proof is by induction on the number of edges. If Γ has
only one edge, or no edges, the result is trivial. Assume now that Γ has at
least two edges.
If Γ is not biconnected, let Γ1, . . . ,Γm be its biconnected components.

Then, by Lemma 3.14, K(Γ, p) =
∏
K(Γj , pj), where pj = p|E(Γj). Hence,

by the induction hypothesis, we have

K(Γj , pj) =
∐

ij(Γ′j , p′j)

where the union runs through all specializations ij : (Γi, pi)  (Γ′j , p′j).
Hence

K(Γ, p) =
∐

i1,...,im

m∏
j=1

ij(K(Γ′j , p′j)) =
∐
i

i(K(Γ′, p′)).

where i : (Γ, p) (Γ′, p′) is such that i|Γj
= ij .

If Γ is biconnected, we first prove that the cones i1(K(Γ1, p1)) and
i2(K(Γ2, p2)) are disjoint, where i1 : (Γ, p)  (Γ1, p1) and i2 : (Γ, p)  
(Γ2, p2) are distinct specializations.

First we note that we can assume that Γ1 = Γ2. Indeed, if there is
an edge e ∈ E(Γ1)\E(Γ2) then i1(K(Γ1, p1) is contained in xe > 0 and
i2(K(Γ2, p2)) is contained in xe = 0 and hence we are done.

Since Γ1 = Γ2, using Proposition 3.16 we have that the cones K(Γ1, p1)
and K(Γ1, p2) are disjoint. Moreover, we have that i1 = i2, and since i1 is
injective it follows that i1(K(Γ1, p1)) and i2(K(Γ2, p2)) are disjoint.

All that is left to prove is that every element (xe) ∈ K(Γ, p) belongs to
some cone i(K(Γ′, p′)). Fix (xe) ∈ K(Γ, p) and define S as in Lemma 3.15.
By Lemma 3.15, we get that S is a lower set for (Γ, p). We have two cases.

In the first case xe = 0 for every e ∈ S. Then, by the induction hypoth-
esis, there exists a specialization i′ : (Γ/S, p|E(Γ/S))  (Γ′, p′) such that
the cone i′(K(Γ′, p′)) contains the element (xe′)e′∈E(Γ/S). Then set i as the
composition of (Γ, p)  (Γ/S, p|E(Γ/S)) and i′ : (Γ/S, p|E(Γ/S))  (Γ′, p′).
Clearly (xe) ∈ i(K(Γ′, p′)).

In the second case, no coordinate xe is zero, for every e ∈ S. Then (xe)
is contained in some cone K(Γ, p′) by Proposition 3.16. All that we have to
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prove is that (Γ, p) (Γ, p′). By Definition 3.10 it is enough to show that if
e .p e′ then e .p′ e′. By Lemma 3.15, we have that if e ∈ S then e .p′ e′ for
every e′ ∈ E(Γ). Since (xe)e∈E(Γ/S) is contained in K(Γ/S, p′|E(Γ/S)) and
in K(Γ/S, p|E(Γ/S)), by the induction hypothesis we get a specialization
(Γ/S, p|E(Γ/S))  (Γ/S, p′|E(Γ/S)). This implies that if e /∈ S and e .p e′
(and therefore e′ /∈ S) then e .p′ e′. On the other hand if e .p e′ and
e ∈ S, then e .p′ e′ by the observation above. This finishes the proof. �

Proposition 3.18. — If i : (Γ, p)  (Γ′, p′) is a specialization, then
i(K(Γ′, p′)) is a face of the cone K(Γ, p). Conversely, any face of the
cone K(Γ, p) is of the form i(K(Γ′, p′)) for some specialization i : (Γ, p) 
(Γ′, p′).

Proof. — Clearly the image of K(Γ′, p′) is contained in K(Γ, p) by Con-
dition (3) in Definition 3.10. To prove that i(K(Γ′, p′)) is a face of K(Γ, p)
it is enough to prove that i(K(Γ′, p′)) is the intersection of K(Γ, p) with
some integral linear space of codimension one such that the cone K(Γ, p)
lies in one of the two half-spaces determined by such a linear space.
First, we show that we can reduce to the case where Γ = Γ′ (and hence i

is the identity). Indeed, by Definition 3.10 there is a lower set (with respect
to p) S ⊂ E(Γ) such that Γ′ = Γ/S and we can factor i as (Γ, p)  
(Γ/S, p|Γ/S)  (Γ/S, p′). Then i

−1(K(Γ, p)) = K(Γ/S, p|Γ/S), and the
image i(K(Γ/S, p|E(Γ/S))) is the intersection of the cone K(Γ, p) with the
integral linear subspace of codimension one

H :
∑
e∈S

xe = 0.

Clearly K(Γ, p) lies in one of the two half-spaces determined by H, and
hence i(K(Γ/S, p|E(Γ/S)) is a face of K(Γ, p). Therefore it suffices to prove
that K(Γ′, p′) is a face of K(Γ/S, p|Γ/S).
We now note that, by Proposition 3.12, we can assume that the spe-

cialization (Γ, p)  (Γ, p′) is simple. If the specialization is simple, by
Lemma 3.11 there exist consecutive classes [e1]p and [e2]p such that e .p′ e′
if and only if e .p e′ or {e, e′} ⊂ [e1]p∪[e2]p. In particular we have e1 ∼p′ e2.
We now prove that K(Γ, p′) is the intersection of K(Γ, p) with the integral
linear subspace of codimension one

H : xe2 − xe1 = 0.

In fact, the equations of K(Γ, p′) are xe 6 xe′ when e .p′ e′, while the
equations of K(Γ, p) are xe 6 xe′ when e .p e′. Note that e .p′ e′ if
and only if e .p e′ or {e, e′} ⊂ [e1]p ∪ [e2]p. However, in the latter case,
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we have e .p e′ unless e ∈ [e2]p and e′ ∈ [e1]p. Therefore we have that
the equations of K(Γ, p′) are the equations of K(Γ, p) together with the
equations xe 6 xe′ , when e′ ∼p e1 and e ∼p e2. All that is left to prove
is that the latter equations arise from the addition of the equation of H.
Indeed, since e′ ∼p e1 and e ∼p e2, we have that e ∼p′ e′, hence the
equations xe 6 xe′ and xe′ 6 xe become xe = xe′ . However, modulo
the equations xe = xe2 and xe′ = xe1 (which are contained in the set of
equations defining K(Γ, p), because e ∼p e2 and e′ ∼p e1), we have that the
equation xe = xe′ is equivalent to the equation xe1 = xe2 , where the latter
is the equation of H. This proves that the equations of K(Γ, p) together
with the equation of H are equations defining K(Γ, p′).

To conclude the proof of the first statement of the proposition, just note
that K(Γ, p) is in one of the two half-spaces determined by H, because,
being [e1]p and [e2]p consecutive, we have that xe1 6 xe2 is an equation of
K(Γ, p).
The second statement follows from Proposition 3.17 and the first state-

ment. �

The following corollary is not necessary to define the fan associated to a
graph, but will be used in the proof of Proposition 4.6.

Corollary 3.19. — Every enriched structure is a specialization of a
generic one.

Proof. — Let (Γ, p) be an enriched graph, with p nongeneric. Then, by
Proposition 3.16, the cone K(Γ, p) is in the closure of K(Γ, p′) for p′ generic
(remember that the dimension of K(Γ, p) is the rank of p). Hence the cone
K(Γ, p) intersects the relative interior of some of the faces of K(Γ, p′).
By Proposition 3.18, all of these faces are of the form i(K(Γj , pj)) where
(Γ, p′) (Γj , pj) runs through all specializations of (Γ, p′). This means that
there exists a specialization (Γ, p′) (Γ, p̃) such thatK(Γ, p)∩K(Γ, p̃) 6= ∅,
which implies, again by Proposition 3.16, that (Γ, p) = (Γ, p̃). �

Finally, we can define the fan associated to a graph.

Definition 3.20. — Given a graph Γ we define the fan ΣΓ as the
collection of cones i(K(Γ′, p′)), where i runs through all specializations
i : (Γ, p)  (Γ′, p′) of enriched graphs and the closure is taken in RE(Γ).
Propositions 3.16, 3.17 and 3.18 assure that ΣΓ is in fact a fan. Moreover,
given a specialization i : (Γ, p) (Γ′, p′), we have that

ΣΓ′ = {i−1(σ) |σ ∈ ΣΓ}.
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Example 3.21. — Following Examples 3.3 and 3.4 one can draw (sec-
tions of) the decompositions of the fans in the case of circular graphs and
graphs with only two vertices. In Figure 3.2 we consider the case of a circu-
lar graph with 3 edges. In this case, we have 6 generic enriched structures
each one of which corresponds to a permutation of the set of edges and
giving rise to a maximal cone in the associated fan. In Figure 3.3 we con-
sider the case of a graph with 3 edges and 2 vertices. In this case, we have
3 generic enriched structures each one of which corresponds to an edge and
giving rise to a maximal cone in the associated fan.

• •

•

•

• •

•

Figure 3.2. The decomposition
of the fan of a circular graph.

• •

•

•

Figure 3.3. The decomposition
of the fan of a graph with 2 ver-
tices.

There is an alternative description of K(Γ, p) in terms of its ray genera-
tors. Recall the notation introduced in Equation (2.1).

Proposition 3.22. — The ray generators of the cone K(Γ, p) are the
vectors

vT :=
∑
e∈T

e

where T runs through all irreducible upper sets of E(Γ) with respect to p.

Proof. — The proof is by induction on the number of edges. If Γ has
only one edge, or no edges, the result is trivial. Assume now that Γ has at
least two edges.
If Γ is not biconnected then, by Lemma 3.14, K(Γ, p) =

∏
K(Γi, pi),

where Γi are the biconnected components of Γ and pi := p|E(Γi). The result
follows by the induction hypothesis and from the fact that an irreducible
upper set is contained in E(Γi) for some i.
If Γ is biconnected, by Condition (2) in Definition 3.1, there exists a

lower set S ⊂ E(Γ) such that e .p e′ for every e ∈ S and e′ ∈ E(Γ) and
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(Γ/S, p|E(Γ/S)) is an enriched graph. Then, an upper set of E(Γ) is either an
upper set of E(Γ/S) or it is the entire set E(Γ). By the induction hypothesis
the cone K(Γ/S, p|E(Γ/S)) is generated by the vectors vT where T runs
through all irreducible upper sets of E(Γ/S) with respect to p|E(Γ/S). Let
i be the specialization (Γ, p) (Γ/S, p|E(Γ/S)). We now have to prove that

(3.4) K(Γ, p) = cone
(
i
(
K(Γ/S, p|E(Γ/S))

)
, vE(Γ)

)
.

The right hand side is clearly contained in the left hand side, because
all vectors in the right hand side satisfy the equations defining the cone
K(Γ, p). Now, given a vector v = (xe)e∈E(Γ) inK(Γ, p), we have xe = xe′ =:
α for every e, e′ ∈ S, hence v − αvE(Γ) is in the image i(K(Γ/S, p|E(Γ/S)))
which finishes the proof. �

Proposition 3.23. — The cone K(Γ, p) is smooth, i.e., the vectors vT
can be completed to form a basis for ZE(Γ).

Proof. — First, we claim that T ⊂ E(Γ) is an irreducible upper set with
respect to p if and only if T = Te := {e′ | e .p e′} for some e ∈ E(Γ). Indeed,
the set Te is an upper set and it is irreducible, because if Te = T1 ∪T2 with
T1, T2 upper sets, then e must belong to Ti, for some i = 1, 2, and in this
case Te = Ti. Conversely, if T is an irreducible upper set, let e1, . . . em be
its minimal elements. Then T =

⋃m
i=1 Tei

, and since T is irreducible, it
follows that T = Tei for some i = 1, . . . ,m.

Since, by Corollary 3.19, every cone K(Γ, p) is a face of a cone K(Γ, p′)
with p′ a generic enriched structure on Γ, we can assume without loss of
generality that p is generic, which means that p is a partial order, and in
this case all the Te’s are different.

For an edge e ∈ E(Γ), let {e1, . . . em} be the (possibly empty) set of all
the edges in E(Γ) such that e and ei are consecutive for every i. Since p is a
partial order, we have Te \

⋃m
i=1 Tei

= {e}. Moreover, since by Corollary 3.7
the Hasse diagram of (E(Γ), p) is a disjoint union of rooted trees (one for
each biconnected component), we also have that the Tei ’s are disjoint. It
follows that e = vTe

−
∑m
i=1 vTei

(recall the definition of vT in Proposi-
tion 3.22). This proves that the vTe

’s generate ZE(Γ) and, since there are
exactly |E(Γ)| of them, they must form a base. �

We finish this section by giving a description of how one can obtain ΣΓ
as a sequence of star subdivisions of the cone RE(Γ)

>0 . The result will later
translate to Theorem 5.8.
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Given a graph Γ, we say that a sequence (ij : Γ Γ′j)j=1,...,n of special-
izations of Γ is good if:

(1) each Γ′j is biconnected with at least 2 edges;
(2) every specialization Γ  Γ′, with Γ′ biconnected, appears exactly

once in the sequence;
(3) if |E(Γ′j1)| < |E(Γ′j2)|, then j1 > j2.

Proposition 3.24. — Let Γ be a graph and (ij : Γ  Γ′j)j=1,...,n be
a (possibly empty) good sequence of specializations of Γ. If we define the
fans in RE(Γ)

Σ0,Γ := {cone(A) |A ⊂ E(Γ)} and Σj+1,Γ := Σ?j,Γ(τj+1)

where τj := cone(E(Γ′j)), then ΣΓ = Σn,Γ.

Proof. — Since the proof is quite involved, we begin with an example.
Let Γ be the circular graph with 3 vertices and edges e1, e2, e3. To avoid
cumbersome notations we define Γej

:= Γ/{ej} and, given a cone σ, we
define the fan Σσ := {τ | τ ≺ σ}. Then, we have (see Figure 3.4)

Σ0,Γ = Σcone({e1,e2,e3}).

A good sequence for Γ is given by the specializations i1 : Γ  Γ, i2 : Γ  
Γe1 , i3 : Γ  Γe2 , i4 : Γ  Γe3 . Hence τ1 = cone(e1, e2, e3), and let v0 :=
e1 + e2 + e3. By Definition 2.4, we see that (see Figure 3.5)

Σ1,Γ = Σcone(e1,e2,v0) ∪ Σcone(e1,e3,v0) ∪ Σcone(e2,e3,v0).

Now, τ2 = cone(E(Γe1)) = cone(e2, e3) and let v1 := e2 + e3. Then, by
Definition 2.4 we have

Σ2,Γ = {σ ∈ Σ1,Γ | τ2 6⊂ σ} ∪
⋃
τ2⊂σ

Σ?σ(τ2).

• •

•

e2 e1

e3

Σ0,Γe1
Σ0,Γe2

Σ0,Γe3

Figure 3.4. A section of the
fan Σ0,Γ.

• •

•

•v0

e2 e1

e3

Σ0,Γe1
Σ0,Γe2

Σ0,Γe3

Figure 3.5. A section of the
fan Σ1,Γ.
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The first set is

{σ ∈ Σ1,Γ | τ2 6⊂ σ} = Σcone(e1,e2,v0) ∪ Σcone(e1,e3,v0).

and the second set is Σ?τ2(τ2)∪Σ?cone(e2,e3,v0)(τ2), because the cones τ2 and
cone(e2, e3, v0) are the only cones in Σ1,Γ that contain τ2. By Definition 2.4
we have Σ?τ2(τ2) ⊂ Σ?cone(e2,e3,v0)(τ2) and

Σ?cone(e2,e3,v0)(τ2) = Σcone(e2,v0,v1) ∪ Σcone(e3,v0,v1),

then (see Figure 3.6)

Σ2,Γ = Σcone(e1,e2,v0) ∪ Σcone(e1,e3,v0) ∪ Σcone(e2,v0,v1) ∪ Σcone(e3,v0,v1).

• •

•

•

•
v0

e2 e1

e3

v1
Σ1,Γe1 Σ0,Γe2

Σ0,Γe3

Figure 3.6. A section of the
fan Σ2,Γ.

• •

•

•

• •

v0

e2 e1

e3

v1 v2
Σ1,Γe1

Σ1,Γe2

Σ0,Γe3

Figure 3.7. A section of the
fan Σ3,Γ.

Similarly, we can see that (see Figure 3.7)

Σ3,Γ = Σcone(e1,e2,v0) ∪ Σcone(e1,v0,v2) ∪ Σcone(e3,v0,v2)

∪ Σcone(e2,v0,v1) ∪ Σcone(e3,v0,v1),

where v2 := e1 + e3. Finally (see Figure 3.8),

Σ4,Γ = Σcone(e1,v0,v3) ∪ Σcone(e2,v0,v3) ∪ Σcone(e1,v0,v2) ∪ Σcone(e3,v0,v2)

∪ Σcone(e2,v0,v1) ∪ Σcone(e3,v0,v1),

where v3 := e1 + e2. We note that Σ4,Γ = ΣΓ (see Figures 3.8 and 3.2),
which proves the statement of the theorem in the example.
The proof in the general case will be by induction. Let us make an obser-

vation that explains how the induction step appears in the previous exam-
ple. First note that one can regard the fans Σ0,Γej

, for j = 1, 2, 3, as fans
contained in Σ0,Γ (see Figure 3.4), and by the observation in Definition 3.20,
one can regard the fans ΣΓej

as fans contained in ΣΓ as well. We note that
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• •

•

•

• •

•

v0

e2 e1

e3

v1 v2

v3

Σ1,Γe1
Σ1,Γe2

Σ1,Γe3

Figure 3.8. A section of the fan Σ4,Γ.

the good sequence (ik) induces a good sequence for each Γej , which, in the
case of the example, is the sequence with the unique term i′j+1 : Γej

 Γej
.

One can relate the construction of Σ4,Γ with the constructions of Σ1,Γej
,

for j = 1, 2, 3, as follows. We note that (recall Equation (2.2))

Σ1,Γ = fan(Σ0,Γe1
, v0) ∪ fan(Σ0,Γe2

, v0) ∪ fan(Σ0,Γe3
, v0).

Now the star subdivisions Σ2,Γ,Σ3,Γ,Σ4,Γ of Σ1,Γ, will be induced by star
subdivisions of Σ0,Γej

, i.e. (see Figures 3.6, 3.7 and 3.8),

Σ2,Γ = fan(Σ1,Γe1
, v0) ∪ fan(Σ0,Γe2

, v0) ∪ fan(Σ0,Γe3
, v0),

Σ3,Γ = fan(Σ1,Γe1
, v0) ∪ fan(Σ1,Γe2

, v0) ∪ fan(Σ0,Γe3
, v0),

Σ4,Γ = fan(Σ1,Γe1
, v0) ∪ fan(Σ1,Γe2

, v0) ∪ fan(Σ1,Γe3
, v0).

What happens now is that Σ1,Γej
= ΣΓej

(this is the inductive step), and
all that is left to see is that

ΣΓ = fan(ΣΓe1
, v0) ∪ fan(ΣΓe2

, v0) ∪ fan(ΣΓe3
, v0).

This follows from the equality

fan(ΣΓe1
, v0) = Σcone(e2,v1,v0) ∪ Σcone(e3,v1,v0),

which we will prove more generally in the sequel, and the similar equalities
for e2 and e3.

Let us start the proof of the Proposition. We begin by noting that the
process described in the statement is well defined, i.e., we have that the
cone τj+1 belongs to the fan Σj,Γ because dim τj+1 6 dim τj .

The proof is by induction on the number of edges. If Γ has only one edge,
or no edges, the result is trivial. Assume now that Γ has at least two edges.
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If Γ is not biconnected, then, by Lemma 3.14, ΣΓ =
∏

ΣΓk
where Γk, for

k = 1, . . . ,m, are the biconnected components of Γ. Since every specializa-
tion ij factors through a specialization

Γ Γk  Γ′j ,

the result follows by the induction hypothesis applied to the graphs Γi and
by Remark 2.6.
If Γ is biconnected, then Γ′1 = Γ and τ1 = cone(E(Γ)). Define v :=∑
e∈E(Γ) e. We have, by Definition 2.4,

Σ1,Γ = {cone(A) |A ⊂ E(Γ) ∪ {v} and E(Γ) 6⊂ A} .

Let Γe := Γ/{e}, for every e ∈ E(Γ), and ie : Γ Γe be the corresponding
specialization (note that ie does not have to be in the good sequence). The
fan Σ1,Γ can also be described as (recall Equation (2.2))

Σ1,Γ =
⋃

e∈E(Γ)

fan(Σ0,Γe , v).

Here, we regard the fans Σ0,Γ as subfans of Σ1,Γ via Proposition 3.18. We
note that the union in the right hand side is not disjoint, in fact the cone
cone(E(Γ′)) belongs to all fans Σ0,Γe

such that there exists a specialization
Γe  Γ′.
The sequence (ij) induces a sequence ij′,e : Γe  Γe,j′ of specializations

of Γe, simply by omitting the specializations ij that do not factor through
Γe. Moreover this sequence is a good sequence for Γe. Then, it follows by
the induction hypothesis that ΣΓe

can be obtained from Σ0,Γe
via the same

procedure described in the statement of the proposition. We also note that
each nontrivial specialization of Γ factors through a specialization of Γe for
some e ∈ E(Γ).
For the second step, we have the specialization i2 : Γ  Γ′2 with τ2 =

cone(E(Γ′2)) and Γ′2 biconnected. By Remark 2.5 and Proposition 2.7, we
have

Σ?1,Γ(τ2) =

 ⋃
e∈E(Γ′)

fan(Σ0,Γe
, v)

 ∪
 ⋃
e/∈E(Γ′)

fan(Σ0,Γe
, v)?(τ2)


=

 ⋃
e∈E(Γ′)

fan(Σ0,Γe
, v)

 ∪
 ⋃
e/∈E(Γ′)

fan(Σ?0,Γe
(τ2), v)

 .
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In particular we can write

Σ2,Γ =

 ⋃
e∈E(Γ′)

fan(Σ0,Γe
, v)

 ∪
 ⋃
e/∈E(Γ′)

fan(Σ1,Γe
, v)

 .

Proceeding in the same fashion, we see that each new star subdivision
of Σj,Γ will be obtained by star subdivisions of Σij,e,Γe

, for some ij,e. Since
the good sequence (ij) for Γ induces good sequences for each one of the Γe
we can write:

Σn,Γ =
⋃

e∈E(Γ)

fan(Σne,Γe , v).

where ne is the number of terms in the good sequence for Γe. By the
induction hypothesis, we have Σne,Γe = ΣΓe , and hence

Σn,Γ =
⋃

e∈E(Γ)

fan(ΣΓe , v).

To end the proof, we only have to show that⋃
e∈E(Γ)

fan(ΣΓe
, v) = ΣΓ.

To prove that two fans are equal, it is enough to prove that they have the
same maximal cones. The maximal cones in ΣΓ are of the formK(Γ, p) with
p a generic enriched structure on Γ, while the maximal cones in fan(ΣΓe

, v)
are of the form cone(K(Γe, q), v) with q a generic enriched structure on Γe.

By Condition (2) in Definition 3.1, there exists a lower set S ⊂ E(Γ)
such that e .p e′ for every e ∈ S and e′ ∈ E(Γ) and (Γ/S, p|E(Γ/S)) is
an enriched graph. Since p is a generic enriched structure on Γ, S has
just one element, which we will call e′. We also have that Γ/S = Γe′ . By
Proposition 3.22 and in special Equation (3.4), we have that

(3.5) K(Γ, p) = cone
(
K(Γe′ , p|E(Γe′ )), v

)
.

Since p is a generic, then so is p|E(Γe′ ). This shows that every maximal
cone in ΣΓ is a maximal cone in

⋃
e∈E(Γ) fan(ΣΓe

, v). On the other hand,
for every q a generic enriched structure on Γe, there exists a generic enriched
structure p on Γ such that p|E(Γe) = q (just define e1 .p e2 if and only if
e1 = e, or e1, e2 6= e with e1 .q e2). This shows, again by Equation (3.5),
that every maximal cone in

⋃
e∈E(Γ) fan(ΣΓe

, v) is a maximal cone in ΣΓ.
This finishes the proof. �
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4. Enriched tropical curves and their moduli space

In this section we will construct the moduli space Etropg parametrizing
enriched tropical curves of genus g. Our construction follows the steps of
the construction of M trop

g given in [6].
A vertex weighted enriched graph is a 3-tuple (Γ, p, w) such that (Γ, p)

is an enriched graph and (Γ, w) is a vertex weighted graph. We say that
(Γ, p, w) specializes to (Γ′, p′, w′) if (Γ, p) (resp. (Γ, w)) specializes to (Γ′, p′)
(resp. (Γ′, w′)). We say that two vertex weighted enriched graphs (Γ, p, w)
and (Γ′, p′, w′) are isomorphic if there exists an isomorphism ρ of the vertex
weighted graphs that preserves the enriched structure, i.e., ρ(e) .p′ ρ(e′)
if and only if e .p e′. We denote by Aut(Γ, p, w) the automorphism group
of (Γ, p, w). Clearly there is an injective group homomorphism

(4.1) Aut(Γ, p, w) ↪→ Aut(Γ, w).

An enriched tropical curve is a 4-tuple (Γ, p, w, l) where (Γ, p, w) is a
vertex weighted enriched graph and l is a function E(Γ)→ R>0 such that
if e .p e′ then l(e) 6 l(e′) with equality if and only if e ∼p e′. Clearly
(Γ, w, l) is a tropical curve. We define the genus of an enriched tropical
curve as the genus of the underlying tropical curve. Two enriched tropical
curves are isomorphic if the underlying vertex weighted enriched graphs
are isomorphic and the underlying tropical curves are isomorphic.
Note that an isomorphism of the underlying tropical curves lifts to an iso-

morphism of the enriched tropical curves. Indeed we have that if (Γ, p, w, l)
and (Γ, p′, w, l) are enriched tropical curves, then p = p′ because l induces a
point in RE(Γ)

>0 that must belong to K(Γ, p) and K(Γ, p′), which, by Propo-
sition 3.16, are disjoint if p 6= p′. Therefore, if (Γ, p, w, l) and (Γ′, p′, w′, l′)
are enriched curves such that (Γ, w, l) and (Γ′, w′, l′) are isomorphic, then,
this isomorphism induces an enriched structure p′′ on (Γ, w, l) by pulling
back p′ to Γ. Using the previous observation, we get that p′′ = p and hence
(Γ, p, w, l) is isomorphic to (Γ′, p′, w′, l′).
Given a vertex weighted enriched graph (Γ, p, w), we define the cone

K(Γ, p, w) as the cone K(Γ, p). We also define the linear subspace VΓ,p,w ⊂
RE(Γ) as the minimal linear subspace containing K(Γ, p, w). This subspace
is given by equations xe = xe′ if e ∼p e′, hence it is an integral linear
subspace. Moreover the cone K(Γ, p, w) has maximal dimension in VΓ,p,w.
Recall that E(Γ)p = E(Γ)/ ∼p and that p induces a partial order in

E(Γ)p such that its Hasse diagram is a rooted tree (see Proposition 3.6 and
Corollary 3.7). Let y[e]p be the coordinates of RE(Γ)p . Define the map

θΓ,p,w : VΓ,p,w → RE(Γ)p
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as
θΓ,p,w((xe)e∈E(Γ)) = (y[e]p)[e]p∈E(Γ)p

with y[e]p := xe − xe′ , where [e′]p and [e]p are consecutive with e′ .p e
(in case [e]p is the root of the Hasse diagram, we define y[e]p := xe). Since
the Hasse diagram of E(Γ)p is a rooted tree, the definition is well posed
because, given a class [e]p different from the root, there exists a unique
class [e′]p such that [e′]p and [e]p are consecutive with e′ .p e. Moreover
the definition does not depend on the choice of the representative in [e]p or
[e′]p, because of the equations defining VΓ,p,w. Clearly θΓ,p,w is linear and
integral. It is an isomorphism because both spaces have the same dimension
and it is injective.

Lemma 4.1. — We have that θΓ,p,w(K(Γ, p, w)) = RE(Γ)p

>0 .

Proof. — If (xe) ∈ K(Γ, p, w) then xe − xe′ > 0 for e pe′ with equality
if and only if e ∼p e′. Therefore y[e]p = xe − xe′ > 0. On the other hand
if y[e]p > 0 for every equivalence class [e]p, then xe > xe′ for [e′]p and [e]p
consecutive with e′ .p e. Hence xe > xe′ for every e >p e′ and (y[e]p) =
θΓ,p,w(xe) with (xe) ∈ K(Γ, p, w). �

From now on we will identify VΓ,p,w and K(Γ, p, w) with RE(Γ)p and
RE(Γ)p

>0 , respectively, via θΓ,p,w.
The automorphism group Aut(Γ, p, w) comes with two natural homo-

morphisms

Aut(Γ, p, w) −→ S|E(Γ)| ⊂ GL|E(Γ)|(Z)

and

Aut(Γ, p, w) −→ S|E(Γ)p| ⊂ GL|E(Γ)p|(Z).

The latter homomorphism comes from the fact that if e ∼p e′ then ρ(e) ∼p
ρ(e′) for each ρ ∈ Aut(Γ, p, w).
The first homomorphism induces an action of Aut(Γ, p, w) on RE(Γ) that

keeps invariant the subspace VΓ,p,w = RE(Γ)p . Moreover the restriction of
this action to VΓ,p,w = RE(Γ)p is the action of Aut(Γ, p, w) induced by the
second homomorphism. Both actions preserve the two cones K(Γ, p, w) and
K(Γ, p, w).
Moreover given an element of Aut(Γ, w), its action on RE(Γ) induces an

action on ΣΓ.
We then define the quotients

C(Γ, p, w) := K(Γ, p, w)
Aut(Γ, p, w) =

RE(Γ)p

>0
Aut(Γ, p, w)
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and

C(Γ, p, w) := K(Γ, p, w)
Aut(Γ, p, w) =

RE(Γ)p

>0

Aut(Γ, p, w)
endowed with the quotient topology. In the trivial case when Γ has no edges
we define C(Γ, p, w) := {0}. Note that C(Γ, p, w) parametrizes isomorphism
classes of enriched tropical curves with underlying vertex weighted enriched
graph (Γ, p, w).
By Proposition 3.18, if i : (Γ, p, w)  (Γ′, p′, w′) is a specialization then

the linear map
i : RE(Γ′) ↪→ RE(Γ)

induces a map

(4.2) i : K(Γ′, p′, w′) ↪→ K(Γ, p, w) −→ C(Γ, p, w).

We can also define the natural projection map

(4.3) f : RE(Γ)p −→ RE(Γ′)p′

given by the natural inclusion E(Γ′)p′ ↪→ E(Γ)p as in Corollary 3.13.

Definition 4.2. — We define Etropg as the topological space (with re-
spect to the quotient topology)

Etropg :=
(∐

C(Γ, p, w)
)
/∼

where the disjoint union runs through all (isomorphism classes of) stable
vertex weighted enriched graphs (Γ, p, w) of genus g and ∼ is the equiva-
lence relation given as follows: q1 ∈ C(Γ1, p1, w1) and q2 ∈ C(Γ2, p2, w2)
are equivalent if and only if there exist a point q ∈ K(Γ, p, w) and special-
izations i1 : (Γ1, p1, w1)  (Γ, p, w) and i2 : (Γ2, p2, w2)  (Γ, p, w) such
that i1(q) = q1 and i2(q) = q2. It is not hard to show that ∼ is indeed
transitive.

Example 4.3. — In Figure 4.1 we show all the tropical enriched curves
of genus 2 and their specializations. In genus 2 we have exactly one vertex
weighted biconnected graph, which we will call (Γ, w), and which gives rise
to 3 enriched structures, the generic one of which we denote by p. On the
remaining vertex weighted graphs, the enriched structures are trivial.
As in [6, Example 3.2.3] one can find the maximal cells of Etrop2 . In

fact, using Lemma 4.1, these cells are C(Γ, p, w) = R3
>0/Aut(Γ, p, w) and

R3
>0/S2, corresponding to the vertex weighted graphs on the top of Fig-

ure 4.1. Moreover, as Theorem 4.4 states, there is map Etrop2 → M trop
2
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Figure 4.1. Genus-2 enriched tropical curves.

which restricted to the cell C(Γ, p, w) is just:

R3
>0

Aut(Γ, p, w) −→
R3

>0

Aut(Γ, w)
(l1, l2, l3) 7→ (l1, l1 + l2, l1 + l3),

where Aut(Γ, p, w) = S2 acts on R3
>0 by permuting the last two coordinates

and Aut(Γ, w) = S3 acts naturally on R3
>0.

Theorem 4.4. — The topological space Etropg is a stacky fan with cells
C(Γ, p, w), as (Γ, p, w) varies through all (isomorphism classes of) stable
vertex weighted enriched graphs of genus g. In particular, its points are in
bijection with the isomorphism classes of stable enriched tropical curves of
genus g. Moreover there exists a bijective map of stacky fans

β : Etropg →M trop
g

of degree one.
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Proof. — First we prove that Etropg is a stacky fan with cells C(Γ, p, w).
Consider the maps

αΓ,p,w : C(Γ, p, w) −→
∐

C(Γ, p, w) −→ Etropg

defined as the composition of the quotient map and the natural inclusion.
Clearly αΓ,p,w is continuous. Moreover, by Propositions 3.16 and 3.17, the
restriction of αΓ,p,w to C(Γ, p, w) is an homeomorphism onto its image and
we have

Etropg =
∐

αΓ,p,w(C(Γ, p, w)).
To prove the last condition in Definition 2.11, let (Γ, p, w) and (Γ′, p′, w′)

be two stable vertex weighted enriched graphs and set α := αΓ,p,w and
α′ := αΓ′,p′,w′ . By construction the intersection of the images of C(Γ, p, w)
and C(Γ′, p′, w′) in Etropg is

α(C(Γ, p, w)) ∩ α′(C(Γ′, p′, w′)) =
∐

αi(C(Γi, pi, wi))

where (Γi, pi, wi) runs through all common specializations of both (Γ, p, w)
and (Γ′, p′, w′) and αi := αΓi,pi,wi

.
We have to find an integral linear map L : VΓ,p,w → VΓ′,p′,w′ such that

the restriction of L to K(Γ, p, w) makes the diagram below commutative.∐
αi(C(Γi, pi, wi)) �

�
//

� t

''

α(C(Γ, p, w)) K(Γ, p, w)oo � � //

��

VΓ,p,w

L

��

∼ // RE(Γ)p

L

��

α′(C(Γ′, p′, w′)) K(Γ′, p′, w′)oo � � //VΓ′,p′,w′
∼ // RE(Γ′)p′

To construct L, note that if (Γi, pi, wi) is a common specialization of both
(Γ, p, w) and (Γ′, p′, w′), then there is a linear integral map fi : RE(Γ)p →
RE(Γi)pi , as in Equation (4.3), and an inclusion gi : VΓi,pi,wi ↪→ VΓ′,p′,w′ in-
duced by the inclusion RE(Γi) ↪→ RE(Γ′). Then define L as the composition

L : VΓ,p,w
⊕fi−→ ⊕iVΓi,pi,wi

⊕gi−→ VΓ′,p′,w′ .

Since L is an integral linear map, we need only prove that

L(K(Γ, p, w)) ⊂ K(Γ′, p′, w′).

Noting that fi(R
E(Γ)p

>0 ) = RE(Γi)pi
>0 and recalling that there is an identifica-

tion between K(Γ, p, w) and RE(Γ)p

>0 , we have

fi(K(Γ, p, w)) ⊂ K(Γi, pi, wi).

Moreover, by Proposition 3.18, we have

gi(K(Γi, pi, wi) ⊂ K(Γ′, p′, w′).
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Since K(Γ′, p′, w′) is a cone, the image of ⊕K(Γi, pi, wi) via ⊕gi is also
contained inK(Γ′, p′, w′). Clearly Lmakes the above diagram commutative
hence the proof of the first statement is complete.
The second statement follows from the fact that

Etropg =
∐

αΓ,p,wC(Γ, p, w)

and the fact that C(Γ, p, w) parametrizes isomorphism classes of stable
tropical enriched curves with underlying vertex weighted enriched graph
(Γ, p, w).
Let us prove the last sentence. First we recall that there is an inclusion

map K(Γ, p, w) ↪→ RE(Γ)
>0 , and by the injection in Equation (4.1), we have

a continuous map
βΓ,p,w : C(Γ, p, w)→ C(Γ, w)

making the following diagram commutative

(4.4)

K(Γ, p, w) �
�

//

��

RE(Γ)
>0

��

C(Γ, p, w)
βΓ,p,w

// C(Γ, w)

where the vertical maps are the natural quotient maps.
The maps βΓ,p,w induce a continuous map

(4.5)
∐

C(Γ, p, w) −→
∐

C(Γ, w).

Hence to construct the natural forgetful map

β : Etropg →M trop
g

it is enough to check that if two points q1 ∈ C(Γ1, p1, w1) and q2 ∈
C(Γ2, p2, w2) are equivalent, then the images βΓ1,p1,w1(q1) and βΓ2,p2,w2(q2)
are equivalent. Indeed consider specializations

i1 : (Γ1, p1, w1) (Γ, p, w) and i2 : (Γ2, p2, w2) (Γ, p, w)

with underlying specializations

j1 : (Γ1, w1) (Γ, w) and j2 : (Γ2, w2) (Γ, w).

Denote by

ik : K(Γ, p, w)→ C(Γk, pk, wk)
and by

jk : RE(Γ)
>0 → C(Γ, w)
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the induced maps as in Equation (4.2) and in [6, Section 3.2]. All that is
left to note is that if q ∈ K(Γ, p, w) is such that i1(q) = q1 and i2(q) = q2
then jk(q) = βΓk,pk,wk

(qk) for k = 1, 2. This comes from the following
commutative diagram obtained by Diagram (4.4) and Proposition 3.18

K(Γ, p, w) �
�

//
� _

��

K(Γ1, p1, w1)� _

��

// C(Γ1, p1, w1)

βΓ1,p1,w1

��

RE(Γ)
>0
� � // RE(Γ1)

>0
// C(Γ1, w)

The map β is continuous because so is the map in Equation (4.5).
Moreover β is a map of stacky fans because, by Diagram (4.4), we have
βΓ,p,w(C(Γ, p, w)) ⊂ C(Γ, w) and there is a commutative diagram

C(Γ, p, w)

βΓ,p,w

��

K(Γ, p, w)oo � � //
� _

��

VΓ,p,w� _

��

C(Γ, w) RE(Γ)
>0

oo // RE(Γ)

To prove that β is bijective we first prove that it is surjective. Let (Γ, w)
be a vertex weighted graph and q ∈ C(Γ, w), and let q ∈ RE(Γ)

>0 be a
representative of q. By Proposition 3.16, there exists an enriched structure
p such that q ∈ K(Γ, p, w). It follows that, if q̃ ∈ C(Γ, p, w) is the class of
q, then β(q̃) = q.
We now prove that β is injective. Indeed if q̃1 ∈ C(Γ, p1, w) and q̃2 ∈

C(Γ, p2, w), where q1, q2 ∈ RE(Γ)
>0 are such that β(q̃1) = β(q̃2) then there

exists an automorphism σ of (Γ, w) such that σ(q1) = q2. Then q2 belongs
to the cone K(Γ, pσ1 , w), where pσ1 is the enriched structure induced by
σ. By Proposition 3.16 pσ1 = p2, and hence σ is an isomorphism between
(Γ, p1, w) and (Γ, p2, w) and we deduce that q̃1 = q̃2.
To check that β is of degree one all that is left is to see is that the map

VΓ,p,w → RE(Γ) is primitive, which is true because it is an inclusion and
the lattice of VΓ,p,w is the lattice of RE(Γ) intersected with VΓ,p,w. �

Remark 4.5. — The map β is not full for g > 2. Indeed consider the
cone C(Γ, p, w) where Γ is biconnected and p is such that e ∼p e′ for all
e, e′ ∈ E(Γ). Then C(Γ, p, w) is one dimensional, because rank(p) = 1, and
its image via β lies inside C(Γ, w) which has dimension |E(Γ)|, hence such
image is properly contained in C(Γ, w) if Γ has at least 2 edges.
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In [8, Proposition 3.3.3], Caporaso proves that the moduli spaceM trop
g is

connected through codimension one. Moreover a description of the maximal
and codimension one cells of M trop

g is given in [6, Proposition 3.2.5]. We
now prove similar results for Etropg .

Proposition 4.6. — The following properties hold.
(i) The maximal cells of Etropg are exactly those of the form C(Γ, p, 0)

where Γ is a 3-regular graph and (Γ, p) is a generic enriched graph.
In particular Etropg has pure dimension 3g − 3.

(ii) Etropg is connected through codimension one.
(iii) The codimension one cells of Etropg are of the following types

(a) C(Γ, p, 0) where Γ has exactly one vertex of valence 4 and all
other vertices of valence 3 and (Γ, p) is generic;

(b) C(Γ, p, w) where Γ has exactly one vertex of valence 1 and
weight 1, and all other vertices of valence 3 and weight 0, and
(Γ, p) is generic.

(c) (Γ, p, 0) where Γ is a 3-regular graph and (Γ, p) is a simple
specialization of a generic enriched graph.

Each cell of type (a) is in the closure of one, two or three maximal
cells; each cell of type (b) is in the closure of exactly one maximal
cell and each cell of type (c) is in the closure of one or two maximal
cells.

Proof. — Statement (i) follows from the following facts. First, the num-
ber of edges of Γ is limited by 3g − 3 and equality occurs if Γ is 3-regular
(by [6, proof of Proposition 3.2.5]). Second, the dimension of C(Γ, p, w)
is the rank of p (by Equation (3.1)) that is maximum if and only if p is
generic. Moreover every vertex weighted enriched graph is the specializa-
tion of (Γ, p, 0) for some 3-regular graph Γ and p generic, see Corollary 3.19
and [9, Appendix A.2], which concludes the proof of Statement (i).
Statement (ii) follows by [8, Proposition 3.3.3] and [6, Statement (ii) in

Proposition 3.2.5] and from the fact that the fan ΣΓ, defined in Defini-
tion 3.20, is connected through codimension one for every Γ, because its
support is pure dimensional.
We prove Statement (iii). Let C(Γ, p, w) be a codimension one cell. Note

that since β is of degree one, the image β(C(Γ, p, w)) ⊂ C(Γ, w) is either
contained in a maximal cell or in a codimension one cell of M trop

g . Hence,
we have that (Γ, w) is in one of the cases of [6, Statements (i) and (iii) in
Proposition 3.2.5]. In the first case rank(p) must be 3g − 2 and then, by
Proposition 3.12 and Corollary 3.19, (Γ, p) is a simple specialization of a
generic enriched graph. In the second case p must be generic.
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The last statement for cells of type (a) and (b) follows from the similar
result in [6, Proposition 3.2.5]. To prove the statement for a cell of type (c),
it is enough to prove that given a vertex weighted enriched graph (Γ, p, w)
such that rank(p) = |E(Γ)| − 1, then there exist exactly 2 generic enriched
structures p1 and p2 on Γ and simple specializations (Γ, p1, w) (Γ, p, w)
and (Γ, p2, w)  (Γ, p, w). This follows from Proposition 3.16. We note,
however, that these two vertex weighted enriched graphs could be isomor-
phic, and in this case a cell of type (c) is in the closure of only one maximal
cell. �

5. The variety of enriched structures

In this section we return to algebraic geometry. We construct the toric
variety EY associated to a nodal curve Y and, in Corollary 5.9, we prove
that EY is the fiber of the map Eg →Mg over the point [Y ] ∈ Mg, in the
case Y has no nontrivial automorphisms.
Let Y be a nodal curve, Γ be its dual graph and ΣΓ be the fan defined

in Definition 3.20. We define the variety EY as the preimage of the fixed
point (i.e., the origin) in X

(
RE(Γ)

>0

)
' A|E(Γ)| via the map

X(ΣΓ)→ X
(
RE(Γ)

>0

)
.

We call EY the variety of enriched structures on Y .
Note that EY is the toric variety associated to the fan ΣY defined as the

image of ΣΓ via the quotient map

(5.1) qΓ : RE(Γ) −→ RE(Γ)

UΓ
,

where UΓ is the integral linear subspace generated by the vectors vi :=∑
e∈Γi

e and Γi, i = 1, . . . ,m, are the biconnected components of Γ. Indeed,
the preimage of the fixed point in AE(Γ) is, by [14, Lemma 3.3.21], exactly⋃

σ∈ΣΓ

σ∩RE(Γ)
>0 6=∅

V (σ).

Every cone σ ∈ ΣΓ with σ ∩ RE(Γ)
>0 6= ∅ is of the form K(Γ, p) for some

enriched structure p on Γ. By Proposition 3.22, we have that, for every
i = 1, . . . ,m, the vector vi is a ray generator of all these cones (just
take T = E(Γi)). Hence, we conclude that every cone σ ∈ ΣΓ with σ ∩
RE(Γ)
>0 6= ∅ has cone(v1, . . . , vm) as a face (because, by Proposition 3.23,
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σ is smooth). This implies that V (σ) ⊂ V (cone(v1, . . . , vm)). Therefore
EY = V (cone(v1, . . . , vm)), and by Remark 2.3, we have the above descrip-
tion for the fan ΣY .

Example 5.1. — Let Y be a curve with 2 components that intersect each
other in 3 nodes. Then its dual graph Γ is a graph with 2 vertices and 3
edges e1, e2, e3 joining these two vertices. Let v := e1 +e2 +e3 ∈ RE(Γ). The
fan ΣΓ is described in Example 3.21. In Figure 5.1 we depict a section of this
fan. The fan ΣY is the quotient of ΣΓ by v and is described in Figure 5.2,
where ei is the class of ei modulo v. We note that e1 + e2 + e3 = 0, which
implies that ΣY is the fan of P2.

• •

•

•
v

e2 e1

e3

Figure 5.1. A section of the
fan ΣΓ.

��

//

OO

e2

e1

e3

Figure 5.2. The fan ΣY .

Example 5.2. — Let Y be a circular curve with 3 components. Then its
dual graph Γ is a circular graph with 3 vertices and edges e1, e2, e3. Let
v := e1 + e2 + e3 ∈ RE(Γ). The fan ΣΓ is described in Example 3.21. In
Figure 5.3 we depict a section of this fan. The fan ΣY is the quotient of
ΣΓ by v and is described in Figure 5.4, where ei is the class of ei modulo
v. We note that e1 + e2 + e3 = 0, which implies that ΣY is the fan of P2

blown up at 3 points.

• •

•

•
• •

•

v

e2 e1

e3

Figure 5.3. A section of the fan
ΣΓ.

��

//

OO ??

oo

��e2

e1

e3 e1 + e3

e2 + e3

e1 + e2

Figure 5.4. The fan ΣY .
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Recall that a fan Σ in Rn is complete if its support is all of Rn.

Proposition 5.3. — The fan ΣY is complete and EY is proper.

Proof. — The fact that EY is proper follows from the fact that ΣY is
complete and [14, Theorem 3.4.11]. Let us check that ΣY is complete.

Let v :=
∑
e∈E(Γ) e =

∑m
i=1 vi. Since v ∈ UΓ, we have that all equiv-

alence classes in RE(Γ)/UΓ have a representative in RE(Γ)
>0 (just choose a

representative of this class and sum up a suitable multiple of v). Then, we
have that qΓ(RE(Γ)

>0 ) = RE(Γ)/UΓ. Since the support of ΣΓ is RE(Γ)
>0 we have

that the support of ΣY is RE(Γ)/UΓ, hence ΣY is complete. �

For all Γ we have ΣΓ =
∏

ΣΓi
, where Γi are the biconnected components

of Γ. Then

(5.2) EY =
∏
EYi

where Yi are the biconnected components of Y , i.e., the subcurve Yi ⊂ Y

corresponds to the subgraph Γi of Γ.
We denote by B the set of all bonds of Γ and P(CB) the projectivized

of the vector space CB with homogeneous coordinates (xBe )e∈B . In the
following theorem, we will relate EY with the projective spaces P(CB). But
first we start with the following proposition.

Proposition 5.4. — Given a bond B of the dual graph Γ of Y there
exists a natural surjective toric map ρB : EY → P(CB).

Proof. — By Equation (5.2) above, and the fact that each bond of Γ
is a bond of one of its biconnected components we can assume that Γ is
biconnected.
To prove the statement it is enough to give a natural surjective integral

map

rB : R
E(Γ)

UΓ
−→ RB

UB
,

where UB is the integral linear subspace generated by v :=
∑
e∈B e, such

that the image of each cone in the fan ΣY is contained in a cone of the
fan ΣP(CB), in other words the map rB is compatible with the fans ΣY and
ΣP(CB).

For each T ⊂ B define the cone

σT := {(xe) | 0 6 xe 6 xe′ for every e ∈ T and e′ ∈ B} ⊂ RB

where (xe) are the coordinates of RB . Then define the fan

ΣB := {σT | T ⊂ B}.

ANNALES DE L’INSTITUT FOURIER



ENRICHED CURVES AND THEIR TROPICAL COUNTERPART 733

Clearly the image of the fan ΣB via the quotient map qB : RB → RB/UB
is the fan ΣP(CB).
The projection map rB : RE(Γ) → RB is such that the image of UΓ is UB ,

therefore we have the commutative diagram defining rB

RE(Γ)

qΓ
��

rB // RB

qB
��

RE(Γ)

UΓ

rB //
RB

UB

Since the quotient map qΓ is compatible with the fans ΣΓ and ΣY and the
map qB is compatible with the fans ΣB and ΣP(CB), to prove that rB is
compatible with the fans ΣY and ΣP(CB), it is enough to prove that rB is
compatible with the fans ΣΓ and ΣB . This follows from Proposition 3.8.
Indeed if K(Γ, p) is a cone in ΣΓ then there exists a lower set T ⊂ B such
that e .p e′ for every e ∈ T and e′ ∈ B, hence the image rB(K(Γ, p)) is
contained in σT . �

Recall the definition of sum of two cuts given in Section 2.2.

Theorem 5.5. — The map

ρ : EY
(ρB)B∈B−−−−−−→

∏
B∈B

P(CB)

is a closed immersion and its image has equations
xB1
e1 x

B2
e2 = xB1

e2 x
B2
e1 for every B1, B2 ∈ B and e1, e2 ∈ B1 ∩B2

xB1
e1 x

B2
e2 x

B3
e3 = xB1

e2 x
B2
e3 x

B3
e1

for every B1, B2, B3 ∈ B such that B1 +B2 =
B3 and e1 ∈ B1 ∩ B3, e2 ∈ B1 ∩ B2, e3 ∈
B2 ∩B3.

Proof. — Keep the notation of the proof of Proposition 5.4.
We can assume that Γ is biconnected and has at least two edges (the

result is clear if Γ has only one edge, or no edges). The map ρ is induced
by the integral linear map

r : R
E(Γ)

UΓ

⊕rB−−−→
⊕
B∈B

RB

UB
.

We claim that r is injective. Indeed, if (xe)e∈E(Γ) is an element of RE(Γ)

such that rB((xe)e∈E(Γ)) ∈ UB for all B ∈ B, then xe = xe′ for every
e, e′ ∈ B for every B ∈ B. We note that, since Γ is biconnected, the cut
Bv := E({v}, {v}c) is a bond, for every vertex v ∈ V (Γ). Moreover, since Γ
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is connected, there exists a sequence of (possibly not all different) vertices
(vi)i=1,...,m such that E(Γ) = {vi | i = 1, . . . ,m} and such that vi and vi+1
are connected by an edge ei ∈ E(Γ). We have that {ei−1, ei} ⊂ Bvi for
i = 2, . . . ,m, then xei−1 = xei

for every i = 2, . . . ,m. However every edge
e ∈ E(Γ) is connected to a vertex vj for some j = 1, . . . ,m, then xe = xej

because e, ej ∈ Bvj
, and hence xe = xe′ for every e, e′ ∈ E(Γ), which

implies that (xe)e∈E(Γ) ∈ UΓ. This proves the claim.
By Proposition 3.9, given a collection T = (TB)B∈B of nonempty subsets

TB ⊂ B, the preimage via r of the cone∏
B∈B

qB(σTB
)

lies inside a single cone of ΣY . Hence the map ρ is a closed immersion.
Every element of ⊕(ZB/UB)∨ corresponds to a rational function of the

product
∏
P(CB), hence, to find the equations of ρ(EY ) it is enough to find

generators for the kernel of the map

r∨ : M :=
⊕
B∈B

(
ZB

UB

)∨
−→

(
ZE(Γ)

UΓ

)∨
.

The elements of (ZB/UB)∨ are the elements of (ZB)∨ that vanish on UB .
Hence these elements can be written as∑

e∈B
`ee
∨

with `e ∈ Z and
∑
`e = 0. Moreover an element of the form

∑
`ee
∨

corresponds to the rational function
∏
x`e
e on P(CB). Since (e∨1 − e∨2 ) ∈

(ZB/UB)∨ corresponds to the rational function xBe1/x
B
e2 on P(CB), the re-

sult follows from Lemma 5.6 below. �

Before stating the next lemma, let us fix some notation. As in the proof
of Theorem 5.5, define

M :=
⊕
B∈B

(
ZB

UB

)∨
.

An element in M is of the form⊕
B∈B

(∑
e∈B

`e,Be
∨

)
B

.

To avoid cumbersome notation we will always not write the summands
which are zero. For instance the notation (e∨1 + e∨2 )B1 ⊕ (e∨3 + e∨4 )B2 means
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the element ⊕
B∈B\{B1,B2}

(0)B ⊕ (e∨1 + e∨2 )B1 ⊕ (e∨3 + e∨4 )B2 .

Lemma 5.6. — If Γ is biconnected, then the kernel of the map r∨ is
generated by elements of the form

(5.3) (e∨1 − e∨2 )B1 ⊕ (e∨2 − e∨1 )B2

and (e∨1 − e∨2 )B1 ⊕ (e∨2 − e∨3 )B2 ⊕ (e∨3 − e∨1 )B3

where on left hand side we have e1, e2 ∈ B1 ∩ B2 and on the right hand
side we have the equality B3 = B1 + B2 and e1 ∈ B1 ∩ B3, e2 ∈ B1 ∩ B2,
e3 ∈ B2 ∩B3.

Proof. — Let W be the subspace generated by the elements in Equa-
tion (5.3). We call the elements on the left (respectively right) hand side in
Equation (5.3) of type 1 (respectively of type 2). Clearly W is contained
in the kernel of the map r∨. Conversely let⊕

B∈B

(∑
e∈B

`e,Be
∨

)
B

be an element of the kernel. This means that

(5.4)
∑
B∈B

`e,B = 0 for every e ∈ E(Γ).

First, we claim that every element in M is equivalent modulo W to an
element of the form

(5.5)
⊕

v∈V (Γ)

(∑
e∈Bv

`e,ve
∨

)
Bv

where Bv := E({v}, {v}c), which is a bond because Γ is biconnected. To
prove the claim, note that the generators of M are of the form (e∨1 − e∨2 )B
for every B ∈ B and e1, e2 ∈ B. Fix B = E(V, V c). If e1 and e2 are incident
to the same vertex v in V , then, using generators of type 1 of W , we have

(e∨1 − e∨2 )B = (e∨1 − e∨2 )Bv (modW ).

Otherwise, if ei is incident to a vertex vi ∈ V , then, since Γ(V ) is connected,
there is a partition of V = V1∪V2, with vi ∈ Vi such that Γ(Vi) is connected
(see Lemma 2.1). Moreover, since Γ(V c) is also connected, so are Γ(V c1 ) and
Γ(V c2 ). Let e3 be an edge in E(V1, V2) and define Bi := E(Vi, V ci ). Then,
using a generator of type 2 of W , we have

(e∨1 − e∨2 )B = (e∨1 − e∨3 )B1 ⊕ (e∨3 − e∨2 )B2 (modW ).
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Since |Vi| < |V |, iterating the argument we get the claim.
Now, since every edge is incident at exactly two vertices, we can write

every element in Equation (5.5) which satisfies Equation (5.4) as a linear
combination of elements of the form

(e∨1 − e∨2 )Bv1
⊕ (e∨2 − e∨3 )Bv2

⊕ · · · ⊕ (e∨k − e∨1 )Bvk

for some cycle whose edges are ei and vertices vi. Now, by Lemma 2.1,
there is a partition V (Γ) = V1 ∪ · · · ∪ Vk such that vi ∈ Vi and Γ(Vi) is
connected. Clearly, the graph Γ(V ci ) is also connected for every i. Define
Bi := E(Vi, V ci ). Then, using generators of type 1, we have

(e∨i − e∨i+1)Bvi
= (e∨i − e∨i+1)Bi

(modW ).

So, we are reduced to prove that elements of the form

(e∨1 − e∨2 )B1 ⊕ (e∨2 − e∨3 )B2 ⊕ · · · ⊕ (e∨k − e∨1 )Bk

are in W .
Using generators of type 2, we get

(e∨k−1 − e∨k )Bk−1 ⊕ (e∨k − e∨1 )Bk
= (e∨k−1 − e∨1 )B′

k−1
(modW )

where B′k−1 = E(Vk−1∪Vk, V ck−1∩V ck ), in other words B′k−1 = Bk−1 +Bk.
Since V1, V2, . . . , Vk−2, V

′
k−1 is still a partition of V (Γ) we can iterate the

argument to reduce to the case where k = 3. In this case the element

(e∨1 − e∨2 )B1 ⊕ (e∨2 − e∨3 )B2 ⊕ (e∨3 − e∨1 )B3

is one of the generators of type 2, because V1 ∪ V2 = V c3 . This finishes the
proof of the lemma. �

Since, in the case where Γ is biconnected, EY and P(CE(Γ)) are birational
we have the following corollary.

Corollary 5.7. — The rational map

P(CE(Γ)) 99K
∏
B∈B

P(CB)

induced by the quotients RE(Γ) → RB and the map ρ : EY →
∏
B∈B P(CB)

have the same images.

We point out that Li in [20] gave a functorial description of such images
and computed their Hilbert polynomials.

Finally, as a consequence of Proposition 3.24, we can give a more geomet-
ric construction of EY which resembles Kapranov’s construction ofM0,n+3,
see [19].
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Theorem 5.8. — Let Y be a biconnected stable curve with dual graph
Γ. Set n := |E(Γ)|−1. Then, there exists a birational map EY → P(CE(Γ)) =
Pn which is the composition of the following blowups of Pn:

(1) first, blowup the points given by equations xe = 0 for every e ∈
E(Γ/{e1}) such that e1 runs through all elements in E(Γ) for which
Γ/{e1} is biconnected;

(2) then, blowup the lines given by equations xe = 0 for every e ∈
E(Γ/{e1, e2}) such that {e1, e2} runs through all subsets of cardi-
nality two of E(Γ) for which Γ/{e1, e2} is biconnected;

· · ·

(n-1) finally, blowup the (n − 2)-dimensional linear subspaces given by
equations xe = 0 for every e ∈ E(Γ/S) such that S runs through
all subsets of cardinality n of E(Γ) for which Γ/S is biconnected.

Proof. — The theorem follows from Proposition 3.24. Indeed, up to tak-
ing the quotient by UΓ as in Equation (5.1), the sequence of blowups per-
formed in the stated theorem corresponds to the sequence of star subdivi-
sions of the fan

Σ0,Γ = {cone(A) |A ⊂ E(Γ)}
as in Proposition 3.24. �

Corollary 5.9. — Let Y be a stable curve and VY its space of versal
deformations. If π : B → VY is the Mainò blowup described in Section 2.4,
then EY is the fiber π−1(0) of the special point 0 of VY .

Proof. — The relevant locus Ri in VY corresponds precisely to the spe-
cializations Γ Γ′ such that Γ′ is biconnected and |E(Γ′)| = i. �

6. Final remarks

In this section we collect some observations that can be useful to get a
modular description of EY , which was the original motivation of the work
and yet unclear to us. We had some small progress in this direction, but
due to the already large length of the paper, we decided to just summarize
it here.
At a first glance, it is natural to expect that the variety EY should be iso-

morphic to some Hassett’s moduli space of vertex weighted rational curves,
constructed in [18]. This works for some examples. Indeed, if Y is a circular
curve with δ nodes then EY is isomorphic to the Losev–Manin moduli space
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Lδ, which is the Hassett moduli spaces M0,A for A = (1, 1, 1/δ, . . . , 1/δ).
Also, if Y is a curve with only two components and δ nodes then EY = Pδ−1,
which is also a Hassett moduli space. However, we later found curves for
which EY is not isomorphic to a Hassett moduli space.

Then, to fully describe EY as a moduli space, we suggest a small gener-
alization of the moduli problem considered by Hassett, as follows.
Let Ã = (a1, . . . , an) be a collection of n vectors ai = (ai,j) ∈ Qm with

0 6 ai,j 6 1. A family of nodal curves of genus g with marked points
(C, s1, . . . , sn) π−→ B is stable of type Ã if

(1) the sections s1, . . . , sn lie in the smooth locus of π, and for any
subset {si1 . . . , sir} with nonempty intersection we have ai1,j+. . .+
air,j 6 1 for every j = 1, . . . ,m;

(2) Kπ+a1,js1+. . .+an,jsn is π-relatively ample for every j = 1, . . . ,m.
We expect that the construction done by Hassett should also work in the
above setting and give rise to a moduli space M

g,Ã parametrizing these
data.
Now, for each nodal curve Y one can construct a collection ÃY as follows.

Assume that Y has δ nodes and let Γ be its dual graph. Denote by E(Γ) =
{e1, . . . , eδ} its set of edges . Moreover, let B be the set of bonds of Γ.
Define ÃY := (a1, . . . , aδ, b0, b∞) where ai = (ai,B)B∈B with

ai,B =
{

0 if ei /∈ B
1
|B| if ei ∈ B,

b0 = (1, 1, . . . , 1) and b∞ = (bi,B)B∈B with bi,B = 1/|B|.

Conjecture 6.1. — EY is isomorphic toM0,ÃY
.

We note that for each B ∈ B if we set AB to be the subsequence of

(a1,B , a2,B , . . . , aδ,B , b0,B , b∞,B)

containing all the positive weights, then we should have reduction mor-
phismsM0,ÃY

→M0,AB
= P(CB) for each B ∈ B, and these morphisms

should recover Proposition 5.4 and Theorem 5.5.
Finally, we give an idea of how to construct a “universal” family over EY

containing the one parametrizing enriched structures on Y .
Let Y be a nodal curve and Z be a connected subcurve of Y with con-

nected complement Zc, and set ∆Z := Z ∩ Zc. Notice that Z defines a
bond BZ of the dual graph Γ of X. Let LZ be the rank-1 torsion-free sim-
ple sheaf over P(CBZ )×Y constructed considering the natural identification
P(CBZ ) → P(Hom(O∆Z

,O∆Z
)) and using the coordinates (xe) ∈ P(CBZ )
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to glue the two sheaves OZ(∆Z) and OZc(−∆Z) along ∆Z . We refer to [26,
Section 4.1.1] for a similar construction.
Via Proposition 5.4 we can pull these sheaves back to get a collection of

rank-1 torsion-free simple sheaves L := (LZ) over EY × Y , where Z varies
over all connected subcurves with connected complement of Y . Moreover,
if T is the maximal torus in EY , then the restriction of LZ to T × Y is
locally free. By the equations in Theorem 5.5, we have

LZ1 ⊗ LZ2 = LZ1∪Z2

if Z1 and Z2 have no common components and Z1 ∪ Z2 is connected with
connected complement, and

LZc = L−1
Z .

Thus, we can regard this collection L restricted to T × Y as the universal
family of enriched structures in the sense of Mainò. The modular descrip-
tion of EY should follow from a geometric description of the collection L,
which turns out to be the universal family over EY . So, the object we need
to get such a modular description should be rank-1 torsion-free simple
sheaves over Y with certain properties induced by the equations in Theo-
rem 5.5. However we were not able to translate these equations into explicit
conditions.
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