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CONVERGENCE AND COUNTING IN INFINITE
MEASURE

by Françoise DAL’BO, Marc PEIGNÉ,
Jean-Claude PICAUD & Andrea SAMBUSETTI (*)

Abstract. — We construct non-uniform convergent lattices Γ of pinched,
negatively curved Hadamard spaces, in any dimension N > 2. These lattices are
exotic, by which we mean that they have a maximal parabolic subgroup P < Γ such
that δ(P ) = δ(Γ). We also give examples of divergent, non-uniform exotic lattices in
dimension N = 2. Finally, we consider a particular class of such exotic lattices, with
infinite Bowen–Margulis measure and whose cusps have a particular asymptotic
profile (satisfying a “heavy tail condition”), and we give precise estimates of their
orbital function; namely, we show that their orbital function is lower exponential
with asymptotic behaviour � eδΓR

R1−κL(R) , for a slowly varying function L.

Résumé. — Nous construisons des réseaux non uniformes et convergents Γ
d’isométries d’une variété d’Hadamard à courbure strictement négative et pincée
de dimension N > 2 quelconque. Ces réseaux sont dits exotiques, au sens où ils
possèdent des sous-groupes paraboliques maximaux P < Γ d’exposant critique
δ(P ) = δ(Γ). Nous donnons aussi des examples explicites de réseaux exotiques
non uniformes et divergents en dimension N = 2. Enfin, nous étudions une classe
particulières de tels réseaux exotiques non uniformes et divergents dont la mesure
de Bowen–Margulis est infinie et dont les « cusps » présentent un profile asymp-
totique particulier, satisfaisant une propriété de « queue lourde », et proposons
une estimation précise du comportement asymptotique de leur fonction orbitale;
plus précisément, nous montrons que leur fonction orbitale croît de façon sous-
exponentielle avec un comportement à l’infini de la forme � eδΓR

R1−κL(R) , où L est
une fonction à variations lentes.

Keywords: Poincaré exponent, convergent/divergent groups, Bowen–Margulis measure,
orbital function.
Math. classification: 58F17, 58F20, 20H10.
(*) The authors thank the referee for several helpful comments and P. Vidotto who
carefully read this paper, particularly its last section, and made suggestions to improve it.
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1. Introduction

Let Γ be aKleinian group, i.e. a discrete, torsionless group of isometries of
a Hadamard spaceX of negative, pinched curvature−B2 6KX 6−A2 < 0,
with quotient X̄ = Γ\X. This paper is concerned with two mutually related
problems:

Problem 1. — The description of the distribution of the orbits of Γ
on X, namely of fine asymptotic properties of the orbital function:

vΓ(x,y;R) := ]{γ ∈ Γ/d(x, γ · y) 6 R}

for x,y ∈ X. This has been the subject of many investigations since Mar-
gulis’ [24] (see Roblin’s book [28] and Babillot’s report on [1] for a clear
overview). The motivations to understand the behaviour of the orbital func-
tion are numerous: for instance, a simple but important invariant is its
exponential growth rate

δΓ = lim sup
R→∞

1
R

ln(vΓ(x,y;R))

which has a major dynamical significance, since it coincides with the topo-
logical entropy of the geodesic flow when X̄ is compact, and is related to
many interesting rigidity results and characterization of locally symmetric
spaces, cf. [6, 8, 22].

Problem 2. — The pointwise behaviour of Poincaré series associated
with Γ:

PΓ(x,y, s) :=
∑
γ∈Γ

e−sd(x,γ·y), x,y ∈ X

at a neighborhood of s = δΓ, which coincides with its exponent of con-
vergence. The group Γ is said to be convergent if PΓ(x,y, δΓ) < ∞, and
divergent otherwise. Divergence can also be understood in terms of dy-
namics as, by Hopf–Tsuju–Sullivan theorem, it is equivalent to ergodicity
and total conservativity of the geodesic flow with respect to the Bowen–
Margulis measure mΓ on the unit tangent bundle UX̄ (see again [28] for a
complete account and a definition of mΓ).

The regularity of the asymptotic behaviour of vΓ, in full generality, is
well expressed in Roblin’s results, which trace back to Margulis’ work in
the compact case:

Theorem 1.1 (Margulis [24] - Roblin [27, 28]). — LetX be a Hadamard
manifold with pinched negative curvature and Γ a non elementary, discrete
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subgroup of isometries of X with non-arithmetic length spectrum(1) , then
the exponential growth rate δΓ is a true limit and one gets:

(1) if ‖mΓ‖ =∞ then vΓ(x,y;R) = o(eδΓR),
(2) if ‖mΓ‖ <∞ then vΓ(x,y;R) ∼ ‖µx‖.‖µy‖

δΓ‖mΓ‖ e
δΓR,

where (µx)x∈X denotes the family of Patterson δΓ-conformal densities of
Γ, and mΓ the Bowen–Margulis measure on UX̄.

Here, f ∼ g means that f(t)/g(t)→ 1 when t→∞; we will write f c� g
when 1

c 6 f(t)/g(t) 6 c for c > 1 and t � 0 (or just f � g when the
constant c is not specified). The best asymptotic regularity to be expected
is the existence of an equivalent, as in (2); an explicit computation of the
second term in the asymptotic development of vΓ is a difficult question for
locally symmetric spaces (and almost a hopeless question in the general
Riemannian setting).
Theorem 1.1 shows that the key assumption for a regular behaviour of vΓ

is that the Bowen–Margulis measure mΓ is finite. This condition is clearly
satisfied for uniform lattices Γ (i.e. when X̄ = X/Γ is compact), and more
generally for groups Γ such that mΓ has compact support (e.g., convex
cocompact groups), but it may fail for nonuniform lattices, that is when
X̄ = X/Γ has finite volume but is not compact.
The finiteness of mΓ has a nice geometrical description in the case of

geometrically finite groups. Recall that any orbit Γ · x accumulates on a
closed subset ΛΓ of the geometric boundary ∂X of X, called the limit set
of Γ; the group Γ (or the quotient manifold X̄) is said to be geometrically
finite if ΛΓ decomposes in the set of radial limit points (the limit points ξ
which are approached by orbit points in the M -neighborhood of any given
ray issued from ξ, for some M < ∞) and the set of bounded parabolic
points (those ξ fixed by some parabolic subgroup P acting cocompactly on
∂X\{ξ}); for a complete study of geometrical finiteness in variable negative
curvature see [10] and [28, Proposition 1.10], and for a description of their
topology at infinity see [16]. A finite-volume manifold X̄ is a particular
case of geometrically finite manifold: it can be decomposed into a compact
set and finitely many cusps C̄i, i.e. topological ends of X̄ of finite volume
which are quotients of a horoballHξi centered at a bounded parabolic point
ξi ∈ ∂X by a maximal parabolic subgroup Pi ⊂ Γ fixing ξi.
The principle ruling the regularity of the orbital function vΓ of nonuni-

form lattices, as pointed out in [11] and in the following papers of the

(1) It means that the set L(X̄) = {`(γ) ; γ ∈ Γ} of lengths of all closed geodesics of
X̄ = Γ\X is not contained in a discrete subgroup of R
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authors [13, 14, 15], is that the orbital functions vPi (defined in a similar
way as vΓ) capture the relevant information on the wildness of the metric
inside the cusps, which in turn may imply ‖mΓ‖ = ∞ and the irregular-
ity of vΓ. In this regard, distinctive properties of the group Γ and of its
maximal parabolic subgroups Pi are their type (convergent or divergent,
as defined above) and the critical gap property (CGP), i.e. if δPi < δΓ for
all i. Actually, in [11] it is proved that, for geometrically finite groups Γ, the
divergence of Pi implies δPi < δΓ, and that the critical gap property implies
that the group Γ is divergent, with ‖mΓ‖ < ∞. On the other hand there
exist geometrically finite groups Γ which do not satisfy the CGP: we call
such groups exotic, and we say that a cusp is dominant if it is associated to
a parabolic subgroup P with δP = δΓ. Geometrically finite, exotic groups
may as well be convergent or divergent: in the first case, they always have
‖mΓ‖ = ∞ (by Poincaré recurrence and Hopf-Tsuji-Sullivan theorem, as
‖mΓ‖ < ∞ implies total conservativity); in the second case, in [11] it is
proved that the finiteness of mΓ depends on the convergence of the first
moment series ∑

p∈Pi

d(x, p · x)e−δΓd(x,p·x) < +∞.

The main aim of this paper is to present examples of lattices Γ for which
vΓ has an irregular asymptotic behaviour. According to our discussion, we
will then focus on exotic, non-uniform lattices.

The convergence property of exotic lattices is of interest to detect the
precise asymptotic behaviour of the growth function and the existence of
a Margulis’ function for the space X (as explained in [13]). However, it
is an interesting question on its own: while uniform lattices (as well as
convex-cocompact groups) always are divergent, the only known examples
of convergent groups, to the best of our knowledge, are given in [11] and
have infinite covolume. The constraint of the finiteness of the volume of
X creates additional technical complications and needs more sophisticated
tricks (namely, a sharp control of the spectral radius of a continuous family
of transfer operators), as we will see in Section 5.

The first result of the paper is to show that both convergent and diver-
gent exotic lattices do exist. Actually, in Section 3, by a variation of the
construction in [11] we obtain:

Theorem 1.2. — For any N > 2, there exist N -dimensional, finite
volume manifolds of pinched negative curvature whose fundamental group
Γ is (exotic and) convergent.
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Constructing exotic, divergent lattices is more subtle. We prove in Sec-
tion 5:

Theorem 1.3. — There exist non compact finite area surfaces of
pinched negative curvature whose group Γ is exotic and divergent.

We stress the fact that the examples of Theorem 1.2 have infinite Bowen–
Margulis measure ; on the other hand, the surfaces of Theorem 1.3 can have
finite or infinite Bowen–Margulis measure, according to the prescribed be-
haviour of the metric in the cusps. Moreover, we believe that the assumption
on the dimension in Theorem 1.3 is just technical, but at present we are
not able to construct similar examples in dimension N > 3.
Finally, in Section 6 we address the initial question about how far from

purely exponential the orbital function can be, giving estimates for the
orbital function of a large family of exotic lattices with infinite Bowen–
Margulis measure:

Theorem 1.4. — Let κ ∈]1/2, 1[. There exist non compact finite area
surfaces with pinched negative curvature whose fundamental group Γ sat-
isfies the following asymptotic property: for any x,y ∈ X

vΓ(x,y;R) � eδΓR

R1−κL(R) as R→ +∞

for some slowly varying function(2) L : R+ → R+.

We state in fact a general, but more technical, result on the orbital func-
tion of divergent exotic lattices whose cusps have a asymptotic profile sat-
isfying a “heavy tail condition” (see Theorem 6.1 and conditions H0−H3).
As far as we know, except for some precise asymptotic formulas established
by Pollicott and Sharp [26] for the orbital function of normal subgroups
Γ of a cocompact Kleinian group (hence, groups which are far from being
geometrically finite or with finite Bowen–Margulis measure), these are the
only examples of such precise asymptotic behaviour for the orbital function
of Kleinian groups with infinite Bowen–Margulis measure.

The proof of Theorem 1.4 relies on the study of some singular integral,
already done in [19] in the context of the renewal theory for non nega-
tive and infinite mean random walks, whose distribution satisfies some tail
condition involving a certain parameter κ ∈]0, 1]. For technical reasons,
K.B. Erickson is forced to assume κ ∈]1/2, 1[; it explains why this restric-
tive assumption also appears since we follow his proof in the analysis of

(2)A function L(t) is said to be “slowly varying” or “of slow growth” if it is positive,
measurable and L(λt)/L(t)→ 1 as t→ +∞ for every λ > 0.
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the singular integral which appears in our context. The cases κ ∈]0, 1/2]
and κ = 1 may be studied, under additive conditions and using a different
and very technical approach initiated recently by several authors (cite for
instance [17], [21] and references therein); we refer to [30] for this count-
ing problem and related questions for (infinite covolume) Schottky groups,
where the coding is explicit and easier to work with.

Remark. — This work should be considered as a companion paper
to [13] and [14], where we study the asymptotic properties of the integral
version of vΓ, i.e. the growth function of X:

vX(x;R) := volX(B(x, R)).

In [13], we obtain optimal conditions on the geometry on the cusps in
order that there exists a Margulis function, that is a Γ-invariant function
c : X → R+ such that

vX(x;R) ∼ c(x)eωXR for R→ +∞

where ωX is the exponential growth rate of the function vX (the integral
analogue of δΓ). Notice that ωX can be different from δΓ, also for (non
uniform) lattices, as we showed in [14].

2. Geometry of negatively curved manifolds with finite
volume

2.1. Landscape

Additionally to those given in the introduction, we present here notations
and familiar results about negatively curved manifolds. Amongst good ref-
erences we suggest [4, 5, 18] and others specifically related to this work,
[14, 23]. In the sequel, X̄ = X/Γ is a N -dimensional complete connected
Riemannian manifold with metric g whose sectional curvatures satisfy:
−B2 6 KX 6 −A2 < 0 for fixed constants A and B; we will assume
0 < A 6 1 6 B since in most examples g will be obtained by perturbation
of a hyperbolic one and the curvature will equal −1 on large subsets of X̄.

The family of normalized distance functions:

d(x0,x)− d(x, ·)

converges uniformly on compact subsets to the Busemann function Bξ(x0, ·)
for x→ ξ ∈ ∂X. The horoballs Hξ (resp. the horospheres ∂Hξ) centered at
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ξ are the sup-level sets (resp. the level sets) of the function Bξ(x0, ·). Given
a horosphere ∂Hξ passing through a point x, we also set, for all t ∈ R,

Hξ(t) := {y/Bξ(x0,y) > Bξ(x0,x) + t}

resp. ∂Hξ(t) := {y/Bξ(x0,y) = Bξ(x0,x) + t}. We will refer to t =
Bξ(x0,y) − Bξ(x0,x) as to the height of y (or of the horosphere ∂Hξ(t))
in Hξ. Also, when no confusion is possible, we will drop the index ξ ∈ ∂X
denoting the center of the horoball. Recall that the Busemann function
satisfies the fundamental cocycle relation

Bξ(x, z) = Bξ(x,y) +Bξ(y, z)

which will be crucial in the following.
An origin x0 ∈ X being fixed, the Gromov product between x, y ∈ ∂X ∼=

Sn−1, x 6= y, is defined as

(x|y)x0 = Bx(x0, z) + By(x0, z)
2

where z is any point on the geodesic (x, y) joining x to y ; then, for any
0 < κ2 6 A2 the expression

D(x, y) = e−κ(x|y)x0

defines a distance on ∂X, cp [9]. Recall that for any γ ∈ Γ one gets

(2.1) D(γ · x, γ · y) = e−
κ
2Bx(γ−1·x0,x0)e−

κ
2By(γ−1·x0,x0)D(x, y).

In other words, the isometry γ acts on (∂X,D) as a conformal transforma-
tion with coefficient of conformality |γ′(x)| = e−κBx(γ−1·x0,x0) at x, since
equality (2.1) may be rewritten

(2.2) D(γ · x, γ · y) =
√
|γ′(x)||γ′(y)|D(x, y).

Recall that Γ is a torsion free nonuniform lattice acting on X by hyper-
bolic or parabolic isometries. For any ξ ∈ ∂X, denote by (ψξ,t)t>0 the radial
semi-flow defined as follows: for any x ∈ X, the point ψξ,t(x) lies on the ge-
odesic ray [x, ξ) at distance t from x. By classical comparison theorems on
Jacobi fields (see for instance [23]), the differential of ψξ,t : ∂Hξ → ∂Hξ(t)
satisfies e−Bt‖v‖ 6 ‖dψξ,t(v)‖ 6 e−At‖v‖ for any t > 0 and any vector v in
the tangent space T (∂Hξ); consequently, if µt is the Riemannian measure
induced on ∂Hξ(t) by the metric of X, we have, for any Borel set F ⊂ ∂Hξ

e−B(N−1)tµ0(F ) 6 µt(ψξ,t(F )) =
∫
F

|Jac(ψξ,t)(x)|dµ0(x)

6 e−A(N−1)tµ0(F ).
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As X̄ = Γ\X is non compact and vol(X̄) < ∞, the manifold X̄ can
be decomposed into a disjoint union of a relatively compact subset K̄ and
finitely many cusps C̄1, . . . , C̄l, each of which is a quotient of a horoball Hξi ,
centered at some boundary point ξi, by a maximal parabolic subgroup Pi.
As a consequence of Margulis’ lemma, we can choose the family (Hξi)16i6l
so that any two Γ-translates of theHξi are either disjoint or coincide (cf. [28,
Proposition 1.10]); we call (Hξi)16i6l a fundamental system of horospheres
for X. Accordingly, the Dirichlet domain D of Γ centered at the base point
x0 can be decomposed into a disjoint union D = K∪C1∪· · ·∪Cl, where K is
a convex, relatively compact set containing x0 in its interior and projecting
to K̄, and the Ci are connected fundamental domains for the action of Pi
on Hξi , projecting to C̄i. We let Si = D ∩ ∂Hξi be the corresponding,
relatively compact fundamental domain for the action of Pi on ∂Hξi , so
that Ci = D ∩Hξi ' Si × R+.

Fixing an end C̄, and omitting in what follows the index i, let µt be
the Riemannian measure induced by the Riemannian metric on the horo-
sphere ∂Hξ(t) corresponding to C̄. In [14] we defined the horospherical area
function associated with the cusp C̄ as:

A(t) = µt(P\∂Hξ(t)) = µt(ψξ,t(S)).

This function depends on the choice of the initial horosphere ∂Hξ for the
end C̄, and the following result shows that this dependance is unessential
for our counting problem:

Proposition 2.1 ([14]). — There exists a constant c= c(A,B,diam(S))
such that

vP (R) c� 1
A(R2 )

.

This weak equivalence is the key to relate the irregularity of the metric
in the cusp to the irregular asymptotic behaviour of the orbital function of
P . The second crucial step of our work will then to describe precisely the
contribution of vP in the asymptotic behaviour of vΓ assuming δP = δΓ.

2.2. Cuspidal geometry

The strategy to construct examples with irregular orbital functions as in
Theorems 1.2, 1.3 and 1.4 is to perturb in a suitable manner the metric
of a finite volume hyperbolic manifold Γ\HN in one cuspidal end P\H.
If H = {y/Bξ(x0,y) > t0}, the hyperbolic metric writes on H ' ∂H ×
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R+ ≡ RN × R+ as g = e−(t−t0)dx2 + dt2 in the horospherical coordinates
y = (x, t), where dx2 denotes the induced flat Riemannian metric of ∂H
and t = Bξ(x0,y)− t0. We will consider a new metric g in P\Hξ whose lift
to H writes, in the same coordinates, as

g = τ2(t)dx2 + dt2.

We extend this metric by Γ-invariance to ΓH and produce a new Hadamard
space (X, g) with quotient X̄ = Γ\X. The new manifold X̄ has again finite
volume, provided that ∫ +∞

0
τN−1(t)dt <∞

and the end C̄ = P\H is a new cusp; we call the function τ the analytic
profile of the cusp C̄.
The horospherical area function A associated with the profile τ satisfies

A � τN−1; by Proposition 2.1, it implies that:
(a) the parabolic group P has critical exponent δP = (N−1)ωτ

2 , for ωτ :=
lim supR→+∞

1
R | ln(τ(R))|,

(b) P is convergent if and only if
∫ +∞

0
e−ωτ (N−1)t

τN−1(t) dt <∞.
Also, notice that the sectional curvatures at (x, t) are given by

K(x,t)(
∂

∂xi
,
∂

∂xj
) = −

(
τ ′

τ

)2

and K(x,t)( ∂
∂xi

, ∂∂t ) = − τ
′′

τ (see [7]).
In Sections 4, 5 and 6 we will apply this strategy to prescribe bounds on

curvature and analytic profiles τ at certain depths, depending on additional
real parameters a, b, η, defined as follows.

For any convex function τ : R → R+ with
∫ +∞

0 τN−1(t)dt < ∞ and
satisfying the conditions

∀ t 6 t0 τ(t) = e−(t−t0)(2.3)

A2 < τ ′′/τ < B2(2.4)

ωτ = lim sup
t→+∞

| ln(τ(t))|
t

< B(2.5)

we will set, a > t0
τa(t) = e−aτ(t− a) for t ∈ R.

This profile defines a manifold X̄ with a cusp C̄ which is hyperbolic at
height less than a and then has (renormalized) profile equal to τ .

TOME 67 (2017), FASCICULE 2
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Moreover, given parameters a > t0, b > 0 and η ∈]0, A[, a straightforward
calculus proves the existence of a profile τa,b,η such that

A2 − η < τ ′′a,b,η(t)/τa,b,η(t) < B2 + η for all t,
τa,b,η(t) = e−t for t 6 a,
τa,b,η(t) = e−ωτ t for t ∈ [∆ + a,∆ + a+ b],
τa,b,η(t) = e−(2∆+a+b)τ(t− (2∆ + a+ b)) for t > 2∆ + a+ b.

for some constant ∆ = ∆(A,B, η) � 0. The profile τa,b,η induces the
geometry of the cusp C̄ which is hyperbolic till height a, with constant
curvature −ω2

τ in a band of width b at height ∆ + a, and which then has
the same asymptotic invariants as the initial profile τ after height 2∆+a+b.

3. Proof of Theorem 1.2: construction of convergent
lattices

An example of manifold of negative curvature with infinite volume and
whose fundamental group is convergent is due to Dal’Bo–Otal–Peigné [11].
We propose in this section a variation of their argument to produce a
convergent nonuniform lattice. We will consider a finite volume hyperbolic
manifold Γ\HN with one cuspidal end P\H and deform the metric in this
end as explained before to obtain a new Hadamard space (X, g) such that
the quotient X̄ = Γ\X has finite volume and a dominant cusp C̄ = P\H
with a convergent parabolic group P , whose exponent δP :

(1) is greater than the Poincaré exponent of Γ acting on HN , that is
N − 1;

(2) equals the Poincaré exponent δΓ of Γ corresponding to the new
metric.

For this, we choose τ satisfying the conditions (2.3), (2.4), (2.5) with δP =
(N−1)ωτ

2 > (N −1) and
∫ +∞

0
e−ωτ (N−1)t

τ(t)N−1 dt <∞, and we consider the profile
τa for some a > 0 to be precised.
Remark that the first condition can be satisfied only if ωτ > 2 which re-

quires B2/A2 > 4. We will denote by d the distance on (X, g) corresponding
to this new metric, and by d0 the hyperbolic distance. We emphasize that
the perturbation of the metric will not change neither the algebraic struc-
ture of the groups Γ and P , nor the horospheres H(t) (which are only
modified in size and not as subsets of Hn) and their radial flow; however,
the orbital functions vP and vΓ have different behaviour before and after
perturbation.
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Now, we need to introduce a natural decomposition of geodesic segments
according to their excursions in the cusp, which will enable us to encode
elements of Γ by sequences of parabolic elements travelling far in the cusp
and elements staying in a fixed, compact subset. We use the same notations
as in 2.1 for the compact subset K, the fundamental horosphere H = Hξ1
of X, and the Borel fundamental domain S for the action of P on ∂H. Let
h > 0: for every γ ∈ Γ, the geodesic segment [x0, γ · x0] intersects r = r(γ)
disjoint translates g.H(h) (with the convention r = 0 if the intersection
with

⋃
g∈Γ g.H(h) is empty). In case r > 1, denote by z−1 , . . . , z−r (resp.

z+
1 , . . . , z+

r ) the hitting (resp. exit) points of the oriented geodesic segment
[x0, γ · x0] with translates of H(h) in this order. Hence we get

[x0, γ · x0] ∩

⋃
g∈Γ

g · H(h)

 = [z−1 , z1
+] ∪ · · · ∪ [z−r , z+

r ].

Accordingly, when r > 1 we can define the points y−1 ,y
+
1 . . .y−r ,y+

r on
[x0, g · x0] such that, for any 1 6 i 6 r, the geodesic segment [y−i ,y

+
i ] is

the connected component of [x0, γ ·x0]∩
(⋃

g∈Γ g · H
)
containing [z−i , z

+
i ].

We also set y+
0 = x0 and y−r+1 = γ · x0.

With these notations, there exist uniquely determined isometries g1, . . . ,

gr ∈ Γ and p1, . . . , pr ∈ P such that y−1 ∈ g1 · S, y+
1 ∈ g1p1 · S, . . . ,y+

r ∈
g1p1 . . . grpr · S. Finally, we define gr+1 by the relation

γ = g1p1 . . . grprgr+1

which we call the horospherical decomposition of γ at height h. Notice that
this decomposition depends only on the initial hyperbolic metric. We also
set x+

0 = x0,x−r+1 = γ · x0 and x−i = g1p1 . . . gi · x0,x+
i = g1p1 . . . gipi · x0

for 1 6 i 6 r. We then have:

Lemma 3.1. — Let γ=g1p1 . . . prgr+1 be the horospherical decomposi-
tion of γ at height h:

(i) for every i ∈ {1, . . . , r + 1} the geodesic segments [x+
i−1,x

−
i ] and

[x0, gi · x0] lie outside the set
⋃
g∈Γ g.H(c), for c = diam(K);

(ii) for every i ∈ {1, . . . , r} the geodesic segments [x0, pi·x0] have length
greater than 2(h− c) and lie outside the set

⋃
g∈Γ g.H(h− c).

Proof. — Assume r > 1 and fix 1 6 i 6 r + 1. By construction, each
geodesic segment [y+

i−1,y
−
i ] lies outside

⋃
g∈Γ g.H. Then, each segment

[x+
i−1,x

−
i ] lies outside

⋃
g∈Γ g.H(c) since d(x+

i−1,y
+
i−1) and d(x−i ,y

−
i ) are

both smaller than c. Since [x+
i−1,x

−
i ] = g1p1 . . . gi−1pi−1 ·[x0, gi ·x0] and the

set
⋃
g∈Γ g.H(c) is Γ-invariant, the same holds for the segment [x0, gi · x0].
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To prove statement (ii), notice that the segment [y−i ,y
+
i ] intersects the set⋃

g∈Γ g.H(h) and has endpoints in ∂H, so that d(y−i ,y
+
i ) > 2h; one con-

cludes using the facts that d(x−i ,y
−
i ) and d(x+

i ,y
+
i ) are both smaller than

c and that [x−i ,x
+
i ] = g1p1 . . . pi−1gi · [x0, pi · x0]. �

Moreover, the distance function is almost additive, with respect to this
decomposition:

Lemma 3.2. — There exists a constant C > 0 such that for all γ ∈ Γ
with horospherical decomposition γ=g1p1 . . . grprgr+1 at height h:

d(x0, γ · x0) >
r+1∑
i=1

d(x0, gi · x0) +
r∑
i=1

d(x0, pi · x0)− rC.

Proof. — With the above notations one gets, for C := 4diam(K)

d(x0, γ · x0) =
r+1∑
i=1

d(y+
i−1,y

−
i ) +

r∑
i=1

d(y−i ,y
+
i )

>
r+1∑
i=1

d(x+
i−1,x

−
i ) +

r∑
i=1

d(x−i ,x
+
i )− 4rdiam(K)

=
r+1∑
i=1

d(x0, gi · x0) +
r∑
i=1

d(x0, pi · x0)rC. �

Now assume a > max(h,diam(K)) and let Pa = {p ∈ P/d0(x0, p · x0) >
2a} and Γa = {γ ∈ Γ/[x0, γ · x0] ∩ g.H(a) = ∅ for all g ∈ Γ}. Let γ ∈ Γ
with horospherical decomposition γ = g1p1 . . . grprgr+1 at height h. By
Lemma 3.1, the geodesic segments [x0, gi ·x0], 1 6 i 6 r+1, stay outside the
perturbed set

⋃
g∈Γ g·H(a), so that gi ∈ Γa and d(x0, gi·x0) = d0(x0, gi·x0).

Consequently, the Poincaré series of Γ for the perturbed metric is

PΓ(x0, δ) 6 1 +
∑

Γa\{Id}

e−δd(x0,γ·x0) +
∑
p∈Pa

e−δd(x0,p·x0)

+
∑
r>1

∑
g1,...,gr+1∈Γa
p1,...,pr∈Pa

e−δd(x0,g1p1...grprgr+1·x0)

6
∑
γ∈Γ

e−δd0(x0,γ·x0) +
∑
p∈Pa

e−δd(x0,p·x0)

+
∑
r>1

eCδ ∑
g∈Γa

e−δd(x0,g·x0)
∑
p∈Pa

e−δd(x0,p·x0)

r
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6
∑
γ∈Γ

e−δd0(x0,γ·x0) +
∑
p∈Pa

e−δd(x0,p·x0)

+
∑
r>1

eCδ∑
γ∈Γ

e−δd0(x0,γ·x0)
∑
p∈Pa

e−δd(x0,p·x0)

r

For δ = δP the term
∑
γ∈Γ e

−δd0(x0,γ·x0) < +∞ since δP > N−1. On the
other hand, the group P being convergent with respect to the new metric
g, we deduce that

∑
p∈Pa e

−δP d(x0),p·x0)) → 0 as a → +∞; we may thus
choose a large enough so that

eCδP
∑
γ∈Γ

e−δP d0(x0,γ·x0)
∑
p∈Pa

e−δP d(x0,p·x0) < 1

which readily implies PΓ(x0, δP ) < +∞, hence δP > δΓ. As P is a subgroup
of Γ, this implies that δP = δΓ, hence Γ is a convergent group. �

4. Critical gap property versus divergence

In this section we start constructing a hyperbolic lattice Γ of H2 which
is generated by suitable parabolic isometries, so that the resulting surface
Γ\H2 has finite volume. In the disk model of the hyperbolic plane, we choose
r > 2 and 2r boundary points ξ0 = η0, ξ1, η1, . . . , ξr, ηr = ξ0 of S1 = ∂B2

in cyclic order, and consider (uniquely determined) parabolic isometries
p1, . . . , pr such that for 1 6 i 6 r we have pi · ξi = ξi and pi · ηi−1 = ηi. We
remark that all ηi belong to the Γ orbit of the point η0, which is a parabolic
fixed point of the isometry p0 := prpr−1 . . . p1.

Proposition. — The group Γ = 〈p1, . . . , pr〉 is a free non abelian group
over p1, . . . , pr. The quotient Γ\B2 is a finite surface with r + 1 cuspidal
ends, with a cusp C̄i for each parabolic subgroup Pi = 〈pi〉 for i = 1, .., r,
and another cusp C̄0 corresponding to the parabolic subgroup P0 = 〈p0〉
fixing ξ0.

Each element γ ∈ Γ\{Id} can be written in a unique way as a word with
letters in the alphabet A := {p±1

1 , . . . , p±1
r }; namely, one gets

(4.1) γ = pε1j1 . . . p
εn
jn

with pε1j1 , . . . , p
εn
jn
∈ A, n > 1 and with adjacent letters which are not

inverse to each other. Such expression with respect to the natural (but not
canonical) choice of the alphabet A is called a coding of elements of Γ. We
will call j1 is the first index of γ, denoted by iγ ; similarly jn the last index
and is denoted by lγ .
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4.1. A new coding for elements of Γ

We code here the elements of Γ by blocks, with some admissibility rules to
be precised. This new coding is designed to obtain a contraction property
for an operator that will be introduced and studied in the next sections
whose restriction to some suitable space of functions present remarkable
spectral properties.
We first rewrite the decomposition (4.1) as follows

(4.2) γ = p`1i1 p
`2
i2
. . . p`mim

with m > 1, `1, . . . , `m ∈ Z∗ and ij 6= ij+1 for 1 6 j < m. When all the
`j , 1 6 j 6 m, belong to {±1}, one says that γ is a level 1 word; the set of
such words is denoted by W1. Then, we select all the `j , 1 6 j 6 m, with
|`j | > 2 and write γ as

(4.3) γ = pl0j0Q1p
l1
j1
Q2 . . . p

lk−1
jk−1

Qkp
lk
jk

for k > 0, with:
• |l1|, . . . , |lk−1| > 2,
• |l0|, |lk| 6= 1,
• each Qi is either the identity element or a level 1 word, with iQi 6=
ji−1 and lQi 6= ji.

The decomposition by blocks (4.3) is still unique ; it only uses letters from
the new alphabet

B := P̂1 ∪ · · · ∪ P̂r ∪W1

where P̂i := {pni /|n| > 2} for 1 6 i 6 r, possibly with pl0i0 = 1 or plrir = 1.
Notice that this decomposition does not depend on the metric obtained by
perturbation inside the cusps, but only on the presentation chosen for Γ.

We will call blocks the letters of this new alphabet, and say that a word
β1 . . . βm in the alphabet B is admissible if the last letter (for the original
alphabet A) of any block βi is different from the first one of βi+1 for
1 6 i 6 m − 1. So, any γ ∈ Γ \ {Id} can be written as a finite, admissible
word β1 . . . βm on B; the ordered sequence of the βi’s is called the B-
decomposition of γ and the number m of blocks is denoted by |γ|B. Finally,
we denote by ΣB the set of all finite admissible words with respect to B.

4.2. A new metric in the cusps

We consider a fundamental system of horoballs H0,H1,H2, . . . ,Hr cen-
tered respectively at the parabolic points ξ0, ξ1, ξ2, . . . , ξr and such that all
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the horoballs γ · Hi, for γ ∈ Γ, 0 6 i 6 r, are disjoint or coincide, as in
Subsection 2.1. Then, we modify the hyperbolic metric in the cuspidal ends
C̄i = Pi\Hi as follows. We choose positive constants a0, a1, . . . , ar−1, ar, b

and η, functions τ0, . . . , τr−1 and τr as in Subsection 2.2 such that

ωτr = max(ωτ0 , . . . , ωτr ) > 1

and we prescribe the profile τi,ai for the i-th cusp C̄i for 0 6 i 6 r − 1,
and the profile τr,ar,b on the last dominant cusp C̄r = C̄. This yields a
new surface X = (B2, ga0,...,ar,b), with quotient X̄ = Γ\X of finite area.
Since the metric on X depends, in particular, on the value of the parameter
b, which will play ...ial role in what follows, we shall denote the induced
distances on X, ∂X ∼= S1 and the conformal factor respectively by db, Db

and | · |b; on the other hand, we shall omit the index b in the Busemann
function and in the Gromov product, to simplify notations. The dependence
of Db on the parameter b is described by the following lemma, whose proof
can be found in [25]:

Lemma 4.1. — Let b0 > 0 be fixed. There exists c > 1 and α ∈ ]0, 1]
such that the family of distances (Db)06b6b0 , are Hölder equivalent; namely
for all b ∈ [0, b0] we have

1
c
D

1/α
0 6 Db 6 cD

α
0 .

4.3. Ping-pong by blocks.

For any 1 6 i 6 r, we consider the sub-arcs Ii := [ηi−1, ηi] and I ′i :=
[p−1
i · ηi−1, pi · ηi] of S1 containing ξi. There exists a ping-pong dynamic

between these intervals: namely, for any block β ∈ B, we have
• if β ∈ W1, then β · I ′i ⊂ Iiβ for any i 6= lβ

• if β ∈ P̂l with l = iβ = lβ , then β · Ii ⊂ I ′l for any i 6= l.
Moreover, for any γ with B-decomposition β1 . . . βm, we define a compact
subset Kγ ⊂ S1 as follows:

• Kγ = ∪i 6=lγ I ′i, if βm ∈ W1

• Kγ = ∪i 6=lγ Ii, if βm ∈ P̂l with l = lγ .
Then, using the fact that the closure of the sets I ′i and ∂X \ Ii are disjoint,
one gets:

Lemma 4.2. — There exists a constant C = C(A, η) > 0 such that

db(x0, γ · x0)− C 6 Bx(γ−1 · x0,x0) 6 db(x0, γ · x0)

for any γ ∈ Γ and any x ∈ Kγ .
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Which yield to:

Corollary. — There exist a real number r ∈ ]0, 1[ and a constant
C > 0 such that for any γ ∈ Γ with length |γ|B = k, one gets

∀x ∈ Kγ |γ′(x)|0 6 Crk.

Proof. — See [3, Prop. 2.2]. �

4.4. Coding for the limit points.

An infinite word on the alphabet B, i.e. an infinite sequence β̄ = (βn)n>1
of elements of B is called admissible if any finite subword β1 . . . βk is ad-
missible ; the set of such words is denoted by Σ+

B. Corollary 4.3 implies in
particular the following fundamental fact:

Lemma 4.3. — For any β̄ ∈ Σ+
B, the sequence (β1 . . . βn · x0)n>0 con-

verges to some point π(β̄) ∈ ∂X; the map π : Σ+
B → ∂X is one-to-one, and

its image π(Σ+
B) coincides with the subset ∂0X := ∂X\

(⋃r
i=1 Γ·ξi∪Γ·W1

)
where W1 :=W1 · x0 ∩ ∂X.

Notice that, if γ has B-decomposition b1 . . . bm, then the subset Kγ

defined in 4.3 is the closure of the subset corresponding, via the coding
map π, to the infinite sequences β̄ = (βn)n>1 such that the concate-
nation γ ∗ β̄ = (b1 . . . bmβ1 . . . βi . . . ) is admissible. We also set Jγ :=
Cl{π(γ ∗ β̄) | β̄ ∈ Kγ}, that is the closure of points corresponding to
admissible sequences obtained by concatenation with the B-decomposition
of γ.
As indicated previously, this coding by blocks is of interest since the clas-

sical shift operator on Σ+
B induces locally, exponentially expanding maps

Tn on ∂0X; the map T , described for instance in details in [12], has count-
ably many inverse branches, each of them acting by contraction on some
subset of ∂X. Namely, we consider on Σ+

B the natural shift θ defined by

θ(β̄) := (βk+1)k>1, ∀ β̄ = (βk)k>1 ∈ Σ+
B

This map induces a transformation T : ∂0X → ∂0X via the coding π;
moreover, T can be extended to the whole ∂X by setting, for any γ with
B-decomposition γ = γ1γ2 . . . γn and ξ ∈ {ξ1, . . . , ξr} ∪W1

T (γ.ξ) := γ2 . . . γn.ξ

and T (ξ) := ξ. Then, for every block β ∈ B, the restriction of T to Jβ is
the action by β−1; by the dynamic described above, the inverse branches
of the map T have the following property:
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Proposition. — There exist 0 < r < 1 and a constant C > 0 such
that, for any γ ∈ Γ with |γ|B = k and for x, y ∈ KΓ we have

D0(γ · x, γ · y) 6 CrkD0(x, y).

This property is crucial for the investigation of the spectral properties of
the transfer operator, which will be introduced in the next section.

5. Existence of divergent exotic lattices

This section is devoted to prove Theorem 1.3: there exist two dimen-
sional exotic and divergent lattices. Existence of infinite covolume exotic
and divergent discrete groups has already been provided in [25], by the
following procedure.

Given a Schottky group Γ = <h, p> ⊂ Isom+(Hn) with h hyperbolic
and p parabolic, one fixes an horoball H0 centered at the fixed point of p,
hence a neighborhood <p>\H0 of the cusp associated with p. Then, one
chooses a profile τ which does not modify the critical exponent δ〈p〉 of 〈p〉
and makes the group Γ a convergent lattice of a new manifold X. It can
then be shown that there exists a critical value a∗ such that

(1) for any a > a∗ the metric perturbed by τa in the cusp (more ex-
plicitely the metric whose profile is τ beyond the height a - see again
Subsection 2.2) makes Γ non exotic, hence divergent,

(2) the one given by τa∗ makes Γ exotic and divergent.
In the first case, the divergence comes from the contribution of elements of
Γa ⊂ Γ corresponding to geodesic loops staying at height less than a in the
cusp, which is preponderant in the value of the Poincaré series of Γ since
δ〈p〉 is strictly less than the critical exponent of Γ ⊂ Isom+(Hn).
Here, we adapt this approach to obtain a discrete group Γ with finite

covolume, in dimension 2. We start from the surface X̄ = Γ\X with r + 1
cusps described in 4.2, with a dominant cusp C̄r = Pr\Hr and make Γ
convergent by choosing a0, . . . , ar � 0, as in Theorem 1.2. Besides a differ-
ent coding by blocks (due to the generators which are all parabolic) which
gives a slightly different expression for the transfer operator associated to
Γ, the main difficulty here is to show that Γ can be made divergent. This
cannot be achieved now by simply pushing the perturbation far away in
the cusp, since in our case δPr is strictly greater than the critical exponent
of the subset Γa of elements staying in the compact, non-perturbed part;
so, even choosing the ai � 0, the group Γ remains convergent! To obtain
the divergence we rather modify C̄r with a profile τr,ar,b which equals the
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profile of a cusp with constant curvature metric −ω2
τr on a sufficiently large

band of width b � 0. With those conventions, we will prove the existence
of b∗ such that:

(1) Γ with the metric perturbed by τa,b is non exotic and divergent for
every b > b∗,

(2) Γ with the metric perturbed by τa,b∗ is exotic and still divergent.
The approach to obtain the existence of the critical value b∗ is to consider

a family of transfer operators (Lb,z)b,z associated with the transformation
T , the latter being described at the end of Section 4 and depending on b.
The continuity of b 7→ Lb,z and b 7→ ρ(Lb,z) where ρ(Lb,z) is the spectral
radius of Lb,z in some suitable functional Banach space is a key point of
the approach.

5.1. On the spectrum of transfer operators

The map T encodes a large part of the action of the group Γ on ∂0X;
from an analytic point of view, this dynamic may be described throughout
the family (Lb,z)b,z of transfer operators associated with T , which takes
into account the different inverse branches of T and is defined formally by:
for any Borel bounded function ϕ : ∂X → R and any x ∈ ∂0X and z ∈ C

(5.1) Lb,zϕ(x) =
∑

y/Ty=x

e−zC(y)ϕ(y),

for a “ceiling” function C to be defined. The function C will depend on the
metric ga0,...,ar,b and especially on the width b of the band inside the cusp
C̄r where the curvature is prescribed to be −ω2

τ ; we will need to understand
precisely the dependence of Lz,b with respect to b and thus notice the ceiling
function Cb and its corresponding transfer operator Lb,z.
The alphabet B being countable, the pre-images of x ∈ ∂0X by T are

the points y = β · x, for those blocks β ∈ B such that x belongs to Kβ ,
that is:

• if x ∈ I ′i then β ∈ ∪j 6=iP̂j or β ∈ W1 with lβ 6= i,
• if x ∈ Ii \ I ′i then β ∈ ∪j 6=iP̂j .

For such y = β · x, the quantity Cb(y) is given by

(5.2) Cb(y) := Bβ−1·y(β−1 · x0,x0) = Bx(β−1 · x0,x0)

(where B is the Busemann function with respect to the metric g =
ga0,...,ar,b). By Lemma 4.2, the quantity Bx(β−1 · x0,x0) differs from

ANNALES DE L’INSTITUT FOURIER



COUNTING IN INFINITE MEASURE 501

d(β−1 ·x0,x0) by a term which is bounded uniformly in β ∈ B and x ∈ Kβ ,
this will allow us to compare the sum

∑
k>0 Lkb,s1(x) with the Poincaré se-

ries PΓ(x0,x0, s) =
∑
γ∈Γ e

−sd(x0,γ·x0) '
∑
k>0

∑
γ∈Γ
|γ|B=k

e−sd(x0,γ·x0).

We can now make explicit the definition of transfer operators Lb,z, ex-
tending formula (5.1) for any x ∈ ∂X: for b > 0, z ∈ C, any bounded Borel
function ϕ : ∂X → C and any x ∈ ∂X we set

(5.3) Lb,zϕ(x) =
∑
β∈B

1Kβ (x)e−zBx(β−1·x0,x0)ϕ(β · x).

In other words, Lb,zϕ(x) =
∑
β∈B wb,z(β, x)ϕ(β · x) where the wb,z(γ, ·) :

∂X → C, z ∈ C and γ ∈ Γ are defined by

wb,z(γ, x) = 1Kγ (x)e−zBx(γ−1·x0,x0)

and called weight functions. Observe now that these functions satisfy the
cocycle relation: if the B-decomposition of γ = γ1γ2 is given by the simple
concatenation γ1 ∗ γ2 of the γi, i.e. |γ1γ2|B = |γ1|B + |γ2|B, then

wb,z(γ1γ2, x) = wb,z(γ1, γ2 · x) · wb,z(γ2, x).

This equality leads to the following simple expression of the iterates of
the transfer operators: for any k > 1 and x ∈ ∂X

(5.4)

Lkb,zϕ(x) =
∑
γ∈Γ
|γ|B=k

wb,z(γ, x)ϕ(γ · x)

=
∑
γ∈Γ
|γ|B=k

1Kγ (x)e−zBx(γ−1·x0,x0)ϕ(γ · x).

The operator Lb,z is well defined when Re(z) > δ, and also for Re(z) = δ =
δΓ if Γ is convergent. It acts on the space C(∂X) of C-valued continuous
functions on ∂X endowed with the norm | · |∞ of the uniform convergence;
however, to obtain a quasi-compact operator with good spectral properties,
we will consider its restriction to a subspace Lα ⊂ C(∂X) of Hölder con-
tinuous functions with respect to D0, for α given by Lemma 4.1. Namely
we let

Lα := {ϕ ∈ C(∂X) : ‖ϕ‖ = |ϕ|∞ + [ϕ]α < +∞}
where [ϕ]α := supx,y∈∂X

x 6=y

|ϕ(x)−ϕ(y)|
Dα0 (x,y) ; then, Lb,z acts on Lα because of the

following

Lemma 5.1. — Each weight wb,z(γ, ·) belongs to Lα and for any z ∈ C,
there exists C = C(z) > 0 such that for any γ ∈ Γ

‖wb,z(γ, ·)‖ 6 Ce−Re(z)db(x0,γ·x0).
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Proof. — By Lemma 4.2, the family {e<(z)db(o,γ.o)|wb,z(γ, .)|∞, γ ∈ Γ}
is bounded. The control of the Lipschitz-coefficient of wb,z(γ, .) is more
delicate, we first recall briefly the proof in the constant curvature case
and refer [3, Lemma III.3] in variable curvature. To estimate wb,z(γ, x) −
wb,z(γ, y) for any points x, y belonging to the same subset Kγ , note that
there exists a constant A > 0 such that |Bx(γ−1 ·x0,x0)−By(γ−1 ·x0,x0)| 6
A|x− y|. The inequality |eZ − 1| 6 2|Z|e|<(Z)| readily implies

|e−zBx(γ−1·x0,x0) − e−zBx(γ−1·x0,x0)|

6 2A|z|eA|z|×|x−y|e−<(z)Bx(γ−1·x0,x0)|x− y|.

So, the Hölder coefficient of wz(γ, .) satisfies [wz(γ, .)]α 6 Ce−<(z)d(o,γ.o)

for some constant C = C(z). �

The following theorem plays a key role in the sequel ; it allows us to
control the spectrum of the operators Lb,s for real parameters b > 0 and
s > δ := ωτ/2.

Theorem 5.2. — For any b > 0 and s > δ = ωτ/2, the operator Lb,s
acts both on (C(∂X), | · |∞) and (Lα, ‖ · ‖), with respective spectral radius
ρ∞(Lb,s) and ρα(Lb,s). Furthermore, the operator Lb,s is quasi-compact(3)

on Lα, and:
(1) • ρα(Lb,s) = ρ∞(Lb,s),
• ρα(Lb,s) is a simple, isolated eigenvalue of Lb,s,
• the eigenfunction hb,s associated with ρα(Lb,s) is non negative on
∂X,

(2) For any s > δ, the map b 7→ Lb,s is continuous from R+ to the space
of continuous linear operators on Lα,

(3) The map s 7→ ρ∞(Lb,s) is decreasing on [δ,+∞[.

Sketch of the proof. — We follow [25, Sections 4.3 and 4.4]. The key
argument is the following inequality: for any β ∈ B, x, y ∈ Kβ , s > δ and
k > 1

|Lkb,sϕ(x)− Lkb,sϕ(y)| 6
∑
γ∈Γ
|γ|B=k

wb,s(γ, x)|ϕ(γ · x)− ϕ(γ · y)|

+
∑
γ∈Γ
|γ|B=k

|wb,s(γ, x)− wb,s(γ, y)| × |ϕ|∞,

(3) In other words its essential spectral radius on this space is less than ρα(Lb,s)
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so that, by Corollary 4.3, there exists sequences (rk)k and (Rk)k such that

(5.5) ‖Lkb,sϕ‖ 6 rk‖ϕ‖+Rk|ϕ|∞

with lim supk→+∞ r
1/k
k 6 r|Lb,s|∞. Using a version due to H. Hennion of

the Ionescu–Tulcea–Marinescu’s theorem concerning quasi-compact oper-
ators, we conclude that the essential spectral radius of Lb,s on Lα is not
greater than rρ∞(Lb,s). The control of the peripheral spectrum of Lb,s in
Lα is based on the positivity of this family of operators, as in [25]; similarly,
one adapts the proof of Proposition 4.7 in [25] to establish assertion (2).
Proof of (3) is direct. �

Remark. — Let ρb,s = ρ∞(Lb,s). Then, Lb,shb,s = ρb,shb,s, the function
hb,s being unique up to a multiplicative constant. By duality, there also ex-
ists a unique probability measure σb,s on ∂X such that σb,sLb,s = ρb,sσb,s;
the function hb,s becomes uniquely determined imposing the condition
σb,s(hb,s) = 1, which we will assume from now on.

5.2. From convergence to divergence: Proof of Theorem 1.3

Combining expression (5.4) with Lemma 4.2, one gets for any s, b > 0
and k > 0

(5.6) |Lkb,s1|∞ �
∑
γ∈Γ
|γ|B=k

exp(−sdb(x0, γ · x0)).

Consequently, the Poincaré series PΓ(s) of Γ relatively to db and the series∑
k>0 |Lkb,s1|∞ converge or diverge simultaneously. Following [25], we see

that the function s 7→ ρ∞(Lb,s) is strictly decreasing on R+; the Poincaré
exponent of Γ relatively to db is then equal to

δΓ = sup
{
s > 0 : ρ∞(Lb,s) > 1

}
= inf

{
s > 0 : ρ∞(Lb,s) 6 1

}
.

and the latter expression will be useful to prove Theorem 1.3. We first get
the

Lemma 5.3. — Assume that the profiles τ0, . . . , τ1, . . . , τr = τ are con-
vergent and satisfy the condition ωτ = max(ωτ0 , . . . , ωτr ) > 2. Then there
exist non negative reals a0, . . . , ar and b0 > 0 such that

• The group Γ has exponent ωτ
2 and is convergent with respect to

ga0,...,ar,0;
• The group Γ has exponent greater than ωτ

2 and is divergent with
respect to ga0,...,ar,b for any b > b0.
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Proof. — By the previous section and the choice of the profiles τi, 0 6
i 6 r (with the additionnal notation τ = τr), we may fix the constants
a0, . . . , ar large enough, in order that the group Γ acting on (X, ga0,...,ar,0)
is a convergent lattice with exponent δ = ωτ

2 .
To prove the second point we will take in account only the contribution

of words containing powers of pr ; we get by the triangle inequality∑
γ∈Γ

e−δdb(x0,γ·x0) >
∑
k>1

∑
Q1,...,Qk∈W1
|l1|,...,|lk|>2

e−δdb(x0,p
l1
r Q1...p

lk
r Qk·x0)

>
∑
k>1

∑
|l|>2

e−δdb(x0,p
l
r·x0)

∑
Q∈W1

e−δdb(x0,Q·x0)

k

.

We now use the following fact:

Lemma 5.4. — There exist b0 > 0 and, for any b > b0, integers nar 6 nb
depending respectively on ar and b > b0, such that:

• nb →∞ when b→∞,
• for any l satisfying nar 6 |l| 6 nb, there exists a constant C de-
pending only on ar and the bounds of the curvature such that:

db(x0, p
l
r · x0) > 2

ωτ
ln |l| − C.

Proof. — Proof of Lemma 5.4 When |l| is large enough, say |l| > nar > 2,
the geodesic segments [x0, p

l · x0] intersect the horoball Hξr (ar + ∆) and
when |l| is not too big the same geodesics do not intersectHξr (ar+b+∆). If
we set nb := max{n ∈ N ; |k| 6 n⇒ [x0, p

kx0]∩Hξr (ar + b+ ∆) = ∅}, the
latter is well defined and satisfies nb → ∞ when b → ∞. Fix l satisfying
nar 6 |l| 6 nb and define respectively by x1 and x2 the enter and exit
point of the oriented geodesic segment [x0, p

l · x0] in Hξr (ar + ∆). Using a
comparison argument with the geodesic from x0 tangent to ∂Hξr (ar + ∆),
we can observe that

|db(x0,x1)− d0(x0,x1)| < c and |d0(x0,x1)− ar| < c

for a constant c only depending on the bounds of the curvature. In the
horospherical annulus Hξr (ar + ∆) \Hξr (ar + b+ ∆) the curvature is −ω2

τ

so that db(x1,x2) = dhyp(x1,x2)
ωτ

. Combining this with the above inequalities
we get the existence of a constant C depending on ar, τ and on the bounds
of the curvature such that for l satisfying nar 6 |l| 6 nb:

db(x0, p
l
rx0) > dhyp(x0, p

lx0)
ωτ

− C = 2
ωτ

ln(|l|)− C. �
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To conclude the proof of Lemma 5.3, notice that for δ = ωτ
2 we have:∑

{l ; |l|>2}

e−δdb(x0,p
l·x0) >

nb∑
|l|=nar

e−δdb(x0,p
l·x0)

�
nb∑

|l|=nar

(
1

|l|2/ωτ

)ωτ/2
→ +∞ as b→ +∞.

So, there exists b0 > 0 such that∑
|l|>2

e−δdb(x0,p
l·x0)

∑
Q∈W1

e−δdb(x0,Q·x0)

 > 1

as soon as b > b0; in particular, continuity and monotonicity in s gives:∑
|l|>2

e−sdb0 (x0,p
l·x0)

∑
Q∈W1

e−sdb0 (x0,Q·x0)

 > 1

for some s> ωτ
2 . This ensures that δΓ> s> ωτ

2 = δPr = max{δPi | 06 i6 r},
and Γ is divergent with respect to the metric ga0,...,ar,b by the critical gap
property recalled in the introduction. �

End of proof of Theorem 1.3. — Recall that δ = ωτ/2. Since ρα(Lb,δ) is
an eigenvalue of Lb,δ which is isolated in the spectrum of Lb,δ, the function
b 7→ ρα(Lb,δ) (which is a priori semi-continuous) has the same regularity
as b 7→ Lb,δ. For b0 given by Lemma 5.3, we have ρα(L0,δ) = ρ∞(L0,δ) 6 1
and ρα(Lb0,δ) = ρ∞(Lb0,δ) > 1; thus, there exists b∗ ∈ [0, b0] such that
ρα(Lb∗,δ) = ρ∞(Lb∗,δ) = 1. Since the function s 7→ ρ∞(Lb∗,s) is strictly
decreasing on [δ,+∞[, one gets ρ∞(Lb∗,s) < 1 as soon as s > δ. For such
values of s, the Poincaré series PΓ(s) of Γ relatively to the metric gb∗ thus
converges, this implies that its Poincaré exponent δΓ,b∗ is not greater than
δ ; actually we have δΓ,b∗ = δ since δ〈pr〉 = δ and pr ∈ Γ. Finally, the
eigenfunction hb∗,δ of Lb∗,δ associated with ρα(Lb∗,δ) being non negative
on ∂X, one gets hb∗,δ � 1 and so∑

k>0
|Lkb∗,δ1|∞ �

∑
k>0
|Lkb∗,δhb∗,δ|∞ =

∑
k>0
|hb∗,δ|∞ =∞

which implies, by (5.6), that Γ is divergent with respect to the metric gb∗ . �

6. Counting for some divergent exotic lattices

We prove here the following general result, which implies Theorem 1.4
given in the Introduction:
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Theorem 6.1. — Let X̄ be a (r+1)-punctured sphere, endowed with a
metric of finite area which has a cusp C̄i with profile τi for each puncture and
is hyperbolic outside C̄0∪ C̄1∪ . . . C̄r. Let p0, . . . , pr be parabolic isometries,
each one generating a parabolic subgroup Pi associated to C̄i, such that
Γ = π1(X̄) is a free group over p1, . . . , pr and p0 = pr . . . p1. Let X be the
universal cover of X̄, let x0 ∈ X, and assume that the lifted metric g on X
satisfies the following assumptions:

• H1: the group Γ is exotic and divergent with Poincaré exponent
δ = δΓ = ω

2 , where ω = ωτr = max(ωτ0 , . . . , ωτr ) > 2 ;
• H2: there exist κ ∈]1/2, 1[ and a slowly varying function(4) L such
that

(6.1)
∑

p∈Pr/d(x0,p·x0)>t

e−δd(x0,p·o) t→+∞∼ L(t)tκ.

• H3: the parabolic groups Pl, for 1 6 l 6 r−1, satisfy the condition

(6.2)
∑

p∈Pl/d(x0,p·x0)>t

e−δd(x0,γ·x0) = o
(L(t)
tκ

)
.

• H4: the set W1 of level 1 words satisfy the condition

(6.3)
∑

Q∈W1/d(x0,Q·x0)>t

e−δd(x0,Q·x0) = o
(L(t)
tκ

)
.

Then, for any 1 6 j 6 r and any fixed xj ∈ ∂X far enough from the fixed
point of pj , there exists Cj > 0 such that

(6.4) ]{γ ∈ Γj/Bxj (γ−1 · x0,x0) 6 R} R→+∞∼ Cj
eδΓR

R1−κL(R) .

where Γj is the set of γ ∈ Γ with last letter j, with respect to the alphabet
A. As a consequence, we have

(6.5) ]{γ ∈ Γ/d(x0, γ · x0) 6 R} R→+∞� eδΓR

R1−κL(R) .

Notice that (6.5) easily follows from (6.4) summing over j ∈ {1, . . . , r},
as for each j there exists c = c(xj) > 0 such that d(x0, γ · x0) − c 6
Bxj (γ−1 · x0,x0) 6 d(x0, γ · x0).

(4)A function L(t) is said to be “slowly varying” or “of slow growth” if it is positive,
measurable and L(λt)/L(t)→ 1 as t→ +∞ for every λ > 0.
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Let us make some remarks:

(1) We have seen in the previous sections how to perturb a hyperbolic
metric to obtain a negatively curved metric g = ga0,...,ar,b∗ on X̄

with profiles τ0, . . . , τr and parameters a0, . . . , ar and b∗ so that the
hypothesis H1 holds.

(2) Hypothesis Hb2 is inspired by probability theory and it corresponds
to a heavy tail condition satisfied by random walks, which have been
intensively investigated [19]. It holds in particular when

d(x0, p
n
r · x0) = 2 lnn+ 2(1 + κ)(ln lnn+O(1))

ω

for some ω > 2 ( the prescription of the profile τr in dimension 2 is
equivalent to the prescription of the sequence (d(x0, p

n
r ·x0))n>1, we

refer to [11, Section 3] for a detailed construction of a metric in the
cusp leading to this asymptotic behaviour). This equality concerns
only the asymptotic geometry on the cusp C̄r as it is equivalent to
prescribe a profile without modifying its exponential growth rate.
Hence it is compatible with any choice of the parameter b. The
critical exponent of Pr is thus δ = ω/2 and one gets, as t→ +∞,∑
p∈Pr/d(x0,p·x0)>t

e−δd(x0,p·o) =
∑

n∈N/d(x0,pnr ·x0)>t

e−δd(x0,p
n
r ·o)

�
∑

n> eωt/2
t1+κ

1
n(lnn)1+κ

�
∫ +∞

eωt/2
t1+κ

du

u(ln u)1+κ

� 1
tκ
.

(3) The condition κ ∈ ]1/2, 1[ readily implies∑
p∈Pr

d(x0, p · x0)e−δd(x0,p·x0) �
∑
N>1

N
( ∑

p∈Pr
N<d(x0,p·x0)6N+1

e−δd(x0,p·x0)
)

�
∑
N>1

( ∑
p∈Pr

(x0,p·x0)>N

e−δd(x0,p·o)
)

�
∑
N>1

L(N)
Nκ

= +∞.
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By Theorem B in [11], it readily follows that the Bowen–Margulis
measure associated with Γ is infinite.

(4) Notice that hypothesis H3 is satisfied in particular when the gap
property δPl < δ holds for any 0 6 l 6 r − 1.

(5) Similarly, hypothesis H4 is satisfied in particular when the exponen-
tial growth rate δW1 := lim supR→+∞

1
R ln ]{Q ∈ W1/d(x0, Q·x0) 6

R} of the level 1 words set is strictly less than δ.
(6) Since P0 = 〈p0〉 ⊂ W1, hypothesis H4 readily implies that equal-

ity (6.2) holds also for P0; nevertheless, it is a strictly stronger
assumption, taking into account:
• the level 1 words w corresponding to geodesic loops staying
in a compact subset of the surface X̄ (and whose exponential
growth rate is strictly less than δ, by a straightforward sub-
additivity argument)

• the words constructed by combination of the w’s and the pow-
ers of p0.

Under these assumptions, we will see that the subgroup Pr corresponding
to the cusp Cr has a dominant influence on the behaviour of the orbital
function of Γ.
We present here the main steps of the proof of Theorem 6.1, and refer

to [12] for details. Let X̄ = Γ\X, where X is its universal cover. First notice
that, under the assumption of the theorem, we can assume (by replacing the
cusps C̄i with purely hyperbolic cusps) that Γ acts on the disk model of H2

with a fundamental polygon D as described at the beginning of Section 4,
with 2r boundary points ξ0 =η0, ξ1, η1, . . . , ξr, ηr=ξ0, enumerated in cyclic
order, with pi · ξi = ξi and pi · ηi−1 = ηi for 1 6 i 6 r, and all points ηi
belonging to the Γ-orbit of the fixed point ξ0 of p0; so, we can assume that
the metric g is a modification of the hyperbolic one on the fundamental
system of horospheresHξi , with C̄i = Pi\Hξi . We therefore have a coding of
elements of Γ by blocks β ∈ B and a ping-pong dynamic, for the alphabet
B as described in Section 4.
For any R > 0, let us denote Wj(R, ·) the measure on R defined by: for

any Borel non negative function ψ : R→ R

Wj(R,ψ) :=
∑
γ∈Γj

e−δBxj (γ−1·x0,x0)ψ(Bxj (γ−1 · x0,x0)−R).

One gets 0 6 Wj(R,ψ) < +∞ when ψ has a compact support in R since
the group Γ is discrete, furthermore

∑r
j=1Wj(R,ψ) � e−δRvΓ(R) when

ψ(t) = eδt1t60. If one proves that for any non negative and continuous
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function ψ with compact support and such that
∫
R+ ψ(x)dx > 0

(6.6) Wj(R,ψ) R→+∞∼ Cj
R1−κL(R)

∫
R
ψ(x)dx,

this convergence will also hold for non negative functions with compact
support in R and whose discontinuity set has 0 Lebesgue measure; The-
orem 6.1 follows since vΓ(R) = eδR

∑r
j=1

∑
n>0Wj(R, eδt1]−(n+1),−n](t)).

From now on, we fix a continuous function ψ : R → R+ with compact
support; one gets, for 1 6 j 6 r fixed

Wj(R,ψ) =
∑
k>0

( ∑
γ∈Γj/|γ|B=k

e−δBxj (γ−1·x0,x0)ψ(Bxj (γ−1 · x0,x0)−R)
)
.

Notice that for γ ∈ Γj with B-decomposition γ = β1 . . . βk, one gets ,
setting y := γ · xj ,

Bxj (γ−1 · x0,x0) = C(β1 . . . βk · xj) + C(β2 . . . βk · xj) + · · ·+ C(βk · xj)

= C(y) + C(T · y) + · · ·+ C(T k−1 · y) = SkC(y)

where C is the “ceiling” function defined as in (5.2), so that

(6.7) Wj(R,ψ) =
∑
k>0

∑
y∈∂X/Tk·y=xj

e−δSkC(y)ψ(SkC(y)−R).

By a classical argument in probability theory due to Stone (see for in-
stance [19]), it suffices to check that the convergence (6.6) holds when ψ

has a C∞ Fourier transform ψ̂ : t 7→
∫
R e

itxψ(x)dx with compact support:
indeed, the test function ψ may vary in the set H of functions of the form
ψ(x) = eitxψ0(x) where ψ0 is an integrable and strictly positive function
on R whose Fourier transform is C∞ with compact support. When ψ ∈ H,
one can use the inversion Fourier formula ψ(x) = 1

2π
∫
R e
−itxψ̂(t)dt; this

yields, for any 0 < s < 1

Wj(s,R, ψ) :=
∑
k>0

sk
∑

y∈∂X/Tk·y=xj

e−δSkC(y)ψ(Skr(y)−R)

=
∑
k>0

sk
∑

y∈∂X/Tk·y=xj

1
2π

∫
R
eitRe−(δ+it)SkC(y)ψ̂(t)dt

= 1
2π

∫
R
eitRψ̂(t)

(∑
k>0

sk
∑

y∈∂X/Tk·y=xj

e−(δ+it)SkC(y)
)
dt

= 1
2π

∫
R
eitRψ̂(t)

(∑
k>0

skLkδ+it1(xj)
)
dt

= 1
2π

∫
R
eitRψ̂(t) (I − sLδ+it)−1 1(xj)dt(6.8)
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where Lz, z ∈ C, is the transfer operator associated to the function C and
the metric g, formally defined in Section 5.
When Re(z) > δ, we know that the Lz are bounded and quasi-compact

on the space Lω(∂X) of Hölder continuous function on (∂X,D0). The Sub-
section 6.1 is devoted to the control of the peripherical spectrum of Lδ+it
on Lω. In Subsection 6.2, we describe the local expansion of the domi-
nant eigenvalue. Atlast we achieve the proof using arguments coming from
renewal theory (Subsection 6.3).

6.1. The spectrum of Lδ+it on Lω

First we need to control the spectrum of Lz when z = δ + it, t ∈ R.
By Lemma 5.1, the operators Lz are bounded on Lω when Re(z) > δ; the
spectral radius of Lz will be denoted ρω(z) throughout this section. In the
following Proposition, we describe its spectrum on Lω when Re(z) = δ.

Proposition 6.2. — There exist ε0 > 0 and ρ0 ∈ ]0, 1[ such that, for
any t ∈ R with modulus less than ε0, the spectral radius ρω(δ+ it) of Lδ+it
is > ρ0 and the operator Lδ+it has a unique eigenvalue λt of modulus
ρ(δ + it), which is simple and closed to 1, the rest of the spectrum being
included in a disc of radius ρ0.
Furthermore, for any A > 0, there exists ρA ∈ ]0, 1[ such that ρω(δ+it) 6

ρA for any t ∈ R such that ε0 6 |t| 6 A.

Notation. — We denote σ the unique probability measure on ∂X such
that σLδ = σ and h the element of Lω such that Lδh = h and σ(h) = 1.

Proof. — This is exactly the same proof that the one presented in [2,
Proposition 2.2] and [12]: the operators Lδ+it are quasi-compact on Lω
and it is sufficient to control their peripherical spectrum. When t is closed
to 0, we use the perturbation theory to conclude that the spectrum of
Lδ+it is closed to the one of Lδ: it is thus necessary to prove that the map
t 7→ Lδ+it is continuous on R. The following Lemma is devoted to precise
the type of continuity of this function.

Lemma 6.3. — Under the hypotheses H1−H4, there exists a constant
C > 0 such that

‖Lδ+it′ − Lδ+it‖ 6 C|t′ − t|κL
(

1
|t′ − t|

)
Proof of Lemma 6.3. — We will use the following classical fact ([20,

p. 272] and [19, Lemmas 1 and 2]):
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Lemma 6.4. — Let µ be a probability measure on R+, set Fµ(t) :=
µ[0, t] and m(t) :=

∫ t
0 (1−Fµ(s))ds and assume that there exist κ ∈ R and

a slowly varying function L such that 1 − Fµ(t) ∼ L(t)
tκ as t → +∞. One

thus gets

(6.9) lim
t→+∞

t(1− Fµ(t))
m(t) = 1− κ

and the characteristic function µ̂(t) :=
∫ +∞

0 eitxµ(dx) of µ has the following
local expansion as t→ 0+

(6.10) µ̂(t) = 1− e−iπ κ2 Γ(1− κ)tκL
(1
t

)
(1 + o(t)).

Noticing that m̃(t) :=
∫ t

0 xµ(dx) = m(t) − t(1 − Fµ(t)) one also gets
m̃(t) ∼ κm(t) as t→ +∞; furthermore, decomposing

∫ +∞
0 |eitx − 1| µ(dx)

as
∫

[0,1/t] |e
itx−1| µ(dx)+

∫
]1/t,+∞[ |e

itx−1| µ(dx) and applying the previous
estimations, one gets, for any t ∈ R∫ +∞

0
|eitx − 1| µ(dx) � tκL(1/t).

We now apply (6.9) with the probability measures µl, 1 6 l 6 r, on R+

defined by µl := cl
∑
p∈Pl δd(x0,p·x0) where cl > 0 is some normalizing

constant. As a direct consequence, under hypotheses H1−H4, one gets
(up to a modification of L by multiplicative constant)

(6.11)
∑

p∈Pr/d(x0,p·x0)6t

d(x0, p · x0)e−δd(x0,p·x0) t→+∞∼ t1−κ

1− κL(t).

and

(6.12)
∑
p∈Pr

|eitd(x0,p·x0) − 1| × e−δd(x0,p·x0) � tκL(1/t);

similarly, for 1 6 l < r, one has

(6.13)
∑
p∈Pl

|eitd(x0,p·x0) − 1| × e−δd(x0,p·x0) = tκL(1/t)o(t).

In the same way, by Lemma 4.2, for any x ∈ ∂X \ Ir, one gets

∑
p∈Pr/C(p·x)6t

e−δC(p·x)) � L(t)
tκ

,
∑
p∈Pr

C(p·x))>t

C(p · x)e−δC(p·x) � t1−κL(t),

(6.14)

∑
p∈Pr

|eitC(p·x) − 1| × e−δC(p·x) � tκL(1/t)(6.15)
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and, for 1 6 l 6 r − 1 and x ∈ ∂X \ Il

(6.16)
∑
p∈Pl

|eitC(p·x) − 1| × e−δC(p·x) = tκL(1/t)o(t).

In the same way, using Hypothesis H4, we may write, for any 1 6 l 6 r

and x ∈ ∪l′ 6=lI ′l′

(6.17)
∑
Q∈W1
lQ=l

|eitC(β·x) − 1| × e−δC(Q·x) = tκL(1/t)o(t).

Noticing that for any β ∈ B and x ∈ Kβ

|wδ+it(β, x)− wδ+it′(β, x)| 6 |ei(t−t
′)·x)) − 1| × e−δC(β·x)

one readily gets, combining the above estimations (6.14) to (6.17) all to-
gether

(6.18)
∣∣Lδ+it − Lδ+it′ ∣∣∞

6
∑
β∈B

|wδ+it(β, ·)− wδ+it′(β, ·)|∞ � |t− t′|κL
(

1
|t− t′|

)
.

Now, for any β ∈ B and x, y ∈ Kβ , one gets

(
wδ+it(β, x)− wδ+it′(β, x)

)
−
(
wδ+it(β, y)− wδ+it′(β, y)

)
6 e−δC(β·x) ×

(
eitC(β·y) − eit

′C(β·y)
)
×
(
eit(C(β·x)−C(β·y)) − 1

)
+ e−δC(β·x)eit

′C(β·y)

×
(

(eit(C(β·x)−C(β·y)) − 1)− (eit
′(C(β·x)−C(β·y)) − 1)

)
+
(
e−δC(β·x) − e−δC(β·y)

)(
eitC(β·y) − eit

′C(β·y)
)

6 e−δC(β·x)
(
eitC(β·y) − eit

′C(β·y)
)(
eit(C(β·x)−C(β·y)) − 1

)
+ e−δC(β·x)eit

′C(β·y)
(
eit(C(β·x)−C(β·y)) − eit

′(C(β·x)−C(β·y))
)

+
(
e−δC(β·x) − e−δC(β·y)

)(
eitC(β·y) − eit

′C(β·y)
)
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which readily implies∣∣∣(wδ+it(β, x)− wδ+it′(β, x)
)
−
(
wδ+it(β, y)− wδ+it′(β, y)

)∣∣∣
6 e−δC(β·x)

∣∣∣ei(t−t′)C(β·y) − 1
∣∣∣∣∣∣eit(C(β·x)−C(β·y)) − 1

∣∣∣
+ e−δC(β·x)

∣∣∣ei(t−t′)(C(β·x)−C(β·y)) − 1
∣∣∣

+
∣∣∣e−δC(β·x) − e−δC(β·y)

∣∣∣∣∣∣ei(t−t′)C(β·y) − 1
∣∣∣

6 e−δC(β·x)
∣∣∣ei(t−t′)C(β·y) − 1

∣∣∣|t|[C ◦ β] D(x, y)

+ e−δC(β·x)
∣∣∣ei(t−t′)(C(β·x)−C(β·y)) − 1

∣∣∣
+ e−δC(β·x)[C ◦ β] D(x, y)

∣∣∣ei(t−t′)C(β·y) − 1
∣∣∣.

We achieve the proof of the Lemma combining this last inequality
with (6.18). �

6.2. On the local expansion of the dominant eigenvalue λt

We explicit here the local expansion near 0 of the map t 7→ λt:

Proposition 6.5. — Under the hypotheses H1−H4, there exists CΓ>0
such that

(6.19) λt = 1− CΓe
−iπ κ2 tκL(1/t) (1 + o(t)).

Proof. — Recall first that 1 is a simple eigenvalue of Lδ with Lδh = h

and σ(h) = 1; since t 7→ Lδ+it is continuous on R, for t closed to 0 there
exists a function ht ∈ Lω such that Lδ+itht = λtht, this function being
unique if we impose the normalization condition σ(ht) = 1. The maps
t 7→ λt and t 7→ ht have the same type of continuity than t 7→ Lδ+it and
one gets the identity

λt = σ (Ltht) = σ (Lth) + σ
(
(Lδ+it − Lδ)(ht − h))

)
.

By the previous subsection, the second term of this last expression is �(
tκL(1/t)

)2
. It remains to precise the local behaviour of the map t 7→

σ (Lth); one gets

σ (Lth) = 1 +
r∑
l=0

σl
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with

σ0 :=
∑
β∈W1

∫
Kβ

h(β · x))e−δC(β·x)(e−itC(β·x) − 1)σ(dx)

and, for 1 6 l 6 r

σl :=
∑
β∈P̂l

∫
Kβ

h(β · x))e−δC(β·x)(e−itC(β·x) − 1)σ(dx).

By (6.17), the terms σl, l 6= r, are of the form tκL(1/t)o(t). To control the
term σr, one sets ∆(n, x) := C(pnr · x) − d(x0, p

n
r · x0) for any x ∈ ∂X \ Ir

and n ∈ Z. The following lemma readily implies that the quantity ∆(n, x)
tends to −(x|ξr)x0 as |n| → +∞.

Lemma 6.6. — For any parabolic group P := <p> with fixed point ξ,
we have

Bx(p±n · x0,x0) = db(x0, p
n · x0)− 2(ξ|x)x0 + εx(n)

with limn→+∞ εx(n) = 0, the convergence being uniform on compact sets
of ∂X \ {ξ}.

Proof of Lemma 6.6. — Let (xm) be a sequence of elements of X con-
verging to x. We have

Bx(p±n · x0,x0) = lim
m
d(p±n · x0,xm)− d(x0,xm)

= d(p±n · x0,x0)

− lim
m

(
d(x0,xm) + d(p±n · x0,x0)− d(p±n · x0,xm)

)
with

lim
n

(
lim
m
d(x0,xm) + d(p±n · x0,x0)− d(p±n · x0,xm)

)
= 2 lim

n
(p±n · x0|x)x0

= 2(ξ−h |x)x0

and the conclusion follows as the Gromov product (p±n · x0|x)x0 tends
uniformly to (ξ|x)x0 on compacts of S1 \ {ξ}. �
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We write

σr =
∑
|n|>2

e−δd(x0,p
n
r ·x0)

(
e−itd(x0,p

n
r ·x0)−1

)∫
∂X\Ir

h(pnr · x))e−δ∆(n,x)σ(dx)

+
∑
|n|>2

e−δd(x0,p
n
r ·x0)

×
∫
∂X\Ir

h(pnr · x))e−δ∆(n,x)
(
e−itC(pnr ·x) − e−itd(x0,p

n
r ·x0)

)
σ(dx)

= σr1 + σr2.

One gets
∫
∂X\Ir h(pnr · x))e−δ∆(n,x)σ(dx) > 0 for any |n| > 2; by (6.10),

there exists c > 0 such that

σr1 = −ce−iπ κ2 Γ(1− κ)tκL
(1
t

)
(1 + o(t)).

On the other hand

|σr2| 6 |t|
∑
|n|>2

e−δd(x0,p
n
r ·x0)

×
∫
∂X\Ir

h(pnr · x))e−δ∆(n,x)|C(pnr · x)− d(x0, p
n
r · x0)|σ(dx)

= O(t).

Equality (6.19) follows immediately. �

6.3. Renewal theory and proof of Theorem 6.1

For technical reasons (see for instance [19]) which will appear in the con-
trol of the term W̃

(3)
j (R,ψ), we need to symmetrize the quantitiesWj(R,ψ)

and Wj(s,R, ψ) setting

W̃j(R,ψ)

:=
∑
k>0

∑
y∈∂X/Tk·y=xj

e−δSkC(y)
(
ψ(SkC(y)−R) + ψ(−SkC(y)−R)

)
and

W̃j(s,R, ψ)

:=
∑
k>0

sk
∑

y∈∂X/Tk·y=xj

e−δSkC(y)
(
ψ(SkC(y)−R) + ψ(−SkC(y)−R)

)
.

Notice that, when ψ is a continuous function with compact support in R+,
the terms ψ(SkC(y)−R) of these sums vanish for R large enough, so that
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W̃j(R,ψ) = Wj(R,ψ) and W̃j(s,R, ψ) = Wj(s,R, ψ) in this case. By (6.8),
for any 0 < s < 1, one gets,

W̃j(s,R, ψ) :=
∑
k>0

sk
∑
y∈∂X

Tk·y=xj

e−δSkC(y)
(
ψ(SkC(y)−R) +ψ(−SkC(y)−R)

)

= 1
2π

∫
R
eitRψ̂(t)

(
(I − sLδ+it)−1 − (I − sLδ−it)−1

)
1(xj)dt.

Fix ε0 > 0 and let ρ(t) be a symmetric C∞-function on R which is equal to
1 on a [−ε0, ε0] and which vanishes outside [−2ε0, 2ε0]; one thus decomposes
W̃j(s,R, ψ) as

W̃j(s,R, ψ) = W̃
(1)
j (s,R, ψ) + W̃

(2)
j (s,R, ψ) + W̃

(3)
j (s,R, ψ)

with

W̃
(1)
j (s,R, ψ) = 1

2π

∫
R
eitRψ̂(t)(1− ρ(t)) (I − sLδ+it)−1 1(xj)dt

+ 1
2π

∫
R
eitRψ̂(t)(1− ρ(t)) (I − sLδ−it)−1 1(xj)dt,

W̃
(2)
j (s,R, ψ) = 1

2π

∫
R
eitRψ̂(t)ρ(t)

×
(

(I − sLδ+it)−1 1(xj)−
σ(∂X \ Ij)h(xj)

1− sλt

)
dt

+ 1
2π

∫
R
eitRψ̂(t)ρ(t)

×
(

(I − sLδ−it)−1 1(xj)−
σ(∂X \ Ij)h(xj)

1− sλ−t

)
dt

and

W̃
(3)
j (s,R, ψ) = σ(∂X \ Ij)h(xj)

2π

∫
R
eitRψ̂(t)ρ(t)

(
1

1−sλt
− 1

1−sλ−t

)
dt.

Using Proposition 6.5, letting s→ 1, one gets

W̃j(R,ψ) = W̃
(1)
j (R,ψ) + W̃

(2)
j (R,ψ) + W̃

(3)
j (R,ψ)
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with

W̃
(1)
j (R,ψ) = lim

s↗1
W̃

(1)
j (s,R, ψ)

= 1
2π

∫
R
eitRψ̂(t)(1− ρ(t))

×
(

(I − Lδ+it)−1 1(xj) + (I − Lδ−it)−1 1(xj)
)
dt,

W̃
(2)
j (R,ψ) = lim

s↗1
W

(2)
j (s,R, ψ)

= 1
2π

∫
R
eitRψ̂(t)ρ(t)

×
(

(I − Lδ+it)−1 1(xj)−
σ(∂X \ Ij)h(xj)

1− λt

)
dt

+ 1
2π

∫
R
eitRψ̂(t)ρ(t)

×
(

(I − Lδ−it)−1 1(xj)−
σ(∂X \ Ij)h(xj)

1− λ−t

)
dt

and

W̃
(3)
j (R,ψ) = lim

s↗1
W̃

(3)
j (s,R, ψ)

= σ(∂X \ Ij)h(xj)
2π

∫
R
eitRψ̂(t)ρ(t)Re

(
1

1− λt

)
dt.

The functions t 7→ λt has the same regularity as t 7→ Lδ+it; by Lemma 6.3
one can thus check that

ψ1 : t 7→ ψ̂(t)(1− ρ(t))
(

(I − Lδ+it)−11(xj) + (I − Lδ−it)−1 1(xj)
)

and

ψ2 : t 7→ ψ̂(t)ρ(t)
(

(I − Lδ+it)−11(xj)−
σ(∂X \ Ij)h(xj)

1− λt

+ (I − Lδ−it)−1 1(xj)−
σ(∂X \ Ij)h(xj)

1− λ−t

)
satisfy the inequality |ψk(s) − ψk(t)| � |s − t|κL

(
1
|s−t|

)
, k = 1, 2. This

yields some information on the speed of convergence to 0 of their Fourier
transform: indeed, for any θ < κ, there exists Cθ > 0 such that

(6.20)
∣∣∣W̃ (1)

j (R,ψ)
∣∣∣ 6 Cθ

Rθ
and

∣∣∣W̃ (2)
j (R,ψ)

∣∣∣ 6 Cθ
Rθ

.

Since κ > 1/2, one may choose θ ∈]1− κ, κ[ so that

lim
R→+∞

R1−κL(R)W̃ (1)
j (R,ψ) = lim

R→+∞
R1−κL(R)W̃ (2)

j (R,ψ) = 0.
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On the other hand, by [19, Section 5], one gets for 1/2 < κ < 1

lim
R→+∞

R1−κL(R)W̃ (3)
j (R,ψ) = Cjψ̂(0) = Cj

∫
R
ψ(x)dx

with Cj = σ(∂X \ Ij)h(xj) sinπκ
π ; notice that the value h(xj) is uniquely

determined by the normalization σ(h) = 1. This achieves the proof of
Theorem 6.1. �

Concluding remarks.
(1) As it is clear from the proof, we do not really need that the metric g is

hyperbolic outside the cusps C̄i; hyperbolicity is only needed to describe the
initial fundamental polygon D with a fundamental system of horospheres.
As far as the metric g on X̄ has negative curvature bounded from above by
a negative constant (hence, the conformal structure of ∂X is well defined
and the related properties as in 4.1, 4.3, 4.4 are satisfied) and satisfies the
conditions H1−H4, all the arguments in the proof of Theorem continue to
hold.
(2) The same estimates for the orbital function can be deduced for sur-

faces with r+1 punctures and genus g > 0, which have essentially free fun-
damental group Γ, according to the definition in [29]. This can be achieved
by using a different coding as given in [29] (which cannot be used in our
case, where adjacent sides are paired by a parabolic element). We limited
ourselves to genus 0 surfaces as our coding is particularly simple and ex-
plicit in this case.
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