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A SHARP LOWER BOUND FOR A
RESONANCE-COUNTING FUNCTION IN EVEN
DIMENSIONS

by T. J. CHRISTIANSEN

ABSTRACT. — This paper proves sharp lower bounds on a resonance-counting
function for obstacle scattering in even-dimensional Euclidean space without a
need for trapping assumptions. Similar lower bounds are proved for some other
compactly supported perturbations of —A on R¢, for example, for the Laplacian
for certain metric perturbations on R%. The proof uses a Poisson formula for reso-
nances, complementary to one proved by Zworski in even dimensions.

RESUME. —  L’objet de cette note est de montrer des bornes inférieures op-
timales pour la fonction de comptage des résonances, dans le cas d’obstacles sur
I’espace euclidien en dimension paire; on ne fait aucune hypothése de capture du
flot de billard extérieur a I’obstacle. Des minorations similaires sont prouvées pour
d’autres types de perturbations & support compact sur R%. La preuve utilise une
formule de Poisson pour les résonances, complémentaire d’une formule montrée par
Zworski en dimension paire.

1. Introduction

The purpose of this paper is to prove a sharp polynomial lower bound on a
resonance-counting function for certain compactly supported perturbations
of —A on R? for even dimensions d. The operators we consider include,
for example, the Laplacian on the exterior of a bounded obstacle in R?
and the Laplacian for many compactly supported metric perturbations of
R?. These lower bounds complement the sharp upper bounds proved by
Vodev [38, 39]. The lower bounds of this paper do not require any trapping
conditions. In order to prove the result, we prove a Poisson formula for
resonances in even dimensions, complementary to that proved by Zworski
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580 T. J. CHRISTIANSEN

in [43]. The Poisson formula is valid for a large class of operators which are
“black-box” perturbations of —A on R? as defined in [31]. Here A < 0 is
the Laplacian on R?.

We begin with the classical problem of obstacle scattering. Let P denote
—A with Dirichlet, Neumann, or Robin boundary conditions on R4\ O,
where @ C R? is a bounded open set with smooth boundary. For 0 <
arg A < 7 set R(\) = (P—A2)~1. Then it is well known that if y € C°(R?)
then xR(A)x has a meromorphic continuation to C if d is odd and to A,
the logarithmic cover of C\ {0}, if d is even. If x is chosen to be 1 on an
open set containing O, the location of the poles of YR(\)y is independent
of the choice of y. We denote the set of all such poles, repeated according
to multiplicity, by R.

We can describe a point A € A by its norm |A| and argument arg \. In
even dimensions we use the resonance counting functions defined as

ng(r) & #{\; e R: |\j| <rand kr <arg\; < (k+ 1)}, for k € Z.

By the symmetry of resonances for self-adjoint operators (cf. [7, Proposi-
tion 2.1]), n_g(r) = ng(r).

THEOREM 1.1. — Let d be even and let O C R¢ be a bounded open set
with smooth compact boundary 00O. Assume in addition that O # () and
R<\ O is connected. Let P be —A on R%\ O with Dirichlet, Neumann, or
Robin boundary conditions. Then there is a constant Cy > 0 so that

(1.1) r?/Cy < n_1(r) < Cor® when r > 1.

The upper bound n_1(r) < Cord, r > 1, is due to Vodev [38, 39]. It is
the lower bound which is new here. For the Robin boundary condition, a
function v in the domain of P must satisfy d,v = yv on 9(R?\ O), where
0, is the inward unit normal vector field and v € C*(900;R) is a fixed
function. Choosing v = 0 gives the Neumann boundary condition. The
condition that R?\ O be connected is not necessary, but makes the proof
cleaner since we do not have infinitely many positive eigenvalues of P as
we would if R?\ O had a bounded component.

In odd dimension d, where R C C, we introduce the counting function

nodd(r) = 3'%*9{)\j eER: ‘)‘jl < ’l“}.

In odd dimension d > 3, for obstacle scattering the analogous upper bound,
Noad(r) < Cr for r > 1 of (1.1) is due to Melrose [24], but the known
lower bound for general obstacles O is weaker: nyqq(r) > erd=1 for some
¢ > 0 and for sufficiently large r [2, 18].

ANNALES DE L’INSTITUT FOURIER



RESONANCE-COUNTING FUNCTION 581

In either even or odd dimensions, Stefanov [34, Section 4] proved lower
bounds on n,44(r) and n_;(r) proportional to 7% under certain trapping
assumptions on the geometry of R?\ O. On the other hand, again in either
even or odd dimensions, for a class of strictly convex O asymptotics of the
number of resonances (of order 74~ 1) in certain regions are known, [17, 33].
In odd dimensions asymptotics of the resonance counting function have
been proved in the special case of O equal to a ball [35, 41].

The primary result of [6] is that in even dimension d, under the hy-
potheses of Theorem 1.1 (with some additional restrictions for the Robin
boundary condition), if £ € Z \ {0}, then limsup, _, . logng(r)/logr = d.
For k = —1 this is weaker than the lower bound of Theorem 1.1. Moreover,
the proofs in [6] use results of [2, 19] for the particular case of the operator
P of Theorem 1.1, and those results do not obviously generalize to the set-
ting of Theorem 1.2 below. However, the techniques of this paper do not
seem to give results for ng(r), k # +1.

Obstacle scattering, as considered in Theorem 1.1, forms a canonical
class of scattering problems. However, our result and its proof can easily
be extended to a larger class of operators. In even dimension d, for the
operator P defined below, and for the much larger class of operators of
the “black-box” type of [31], the resolvent (P — A\?)~! has a meromorphic
continuation to A, [31]. Hence one can define resonances, the set R, and
the resonance counting functions ny(r) just as for the Laplacian on the
exterior of a compact set.

THEOREM 1.2. — Let d be even, and let (M, g) be a smooth, connected,
noncompact d-dimensional Riemannian manifold, perhaps with smooth
compact boundary OM. Suppose there is a compact set K C M and an
Ry > 0 so that M \ K is diffeomorphic to R% \ B(0; Ry), and that g re-
stricted to M \ K agrees with the flat metric on R%. Then let P = —A, on
M, with Dirichlet or Robin boundary conditions if OM # (). In the special
case of M = R4\ O with O as in Theorem 1.1 and metric agreeing with the
Euclidean metric outside a compact set, we may choose P = —Ag+V with
Dirichlet or Neumann boundary conditions, for some V € C2°(R?\ O;R).
Then if vol(K) # vol(B(0; Ry)), then there is a constant Cy > 0 so that

r?/Co <n_y1(r) < Cord for r>> 1.

In the statement of the theorem, B(a; R) = {x € R? : |z —a| < R}, and
Ay < 0is the Laplacian on (M, g). The operators P defined in Theorem 1.2
are examples of “black box” operators as defined by Sjostrand—Zworski [31],
as recalled in Section 1.1.

TOME 67 (2017), FASCICULE 2



582 T. J. CHRISTIANSEN

Again, it is the lower bound of Theorem 1.2 which is new, as the upper
bound is due to [38, 39]. We shall prove a more general result, Theorem 4.1,
from which Theorems 1.1 and 1.2 follow.

Tang [36] showed that for non-flat, compactly supported perturbations
of the Euclidean metric on R?, d = 4, 6, the associated Laplacian has
infinitely many resonances. Under certain geometric conditions one can
prove the existence of many resonances for operators of the type considered
in Theorem 1.2. In addition to the references already cited, we mention [29,
43] and references therein.

The proof of the lower bound of Theorems 1.1 and 1.2 uses the wave
trace, a distribution informally given by

(1.2) u(t) = 2tr(cos(tvV'P) — cos(tvV'—A)),

and more formally defined in (1.3). For the operators of Theorem 1.2, be-
cause we are in even dimension, the leading order singularity of u at 0
“spreads out.” This “spreading out” of the leading order singularity at t = 0
does not happen in the analogous odd-dimensional scattering problems
(for example, in odd-dimensional obstacle scattering). Thus, this particular
technique does not give sharp lower bounds in odd-dimensional Euclidean
scattering.

That the “spreading” of the leading singularity of the wave trace at t = 0
can, when combined with a Poisson-type formula, give good lower bounds
on similar resonance-counting functions was proved in [32] and has been
used, for example, in [3, 12, 32]. In particular, the papers [3, 12] prove
lower bounds analogous to (1.1) for certain even-dimensional manifolds
hyperbolic near infinity.

To use the result of [32] requires a Poisson formula for resonances which
is valid in any sufficiently small deleted neighborhood of ¢ = 0. Thus one
of the main results of this paper is Theorem 3.6, a Poisson formula for
resonances in even dimensions. This result holds for a large class of “black-
box” perturbations (in the sense of [31]) of —A on R%, d even. Our result is
complementary to the results of [43]. See Section 3.1 for further discussion
and references for Poisson formulae in both even and odd dimensions.

We comment briefly on the structure of the paper. Section 2 proves some
bounds on the scattering matrix which are needed later in the proof to
control a term appearing in the Poisson formula. In Section 3 we state and
prove the Poisson formula, Theorem 3.6. Theorem 4.1 is a more general
version of the lower bound than Theorem 1.2. In Section 4 we prove Theo-
rem 4.1, using the Poisson formula and results from [32] and Section 2. We
finish the proof of Theorems 1.1 and 1.2 by using results on the singularity

ANNALES DE L’INSTITUT FOURIER



RESONANCE-COUNTING FUNCTION 583

at 0 of u(t), e.g. [13, 16, 25], and estimates on the cut-off resolvent on the
positive real axis due to Burq [4] and Cardoso—Vodev [5].
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1.1. Set-up and notation

We briefly introduce some notation which we shall use throughout the
paper.

We recall the black-box perturbations of [31], using notation as in that
paper. Let ‘H be a complex Hilbert space with orthogonal decomposition

H =Hg, ® L*(R?\ B(0; Ry))

where B(0; Rg) C R? is the ball of radius Ry centered at the orgin. Let
Irm\B(O;R) * H — L?(R?\ B(0; Ry)) denote orthogonal projection. Let P :
H — H be a linear self-adjoint operator with domain D C H. We assume
Ire\B(0;re) D = H*(R®\ B(0; Ro)) and Tpm\ p(0:ro)P = —A [rm\B(0;Ro)-
Moreover, P is lower semi-bounded and there is a kg € N so that (1 —
Lgn\ B(0:R,)) (P + 1) %0 is trace class.

Under these assumptions on P, we may carefully define the wave trace
given informally by (1.2). Thus

def
(1.3) wu(t) =2 [tr;.t (cos(t\/ﬁ) — Ign\ B(0;Ro) cos(t\/—A)]an\B(O;Ro))

— tI'L2(Rd) (]lB(O;Ro) COS(t\/ _A)]IB(O;RO))}

where we understand this distributionally. The factor of 2 is included to
be consistent with the definition of u given via the wave group as in, for
example, [22, 43].

Let P be a black-box perturbation of —A on R?, and, for 0 < arg A < 7,
set R(\) = (P—)\?)~1. We denote by R()\) the meromorphic continuation to
A, the logarithmic cover of C\ {0}, if d is even. If d is odd, the continuation
is to C, and again we denote it R(\). We use R to denote all the poles of
the continuation of the resolvent R(\), repeated according to multiplicity.

TOME 67 (2017), FASCICULE 2



584 T. J. CHRISTIANSEN

We explicitly include both those poles corresponding to eigenvalues and
those which do not.

A point A € A can be identified by specifying both its norm |A| and
argument arg A where we do not identify points in A whose arguments differ
by nonzero integral multiples of 2. For A € A, we denote A = |\|e?a18X =
|Ae~tar& X For k € N, set

Ap={r e A kn<arg) < (k+ 1)7}.

Throughout this paper, C denotes a positive constant, the value of which
may change from line to line without comment.

2. Preliminary estimates on the scattering matrix and
related quantities

We shall need some estimates on the determinant of the scattering matrix
and on ||S(A) — I|lt,- The proof uses a representation for the scattering
matrix from [28] which we recall for the reader’s convenience. We remark
that there are a number of related representations in the literature; see, for
example, [27, Section 2] or [43, Section 3].

PROPOSITION 2.1 ([28, Proposition 2.1]). — For ¢ € C®(R?), let us
denote by
EL () : L2(RY) — LA(S*)

the operator
(21) (BLOVS) ) = [ f)ofe) exp(in(e,w))da.
Rd,

Let x; € C®(RY), i = 1, 2, 3 be such that x; = 1 near B(0; Ry) and
Xi+1 = 1 on supp x;.
Then for 0 < arg A < w, S(A\) = I + A(X), where
A = im(2m) T INTEER (V)[A, 1] RO [A, xo] BX* ()

where 'E denotes the transpose of E. The identity holds for A € A by
analytic continuation.

Maciej Zworski suggested the proof of the following lemma. This follows
techniques of [24, 37, 40]. We note that results of Burq [4] and Cardoso—
Vodev [5] show that there are a large class of examples of black-box oper-
ators P for which (2.2) holds.

ANNALES DE L’INSTITUT FOURIER
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LEMMA 2.2. — Let the dimension d > 2 be even or odd, and let P de-
note an operator satisfying the general black-box conditions of [31] recalled
in Section 1.1. Assume that there is an R1 > R so that for allb > a > Ry,
if x € C®(RY) has support in {x € R? : a < || < b} then there are
constants mgy and Cy depending on P and x so that

(2.2) IxXR(T)x|| < Ct™° for 7 € (1,00) (that is, argT =0, || > 1).

Let S(X) denote the scattering matrix for P, unitary when arg A = 0. Then,
for 7 € (1,00), there is a constant C so that ||[I — S(7)|jex < C(1 +7)%7!
where || - ||y Is the trace class norm.

Proof. — We note first that this is a result about large 7 behavior, as
lim, o S(7) = I, see [6, Section 6].

For a bounded linear operator B, we denote by s1(B) > s2(B) > ... the
singular values of B.

We use the representation of S(7) recalled in Proposition 2.1. We have

5;(S(7) = 1)
< flim(2m) 4T 2B (7) | 22 s 22 1A, xa | R(T)[A, Xa] | 25 1285 (EX* (7).
We may choose x1, X2 so that by (2.2),
1A 1] R(T)[A, xa] | 2522 < C(14770F2).

Moreover, ||im(2m) ~4r?2EX* (1) 2 2 < C79 % since T € (0, 00). From [8,
(3.4.14)], which follows [40],

5;("EX* (1)) < Crexp(Cr7 — jT7 /Cy).
Summarizing,
(2.3) s;(S(r) = I) < C(r4™) exp(Cy7 — j77 /Cy), 7> 1.

However, since for 7 € (0, 00), S(7) is unitary we have that s;(S(7)—1I) < 2
for all j. Using this and (2.3), by choosing C5 sufficiently large for 7 € (0, co

{2 if j < Cord—l

)

(2.4) s;(S(r)—1) <

d+1

Cj= % if j > Cordl
Thus, for 7 € (1, 00)

I1S(r I\lu—Zsj
S sj(S(r)—1)+ > si(Stn) -1

j<Card-1 j>CQTd_1

<207+ Y O <20 4G O

j=Cord—1

TOME 67 (2017), FASCICULE 2



586 T. J. CHRISTIANSEN

In this paper we use Lemma 2.2 to prove Lemma 2.3. This argument has
the advantage of working for a large class of perturbations P of —A. How-
ever, for the special case of the Laplacian on the exterior of an obstacle, a
portion of Lemma 2.3 has been proved in [6] using instead of Lemma 2.2
“inside-outside duality” results of Eckmann-Pillet [9] and Lechleiter—
Peters [20]. In this special case, the remainder of Lemma 2.3 could be
proved in a similar way.

LEMMA 2.3. — Let the dimension d be even, and let P denote an oper-
ator satisfying the hypotheses of Lemma 2.2 on P. Then there is a constant
C > 0 so that for 7 > 0 (i.e., argT =0),

1 < |det S(re'™)| < Cexp(Cr™1h)

and
|arg det S(7e™) — argdet S(e'™)| < C(r%71 +1)

where the argument is chosen to depend continuously on T € (0, 00).

Proof. — From [7, Proposition 2.1], S(ei"r) = 2I — JS*(7)J, where
(Jf)(w) = f(—w). Hence
(2.5) det S(e'™ 1) = det(2I — S*(7)).

Using that S(7) is unitary, we can write det S(e'™7) = [[(2 — e~ (7)),
where {e"(7)} are the eigenvalues of S(7) other than 1, repeated with
multiplicity, and 0;(7) € R. Since [2 — e~ ()| > 1, we see immediately
that | det S(7e'™)| > 1. Moreover, from Lemma 2.2, (2.5) and the estimate
|det(I + B)| < exp(||B||+:) we obtain the upper bound on | det S(7e'™)|.

Now we turn to the question of bounding arg S(7e'™). Note first that 6,
can be chosen so that €% (") depends continuously on 7, except, perhaps,
at points where %% (") approaches 1. Let log denote the principal branch of
the logarithm. Since Re(2 — e~%i(7)) > 1, log(2 — e~ (7)) is well-defined
and is a continuous function of 7 if € (") is a continuous function of 7.
Now

(2.6) det S(1e'™) = exp (Z log(2 — e*%’%(f))) )

Let 79 be a possible point of discontinuity of 3" log(2 — e~*%(7); that is,

a value of 7 for which for some jo lim,_,,+ 0o

sign +. Since if lim, - 4 €07 = 1, then lim__,_+ log(2 — e (7)) = 0,
0

(T) = 1 for some choice of

the sum 3" log(2 — e~%i(7)) depends continuously on 7 € (0, 00), so that

arg S(Tei”) —arg S(ei”) = Z Imlog(2 — e—wj(T)) _ Z Im log(2 — e—wju))_

ANNALES DE L’INSTITUT FOURIER



RESONANCE-COUNTING FUNCTION 587

But

’ZIm log(2 — e*wj(T))’ < Z \ Imlog(Qfe*wf(T)ﬂ < CZ |(1fe*i0f(7))|

using that |log(1 + 2)| < C|z| when Rez > 0. Then

‘Zlmlog 2 — e Wil ‘ <CZ e~ (7))
<CIS(r) = I|jw < C(1 + 7971
by Lemma 2.2. (]

The result about the argument of det S(7e'™) in Lemma 2.3 is particular
to even dimensions. In odd dimensions d, if 7 > 0, then det S(re'™) =
det S(7). To be specific, consider the case of scattering by an obstacle O
with Dirichlet or Neumann boundary conditions. In that case the scattering
phase has Weyl asymptotics: 1 det S(7) = cqvol(O)r? + O(7%7 1) as 7 —
00, for a nonzero constant cd, e.g. [26, 30]. Hence for obstacle scattering
in odd dimensions d, arg S(1e'™) = —cqvol(O)7% + O(7971) as 7 — o0.
Similar results hold for many other classes of black-box scattering in odd
dimensions.

3. The Poisson formula

We begin with several complex-analytic results which will be helpful in
proving the estimates we need on det S(\) and related quantities.

We shall use the following lemma when working with functions holomor-
phic or meromorphic in a sector.

LEMMA 3.1. — Set U = {z € C : Rez > 0}. Suppose f is analytic on
U and that there exist constants C, p > 1, so that |f(z)| < Cexp(C|z|P)
for any z € U. Suppose in addition that f is nowhere vanishing on U.
Then there is a function g analytic on U so that exp g(z) = f(2), z € U.
Moreover, given € > 0 there is a constant C, so that

lg(2)| < C|z|PT€ if |arg 2| < m/2 — ¢, |2| > 1.

Proof. — The existence of an analytic g so that exp(g) = f is immedi-
ate. The bound on |g| can be proved, for example, by using the representa-
tion [11, Theorem 3.3] of a function of finite order analytic in an angle. [

Note that the hypothe51s p > 1 in Lemma 3.1 is necessary. For example,
the function f(z) = e~* satisfies the other hypotheses of Lemma 3.1 with
p = 0, but does not satisfy the conclusion of the lemma with p = 0. For
more about related questions, see [11, Chapter 1].

TOME 67 (2017), FASCICULE 2



588 T. J. CHRISTIANSEN

We recall that the canonical factors I, are given by
Eo(z) =1—zand Ey(2) = (1 — 2)exp(z + 22/2+ - - - + 2P /p) for p € N.

For entire functions f, a stronger result than the following lemma holds
(compare [21, Theorem 1.9]). The following lemma, while likely not sharp,
will suffice for our needs.

LEMMA 3.2. — Set U = {z € C: Rez > 0}. Suppose f is analytic on U
and that there exist constants C, p > 1, so that |f(z)| < Cexp(C|z|P) for
any z € U. Suppose in addition that there is a constant C so that

#{zj: z; €U; f(zj) =0and |z;| <r} < C(1+7P)

where the zeros z; are repeated with multiplicity. Then for any e¢,n > 0
there is a constant C. , so that for any R > 2

In|f(2)| > =Cye(1+ RT), 1< |2 <R, |argz| <m/2—€

if z lies outside a family of excluded disks, the sum of whose radii does not
exceed nR. Moreover, if o(z) = [[ E|,|(2/2;), then

[f(2)/¢(2)] < exp(Ce(1+ RPT)), 1< |2| < R, argz| < m/2—¢/2.

Proof. — By standard estimates on canonical products, for € > 0 the
entire function ¢ satisfies [p(2)] < exp(Ce(1 + |2[Pt/?)). Hence, by [21,
Theorem 1.9], for R > 1 and any n > 0, there is a constant C,, . so that

Infp(z)| > ~Cpe(1+ RPT?), 2| < R

where z in addition lies outside a family of disks the sum of whose radii
does not exceed nR.

Now consider the function f(z)/¢(z), which is a nonvanishing analytic
function on U. Moreover, with perhaps a new constant (), .

1/ (2) /()] < exp(Ce(1+ RPT/?)), [2| <R, 2 €U

if z lies outside a family of disks the sum of whose radii does not exceed
nR. Since f/ is analytic, by the maximum principle if R > 1 and n > 0
is chosen sufficiently small

£ (2)/p(2)] < exp(Cre(1+ RP*/2)), |2 < R, |arg2| < m/2 — ¢/2.

The reason for shrinking the size of the sector is the need, for every pre-
viously excluded point 2’ (ie, every point in one of the originally excluded
disks) to have bounds on |f/¢| on a closed curve lying inside U and con-
taining 2’ in its interior. Now since f/¢ is nonvanishing on U we can apply
Lemma 3.1 to the function (f/¢)(2'/1=¢/?)) to complete the proof. O

ANNALES DE L’INSTITUT FOURIER
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The proof of Lemma 3.4 will use the following result from [43, Section 2].
Here, for the convenience of the reader, we show how this expression for
S(A) — I can be derived from Proposition 2.1 using also [31, Section 3]. We
note that a similar result is proved in [12, Section 3] in a different setting
and by somewhat different methods. In the statement of the lemma and
subsequent proof, Ro(A) = (—=A — A?)~! when 0 < arg A\ < 7 and is the
holomorphic extension otherwise.

LEMMA 3.3 ([43, Section 2]). — The scattering matrix S(A) = I+ A(X),
where
(3.1) A = im(@m) X2ES () + K (0 0) U [A, g B ()

with Eij as defined in (2.1). The operator K (\, Ao) is a compact operator,
analytic on A, defined in (31, Section 3]:

K (A Ao) = [A, o] Ro(A) (1= 1)0s — [A, 2] R(Ao) o1 +12(A5 — A*) R(Ao) 1
i, i, x1 € CF(RY), ¢ =1 0on B(0; Ro), thithi—1 = i1,
X1¥2 = Y2, X193 = X1, ¢1 = (1 —¥1)x1, b2 = (1 — ¥1)tha.

Here \g is a point in A with 0 < argA\g < 7 and is chosen to ensure the

invertibility of I + K (Ag, A\o)-

Proof. — We begin by noting that by analytic Fredholm theory (I +
K(X\ X))~ ! is a meromorphic function on A. The operator K arises in
the construction of the meromorphic continuation of the resolvent in [31,
Section 3] and

(3.2)  YaR(N)iba
= b {(1 —1p0) Ro(\) (1 — 1) ¢pa + 2 R(Ao)t01 } (I + K (X, Ao)) ™ .

Now we use Proposition 2.1, choosing the x; so that x; = 1 on support
of 19 and choosing x2 = 3. Then from (3.2) and the support properties

of x1, 2,
[A, 1] R $a = [A, xa]Ro(N) (1 = 1)ba (I + K (A, Ao)) ™ s
Now if g € HZ(R?) and x3 = 1 on the support of g, then
EX*(A\)(Ag) = —NE¥* (M\)g.

Hence
EX* (M)A, x1]Ro(A) (1 — Y1)y = EX*(A)x1(1 — ¢h1) s = EX* (AN)x1 (1 — 1)

Using this and Proposition 2.1 we see that

AN = i (2m) TN TPER (VN)xa (1= 1) (L + KA, 20) 7' A, xa] B (V).

TOME 67 (2017), FASCICULE 2



590 T. J. CHRISTIANSEN

Since we chose 2 = 13, [A, x2]'EX*(A) = [A,13]'E?2()\) using in addi-
tion Y193 = 11, Y3s = 3. Moreover, from our definition of ¢; and the
properties of x5 we find EX* (A\)x1(1 —¢1) = E?'(\). O

We continue to denote by S the scattering matrix, unitary for arg A = 0,
associated to a self-adjoint black-box type operator P. Then define

det S(A)

(3.3) fA) = det SOy

The proof of the following lemma closely resembles that of [42, Proposi-
tion 6] and of a related result of [43, Section 2]. We include the proof here for
the convenience of the reader and because the need for working in sectors
of C rather than in balls in C means that Lemmas 3.1 and 3.2 substitute
for what can be done with Cartan’s lemma and Caratheodory’s inequality
for the disk. The proof mostly follows [43], highlighting the points at which
Lemmas 3.1 and 3.2 are needed.

LEMMA 3.4. — Let d be even, and let f be as in (3.3). Let p € N
be such that for the operator P the counting functions n_i, n_o satisfy
n_1(r) + n_z(r) < Cr? for some constant C, and set

Pi(\) = 1T Ep(\/X)), P2(\) = 11 E,(Ae'™ /X))

A ER AjER
—m/2<arg \;<3m/2 —3m/2<arg \;<m/2
Q1(A) = I1 Ep(MXj), Q2(A) = II Ep(Xe'™/ X))
A ER AjER
—3m/2<arg \; <m/2 —m/2<arg \; <3m/2

Then for —37/2 < arg A < 7/2,
Pi(A) @2(X)
Q1(A) P2(})

where g(\) is analytic in —37w/2 < arg A < 7/2 and for some p’ > p,C > 0
we have

) = s

lg(\)] < C(1+ AP, —47/3 < arg A < 7/3.

Proof. — We identify the region {A € A: —37/2 < arg\ < 7/2} with
C\ i[0, 00).

The results of [38, 39] show that with our assumptions on P, there is
ap € Nso that n_1(r) + n_2(r) = O(rP) as r — oo. Using this and the
fact that R(\) has at most finitely many poles in Ao, the functions P;, Q;,
j = 1,2, are well-defined entire functions. Since S(A\)S*(X) = I, A; is a pole
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of det S(A) if and only if A; is a zero of det S(A). The function

Q1(N) (M)
Pi(A) Q2(N)

is an analytic, nowhere vanishing function if —37/2 < arg A < 7/2, see [7,

h(\) < )

Theorem 4.5], so the existence of a function g so that exp(g) = h in this
region is immediate. What needs to be proved is the polynomial bound on
¢ in this region.

We use the representation of the scattering matrix recalled in Lemma 3.3,
along with that notation. The assumptions made on P ensure that the
operator K (X, \g)?*° is trace class. We remark that we make no effort here
to find the optimal value of p’ so that the statement of the lemma holds.
By techniques of [37, 41] (see also [38]), if |arg A| < Oy there is a natural
number m and a constant C' (depending on 6y, but not on |A|), so that

(3.4) | det(I + K (X )% )| < det(I + | K (X Xo)|? ) < Cexp(C|A™).

Moreover, the number of zeros of | det(I + K (), A\g)?*?) (counted with mul-
tiplicity) in the region {A € A : |arg\| < bp; |A| < r}is O(r™) ([38, 39]).
We apply this to the inequality ([10, Theorem 5.1])

det(I + |K (X, Ao)|?F)

1+ K (A 20)) < I+ (KX M) [)2F [det(I + K (X, Xo)2Fo)|’

It is here we can see the need of Lemmas 3.1 and 3.2. Using these lemmas
and the estimate (3.4), we see that given 7, e > 0, there is a constant C, .
so that for |argA\| < 6y — e and 1 < |A| < R, outside a family of excluded
disks, the sum of whose radii does not exceed nR,

I+ KX 20)) 7| < Cpeexp(C(1+ R™)).

Using this and Lemma 3.3 as in [42], one can show that, perhaps with new
constant C,

(3.5) | det S(N)| < Cyy,e exp Gy (RO
for A in the same region.

Since (det S(A)) Q1()) is analytic for —37/2 < arg A < 7/2, using (3.5)
and the maximum principle gives

|Q1(A) det S(N)| < Ce eXan,e(|)\|(m+E)d) [A] > 1, —377(-—1-6 <arg A < g—e.
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Since @Q1(A)det S(A)/Pi()\) is a nowhere vanishing analytic function in
—371/2 < arg A < 7/2, applying Lemmas 3.2 and 3.1 we find that

Q1(A)(det S(A))/Pr(A) = exp gi(A)

here, with g; polynomially bounded in the sector —37/2 + ¢ < argA <
7/2 — €. The same argument gives Q2(\) det S(A\e'™)/P2(X) = exp ga(N),
with g2 polynomially bounded in the same region. Since g = g1 — g2, we
are done. g

We continue to use the function f defined in (3.3). From the fact that
S(A) is unitary when arg A = 0 and from Lemma 2.3, we see that f(\) has
neither zeros nor poles with arg A = 0. Since

det S(te'™) det S(Te—i™) =1, if 7 > 0,

from Lemma 2.3 the function f(A) has neither poles nor zeros with arg A =
—.
We identify {A € A : —37/2 < argA < 7/2} with C\ [0, 00) and
consider the function f defined in this region, as studied in Lemma 3.4.
Define the distribution

(3.6) v(t) = /_OO e M J;/(())\\))d)\.

We clarify that in this integral for A € R} we understand arg A = 0, and
for A € R_ we understand arg A\ = —7. Note that this is well-defined as
a distribution, as we describe below. The function f has neither zeros nor
poles with arg A = 0 or arg A = +m. Moreover, f(A) — 1 as A — 0 with
argA = 0 or arg A = =+, see [6, Section 6]. Hence (identifying arg A =
—m with (—00,0) and arg A = 0 with (0,00)), we can find a continuous
function £(f(A\)) on R so that exp(¢(f(N))) = f(A) for A € R. Moreover,
£(f (X)) is in fact smooth on R\ {0}, and has an expansion in powers of A
and log A at 0, see [6, Section 6]. Using Lemma 3.4 we see that £(f) is a
tempered distribution on R. Hence its derivative, f’/f, is also a tempered
distribution.

LEMMA 3.5. — The distribution v(t) defined by (3.6) is given by

oty =2mi > (eMtreN) m2m S (e it > 0.
)\jEAflﬁR )\jEAoﬂR

ANNALES DE L’INSTITUT FOURIER



RESONANCE-COUNTING FUNCTION 593

Proof. — We use the representation for f from Lemma 3.4. Hence
F') _ 7O B @) | @) B
fN) Pi(A) @) Q200 Pa(A)

gy WA e AP

AER A=A A ER A=A
—m/2<arg A\; <3m/2 —371/2<arg \; <m/2
(€TA/A)P (€ A/A)P
&7 A;R eTA= A A;R eTA= A
—7/2<arg A\;<3m/2 —37/2<arg \;<mw/2

Let ¢ be a polynomial. For t > 0, a,b € R and b # 0,

]__{q(f)} (1) = —2mie~ 0t ®)lg(q 4-4b) ifb<0,t>0
¢ — (a+1b) o ifb>0,t>0

as a distribution. Applying this to (3.7), we find that as a distribution

(3.8) w(t)=2mi | — Z et 4 Z et Z et
AjERNAg AjERNA_; AjERNAg
+ 2mi Z et +/ e~ Mg (N)dN, ift > 0.
AjERNA_; -

Now consider [0 e~*'g/(A)dA, which is well-defined as a distribution
on R. By Lemma 3.4 the distribution [*°_e~"#*g(\)dA has inverse Fourier
transform which is analytic and polynomially bounded in the open lower
half plane. Thus, by a version of the Paley—Weiner-Schwartz Theorem
(e.g. [15, Theorem 7.4.3]), the distribution ffooo e~ g(\)d)\ is supported
in ¢ < 0. Since, in the sense of distributions,

/ e" Mg (N)dX = it / e~ g(N)d,
the distribution ffooo e~ g/ (N\)d\ is supported in t < 0 as well. Hence, for

t>0

vy =2mi [ = Y (et eN N (et eNY) | >0,
AjERﬂAo AjGRﬂA_l

The following theorem gives a Poisson formula for resonances in even
dimensions, complementary to that of [43]. The integral appearing here may
be thought of as an error or remainder term. Lemma 4.2 uses Lemma 2.3
to bound its contribution in our application, the proof of Theorem 4.1.
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THEOREM 3.6. — Let d be even, and u denote the distribution defined
by (1.3) for a self-adjoint black-box type perturbation. Set s(A) = det S(A).
Then, fort # 0,

ut)y =Y (e—um + eMTItI) n 3 (€731t — e=eiltly
/\J'ERPIA71 —U?EG’I)(P)PI(—OO7O)
o'j>0
+ Z (et ety 1 m(0)

u2eo,(P)N(0,00)
>0

1o (e—mtsl(/\e_m) _’_ei)\|t8/(/\e_'m)) QA
0 ( Ae~T)

211

Here m(0) is the multiplicity of 0 as a pole of the resolvent of P, chosen
to make the Birman—Krein formula (3.9) correct, and o,(P) is the point
spectrum of P.

Before proving the theorem, we note that alternatively we could write

Z (e—mj|t\+eimt\) 4 Z (eitit 4 =it

XjERNA_ piea,(P)N(0,00)
w>0

- 3 (efmjm i €i7j|t\)

AjER,—m<arg ;<0

using that if u? > 0 is an eigenvalue of P, then |y is a pole of R(A) and
hence, by our convention, an element of R.

Proof. — By the Birman—Krein formula,

(3.9)
" L R VN VN A G eoiltl 4 p=ailtl
) /O (M e E M gy | ST (eiltpemenlty

" 2mi )
m 5V —02 €0, (P)N(—0,0)
o;>0
+ Z (et 4 ety 4+ m(0).

ui€op(P)N(0,00)
py>0

ANNALES DE L’INSTITUT FOURIER



RESONANCE-COUNTING FUNCTION 595

Using the same convention as discussed after (3.6) and the definition of
f (3.3), we write the distribution v(t) from (3.6) as

[e%e) » / /\) Sl(eiﬂ')\)
t) = At 3( i d)\
= (5 e
(3.10)
e’} / 00 / T / —iT
—ine iy S (A) / _ae ST (AeT) s’ (AeT'T)
= dX - - dA
e [ G e e
where the second equality follows by a change of variable for the integral
over (—o0,0). The first integral on the right hand side is 27¢ times the first
term on the right hand side in (3.9). Solving (3.10) for the integral in (3.9)
and using Lemma 3.5 gives, for ¢t > 0,

1 R ity S’ (A)
- 2 (2 7d)\
2mi Jo (e te )s()\)
_ ;1 = oMt 3’()‘6%77) L eirt S/()\e_%ﬂ) )
27t Jo s(Ae'™) s(Ae~im)
n Z <€—th+em7t) _ Z (e—irjt_’_ei)\jt).
)\jGRﬁA,1 A]'GRPIAO

If X\j € Ag N'R, then A\ € g,,(P) N (—00,0). Using this proves the theorem
for ¢t > 0. To prove the theorem for ¢ < 0, we note that u is a distribution
which is even in t. O

3.1. Comparison of Theorem 3.6 to other Poisson formulae for
resonances

We briefly compare the result of Theorem 3.6 to earlier Poisson formulae,
both in odd and even dimensions.

We note that the proof of Theorem 3.6 can, with a small modification,
be adapted to prove the odd-dimensional Poisson formula. In the gener-
ality of the black-box setting we consider here, this is due to Sjostrand—
Zworski [32], but it follows earlier work for obstacle scattering by Lax—
Phillips [19], Bardos—Guillot—Ralston [1], and Melrose [22, 23] for increas-
ingly large sets of ¢t € R. The proof we describe here is not very different
from, but a bit less direct than, that given in [42]. The value of including this
particular variant of the proof of the odd-dimensional result is that it shows
the consistency of our methods with the trace formula of [1, 19, 22, 23, 32]
in odd dimensions.
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Most of our proof of Theorem 3.6 is not dimension-dependent. In fact,
the Birman—Krein formula holds in both even and odd dimensions. We use
the distribution v defined in the proof of Theorem 3.6, and note that the
computation of v(t), ¢t > 0 in Lemma 3.5 holds in odd dimensions as well,
where we make the (natural) identification of Ay with the complex upper
half plane, and A_; with the lower half plane, and use the bound on g
proved in [42]. In odd dimension d,

0= [ (S e )
_ /Ooo(ei)\t 4 ZI(())\\)) d\+ /Ooo (ei’\t Zl((;\\::)) + et Z/(())\f_:; > d\
(3.11)

S 8T (V) < gy ST (Aet)
_ e At +ez)\t S ( d\ +/ e At +ez)\t i d\
[ A V50

where for the last equality we used s(Ae'™) = s(Ae~*™) in odd dimensions.
But in odd dimensions, s(Aei™)s()\) = 1, so that

s'(N)/s(A) = ' (Aet™) /s(Xe™).

Hence for odd dimensions

v(t) =2 /OOO (7 1 i) z/(())\\)) dA.

Dividing both sides by 2 and then continuing to follow the proof from the
even-dimensional case gives, for t # 0,

(3.12)
1 —ing el il o lt]
u(t) = 3 Z (el ettt Z €7
A ER,—m<arg ;<0 —03€a,(P)N(—o0,0)
0;>0

+ S (et e ) £ m(0), t#£0, dodd.

pi€o,(P)N(0,00)
>0

Noting that in odd dimensions A; is a resonance of a self-adjoint operator
if and only if ij is a resonance gives

u(t) = Z el L m(0), t #0
AjER, Aj#0

showing the consistency with the odd-dimensional Poisson formula.
Now we return to the case of even dimension d. Theorem 1 of [43] is,
when stated using our notion
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THEOREM 3.7. — ([43, Theorem 1] adapted) Let d be even, P be a
self-adjoint operator satisfying the black-box conditions, u the wave trace
defined in (1.3), and 0 < p < 7. Let s(\) = det S(\), and ¢ € C°(R; [0, 1])
be equal to 1 near 0. Then

u(t) = 3 (e~ 1 ity 4 3 el

A ER,—p/2<arg AL0 —O';Z.EUP(P)Q(—OO,O),UJ>O

+m(0) + % /0 T o) ‘j((:)) cos(EN)A + vy (8), £ £ 0

with
Vo € C(R\A{0}), 9fvp(t) = Ot N) VE, N, [t| = oo.

For the reader comparing the statement of [43, Theorem 1] with this
statement, we note that there are several differences. One is caused by the
convention of the location of the physical half plane (here, 0 < arg A\ < 7;
in [43], —7 < arg A < 0) and the resulting difference in the location of the
resonances. Another is caused Zworski’s convention (see the first paragraph
of [43, Section 2]); the diagram should have a cut extending along the entire
imaginary axis) defining, for Re A < 0, s’(\)/s(\) = —s/(—))/s(=X). This
means that each resonance with —p/2 < argA; < 0 actually contributes
twice to the sum which appears in [43, Theorem 1] (once e~#** and then
again e~ (—ilt))

In each of Theorems 3.6 and 3.7, any term which does not arise from
an eigenvalue or resonance may be considered part of a “remainder.” The
remainder terms from Theorem 3.7 are smooth away from ¢ = 0; and one
(vp,p) is well-controlled when |t| — oo. The smoothness of the remainder
in [43, Theorem 1] means that Zworski’s Poisson formula can be used to
show that if the wave trace has singularities at a nonzero time then there
is a lower bound on the number of resonances in sectors near the real axis,
see [43]. See [44] for another application of the Poisson formula of [43], also
related to the singularities of the wave trace away from 0.

The integral appearing in Theorem 3.6 does not appear to generally
yield a term which is smooth in ¢, even away from ¢ = 0. However, the
remainder term has the advantage of being in some sense more explicit
than that of Theorem 3.7. As we shall see in the next section, Lemma 2.3
provides enough information about the remainder in Theorem 3.6 to use the
singularity of u(¢) at 0 to prove Theorem 4.1 below, and hence Theorems 1.1
and 1.2.

TOME 67 (2017), FASCICULE 2



598 T. J. CHRISTIANSEN

4. Proof of Theorems 1.1 and 1.2

We first prove a more general result, Theorem 4.1, and then show that
Theorems 1.1 and 1.2 satisfy the hypotheses of Theorem 4.1.

THEOREM 4.1. — Let the dimension d be even and let P be a black-box
operator satisfying the conditions of [31]; see Section 1.1. Suppose there is
an Ry > Ry so that for all b > a > Ry, if x € C°(R?) has support in
{x € R?: a < |z| < b} then there are constants Cy, mo depending on x so
that

(4.1) [XRA)x]| < CoA™, A€ (1,00).

Let n.(r) denote the eigenvalues of P of norm at most r2, counted with
multiplicity, and assume that

ne(r) +n_1(r) < C'(1+r?) for some C' > 0.

Let u be the distribution defined in (1.3). Suppose there is a constant
a # 0 and €1, €2 > 0 so that

(4.2) td—e (u(t) — 04|Dt\d7150(t)) S OO([O,ég]).
Then there is a constant Cy > 0 so that
r?/Cy < n_1(r) + ne(r) forr > 1.

Now we specialize to the case of P as in the statement of Theorem 4.1.
Set, for t #£ 0,

(4.3) w(t) =u(t) — Z (e—mj\tl +ez‘Tj|t\)

)\j ERNA_;
_ E (ezmt + e—zmt).

pi €op(P)N(0,00)
>0

Ty
Then for P satistfying the conditions of Theorem 4.1 and with w as defined
by (4.3) there is a constant C > 0 so that

LEMMA 4.2. — Let ¢ € C((0,00)) and set ¢, (t) = ¢ (%), v > 0.

‘/w(t)¢7(t)dt‘ < Oy~ for 4 € (0,1].

Proof. — We use Theorem 3.6, and note that according to the theorem
there are three terms to bound. We begin with the simplest to bound:
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J ¢ (t)m(0)dt = m(0) [ ¢(t)dt is independent of ~. Moreover, recalling
that there are at most finitely many negative eigenvalues

[ et ma

—0o5 2€0,(P)N(—00,0)
o;>0

oo

= Z / B(t) (et — 173t dt
—02€0,(P)N(~00,0) " "
o'j>0

D S OO b I
—02€0, (P)N(=00,0) ” °
0j>0

(4.4) < C for v € (0,1].

It remains to bound the term corresponding to the integral appearing in
the Poisson formula of Theorem 3.6. Since for arg A = 0, det S(A\e'™) # 0,
there is a differentiable function g; defined on (0,00) so that s(A\e'™) =
e9'(N) when arg A = 0. There is still some flexibility in defining g;. Since
limy o s(Ae™) = 1, we may choose g1 to satisfy limy o g1(\) = 0. Using the
relation S*(A\)S(\) = I,

s(Ae'™) (s (Aemi ) B
e =~ (e ) A0
Hence
S/ )\em ) 8/ )\e—iw B )
s((/\e”)) = —g1(\), if arg A = 0 and s(/\e—”)) =g1(\), if arg A = 0.

Thus, for t > 0

o s eT) s (e
(4.5) /0 (e SO +e SO dX

oo
== [ o) - ) i

For 7 € R, set
gi(r) ifr>0
g2(7) =S g,(—-7) ifT<0
0 if 7 =0.
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Note that g, is continuous, with
, g1 (7) ifr>0
Go(T) = _, .
—g1(—1) if 7 <0.

From (4.5) and using the continuity of go,

P s AeT) s (AT __/°° oy
/0 (e s()\ei”)—i_e SOe) X = e ga(T)dT

8

Thus
/_Z b(t) /OOO (e—z‘,\t Z’((;\::)) Y Z/((;\:_:))) Inde
- [ e s
- [ domgymiar

= /_ h V¢ (v7)ga(7)dr.

By Lemma 2.3, there is a constant C so that |g1(A\)| < C(1 + [A|?71) for
arg A = 0. Thus

‘/ v (v7)ga (7

‘/ ¢ (7)g2(7/7)dr

< / C(L+ 7))~ 411 + [ /7)) dr

(16) <Oy [T e R < 0y,

Together with Theorem 3.6, (4.4), and the boundedness of the contribution
of m(0), this proves the lemma. O

LEMMA 4.3. — Let d be even, and let P and u satisfy the hypotheses
of Theorem 4.1. Let ¢ € C((0,00)), ¢ = 0, ¢(1) # 0. Then there are
constants ¢ > 0 and vy > 0 so that

/% dt' > claly™®if y € (0, 7]

where « is as in (4.2

Proof. — We recall the assumption that there are €1, €3 > 0 so that

(4.7) 774 (u(t) — af D" 160 (t)) € CO([0, €2)).
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There is a constant b # 0 so that for ¢ > 0, |D;|?~180(t) = bt~<. Thus
(4.8) ’/ ¢, ()| D |41 60 (t) dt’ ’ / (t/y)t™ ddt‘

b/ ¢(t)t_ddt‘ >y
0

= ’y_d

with ¢ > 0.

Set w,.(t) = u(t) — a|D¢|?" 160 (t). Since by (4.7) t4~1w,.(¢) is continuous
for t € [0, €s], there is a constant C so that |¢ (t)w,.(t)] < Ot~ 4=V (1)
when v > 0 is sufficiently small. Thus for v > 0 sufficiently small,

@9 |[ o 0u | < oo ma

< Oyl /%(t)dt < Oy~

The lemma follows from (4.7), (4.8), and (4.9), by choosing 9 > 0 suffi-
ciently small. O

Proof of Theorem 4.1. — Theorem 3.6 together with Lemmas 4.2 and 4.3
have shown that if

a()= Y (e—ilet\+617jlt\>+ 3 (it =ity ¢ £ 0

AjERNA_1 1i €ap(P)N(0,00)

111>0
‘/%

for some ¢, 79 > 0. Here ¢ is as in Lemma 4.3. The theorem now follows
almost immediately from an application of [32, Proposition 4.2]. Here we
use, in the notation of that proposition, V() = r¢. (This V has no relation
to the potential V' in the statement of Theorem 1.2.) We use our assumption
that n_1(r) = O(r?) and n.(r) = O(r?) as r — oo. O

Proof of Theorems 1.1 and 1.2. — If M has no boundary, then there is
an € > 0 and a constant é; # 0 so that

(4.10) 771 (u(t) — éa(volK — volB(0; Ro))| Dy~ 80 (1)) € C>([0,¢]),

see [13]. In case M has a boundary (in particular, if M = R%\ O), that the
distribution in (4.10) is continuous follows from [16, 25] or [14, Prop. 29.1.2
and the proof of Prop. 29.3.3].

By results of Burq [4, Theorem 4] for the case of M = R?\ O or Cardoso—
Vodev [5] for P = —A, on more general manifolds M, we have that (4.1)
holds. We note that with the assumptions we have made on O and M

then
> claly™4/2 > 0if v € (0,7]
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the operator P has no positive eigenvalues, and only finitely many nega-
tive eigenvalues. Using the upper bound of [38, 39], n_1(r) = O(r¢). Then
Theorem 1.2 (which implies Theorem 1.1) follows immediately from Theo-
rem 4.1. ]
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