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A CURVATURE FORMULA ASSOCIATED TO A
FAMILY OF PSEUDOCONVEX DOMAINS

by Xu WANG (*)

Abstract. — We shall give a definition of the curvature operator for a family of
weighted Bergman spaces {Ht} associated to a smooth family of smoothly bounded
strongly pseudoconvex domains {Dt}. In order to study the “boundary term” in
the curvature operator, we shall introduce the notion of geodesic curvature for
the associated family of boundaries {∂Dt}. As an application, we get a variation
formula for the norms of Bergman projections of currents with compact support.
A flatness criterion for {Ht} and its applications to triviality of fibrations are also
given in this paper.
Résumé. — Nous définissons l’opérateur de courbure pour une famille d’es-

paces de Bergman pondérés {Ht} associés à une famille lisse de domaines lisses
bornés strictement pseudoconvexes {Dt}. Afin d’étudier le “terme au bord” dans
l’opérateur de courbure, nous introduisons la notion de courbure géodésique pour
la famille des bords associés. Comme application, nous obtenons une formule de va-
riation pour les normes de projections de Bergman des courants à support compact.
Un critère de platitude pour {Ht} et ses applications à la trivialité des fibrations
sont également données dans cet article.

1. Introduction

In 2005, Berndtsson [3] found that the functional version of the classical
Brunn–Minkowski inequality, i.e. the Prekopa theorem [43], can be seen
as a special case of the subharmonicity property of the Bergman kernel
(see [38, 39] for early results with different point of view). It opens another
door (so called complex Brunn–Minkowski theory) of studying complex
geometry by using the Brunn–Minkowski theory in convex geometry. Below,

Keywords: Brunn–Minkowski theory, Prekopa theorem, ∂-equation, Hörmander theory.
Math. classification: 32A25, 32L25, 32G05.
(*) Research supported by the Knut and Alice Wallenberg Foundation, and the China
Postdoctoral Science Foundation.



270 Xu WANG

we shall give a short account of the complex Brunn–Minkowski theory, and
a simple example to show our motivation to write this paper.
Heuristically speaking, the Prekopa theorem can be seen as a version

of inverse Hölder inequality. In [8], Berndtsson gave another form of the
classical Hölder inequality:

Theorem A (Hölder inequality). — Let φ(t, x) be convex in t. Then

(1.1) t 7→ log
∫
Rn
eφ(t,x)dx, dx = dx1 ∧ · · · ∧ dxn,

is convex (if the integral is convergent).

Proof. — The proof follows by differentiating with respect to t:(
log
∫
eφ
)
tt

=
(∫

eφ
)−2(∫

eφ
∫

(φtteφ + φ2
t e
φ)−

( ∫
φte

φ
)2)

.

Notice that, by the Cauchy–Schwarz inequality, we have

(1.2)
( ∫

φte
φ
)2
6
∫
eφ
∫
φ2
t e
φ.

Thus φtt > 0 implies that
(
log
∫
eφ
)
tt
> 0. �

The following result is due to Prekopa:

Theorem B (Prekopa theorem). — Let φ(t, x) be convex in t and x.
Then

(1.3) t 7→ − log
∫
Rn
e−φ(t,x)dx,

is convex.

There are many ways to prove Theorem B. A famous observation of
Brascamp–Lieb (see [16]) is: one may use a weighted L2-estimates of the
d-operator to prove Theorem B.
In [2], Berndtsson showed that one may also use Hörmander’s weighted

L2-estimates of the ∂-operator (see [29]) to prove Theorem B. Moreover,
in [3], he established the following complex version of Theorem B:

Theorem C (Berndtsson’s theorem). — Let φ(t, z) be a plurisubhar-
monic function on a pseudoconvex domain D ⊂ Cmt × Cnz . Then

(1.4) (t, z) 7→ logKt(z, z),

is plurisubharmonic or equal to −∞ identically on D, where each Kt de-
notes the weighted Bergman kernel associated to the fibre Dt := D∩({t}×
Cn) and the weight φt := φ|Dt .
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In [3], Berndtsson gave two proofs of Theorem C. A crucial step in his
first proof is also the Hörmander’s L2-estimates of the ∂-operator. Later
in [4], he pointed out that it will be more natural to look at Theorem C
as a curvature property of the direct image bundle (see [4, Theorem 1.1
and 1.2]). This is a milestone in the complex Brunn–Minkowski theory
(see [12]).
The complex Brunn–Minkowski theory has proved to be very useful in

several complex variables and complex geometry (see [5, 9, 10, 13, 14, 15]
and references therein). This paper is an attempt to study the curvature
formula of the direct image bundle associated to general Stein-fibrations
(see [23, 40, 41, 34, 44, 52] for other generalizations and related results).
The new results are the boundary term of the curvature formula and its
relation with interpolation family of convex bodies.
Let us start by looking at an almost trivial case of Theorem B. Let

(1.5) F := {[a(t), b(t)]}06t61,

be a family of line segments. Let

D := {(t, x) ∈ R2 : a(t) < x < b(t), 0 < t < 1},

be the total space. Assume that b(t) > a(t) for each 0 6 t 6 1 and a, b are
smooth on a neighborhood of [0, 1]. Put

θ(a) = d2a

dt2
, θ(b) = −d

2b

dt2
.

Let us introduce the following definitions:

Definition 1.1. — We call θ the geodesic curvature of F .

Definition 1.2. — We call F an interpolation family if θ ≡ 0.

Remark. — F is an interpolation family if and only if both a and b are
affine functions.

Definition 1.3. — We call F a trivial family if there exists a real con-
stant c such that for every 0 < t < 1, [a(t), b(t)] = [a(0), b(0)] + ct.

Put

(1.6) φ(t, x) = 0, on D, φ(t, x) =∞, on R2\D,

then convexity ofD is equivalent to convexity of φ. Thus Theorem B implies
that if D is convex then

(1.7) Φ : t 7→ − log(b(t)− a(t)) = − log
∫
R
e−φ(t,x)dx

TOME 67 (2017), FASCICULE 1



272 Xu WANG

is convex on (0, 1). Moreover, by direct computation,

(1.8) Φ̈ = (b− a)(ä− b̈) + (ȧ− ḃ)2

(b− a)2 , Φ̈ := d2Φ
dt2

, ȧ := da

dt
.

We call

(1.9) Geo := (b− a)(ä− b̈)
(b− a)2 = θ(a) + θ(b)

b− a
,

the geodesic term in Φ̈ and

(1.10) R := (ȧ− ḃ)2

(b− a)2

the remaining term in Φ̈. Thus we have:

Proposition 1.4. — The remaining term in Φ̈ is always non-negative.
Moreover, if the total space D is convex then the geodesic term in Φ̈ is also
non-negative.

Proposition 1.5. — Assume that the total space D is convex then
affine-ness of Φ is equivalent to triviality of F .

In this paper, we shall study the counterparts of the above notions in
complex geometry. In the next secion, we shall define the notion of geodesic
curvature (see Definition 2.8) for a smooth family of smoothly bounded
Stein domains (see Definition 2.5). Then Definition 2.10, interpolation fam-
ily of Stein domains, can be seen as a generalization of Definition 1.2; and
Definition 2.16, trivial family of Stein domains, can be seen as a general-
ization of Definition 1.3.
Our main result, Theorem 2.11, is a curvature formula associated to

variation of Stein manifolds. Let {Dt} be a smooth family of smoothly
bounded n-dimensional Stein domains. Let L be a holomorphic line bundle
on the total space D. Let h be a smooth Hermitian metric on L. We shall
consider the associated family of Bergman spaces

H := {Ht},

where each Ht is the space of L2-holomorphic L|Dt-valued (n, 0)-forms on
Dt. Then Theorem 2.11 reads that:

ANNALES DE L’INSTITUT FOURIER
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Main Theorem. — Assume that L is flat or relatively ample. Then the
curvature of H contains two terms: the geodeisc term and the remaining
term. The remaining term is always semi-positive in the sense of Nakano.
Moreover, if the total space is pseudoconvex and L is semi-positive on the
total space then the geodesic term is also semi-positive in the sense of
Nakano.

Thus our main result can be seen as a generalization of Proposition 1.4.
In Section 2.5, we shall give a definition of the holomorphic section of the
dual of H (see Definition 2.14). Then our main application, Corollary 2.15,
can be stated as follows:

Application. — If the total space is pseudoconvex and L is non-
negative on the total space then log ||f || is plurisubharmonic for every holo-
morphic section f of the dual of H.

Corollary 2.15 can be seen as a generalization of Theorem C (see the
remark behind [4, Theorem 1.1]). In Section 5.2, we shall also use Corol-
lary 2.15 to study variation of the Bergman projection of currents with
compact support. In particular, we shall give a variation formula for the
derivatives of the Bergman kernel (see Theorem 5.2).

In Section 6, we shall discuss the counterparts of Proposition 1.5 in com-
plex case. We shall show that under some assumptions (see Theorem 2.17),
flatness of H and triviality of D are equivalent. As a direct corollary, we
shall give a triviality criterion for a class of holomorphic motions (see Corol-
lary 2.18) of planar domains.
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2. Basic definitions and results

2.1. List of notations

1. π : X → B is a holomorphic submersion.
2. D is an open subset in X , Dt := D ∩ π−1(t).
3. L is a holomorphic line bundle over X and Lt := L|Dt .
4. Ht is the space of L2 holomorphic Lt-valued (n, 0)-forms on Dt.
5. H := {Ht}t∈B.
6. it: the inclusion mapping Dt ↪→ D.
7. t: coordinate system on B, tj components of t, ∂tj = ∂/∂tj .
8.
∑
dt̄j ⊗ ∂tj is the ∂-operator on H.

9.
∑
dtj ⊗Dtj is the (1, 0)-part of the Chern connection on H.

10. Θjk̄ := [Dtj , ∂tk ]: curvature operators on H.
11. θjk̄(ρ): geodesic curvature of {∂Dt}.
12. η, ζ, µ: local coordinates on a fixed fibre Dt, µλ: components of µ.
13. e−φ: local representative of a Hermitian metric h on a line bundle L.
14. φj := ∂φ/∂tj , φjλ := ∂2φ/∂tj∂µλ, φλν̄ := ∂2φ/∂µλ∂µ̄ν .
15. (ρλ̄ν), (φλ̄ν): inverse matrix of (ρλν̄), (φλν̄) respectively.
16. δV := V y means contraction of a form with a vector field V ;
17. α, β ∈ Nn, |α| := α1 + · · ·+ αn, fα := ∂|α|f/(∂µ1)α1 · · · (∂µn)αn .

2.2. Set up

Let π : X → B be a holomorphic submersion from an (n+m)-dimensional
complex manifold X to the unit ball B in Cm. Let D be an open subset
of X . Put

Dt = D ∩ π−1(t).
The following assumption will be used throughout this paper.

(A1)
The restriction of π to the closure of D (with respect to the topology
structure of the total space X ) is proper, and Dt is non-empty for
every t in B.

ANNALES DE L’INSTITUT FOURIER
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Let L be a holomorphic line bundle over X . Put

Lt := L|Dt .

We shall consider the following family of vector spaces associated to
{Dt}t∈B:

Ht := {f ∈ H0(Dt,KDt + Lt) :
∫
Dt

in
2
{f, f} <∞},

where {·, ·} is the canonical sesquilinear pairing (see [18, p. 268]) with
respect to h. If we fix a local holomorphic frame, say e, of L, and write
h(e, e) = e−φ, then

{f(z)⊗ e, f(z)⊗ e} = e−φ(z)f(z) ∧ f(z).

Put
H = {Ht}t∈B.

Remark. — We know that each fibre Ht is an infinite dimensional
Hilbert space, moreover, the element in Ht may not be smooth up to the
boundary. Thus it is not easy to give a good definition of the curvature
operator on H (see [33] for a careful study of this subject). In order to
make things easier, we shall only define the curvature operator on sections
that are smooth up to the boundary.

Let it be the inclusion mapping

(2.1) it : Dt ↪→ D.

We shall introduce the following definition:

Definition 2.1. — We call u : t 7→ ut ∈ Ht a smooth section of H if
there exists an L-valued (n, 0)-form, say u, such that

(2.2) i∗tu = ut, ∀ t ∈ B,

and u is smooth up to the boundary of D. We shall denote by Γ(H) the
space of smooth sections of H.

Remark. — One may choose u in the above definition such that u is
smooth on the total space X .

In order to give a precise definition of the ∂-operator on H, we shall
introduce the following definition (see [7], see also [31, p. 46] or [53] for the
admissible coordinate method):

Definition 2.2. — We call a smooth L-valued (n, 0)-form u on X a
representative of u ∈ Γ(H) if i∗t (u) = ut for all t ∈ B.

TOME 67 (2017), FASCICULE 1
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∂-operator on H. Let u be a representative of u ∈ Γ(H). Then one
may write

(2.3) ∂u =
∑

dtj ∧ ηj + dt̄j ∧ νj .

Since u ∧ dt, dt := dt1 ∧ · · · ∧ dtm, does not depend on the choice of u and

(2.4) ∂(u ∧ dt) =
∑

dt̄j ∧ νj ∧ dt,

we know that each i∗t νj does not depend on the choice of νj . Let us define

(2.5) ∂tju : t 7→ i∗t νj .

Then the ∂-operator on H can be defined as

∂u :=
∑

dt̄j ⊗ ∂tju.

From the definition, we know that ∂u ≡ 0 on B if and only if u ∧ dt is
holomorphic on D. We shall introduce the following definition:

Definition 2.3. — Let u be a smooth section of H. We call u a holo-
morphic section of H if u ∧ dt is holomorphic on D.

Chern connection on H. We shall write the (1, 0)-part of the Chern
connection on H as

∑
dtj ⊗Dtj . By definition, each Dtj should satisfy

(2.6) ∂tj (u, v) = (Dtju, v) + (u, ∂tjv), ∀ u, v ∈ Γ(H),

where ∂tj = ∂/∂tj and (·, ·) denotes the inner product on Ht.

Definition 2.4. — We say that the Chern connection is well defined
on H if for every 1 6 j 6 m, there exists a C-linear operator Dtj : Γ(H)→
Γ(H) such that (2.6) is true.

Remark. — By using Hamilton’s theorem (see [28]), in Section 4 (see
Proposition 4.1), we shall prove that the Chern connection is well defined
on H if D satisfies (A1) and the following assumption:

(A2)

There is a smooth real valued function ρ on X such that for each
t ∈ B, ρ|π−1(t) is strictly plurisubharmonic in a neighborhood of the
closure (with respect to the topology on π−1(t)) of Dt. Moreover,
Dt = {ρ < 0}∩π−1(t) and the gradient of ρ|π−1(t) has no zero point
on ∂Dt.

Remark. — In Section 3.2, we shall prove that (A1) and (A2) together
implies that every smooth vector field on the base B has a smooth lift on
X that tangent to the boundary of D. Thus in this case, {Dt} is locally
trivial as a smooth family.

ANNALES DE L’INSTITUT FOURIER



CURVATURE FORMULA 277

Definition 2.5. — {Dt} is said to be a smooth family of smoothly
bounded Stein domains if D satisfies (A1) and (A2).

Assume that D satisfies (A1) and (A2). Then we can define the curvature
operators on H as follows:

(2.7) Θjk̄u := [Dtj , ∂tk ]u = Dtj∂tku− ∂tkDtju, ∀ u ∈ Γ(H).

2.3. Previous results

We shall give a short account of Berndtsson’s results on “geodesic” for-
mula for Θjk̄. Let us recall the following notions in his curvature formula.

Geodesic curvature in the space of Kähler metrics. Let us denote
by Θ(L, h) the curvature of (L, h). If we write h locally as e−φ then we
have

(2.8) Θ(L, h) = ∂∂φ.

If D is a product, say D = D0 × B, and

(2.9) i∂∂φ|D0×{t} > 0, ∀ t ∈ B,

then {i∂∂φ|D0×{t}} can be seen as a family of Kähler metrics on D0. As-
sume further that m = 1. Then there exists a smooth function, say c(φ),
such that

(2.10) (i∂∂φ)n+1

(n+ 1)! = c(φ) (i∂∂φ)n

n! ∧ idt ∧ dt̄.

By [20, Proposition 3], if {i∂∂φ|D0×{t}} is S1 invariant then

The path {i∂∂φ|D0×{t}} defines a geodesic in the space of Kähler metrics
on D0 if and only if c(φ) ≡ 0.

In general, c(φ) is called the geodesic curvature in the space of Kähler
metrics. The geodesic curvature plays a crucial role on variation of Kähler
metrics on projective manifolds; see [20, 37, 45], to cite just a few. Another
way to look at the geodesic curvature is to use the notion of horizontal lift.

Horizontal lift. The notion of horizontal lift is introduced by Siu in [47].
In [7], Berndtsson found that one may also define the notion of horizontal
lift with respect to a relative Kähler form (a smooth d-closed (1, 1)-form
that is positive on each fibre). Let us recall his definition:

Let ω be a relative Kähler form on X . A (1, 0)-vector field V on X is
said to be horizontal with respect to ω if 〈V,W 〉ω = 0 for every (1, 0)-vector

TOME 67 (2017), FASCICULE 1
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field W such that π∗(W ) = 0. Let v be a vector field on B. We call V a
horizontal lift of v if V is horizontal with respect to ω and π∗V=v.

By Berndtsson’s formula (see [7, p. 3]), if we write ω = i∂∂φ locally then
for each 1 6 j 6 m, ∂/∂tj has a unique horizontal lift, say Vj , as follows:

(2.11) Vj = ∂/∂tj −
∑

φjν̄φ
ν̄λ∂/∂µλ.

Moreover, if m = 1 then

(2.12) 〈V1, V1〉i∂∂φ = c(φ).

By this formula, it is natural to define the notion of geodesic curvature for
general base dimension m and general fibration π.

Geodesic curvature of {h|Lt}. Let us assume that

iΘ(L, h)|Dt > 0, ∀ t ∈ B, or Θ(L, h) ≡ 0 on D,

In case iΘ(L, h)|Dt > 0, ∀ t ∈ B, let V hj be the horizontal lift of the base
vector fields ∂/∂tj with respect to iΘ(L, h). We shall define the geodesic
curvature of {h|Lt} as:

(2.13) cjk̄(h) := 〈V hj , V hk 〉iΘ(L,h); and cjk̄(h) := 0 if Θ(L, h) ≡ 0 on D.

Another notion in Berndtsson’s curvature formula is the following:

Remaining term in Hörmander’s L2-estimate (product case).
Assume that D = D0×B. Then the vector fields ∂/∂tj are well defined on
X . Fix

(2.14) uj ∈ Γ(H), 1 6 j 6 m, (see Definition 2.1).

Let a be the L2-minimal solution of

∂
t(·) = c,

where ∂t denotes the Cauchy–Riemann operator on Dt = D0 × {t} and

(2.15) c :=
∑

(∂/∂tjy Θ(L, h))|Dt ∧ uj =
∑

∂
t
φj ∧ uj .

Then we have the following remaining term in Hörmander’s L2-estimate

R := ||c||2iΘ(L,h)|Dt
− ||a||2.

By Hörmander’s theorem (see [29]), if D0 is pseudoconvex then R is non-
negative. Thus in our case, R is always non-negative. Now we can state the
following theorem of Berndtsson (see [3] and [4, Theorem 1.1]):

ANNALES DE L’INSTITUT FOURIER
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Theorem 2.6. — Assume that D = D0 × B, where D0 is a strongly
pseudoconvex domain with smooth boundary. If iΘ(L, h)|D0×{t} > 0, ∀ t ∈
B, then we have

(2.16)
∑

(Θjk̄uj , uk) =
∑

(cjk̄(h)uj , uk) +R, R > 0.

If Θ(L, h) ≡ 0 on D then

(2.17)
∑

(Θjk̄uj , uk) ≡ 0.

Remark. — (2.16) can be found in the proof of [4, Theorem 1.1]. (2.17)
is a direct application of [4, (2.4)]. A special case of (2.16) for variation of
the Bergman kernel is given in [3].

The counterpart of Theorem 2.6 for a proper Kähler fibration was given
in [7] by Berndtsson. Let us recall the following notions in his formulae:

Remaining term in Hörmander’s L2-estimate (Polarized fibra-
tion). Let

(2.18) π : D → B,

be a proper holomorphic submersion. Assume that L is a relatively ample
line bundle on D, i.e. iΘ(L, h)|Dt > 0, ∀ t ∈ B. By the Ohsawa–Takegoshi
extension theorem (see [42, 48]), we know that the dimension of Ht :=
H0(Dt,KDt + Lt) does not depend on t and our bundle H is just the
holomorphic vector bundle associated to the zero-th direct image sheaf
π∗O(KD/B + L). For each j, let V hj be the horizontal lift of ∂/∂tj with
respect to iΘ(L, h). Let us denote by

(2.19) κ : TB → {H1(Dt, TDt)}t∈B,

the Kodaira–Spencer map associated to the holomorphic fibration π. By [30,
Theorem 5.4], we know that each (∂V hj )|Dt can be seen as a representative
of the Kodaira–Spencer class κ(∂/∂tj). For each 1 6 j 6 m, let uj be a
smooth section of H. Put

b =
∑

(∂V hj )|Dty uj .

Let a be the L2-minimal solution of

∂
t(·) = ∂tφb,

where ∂tφ is the restriction of the (1, 0)-part of the Chern connection of L
on Dt. Then we have the following Hörmander type-remaining term:

Rh := ||b||2iΘ(L,h)|Dt
− ||a||2 > 0.

TOME 67 (2017), FASCICULE 1
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Remaining term in Hörmander’s L2-estimate (Kähler fibration).
In this case, let us assume that the total space of the proper holomorphic
submersion π : D → B possesses a Kähler form ω. Let L be a flat line
bundle over D, i.e. Θ(L, h) ≡ 0 on D. By [4, Theorem 8.1], we know that
π∗O(KD/B +L) is locally free. Let H be the associated vector bundle. For
each j, let uj be a smooth section of H. Put

b =
∑

(∂V ωj )|Dty uj ,

where each V ωj is the horizontal lift of ∂/∂tj with respect to the Kähler
form ω. Consider

∂
t(a) = ∂tφb,

where a is the L2-minimal solution. Then the associated Hörmander re-
maining term is

Rω := ||b||2ω|Dt − ||a||
2 > 0.

Now we can state the following theorem of Berndtsson (see [7]):

Theorem 2.7. — Let π : D → B be a proper holomorphic submersion.
Let (L, h) be a holomorphic line bundle over D. If L is relatively ample
then we have

(2.20)
∑

(Θjk̄uj , uk) =
∑

(cjk̄(h)uj , uk) +Rh.

If L is flat then

(2.21)
∑

(Θjk̄uj , uk) ≡ Rω.

Remark. — If L is trivial then (2.21) is just Griffiths’ formula (see [25,
p. 33]). In general, if the total space D is Kähler and there is a smooth Her-
mitian metric on L with non-negative curvature then by [4, Thereom 1.2],
we know that ∑

(Θjk̄uj , uk) > 0.

If the boundary of each fibre is non-empty then, in general, the boundary
term should also appear in the curvature formula (see [39]). Our main result
is a study of the curvature of H for fibrations with boundary.

2.4. Basic notions for fibrations with boundary

LetD = {Dt}t∈B be a smooth family of smoothly bounded Stein domains
(see Definition 2.5). We shall define the notion of “geodesic curvature” of
{∂Dt} by using the notion of horizontal lift with respect to the Levi-form
on the boundary of D. Let ρ be the defining function in (A2). We call an
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(1, 0)-tangent vector field V on ∂D horizonal with respect to the Levi-form
if

〈V,W 〉i∂∂ρ = 0, on ∂D,

for every (1, 0)-tangent vector field W on ∂D such that π∗(W ) = 0.

Remark. — From the above definition, the notion of horizontal lift with
respect to the Levi-form on the boundary is compatible with the usual
notion of horizintal lift if we only consider the category of tangent vector
fields on ∂D. Same as before, we shall also define the notion of geodesic
curvature in the following sense:

Definition 2.8. — Assume that D satisfies (A1) and (A2) and for each
j, ∂/∂tj has a horizontal lift to ∂D with respect to the Levi-form i∂∂ρ on
∂D. Then we call

(2.22) θjk̄(ρ) := 〈V ρj , V
ρ
k 〉i∂∂ρ,

the geodesic curvature of {∂Dt}t∈B with respect to the Levi form i∂∂ρ on
∂D.

Now a natural question is whether each base vector field has a horizontal
lift (with respect to the Levi-form) to ∂D or not. We have the following
lemma:

Lemma 2.9 (Key Lemma). — Assume that D satisfies (A1) and (A2).
Put

(2.23) ω := i∂∂(− log−ρ),

where ρ is the defining function in (A2). For each j, let Vj be the horizontal
lift (on D) of ∂/∂tj with respect to ω. Then each Vj is smooth up to the
boundary of D and Vj |∂D is horizontal with respect to the Levi form i∂∂ρ

on ∂D. In particular, every smooth base vector field has a unique smooth
horizontal lift with respect to the Levi form and the geodesic curvature
θjk̄(ρ) is well defined on ∂D.

As a generalization of Definition 1.2, we shall introduce the following
definition:

Definition 2.10. — Assume that D satisfies (A1) and (A2). We call
{Dt}t∈B an interpolation family in X if θjk̄(ρ) ≡ 0 on ∂D.
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Remaining term in Hörmander’s L2-estimate (fibration with
boundary). For each 1 6 j 6 m, let uj be a smooth section of H (see
Definition 2.1). Put

(2.24) c =
∑

(Vj y Θ(L, h))|Dt ∧ uj , b =
∑

(∂Vj)|Dt y uj ,

where each Vj is the vector field in Lemma 2.9. Let a be the L2-minimal
solution of

∂
t(·) = ∂tφb+ c,

in L2(Dt,KDt + Lt). Put

ωt := i∂∂(− log−ρ)|Dt .

Then we shall define

(2.25) R := ||c||2iΘ(L,h)|Dt
+ ||b||2ωt − ||a||2ωt ,

if iΘ(L, h)|Dt > 0; and define

R := ||b||2ωt − ||a||2ωt ,

if Θ(L, h) ≡ 0. We shall show in Theorem A.5 thatR is always non-negative.

2.5. Main theorem

Theorem 2.11. — Assume that D satisfies (A1) and (A2). If

(2.26) iΘ(L, h)|Dt > 0, ∀ t ∈ B, or Θ(L, h) ≡ 0 on D,

then, using the above notation, see (2.7), (2.13), (2.22), (2.25), we have the
following curvature formula of H:

(2.27)
∑

(Θjk̄uj , uk) =
∑∫

∂Dt

θjk̄(ρ)〈uj , uk〉dσ+
∑

(cjk̄(h)uj , uk)+R,

where 〈·, ·〉 denotes the point-wise inner product with respect to i∂∂ρ|Dt
and h, and the surface measure dσ with respect to i∂∂ρ|Dt is defined as

dσ :=
∑
ρλ̄ρ

λ̄ν∂/∂µν∑
ρλ̄ρ

λ̄νρν
y

(i∂∂ρ|Dt)n

n! .
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2.6. Applications

We shall show how to use our main theorem to study the complex ge-
ometry counterparts of Theorem 1.4. Let us give some positive-curvature
criterion of H first. Recall that, H is said to be semi-positive in the sense
of Nakano if

∑
(Θjk̄uj , uk) > 0, for all smooth sections u1, . . . , um of H.

As a direct consequence of our main theorem, we shall prove that:

Corollary 2.12. — Assume that D satisfies (A1) and (A2). If D is
Stein and iΘ(L, h) > 0 onD thenH is semi-positive in the sense of Nakano.

Another very useful notion of positivity is the Griffiths positivity. Recall
that H is said to be Griffiths semi-positive if

∑
(Θjk̄u, u)ξj ξ̄k > 0, for every

smooth section u of H and every ξ ∈ Cm. It is known that a finite rank
vector bundle is Griffiths semi-positive if and only if its dual bundle is
Griffiths semi-negative. Moreover, the following is true:

Criterion for Griffiths semi-positivity. — A finite rank vector bundle
is Griffiths semi-positive if and only if the log-norm of the holomorphic
sections of its dual bundle are plurisubharmonic.

Then a natural question is whether there is a similar criterion in our
case, i.e. for the infinite rank vector bundle H. As a first step, we have to
define the notion of the holomorphic section of the dual of H.

Definition 2.13. — For each t ∈ B, let f t be a C-linear mapping from
Ht to C. We call f : t 7→ f t a smooth section of the dual of H if there
exists a smooth section, say P (f), of H such that

(2.28) f t(ut) = (ut, P (f)t),

for every ut ∈ Ht and every t ∈ B. We shall write the norm of f t as
||f t|| := ||P (f)t||.

Definition 2.14. — Let f : t 7→ f t be a smooth section of the dual of
H. We call f a holomorphic section if

(2.29) t 7→ f t(ut)

is holomorphic for every holomorphic section u of H.

Remark. — Inspired by [14], we shall give a careful study of those holo-
morphic sections of the dual ofH defined by a family currents with compact
support in fibres.

Now we are ready to state the main application of our main theorem:
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Corollary 2.15. — Assume that D satisfies (A1) and (A2). If D is
Stein and iΘ(L, h) > 0 on D then

(2.30) log ||f || : t 7→ log ||f t||

is plurisubharmonic for every holomorphic section f of the dual of H.

Remark. — If we choose f t as a fixed Dirac measure then we get the
plurisubharmonicity of the Bergman kernel [3]. In Section 5, we shall also
use Corollary 2.15 to study variation of the deriatives of the Bergman
kernel.

Triviality and flatness. In case every fibre Dt is compact without
boundary, we know that the criterions for flatness of H are quite use-
full in the study of the uniqueness problems of extremal Kähler metrics
(see [5, 10]). In our case, we call H a flat bundle if

(2.31) Θjk̄u ≡ 0, ∀ 1 6 j, k 6 m.

for every smooth section u of H. From Proposition 1.4, one may guess
that flatness of H should be related to triviality of the fibration π. Let us
introduce the following definition as a generalization of Definition 1.3.

Definition 2.16. — Assume that D satisfies (A1) and (A2). We call
{Dt}t∈B a trivial family, or D is trivial, if there exists a biholomorphic
mapping Φ : D0 × B→ D such that

(2.32) Φ(D0 × {t}) = Dt, ∀ t ∈ B,

and Φ∗(∂/∂tj) extends to a smooth (1, 0)-vector field on X for every 1 6
j 6 m.

The following theorem can be seen as a generalization of Proposition 1.5:

Theorem 2.17. — Assume that D satisfies (A1) and (A2). Assume
further that the total space D is Stein. If KX/B +L is trivial on each fibre
of π and Θ(L, h) ≡ 0 on D then flatness of H and triviality of D are
equivalent.

As a direct corollary of Theorem 2.17, we have

Corollary 2.18. — Let D0 be a smooth domain in C. Let

(2.33) F : (t, z) 7→ (t, z + a(t)z̄)

be a mapping from B ×D0 to B × C. Assume that a is holomorphic on B
and

(2.34) |a| < 1, on B, a(0) = 0.
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Then {F ({t} ×D0)}t∈B is a trivial family if and only if a ≡ 0 on B.

Remark. — One may also give a direct proof of Corollary 2.18 by intro-
ducing the notion of Kodaira–Spencer class for deformations with bound-
ary, we leave it to the interested reader.

3. Geodesic curvature and interpolation family

In this section, we shall give two proofs of Lemma 2.9 and show that our
Definition of interpolation family (see Definition 2.10) is compatible with
the usual definition of interpolation family of Hermitian norms on Cn for
n > 1.

Relation with Levi-flatness. By the definition of the geodesic curva-
ture θjk̄(ρ) (see Definition 2.8) of {∂Dt}, we have:

Assume that every fibre Dt is one dimensional. Then {Dt} is an inter-
polation family if and only if the boundary of D is Levi flat.

For higher fibre dimension case, the criterion for interpolation family
(see [45] and references therein) is not so obvious. We will give a study of
it in Section 3.3. Let us prove our Key Lemma first.

3.1. First proof of Lemma 2.9

Since Vj is a lift of ∂/∂tj , locally one may write,

(3.1) Vj = ∂/∂tj −
∑

vλj ∂/∂µ
λ.

Put ψ = − log−ρ. By definition, we know that each Vj is determined by

〈Vj , ∂/∂µν〉i∂∂ψ ≡ 0, on D, ∀ 1 6 ν 6 n,

thus

(3.2) vλj =
∑

ψjν̄ψ
ν̄λ, on D.

Fibre dimension one case. If n = 1, by direct computation, we have

(3.3) Vj := ∂

∂tj
− ρjρµ̄ − ρρjµ̄
|ρµ|2 − ρρµµ̄

∂

∂µ
.

By Assumption (A2), ρµ has no zero point near the boundary and ρµµ̄ > 0
near the boundary, thus Vj is smooth up to the boundary of D. Further-
more, (3.3) implies that Vj(ρ) = 0 on {ρ = 0}. Notice that, in case n = 1,
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every tangent vector field on ∂D is horizontal with respect to the Levi-form
on ∂D. Thus we know that if n = 1 then Vj |∂D is the horizontal lift of ∂/∂tj
with respect to the Levi-form.

General case. The general case can also be proved by direct compu-
tation (see the second proof below). But there is also a simple proof as
follows: If n > 2, fix x0 ∈ ∂D0, then by Assumption (A2), (ρλν̄)(x0) is a
positive definite matrix, thus one may choose local coordinates around x0
such that

(ρλν̄(x0)) = In, ρν(x0) = 0, ∀ ν > 2,
where In is the identity matrix. Now we have

v1
j (x0) =

ρjρ1̄ − ρρj1̄
|ρ1|2 − ρ

(x0) = ρj
ρ1

(x0), vλj (x0) = ρjλ̄(x0), ∀ λ > 2.

By Assumption (A2), we know that ρ1(x0) 6= 0, thus Vj is smooth up to
the boundary and

Vj(ρ)(x0) = ρj(x0)−
∑

vλj ρλ(x0) = ρj(x0)− ρj(x0) = 0.

Moreover, we have

〈Vj , ∂/∂µλ〉i∂∂ρ(x0) = ρjλ̄(x0)− vλj (x0) = 0, ∀ λ > 2,

which implies that each Vj is horizontal with respect to the Levi form. The
proof is complete.

3.2. Second proof of Lemma 2.9

In this subsection, we will give an explicit formula for each Vj . Here we
shall use some computations from [17]. Put

ρα =
∑

ρβ̄αρβ̄ , |∂ρ|2 =
∑
|ρα|2.

By (3.1) and (3.2), we have

(3.4) Vj = ∂/∂tj −
∑

ψjν̄ψ
ν̄λ∂/∂µλ,

where ψ = − log−ρ. One may verify that (see [17])

(3.5) ψᾱβ = (−ρ)
(
ρᾱβ + ρᾱρβ

ρ− |∂ρ|2

)
.

By direct computation, we have

(3.6)
∑

ψjᾱψ
ᾱβ = − ρβρj

ρ− |∂ρ|2
+
∑(

ρᾱβρjᾱ + ρᾱρβρjᾱ
ρ− |∂ρ|2

)
.
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From (3.6), we know that each Vj is smooth up to the boundary of D and
is tangent to the boundary of D. By a direct computation, we also have
that each Vj is horizontal with respect to the Levi-form of the boundary of
D. Thus the proof of Lemma 2.9 is complete.

3.3. Geodesic curvature for {∂Dt}

Denote by V̂j the horizontal lift of ∂/∂tj with respect to i∂∂ρ. By the
proof of (3.2), we have

(3.7) V̂j = ∂

∂tj
−
∑

ρjᾱρ
ᾱβ ∂

∂µβ
.

By (3.4) and (3.6) and a direct computation, we get

(3.8) θjk̄(ρ) = 〈Vj , Vk〉i∂∂ρ = cjk̄(ρ) + |∂ρ|
2V̂j(ρ)V̂k(ρ)

(ρ− |∂ρ|2)2 ,

where

(3.9) cjk̄(ρ) := 〈V̂j , V̂k〉i∂∂ρ.

Thus we have:

Proposition 3.1. — Let {Dt} be a smooth family of smoothly bounded
Stein domains. Then

(3.10)
∑

θjk̄(ρ)ξj ξ̄k >
∑

cjk̄(ρ)ξj ξ̄k, ∀ ξ ∈ Cm,

on ∂D. Moreover, θjk̄(ρ) ≡ cjk̄(ρ) if and only if each V̂j is tangent to the
boundary of D.

3.4. Relation with interpolation of norms

Let h be a smooth Hermitian norm on the trivial vector bundle B×Cn.
Then for each t ∈ B, ht := h|t×Cn defines a Hermitian norm on Cn. It is
known that {ht} defines an interpolation family if and only if the curvature
of h vanishes identically on B (see Semmes [45]). Denote by Nt the unit
ball in Cn defined by ht. We shall prove that:

Proposition 3.2. — {ht} defines an interpolation family if and only if
the geodesic curvature of {∂Nt} vanishes identically.
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Proof. — Let us write

ht(z) =
∑

hαβ̄(t)zαz̄β .

By definition,
ρ(t, z) := ht(z)− 1

is a defining function for {∂Nt}. By direct computation, we have that
V̂j(ρ) vanishes identically. Thus by Proposition 3.1, the geodesic curvature,
θjk̄(ρ), of {∂Nt} is equal to cjk̄(ρ). By (3.9),

(3.11) cjk̄(ρ) = 〈V̂j , V̂k〉i∂∂ρ = ρjk̄ −
∑

ρjᾱρ
ᾱβρk̄β ,

thus we have

(3.12) θjk̄(ρ) =
∑(

hαβ̄,jk̄ −
∑

hαλ̄,jh
λ̄νhνβ̄,k̄

)
zαz̄β .

Thus θjk̄(ρ) vanishes identically if and only if

(3.13) hαβ̄,jk̄ −
∑

hαλ̄,jh
λ̄νhνβ̄,k̄ ≡ 0, on B.

Notice that (3.13) is equivalent to that the curvature of h vanishes identi-
cally. The proof is complete. �

4. Curvature formula

4.1. Definition of the Chern connection

By Definition 2.4, it suffices to find a linear operator Dtj from Γ(H) to
Γ(H) such that

(4.1) ∂tj (u, v) = (Dtju, v) + (u, ∂tjv), ∀ u, v ∈ Γ(H),

is true. By Definition 2.2, the left hand side of (4.1) can be written as

(4.2) ∂tj (π∗(cn{u,v})),

where u,v are arbitrary representatives (see Definition 2.2) of u, v and
cn = in

2 such that cn{u,u} is a positive (n, n)-form on the total space.
Assume that D satisfies (A1) and (A2). Let Vj be the vector fields in

Lemma 2.9. Since Vj(ρ) = 0 on ∂D, by Corollary A.4, we have

(4.3) ∂tj (π∗{u,v}) = π∗(LVj{u,v}).

Let dL be the Chern connection on L. Then we have

d{u,v} = {dLu,v}+ (−1)n{u, dLv}.
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Using Cartan’s formula,

LVj = dδVj + δVjd,

we get that
LVj{u,v} = {Lju,v}+ {u, Lj̄v},

where
Lj := dLδVj + δVjd

L,

and
Lj̄ := dLδV̄j + δV̄jd

L.

Since v is an (n, 0)-form, we have

(4.4) Lj̄v = δV̄j∂v,

By (2.5), we know that Lj̄v is a representative of ∂tjv. Thus we have

(4.5) ∂tj (u, v) = π∗(cn{Lju,v}) + (u, ∂tjv), ∀ u, v ∈ Γ(H).

Notice that the (n, 0)-part of Lju can be written as

(4.6) (∂φδVj + δVj∂φ)u,

where ∂φ denotes the (1, 0)-component of dL. Thus we have

π∗(cn{Lju,v})(t) =
(
i∗t (∂φδVj + δVj∂φ)u, vt

)
.

Assumption (A2) implies that

(4.7) {vt : v ∈ Γ(H)}.

is dense in the Hilbert space Ht (see the proof of Lemma 4.7 below).
Thus there is a unique element, say σt, in Ht such that

(4.8)
(
i∗t (∂φδVj + δVj∂φ)u, vt

)
= (σt, vt),

which implies that there is a unique element, σt, in Ht such that

(4.9) ∂tj (u, v) = (σt, vt) + (u, ∂tjv), ∀ u, v ∈ Γ(H).

Thus by Definition 2.4, we know that: H has a Chern connection if and
only if

σ : t→ σt,

defines a smooth section of H, i.e.

σ ∈ Γ(H).

By (4.8), σt is the Bergman projection to Ht of i∗t ((∂φδVj + δVj∂φ)u). Thus
by Hamilton’s theorem (see [24, 27, 28] or Appendix A.2), if {Dt} is a
smooth family of smoothly bounded Stein domains then σ ∈ Γ(H) and

(4.10) Dtju = σ.
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Thus we have:

Proposition 4.1. — If D satisfies (A1) and (A2) then the Chern con-
nection is well defined on H.

Now we are ready to compute the curvature of the Chern connection
of H. First we shall show how to get a curvature formula for holomorphic
sections of H.

4.2. Curvature formula for holomorphic sections

Let u1, · · · , um be holomorphic sections (see Definition 2.3) of H. By
definition of the Chern connection and (2.7), we have

(4.11) (Θjk̄uj , uk) = (Dtjuj , Dtkuk)− (uj , uk)jk̄.

By (4.5), we have

(4.12) (uj , uk)jk̄ = π∗(cn{Ljuj , Lkuk}) + π∗(cn{Lk̄Ljuj ,uk}).

Since each uj is a holomorphic section, we have i∗t (Lk̄uj) = (∂tkuj)(t) ≡ 0.
Thus

(4.13) π∗{LjLk̄uj ,uk} = ∂tjπ∗{Lk̄uj ,uk} − π∗{Lk̄uj , Lj̄uk} ≡ 0,

which implies that

(4.14) (uj , uk)jk̄ = π∗(cn{Ljuj , Lkuk})− π∗(cn{[Lj , Lk̄]uj ,uk}).

We shall use the following formula:

Proposition 4.2.
[Lj , Lk̄] = dLδ[Vj ,V̄k] + δ[Vj ,V̄k]d

L + 〈Vj , Vk〉iΘ(L,h).

Proof. — By definition, locally we have

Lj = LVj − Vj(φ), Lk̄ = LV̄k .

Thus

[Lj , Lk̄] = [LVj , LV̄k ]− [Vj(φ), LV̄k ] = L[Vj ,V̄k] + V̄kVj(φ).

By Cartan’s formula, we have

L[Vj ,V̄k] = dLδ[Vj ,V̄k] + δ[Vj ,V̄k]d
L + δ[Vj ,V̄k]∂φ,

Thus

[Lj , Lk̄]−
(
dLδ[Vj ,V̄k] + δ[Vj ,V̄k]d

L
)

= δ[Vj ,V̄k]∂φ+ V̄kVj(φ).
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By direct computation, we have

(4.15) δ[Vj ,V̄k]∂φ+ V̄kVj(φ) = 〈Vj , Vk〉iΘ(L,h).

Thus the proposition follows. �

Now we can prove the following:

Lemma 4.3. — If iΘ(L, h)|Dt > 0, ∀ t ∈ B, then

(4.16)
∑

π∗(cn{[Lj , Lk̄]uj ,uk}) = ||c||2iΘ(L,h)|Dt
+B+

∑
(cjk̄(h)uj , uk),

where c is defined by (2.24) and B is the boundary term defined by

B :=
∑∫

∂Dt

θjk̄(ρ)〈uj , uk〉dσ

If iΘ(L, h) ≡ 0 on D then

(4.17)
∑

π∗(cn{[Lj , Lk̄]uj ,uk}) = B.

Proof. — By the above proposition, we have

(4.18)
∑

π∗(cn{[Lj , Lk̄]uj ,uk}) =
∑

cn

∫
∂Dt

{δ[Vj ,V̄k]uj , uk}+ I,

where

(4.19) I :=
∑

(〈Vj , Vk〉iΘ(L,h)uj , uk).

Now the boundary term can be written as∑
cn

∫
∂Dt

{δ[Vj ,V̄k]uj , uk} =
∑∫

∂Dt

(δ[Vj ,V̄k]∂ρ)〈uj , uk〉dσ.

We shall prove δ[Vj ,V̄k]∂ρ = θjk̄(ρ) on ∂D. In fact, by (4.15), we have

δ[Vj ,V̄k]∂ρ+ V̄kVj(ρ) = 〈Vj , Vk〉i∂∂ρ,

and by our key lemma, Vj |∂D = V ρj , thus V̄kVj(ρ) ≡ 0 on ∂D and

δ[Vj ,V̄k]∂ρ ≡ θjk̄(ρ), on ∂D.

Thus

(4.20) B =
∑

cn

∫
∂Dt

{δ[Vj ,V̄k]uj , uk}.

and (4.18) implies (4.17). Now let us prove (4.16): By (2.13), we have

〈Vj , Vk〉iΘ(L,h) = cjk̄(h) + 〈Vj − V hj , Vk − V hk 〉iΘ(L,h)|Dt .

Since

(Vj−V hj ) y (iΘ(L, h)|Dt) = ((Vj−V hj ) y iΘ(L, h))|Dt = (Vj y iΘ(L, h))|Dt ,
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by (2.24), we have

(4.21) I =
∑

(cjk̄(h)uj , uk) + ||c||2iΘ(L,h)|Dt
.

Thus (4.16) follows. �

By (4.11) and (4.14), we have

(4.22) (Θjk̄uj , uk) = π∗(cn{[Lj , Lk̄]uj ,uk})
+ (Dtjuj , Dtkuk)− π∗(cn{Ljuj , Lkuk}).

Let aj be the (n, 0)-part of i∗t (Ljuj) and bj be the (n−1, 1)-part of i∗t (Ljuj),
i.e.

aj = i∗t (∂φδVj + δVj∂φ)uj = i∗t [∂φ, δVj ]uj ,

and
bj = i∗t (∂δVj + δVj∂)uj = (∂Vj)|Dt y uj .

Then we have

(4.23) ||
∑

Dtjuj ||2 −
∑

π∗(cn{Ljuj , Lkuk}) = −||a||2 − π∗(cn{b, b}),

where b is defined in (2.24) and

a =
∑

((Dtjuj)(t)− aj).

We shall prove that:

Proposition 4.4. — a is the L2-minimal solution of

(4.24) ∂
t(a) = ∂tφb+ c,

where b and c are defined in (2.24).

Proof. — Since i∗t (∂uj) ≡ 0 and i∗t (∂φuj) ≡ 0, we have

(4.25)
∂
t
aj + ∂tφb

j = i∗t (∂[∂φ, δVj ] + ∂φ[∂, δVj ])uj
= i∗t ([∂, [∂φ, δVj ]] + [∂φ, [∂, δVj ]])uj .

Since

(4.26) [∂, [∂φ, δVj ]] + [∂φ, [∂, δVj ]] + [δVj , [∂, ∂φ]] ≡ 0,

and [∂, ∂φ] ≡ Θ(L, h), we get that

(4.27) ∂
t
aj + ∂tφb

j = −(Vj y Θ(L, h))|Dt ∧ uj .

Recall that by (4.10), each Dtjuj is just the Bergman projection to Ht of
aj . Thus this proposition follows from (4.27). �
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By Lemma 4.3, (4.22) and (4.23), we have
(4.28)∑

(Θjk̄uj , uk) =
∑∫

∂Dt

θjk̄(ρ)〈uj , uk〉dσ +
∑

(cjk̄(h)uj , uk) +R′,

where
R′ = ||c||2iΘ(L,h)|Dt

− π∗(cn{b, b})− ||a||2.
Now let us prove that R′ = R. It is enough to prove that

−π∗(cn{b, b}) = ||b||2ωt .

But it follows directly from the following lemma:

Lemma 4.5. — b is primitive with respect to ωt := i∂∂(− log−ρ)|Dt .

Proof. — Recall that

b =
∑

(∂Vj)|Dt y uj .

Since b is an (n− 1, 1)-form, by definition of primitivity, it suffices to show
that

ωt ∧ b ≡ 0, on Dt.

Thus it is enough to prove that

(4.29) ((∂Vj) y i∂∂(− log−ρ))|Dt ≡ 0, ∀ 1 6 j 6 m.

By definition of Vj in our Key Lemma, (Vj y i∂∂(− log−ρ))|Dt = 0.
Thus (4.29) is true. �

Remark. — Now we know that Theorem 2.11 is true if each uj is a
holomorphic section of H. For finite rank vector bundles, the curvature
operators are always pointwise defined, thus it is enough to find a curvature
formula for holomorphic sections in finite rank case. One may guess that
the same argument also works for the general infinite rank vector bundle.
In the next subsection, we shall prove that at least the curvature operators
for our bundle H are pointwise defined. Thus we know that (4.28) is also
true for general smooth sections of H.

4.3. Curvature formula for general sections

By the above remark, we need to prove that the curvature operators Θjk̄

on H are pointwise defined. We shall use the following two lemmas.

Lemma 4.6. — (Θjk̄u, v) = (u,Θkj̄v), ∀ u, v ∈ Γ(H).
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Proof. — By (2.6), we have

(u, v)k̄j = ∂tk((Dtju, v) + (u, ∂tjv))

= (∂tkDtju, v) + (Dtju,Dtkv) + (∂tku, ∂tjv) + (u,Dtk∂tjv).

On the other hand,

(u, v)jk̄ = ∂tj ((∂tku, v) + (u,Dtkv))

= (Dtj∂tku, v) + (Dtju,Dtkv) + (∂tku, ∂tjv) + (u, ∂tjDtkv).

Since (u, v)k̄j ≡ (u, v)jk̄, the lemma follows by comparing the difference of
the above two equality. �

Lemma 4.7. — Assume that D satisfies (A1) and (A2). Fix u ∈ Γ(H)
and t0 ∈ B. Then u|Dt0 can be approximated by holomorphic sections of
H in the following sense:

For every 0 < s < 1, there exists a holomorphic section u(s) of H over
an open neighborhood (may depend on s) of t0 such that

(4.30) (η, s) 7→ u(s)|Dt0 (η), 0 < s < 1, (η, 0) 7→ u|Dt0 (η),

is smooth up to the boundary of Dt0 × [0, 1).

Proof. — Fix a sufficiently small ε > 0 and consider

Ds
t0 := {ζ ∈ π−1(t0) : ρ(t0, ζ) < εs}.

Let us define u(s) as the Bergman projection to the space of L2-holomorphic
forms on Ds

t0 of u|Dst0 . By Siu’s theorem [46], for every 0 < s < 1, Ds
t0 has a

Stein neighborhood in X . Thus by Cartan’s theorem, every u(s) extends to a
holomorphic section (also denoted by u(s)) of H over an open neighborhood
of t0. The regularity properties of {u(s)} follows directly from Hamilton’s
theorem (see Appendix A.2). �

Now let us finish the proof of Theorem 2.11. By the above two lemmas,
for every uj ∈ Γ(H), 1 6 j 6 m, t0 ∈ B, we have

(Θjk̄uj , uk)(t0) = lim
s1→0

(Θjk̄uj , u
(s1)
k )(t0) = lim

s1→0
(uj ,Θkj̄u

(s1)
k )(t0)

= lim
s1→0

lim
s2→0

(u(s2)
j ,Θkj̄u

(s1)
k )(t0)

= lim
s1→0

lim
s2→0

(Θjk̄u
(s2)
j , u

(s1)
k )(t0)

= lim
s→0

(Θjk̄u
(s)
j , u

(s)
k )(t0).
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where u(s)
j are holomorphic sections of H defined in Lemma 4.7. By our

curvature formula for holomorphic sections, we know that
∑

(Θjk̄u
(s)
j , u

(s)
k )

can be written as∑∫
∂Dt

θjk̄(ρ)〈u(s)
j , u

(s)
k 〉dσ +

∑
(cjk̄(h)u(s)

j , u
(s)
k ) +R(s),

where
R(s) = ||c(s)||2iΘ(L,h)|Dt

+ ||b(s)||2ωt − ||a(s)||2ωt .

Since a(s), b(s) and c(s) only depend on u(s)
j |Dt0 , by Lemma 4.7, let s→ 0,

we know that (2.27) is true at t0. Since t0 is an arbitrary point in B, the
proof of Theorem 2.11 is complete.

4.4. Proof of Corollary 2.12

For any fixed t0 ∈ B, one may choose a sufficiently large positive constant
A such that ρ+A|t|2 is strictly plurisubharmonic in a neighborhood of the
closure of D ∩ π−1(U), where U is a small neighborhhod of t0. Now for
every ε > 0,

hε := he−ε(ρ+A|t|
2),

defines a smooth Hermitian metric on L with positive curvature on a neigh-
borhood of the closure of D∩π−1(U). Denote by Hε the associatied family
of Hilbert spaces with respect to hε. Denote by Θε

jk̄
the assocaited curva-

ture operator on Hε. Since the total space D is Stein, we know that θjk̄ is
semi-positive. By the construction of hε, we know that cjk̄(hε) is positive
on D∩π−1(U). Thus our main theorem implies that Hε is Nakano positive
on U . By Hamilton’s theorem, we have∑

(Θjk̄uj , uk)(t0) = lim
ε→0

∑
(Θε

jk̄
uj , uk)(t0) > 0, ∀ u, v ∈ Γ(H).

Thus H is Nakano semi-positive at t0. Since t0 is an arbitrary point in B,
we know that H is Nakano semi-positive.

5. Curvature of the dual family

In this section, we shall prove our main application Corollary 2.15. As
a direct application, we shall give a plurisubharmonicity property of the
derivatives of the Bergman kernel, which can be seen as a generalization of
Theorem C. In the last part of this section, based on a remarkable idea of
Berndtsson and Lempert [14], we shall show how to use Corollary 2.15 to
study plurisubharmonicity properties of the Bergman projection of currents
with compact support.
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5.1. Proof of Corollary 2.15

Let f be a holomorphic section of the dual of H. By Definition 2.13, we
know that there is a smooth section, say P (f), of H, such that

(5.1) f t(ut) = (ut, P (f)t),

for every ut ∈ Ht. Moreover, by Definition 2.14, we know that

(5.2) f(u) : t 7→ f t(ut),

is a holomorphic function of t if u is a holomorphic section of H. Thus we
have

(5.3) 0 ≡ ∂tjf(u) = (u,DtjP (f)),

for every holomorphic section u of H. By Lemma 4.7, we know that

(5.4) DtjP (f) ≡ 0,

which implies that

(5.5) ∂tj∂tk(||P (f)||2) = (∂tkP (f), ∂tjP (f)) + (Θjk̄P (f), P (f)).

By Corollary 2.12, we have∑
(Θjk̄(ξjP (f)), ξkP (f)) > 0.

for every ξ ∈ Cm. Thus we have

∑
∂tk∂tj (log ||P (f)||2)ξj ξ̄k >

||
∑
ξ̄k∂tkP (f)||2

||P (f)||2 −|(P (f),
∑
ξ̄k∂tkP (f))|2

||P (f)||4 ,

on

(5.6) Uf := {t ∈ B : ||P (f)t|| > 0}.

By Schwartz inequality, we have
∑
∂tk∂tj (log ||P (f)||2)ξj ξ̄k > 0 on Uf .

Notice that

(5.7) ||P (f)|| : t 7→ ||P (f)t|| = ||f t||

is a smooth function on B. Thus log ||P (f)|| = log ||f || is plurisubharmonic
on B. The proof is complete.
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5.2. Variation of the derivatives of the Bergman kernel

For simplicity purposes, we shall only consider the following case:

Pseudoconvex family in Cn. — In this case, X is Cn × B and π is just
the natural projection to B. Assume that D satisfies (A1) and (A2). One
may look atD = {Dt}t∈B as a smooth family of smoothly bounded strongly
pseudoconvex domains in Cn. Moreover, we shall assume that L is a trivial
line bundle over X with Hermitian metric h = e−φ.

Variation formula of the derivatives of the Bergman kernel. Fix
η ∈ D0, replace B by a smaller ball if necessary, one may assume that

(5.8) η ∈ Dt, ∀ t ∈ B.

Let us consider

Dαη : f 7→ fα(η) := ∂|α|f

(∂µ1)α1 · · · (∂µn)αn (η), ∀ f = f(µ)dµ ∈ Ht,

where α ∈ Nn, |α| := α1 + · · ·+αn and dµ is short for dµ1 ∧ · · · ∧ dµn. By
Definition 2.14, we know that every Dαη defines a holomorphic section of
the dual of H. Put

·αη := P (Dαη).
i.e., ·αη is the unique smooth section of H such that

(5.9) (f, ·αη) = fα(η) ∀ f ∈ Ht.

Let Kt(ζ, η)dζ ⊗ dη be the Bergman reproducing kernel of Ht. Then (5.9)
implies that

(5.10) ·0 η = Kt(µ, η)dµ, (·βη, ·αζ) = (·βη)α(ζ) = (·αζ)β(η) = Kt
αβ̄

(ζ, η),

where

Kt
αβ̄

(ζ, η) = ∂|α|+|β|Kt

(∂ζ1)α1 · · · (∂ζn)αn(∂η̄1)β1 · · · (∂η̄n)βn (ζ, η).

By (5.4), we have

(5.11) Kt
jk̄αβ̄

(ζ, η) = ∂tj∂tk(·βη, ·αζ) = ((·βη)k̄, (·αζ)j̄) + (Θjk̄(·βη), ·αζ).

By (2.27), we have

(5.12) (Θjk̄(·βη), ·αζ) =
∫
∂Dt

θjk̄(ρ)〈·βη, ·αζ〉dσ + (cjk̄(h)·βη, ·αζ) +R,

where

(5.13) R = (c, c′)i∂∂φ|Dt + (b, b′)ωt − (a, a′)ωt ,

TOME 67 (2017), FASCICULE 1



298 Xu WANG

if i∂∂φ|Dt > 0, and
R = (b, b′)ωt − (a, a′)ωt ,

if i∂∂φ ≡ 0. Here
ωt = i∂∂(− log−ρ)|Dt ,

and (a, b, c) (resp. (a′, b′, c′)) are forms associated to ·βη (resp. ·αζ) respec-
tively. Moreover,

∂
t
a = ∂tφb+ c, ∂

t
a′ = ∂tφb

′ + c′.

Remark. — Theorem A.5 implies that R is non-negative as a Hermitian
form. Later we shall give an explicit expression of the Hörmander remaining
term R in case i∂∂φ ≡ 0. (thus c = c′ ≡ 0).

Hörmander remaining term for flat weight. Let us assume that
i∂∂φ ≡ 0. By definition, then we have c = c′ ≡ 0. Put

(5.14) �′ = ∂tφ(∂tφ)∗ + (∂tφ)∗∂tφ,

We shall prove that:

Lemma 5.1. — If i∂∂φ ≡ 0 on D then

(5.15) R = (Hb,Hb′)ωt ,

where Hb denotes the �′-harmonic part of b.

Proof. — Since i∂∂φ ≡ 0 and ωt is complete Kähler, we know that the
∂-Laplace �′′ is equal to �′. Denote by G the associated Green operator.
Let us omit ωt in (·, ·)ωt , then we have

(a, a′) = ((∂t)∗G∂tφb, a′) = (G∂tφb, ∂tφb′).

Since b is primitive and ∂t-closed, we know that b is (∂tφ)∗-closed. Thus b
can be written as

b = Hb+ (∂tφ)∗f, ∂tφf = 0.
Now

(a, a′) = (G∂tφ(∂tφ)∗f, ∂tφb′) = (f, ∂tφb′) = (b−Hb, b′) = (b, b′)− (Hb,Hb′).

Thus
R = (b, b′)− (a, a′) = (Hb,Hb′). �

Recall that

(5.16) b = (∂Vj)|Dt y (·βη), b′ = (∂Vk)|Dt y (·αζ).

Thus Lemma 5.1 implies that:
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Theorem 5.2 (Variation Formula of the Bergman Kernel). — The first
order variation formula of the Bergman kernel can be written as

(5.17) Kt
jαβ̄

(ζ, η) = in
2
∫
Dt

φj{·βη, ·αζ} − in
2
∫
∂Dt

δVj{·βη, ·αζ},

Moreover, if i∂∂φ ≡ 0 on D then

(5.18) Kt
jk̄αβ̄

(ζ, η) = ((·βη)k̄, (·αζ)j̄)+
∫
∂Dt

θjk̄(ρ)〈·βη, ·αζ〉dσ+(Hb,Hb′),

where b = (∂Vj)|Dt y (·βη), b′ = (∂Vk)|Dt y (·αζ).

Proof. — Notice that (5.18) is a direct consequence of Lemma 5.1. Thus
it suffices to prove (5.17). Notice that (4.3) implies that

Kt
jαβ̄

(ζ, η) = in
2
∫
Dt

LtVj{·βη, ·αζ}.

By Cartan’s formula
LtVj = i∗t (dδVj + δVjd),

thus we have

Kt
jαβ̄

(ζ, η) = in
2
∫
∂Dt

δVj{·βη, ·αζ}+ in
2
∫
Dt

∂

∂tj
{·βη, ·αζ}.

By the reproducing formula,

in
2
∫
Dt

∂

∂tj
{·βη, ·αζ} = 2Kt

jαβ̄
(ζ, η)− in

2
∫
Dt

φj{·βη, ·αζ},

which implies (5.17). �

Remark. — If α = β = 0 and φ ≡ 0 then (5.17) is Komatsu’s formula
(see [32]). Recently, Berndtsson [11] showed that (5.17) can be used to study
the comparison principle for Bergman kernels. In fact, if D is a product
then (5.17) is just [11, (2.2)].

5.3. Variation of the Bergman projection of currents

In the last section, we discussed the plurisubharmonicity properties of the
Bergman projection of the derivatives of the Dirac measure. Recently, it is
known that the plurisubharmonicity properties of the Bergman projection
of other kind of currents are also very useful (see [14]). In this subsection,
we shall show how to use Corollary 2.15 to study variation of the Bergman
projection of general currents with compact support.
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Smooth family of currents with compact support. Denote by At
the space of smooth sections of KDt + Lt over Dt. Put

A = {At}t∈B.

We shall introduce the notion of the dual of A by using the language of
currents. Denote by A′t the dual space of At, that is the space of L∗t -valued
degree (0, n)-currents with compact support in Dt. Fix f t ∈ A′t, we shall
formally write

f t(ut) =
∫
Dt

f t ∧ ut, ∀ ut ∈ At,

even though the (n, n)-current f t ∧ ut may not be integrable in general.
Put

A′ = {A′t}t∈B.
Denote by Supp f t the support of f t. Denote byKX/B the relative canonical
line bundle associated to π, recall that

(5.19) KX/B := KX − π∗KB, KX/B|Dt ' KDt .

We shall introduce the following definiton:

Definition 5.3. — We call f : t→ f t ∈ A′t a smooth family of currents
with compact support if

(5.20)
⋃
t∈K

Supp f t b D, ∀ K b B,

and for every smooth section κ of (KX/B + L)� (KX/B + L∗) over

X ×π X := {(x, y) ∈ X × X : π(x) = π(y)},

there exists a smooth section, say uf,κ, of KX/B + L∗ over X such that

(5.21) f t(κt(vt)) = utf,κ(vt), ∀ v ∈ C∞(X ,KX/B + L), t ∈ B.

Remark. — Let us explain the meaning of (5.21). The right hand side
is clear, that is

utf,κ(vt) :=
∫
Dt

utf,κ ∧ vt.

For the left hand side, by Assumption(A1), the restriction of π to the
closure of D is proper, thus we know that

κt(vt) : x 7→
∫
Dt

κt(x, ·) ∧ vt(·), ∀ x ∈ π−1(t),

defines a section in At. Thus f t(κt(vt)) is well defined. Hence (5.21) means
that the current defined by f(κ) is smooth up to the boundary of D.
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Bergman projection of smooth family of currents with compact
support. We shall prove the following proposition:

Proposition 5.4. — Assume that D satisfies (A1) and (A2). Let f :
t→ f t ∈ A′t be a smooth family of currents with compact support. Then

(5.22) f t : ut 7→ f t(ut), ∀ ut ∈ Ht,

defines a smooth section of the dual of H in the sense of Definiton 2.13.

Proof. — (5.20) implies that there exists a smooth real function, say χ,
on D such that

χ ≡ 1 on
⋃
t∈B

Supp f t, Supp(χ|Dt) b Dt, ∀ t ∈ B.

Denote by Kt the Bergman kernel of Ht. Put

χK : (x, y) 7→ χ(x)Kπ(x)(x, y), ∀ (x, y) ∈ D ×π D.

By Hamilton’s theorem (see Appendix A.2), Assumptions (A1) and (A2)
imply that χK is smooth up to the boundary, i.e., it extends to a smooth
section of (KX/B + L) � (KX/B + L∗) over X ×π X . By the reproducing
property of Kt, we have

(χK)t(vt) = (χv)t, ∀ v ∈ Γ(H).

Thus by (5.21), we have

(5.23)
f t(vt) = f t((χv)t) = f t((χK)t(vt))

= utf,χK(vt) =
∫
Dt

utf,χK ∧ vt, ∀ vt ∈ Ht.

Let us write

utf,χK ∧ vt = in
2
{vt, P (f)t}, ∀ vt ∈ C∞(Dt,KDt + Lt).

Thus we have

(5.24) f t((χK)t(vt)) = (vt, P (f)t), ∀ vt ∈ C∞(Dt,KDt + Lt).

Since (χK)t(H⊥t ) = 0, we have P (f)t ∈ Ht. Thus P (f) ∈ Γ(H), and
by (5.23), we have

(5.25) f t(vt)) = (vt, P (f)t), ∀ v ∈ Γ(H).

By Definition 2.13, we know that f defines a smooth section of the dual
of H. �
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Remark. — By Lemma 4.7, ifD satisfies (A1) and (A2) thenHt is equal
to the closure of {ut ∈ Ht : u ∈ Γ(H)}. Thus (5.25) implies that

(5.26) ||P (f)||2(t) = sup{|f t(u)|2 : u ∈ Ht, in
2
∫
Dt

{u, u} = 1}.

By this extremal property, one may generalize Corollary 2.15 to the case
that the metric h on L is singular.

6. Triviality and flatness

In this section, we shall prove Theorem 2.17 and use it to study triviality
of holomorphic motions.

6.1. Proof of Theorem 2.17

Triviality implies flatness. By definition, if D is trivial then one may
assume that the vector fields ∂/∂tj are well defined on D, tangent to the
boundary of D and can be extended to smooth vector fields on X . Thus
we have

(6.1) θjk̄(ρ) ≡ 0,

on ∂D. Moreover, in this case b ≡ 0. If Θ(L, h) ≡ 0 then we also have c ≡ 0.
Thus a ≡ 0 and R ≡ 0. By our main theorem, we know that H is flat.

Flatness implies triviality. By Theorem 2.11 and our assumption, we
have ∑

(Θjk̄uj , uk) =
∑∫

∂Dt

θjk̄(ρ)〈uj , uk〉dσ +R,

where R > 0. Moreover, since D is Stein, we have∑∫
∂Dt

θjk̄(ρ)〈uj , uk〉dσ > 0.

Thus if Θjk̄ ≡ 0 then R ≡ 0 and

(6.2) θjk̄(ρ) = 〈V ρj , V
ρ
k 〉i∂∂ρ ≡ 0 on ∂D.

Since

(6.3) 〈Vj , Vk〉i∂∂(− log−ρ) =
〈Vj , Vk〉i∂∂ρ
−ρ

+ Vj(ρ)Vk(ρ)
ρ2 ,
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and Vj = V ρj on ∂D, by (6.3) and (6.2), we know that 〈Vj , Vk〉i∂∂(− log−ρ) is
smooth up to the boundary of D. We shall use the following lemma, which
follows from

(6.4) V ψj = ∂/∂tj −
∑

ψjλ̄ψ
λ̄ν∂/∂µν ,

by direct computation.

Lemma 6.1. — Let ψ be a smooth function on D. Assume that ψ is
strictly plurisubharmonic on each fibre of D. Denote by V ψj the horizontal
lift of ∂/∂tj with respect to i∂∂ψ. Then

[V ψj , V
ψ
k ] = 0, [V ψj , V

ψ
k ] =

∑
cjk̄(ψ)λ̄ψλ̄ν∂/∂µν − cjk̄(ψ)νψλ̄ν∂/∂µ̄λ,

where cjk̄(ψ) := 〈V ψj , V
ψ
k 〉i∂∂ψ.

Let us apply this lemma to ψ = − log−ρ. Now by definition of Vj in
Lemma 2.9, we have Vj ≡ V ψj . Since (− log−ρ)λ̄ν ≡ 0 on ∂D. By (6.3) and
the above lemma, we have

(6.5) [Vj , Vk] = 0, on D, and [Vj , Vk] = 0, on ∂D.

on the boundary of D. Moreover, we shall prove that the following lemma
is true.

Lemma 6.2. — Assume that D satisfies (A1) and (A2). Assume further
that KX/B +L is trivial on each fibre of π and Θ(L, h) ≡ 0 on D. If R ≡ 0
then each V ρj has a smooth extension, say Ṽj , that is holomorphic on fibres
and smooth up to the boundary of D.

If the above lemma is true then by (6.5), we have

[Ṽj , Ṽk] = [Ṽj , Ṽk] = 0, on ∂D.

Since Ṽj are holomorphic on fibres, we have

[Ṽj , Ṽk] = ∂

∂tj
Ṽk −

∂

∂t̄k
Ṽj .

Thus
∂

∂t̄k
Ṽj ≡ 0, on ∂D.

Since ∂
∂t̄k

Ṽj are holomorphic on each fibre, we have
∂

∂t̄k
Ṽj ≡ 0, on D.

Thus each Ṽj is a holomorphic vector field on D. Moreover,

[Ṽj , Ṽk] ≡ 0, on ∂D.
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Thus D is trivial. The proof of Theorem 2.17 is complete. �

Now let us prove Lemma 6.2:
Proof of Lemma 6.2. — We shall prove that R ≡ 0 implies that every

Vj |∂D(= V ρj ) has a holomorphic extension to D. Notice that the proof of
Lemma 5.1 implies that

R = ||H(
∑

(∂Vj)|Dt y uj)||2ωt ,

where ωt = i∂∂(− log−ρ)|Dt . Thus R ≡ 0 implies that Hb ≡ 0. Since ωt is
d-bounded in the sense of Gromov (see [1, 21, 26]), and

b :=
∑

(∂Vj)|Dt y uj

is ∂-closed, we know that there exists a smooth Lt-valued (n − 1, 0)-form
ut such that ∂tut = b and

||ut||ωt 6 2||b||ωt <∞.

We claim that u : (η, t) 7→ ut(η) is smooth up the boundary of D and u = 0
on ∂D. In fact, if we can show

(6.6)
∫
Dt

{f, b} = 0,

for every ∂tφ-closed Lt-valued (n − 1, 1)-form f that is smooth up to the
boundary ofDt, then ∗b ∈ Im(∂tφ)∗, where ∗ is the Hodge-de Rham operator
with respect to (i∂∂ρ)|Dt and (∂tφ)∗ is the adjoint of ∂tφ with respect to
(i∂∂ρ)|Dt . By the regularity property of the ∂-Neumann problem (in fact,
in our case, it is Dirichlet problem), one may solve

(∂tφ)∗vt = ∗b.

where v : (η, t) 7→ vt(η) is smooth up to the boundary of D. Since (∂tφ)∗ =
− ∗ ∂t∗, we have

∂
t(− ∗ vt) = b.

Since vt ∈ Dom(∂tφ)∗, we have vt = 0 on ∂Dt. Thus || − ∗vt||ωt <∞. Since
there are no L2 (with respect to ωt) holomorphic Lt-valued (n−1, 0)-forms
on Dt, we have ut = − ∗ vt. Thus our claim follows from (6.6).
Now let us prove (6.6). Put ρt = ρ|Dt . Since b is smooth up to the

boundary, we have

(6.7)
∫
Dt

{f, b} = lim
r→0−

∫
{ρt<r}

{f, b} = lim
r→0−

(−1)n
∫
{ρt=r}

{f, ut}.
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Since

ωt >
(i∂∂ρ)|Dt
−ρ

,

we know that ||ut||ωt <∞ implies that∫
Dt

|ut|2
i∂∂ρ|Dt
−ρ

(i∂∂ρ)n|Dt
n! <∞.

Thus

lim inf
r→0−

∫
{ρt=r}

|ut|2
i∂∂ρ|Dt

dσ = 0.

Since f is smooth up to the boundary, we know that

(6.8) lim
r→0−

(−1)n
∫
{ρt=r}

f ∧ ūt = 0.

Thus (6.6) follows from (6.7) and (6.8), and our claim is proved.
By our assumption, KX/B + L is trivial on π−1(t), thus there exists a

holomorphic section, say e, of KX/B +L, that has no zero point in π−1(t).
Now fix t ∈ B, 1 6 j 6 m. Put

uj = e, uk = 0, ∀ k 6= j.

By our claim, one may solve ∂tut = (∂Vj)|Dt y e such that ut = 0 on the
boundary. Since e has no zero point in π−1(t), one may write

ut = V y e, on Dt.

Thus we have

∂
t(Vj − V ) = 0, on Dt; Vj − V = Vj on ∂Dt.

Thus Vj |∂Dt has a holomorphic extension, say Ṽj |Dt , to Dt. The regularity
property of Ṽj follows from the regularity property of ut. The proof is
complete. �

6.2. Triviality of holomorphic motions

We shall show how to use Theorem 2.17 to study triviality of holomorphic
motions.
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Basic notions on holomorphic motion. Recall that that if every fibre
Dt is a domain in C then:

∂D is Levi-flat if and only if θjk̄(ρ) ≡ 0.

It is known that the boundary of the total space of a holomorphic motion
of a planar domain is Levi-flat. Recall that, by definition, a homeomorphism

(6.9) F : (z, t) 7→ (f(z, t), t),

from D0 × B to D is called a holomorphic motion (see [36]) of D0 (with
total space D) if f(·, 0) is the identity mapping and f(z, ·) is holomorphic
for every fixed z ∈ D0.

Curvature formula for holomorphic motions. Assume that D0 is a
smooth domain in C and F is smooth up to the boundary. Assume further
that L is trivial and φ ≡ 0 on D. Put

V Fj := F∗(∂/∂tj) = ∂/∂tj + fj(z, t)∂/∂ζ.

By definition, V Fj (ρ) ≡ 0 on ∂D. Thus

V Fj = Vj = V ρj , on ∂D.

Hence we have
||
∑

(V Fj − Vj) y uj ||ωt <∞,
which implies that∑

(Θjk̄uj , uk) = ||H(
∑

(∂Vj)|Dt y uj)||2 = ||H(
∑

(∂V Fj )|Dt y uj)||2.

Criterion for Θjk̄ ≡ 0 by using the Bergman kernel. Put

J = fz̄/fz.

Since
∂/∂ζ̄ = zζ̄∂/∂z + zζ∂/∂z̄,

and
zζ = fz

|fz|2 − |fz̄|2
, zζ̄ = −fz̄

|fz|2 − |fz̄|2
,

we have

(6.10) (∂V Fj )|Dt = (fjzzζ̄ + fjz̄zζ)dζ̄ ⊗
∂

∂ζ
= (fz)2Jj
|fz|2(1− |J |2)dζ̄ ⊗

∂

∂ζ
.

Thus Θjk̄ ≡ 0 is equivalent to

(6.11)
∫
Dt

Kt(ζ, η̄)
(

(fz)2Jj
|fz|2(1− |J |2)

)
(z(ζ, t), t) idζ ∧ dζ̄ = 0.

for every (η, t) in D and every j.
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Proof of Corollary 2.18. — Since J = a(t) now, by (6.11), we know that
Θjk̄ ≡ 0 is equivalent to

aj
1− |a|2

∫
Dt

Kt(ζ, η̄) idζ ∧ dζ̄ = 0.

for every (η, t) in D and every j. But notice that∫
Dt

Kt(ζ, η̄) idζ ∧ dζ̄ ≡ 1.

Thus Θjk̄ ≡ 0 is equivalent to aj ≡ 0 for every j. Since a(0) = 0, we know
that Θjk̄ ≡ 0 is equivalent to a ≡ 0. �

Remark. — In [35], Ren Shan Liu showed that if f = z + t2z̄, then
F (D×D) is not biholomorphic equivalent to the bidisc, where D denotes the
unit disc. Interested readers can find more information on the holomorphic
motion in [49] and [50].

Appendix

A.1. Variation of fibre integrals

Let B be the unit ball in Rm. Let {Dt}t∈B be a family of smoothly
bounded domains in Rn. Put

D := {(t, x) ∈ Rm+n : x ∈ Dt, t ∈ B}.

Assume that there is a real valued function ρ on B×Rn such that for each
t in B, ρ|Dt is a smooth defining function of Dt.
We call {Dt}t∈B a smooth family if there exists a fibre preserving diffeo-

morphism Φ from B×D0 onto D such that for each 1 6 j 6 m, Φ∗(∂/∂tj)
extends to a smooth vector field on Rn. Put

(A.1) [D] := D ∩ (B× Rn), δD := ∂D ∩ (B× Rn).

Let dx := dx1 ∧ · · · ∧ dxn be the Euclidean volume form on Rn. Fix a
smooth function f on a neighborhood of [D]. If {Dt}t∈B is a smooth family
then the fibre integrals

F (t) :=
∫
Dt

f(t, x)dx

depend smoothly on t ∈ B. We shall introduce a natural way to compute
the derivatives of F (t) (see [44] for related results). For every fixed j ∈
{1, · · ·m}, let

Vj := ∂

∂tj
−
∑

vλj
∂

∂xλ
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be a smooth vector field on a neighborhood of [D]. We shall prove that:

Theorem A.3. — Let {Dt}t∈B be a smooth family of smoothly bounded
domain in Rm. Assume that Vj(ρ) = 0 on δD. Then we have

(A.2) ∂F

∂tj
(t) =

∫
Dt

LtVj (f(t, x)dx) =
∫
Dt

LVj (f(t, x)dx) ,

for every t in B, where LtVj := i∗t (LVj ).

Proof. — Without loss of generality, one may assume that t = 0 and
j = 1. Since V1(ρ) vanishes on δD, the motion

Φ : (−1, 1)×D0 → Rm

of D0 associated to V1 is compatible with {Dt}, i.e.

Φ(a×D0) = Daν , ν = (1, 0, · · · , 0) ∈ Rm,

for every a ∈ (−1, 1). Since for every fixed a ∈ (−1, 1),

Φa : x 7→ Φ(a, x)

is a C∞ isomorphism from D0 to Daν , we have

(A.3) ∂F

∂t1
(0) = lim

0 6=a→0

∫
D0

f(aν,Φa(x))dΦa(x)− f(0, x)dx
a

Since V1 and f are smooth up to the boundary, we have

(A.4) ∂F

∂t1
(0) =

∫
D0

lim
0 6=a→0

f(aν,Φa(x))dΦa(x)− f(0, x)dx
a

.

By definition of Lie derivative,

(A.5) LV1 (f(t, x)dx) (0, x) = lim
0 6=a→0

[(Ψa)∗(fdx)](0, x)− f(0, x)dx
a

,

where

Ψa : (bν,Φb(x)) 7→ (bν + aν,Φb+a(x)), (b, x) ∈ (−1 + |a|, 1− |a|)×D0.

Since
i∗0 {[(Ψa)∗(fdx)](0, x)− f(aν,Φa(x))dΦa(x)} = 0,

(A.2) follows from (A.4) and (A.5). �

Now assume that m = 2, put
∂

∂t
:= 1

2

(
∂

∂t1
− i ∂

∂t2

)
,
∂

∂t̄
:= 1

2

(
∂

∂t1
+ i

∂

∂t2

)
.

Let
V = ∂

∂t
−
∑

vλ
∂

∂xλ
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be a smooth vector field on a neighborhood of [D]. If V (ρ) vanishes on
δD, then both 2 ReV and −2 ImV satisfy the assumption of Theorem A.3.
Thus we have:

Corollary A.4. — If V (ρ) vanishes on δD then

∂F

∂t
(t) =

∫
Dt

LtV (f(t, x)dx), ∂F
∂t̄

(t) =
∫
Dt

Lt
V

(f(t, x)dx),

for every t ∈ B.

A.2. Stability of the Bergman kernel

We shall give a short account of Hamilton’s theory on regularity proper-
ties of families of non-coercive boundary value problems. By [3, Lemma 2.1],
stability of Bergman kernels follows directly from stability of solutions ut
of a family of ∂-Neumann problems �t(·) = f t. But it is not easy to prove
regularity of ut by the standard method. In fact, if we want to use

(A.6) ||�t(ut − us)|| = ||f t − fs − (�t −�s)us||,

to estimate ||ut − us|| then we have to find a natural connection between
the domain of �t and the domain of �s (i.e., us may not be in the domain
of �t).

Hamilton [28] found a more natural way to study the regularity properties
of families of non-coercive boundary value problems (not only for the ∂-
Neumann problem). For reader’s convenience we give a sketch description
of Hamilton’s idea.
Instead of considering�t(whose domain satisfies the so called ∂-Neumann

condition), Hamilton considered the full Laplace operator �̃t (whose do-
main contains all forms smooth up to the boundary). Let ut be a form
smooth up to the boundary. In general, the Sobolev norm of �̃t(ut) could
not control the Sobolev norm of ut. In fact, ut has to be in the domain of
�t (see [22]). Thus two more operators (sending forms on Dt to forms on
the boundary of Dt) are used in Hamilton’s paper, i.e., he considered the
full ∂-Neumann problem

(A.7) St(·) :=
(
�̃t, (∂tρ)∨, (∂tρ) ∨ ∂t

)
(·) = f t,

where
(∂tρ)∨ := (∂tρ ∧ ·)∗.
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Now the domain of St is C∞•,•(Dt) for each t. Choose a C∞ trivialization
mapping

B×D0 ' D,
then the domain of St can be seen as a fixed space C∞•,•(D0). Moreover,
by [28], the constant in the basic estimates for St can be chosen to be
independent of t ∈ B. Thus (A.6) applies. The interested reader is referred
to that paper for further information and a clear proof.

A.3. L2-estimate for ∂a = ∂φb+ c

We shall prove a generalization of Demailly’s theorem (see [6, 19, 29]) in
this section.

Theorem A.5. — Let (L, h) be a Hermitian line bundle over an n-
dimensional complete Kähler manifold (X,ω). Let v be a smooth ∂-closed
L-valued (n, 1)-form. Assume that

iΘ(L, h) > 0 on X, (resp. iΘ(L, h) ≡ 0 on X)

and

I(v) := inf
v=∂φb+c

||b||2ω + ||c||2iΘ(L,h) <∞, (resp. I(v) := inf
v=∂φb

||b||2ω <∞).

Then there exists a smooth L-valued (n, 0)-form a on X such that ∂a = v

and

(A.8) ||a||2ω 6 I(v).

Proof. — We shall only prove the iΘ(L, h)> 0 case, since the iΘ(L, h)≡ 0
case can be proved by a similar argument. By Hörmander’s theorem and
the standard density lemma for complete Kähler manifold, it suffices to
prove that,

(A.9) |(∂φb+ c, g)ω|2 6 (||b||2ω + ||c||2iΘ(L,h))(||∂
∗
g||2ω + ||∂g||2ω),

for every smooth L-valued (n, 1)-form g with compact support in X. Notice
that

(∂φb+ c, g)ω = (b, ∂∗φg)ω + (c, g)ω.
Hence

|(∂φb+ c, g)ω|2 6 (||b||2ω + ||c||2iΘ(L,h))(||∂∗φg||2ω + ([iΘ(L, h),Λω]g, g)ω),

where Λω denotes the adjoint of ω∧. Thus (A.9) follows from the Bochner–
Kodaira–Nakano formula. The proof is complete. �
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