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MODIFICATIONS OF TORSION-FREE
COHERENT ANALYTIC SHEAVES

by Jean RUPPENTHAL & Martin SERA (*)

Abstract. — We study the transformation of torsion-free coherent analytic
sheaves under proper modifications. More precisely, we study direct images of in-
verse image sheaves, and torsion-free preimages of direct image sheaves. Under
some conditions, it is shown that torsion-free coherent sheaves can be realized as
the direct image of locally free sheaves under modifications. Thus, it is possible to
study coherent sheaves modulo torsion by reducing the problem to study vector
bundles on manifolds. We apply this to reduced ideal sheaves and to the Grauert–
Riemenschneider canonical sheaf of holomorphic n-forms.
Résumé. — Nous étudions la transformation de faisceaux analytiques cohérents

à travers des modifications propres. Plus précisément, nous étudions les images
directes de faisceaux images-inverses, et les préimages sans torsion de faisceaux
images directes. Sous certaines conditions, il est démontré que les faisceaux cohé-
rents sans torsion peuvent être réalisés comme images directes de faisceaux locale-
ment libres à travers des modifications. Ainsi, il est possible d’étudier les faisceaux
cohérents modulo torsion en ramenant le problème à l’étude de fibrés vectoriels
sur des variétés. Nous appliquons ceci aux faisceaux d’idéaux réduits et au faisceau
canonique de n-formes holomorphes de Grauert–Riemenschneider.

1. Introduction

In bimeromorphic geometry, the use of locally free coherent analytic
sheaves is limited: the direct image of a locally free sheaf under a proper
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238 Jean RUPPENTHAL & Martin SERA

modification is not locally free any more. Instead, it is reasonable to con-
sider the wider category of torsion-free coherent analytic sheaves. The re-
striction to torsion-free sheaves makes sense for bimeromorphic considera-
tions as the torsion of a coherent analytic sheaf is supported on analytically
thin subsets. To exemplify the use of torsion-free sheaves, just recall that
an irreducible(1) reduced compact space X is a Moishezon space if and
only if it carries a positive torsion-free coherent analytic sheaf S with
supp(S ) = X (see e.g. in [15, Thm. 6.14]).

Let π : Y → X be a proper modification of a complex space X (cf. Sec-
tion 2 for notations). Then the direct image π∗F of a torsion-free coherent
analytic sheaf F remains torsion-free. The problem is here that the ana-
lytic inverse image sheaf π∗S of a torsion-free coherent analytic sheaf S

is not torsion-free in general. For a counter-example, see e.g. the example
in [11, §1], i.e., the pullback of the maximal ideal sheaf of the origin in C2

under blow-up of the origin is not torsion-free. One can say more or less
that π∗S is torsion-free in a point y ∈ Y if and only if S is locally free in
π(y) (see [18] or Remark 3.21 below).
To take care of the torsion which arises when taking analytic inverse

images, it is useful to consider the torsion-free preimage sheaf:

Definition 1.1. — Let π : Y → X be a holomorphic map between
complex spaces such that Y is locally irreducible. Let S be a coherent
analytic sheaf on X. Then

πTS := π∗S /T (π∗S ),

where T (π∗S ) is the torsion sheaf of π∗S , is called the torsion-free preim-
age sheaf of S under π.

Torsion-free preimages under proper modifications have been first stud-
ied by H. Rossi [20], H. Grauert and O. Riemenschneider [11, 19]. The
main motivation is as follows: Let S be a torsion-free coherent analytic
sheaf on an irreducible complex space X. Then Rossi showed that there
exists a proper modification ϕS : Y → X such that ϕTS S is locally free
(see Section 2 for the details). Combining this with a resolution of singu-
larities σ : M → Y which exists due to Hironaka, we obtain a resolution of
singularities π = ϕS ◦ σ : M → X such that πTS is locally free. Thus, it

(1)We call a complex space locally irreducible if each stalk of its structure sheaf is an
integral domain (see e.g. [10, Chap. 1, §1.5]). In particular, it is then automatically
reduced. On the other hand, we say that a complex space X is (globally) irreducible
if the underlying reduced space, red(X), consists of just one irreducible component. If
there are more than one components, then X is called reducible.
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MODIFICATIONS OF TORSION-FREE SHEAVES 239

is possible to study coherent analytic sheaves modulo torsion by reducing
the problem to study vector bundles on manifolds.
In view of this idea, it seems very interesting to study the connection

between S and its torsion-free preimage πTS closer, and we have found
the following relation which to our knowledge has not been observed in the
literature:

Theorem 1.2. — Let π : Y → X be a proper modification of a complex
space X, and let F and G be torsion-free coherent analytic sheaves on X
and Y , respectively.

(1) If F = π∗G , then

F ∼= π∗π
TF .

(2) If G = πTF , then

πTπ∗G ∼= G .

Theorem 1.2 can be shown directly by standard facts on modifications
and torsion-free sheaves. But we obtain it here as a simple byproduct of
considerations on the functor πT (see Lemma 6.1) and the fact that the
natural maps

F → π∗π
TF ,

πTπ∗G → G

both are injective (Theorem 4.1(i) and Lemma 5.1; the proof of Lemma 5.1
presented here is due to Matei Toma). We give also counter-examples to
show that these injections are not bijective in general (Remark 4.2 and
Remark 5.2).
In order to understand relations as in Theorem 1.2 better, it turns out

useful to study properties of linear spaces associated to coherent analytic
sheaves. Among other things, we obtain the following equivalence:

Theorem 1.3. — Let X be a connected factorial Cohen–Macaulay
space and S a coherent analytic sheaf on X generated by rk S + m sec-
tions, m6 2, such that the singular locus of S is at least of codimension
m+1 in X. Then the following conditions are equivalent:

(1) S is torsion-free.
(2) The linear (fiber) space L(S ) associated to S is globally irreducible

and reduced (i.e., it consists only of its primary component).
(3) L(S ) is locally irreducible.

TOME 67 (2017), FASCICULE 1



240 Jean RUPPENTHAL & Martin SERA

(4) For all p ∈ X, there is a neighborhood U ⊂ X such that

0→ OmU → Ork S +m
U → SU → 0

is exact, i.e., the homological dimension of S is at most one.

R. Axelsson and J. Magnússon proved in [2, Prop. 3.11] that a condition
on the codimension of the singular locus of S is necessary to obtain the
irreducibility of L(S ). In this context, we can highly recommend their
papers [1] and [2], which deal with complex analytic cones, a generalization
of complex linear spaces.
If, moreover, the singular locus of S is at least (m+2)-codimensional,

then L(S ) is normal (see Theorem 3.18). This is a particularly interesting
situation because of the following statement.

Theorem 1.4. — Let X be a locally irreducible complex space, S a
torsion-free coherent analytic sheaf on X such that the linear space asso-
ciated to S is normal, and π : Y → X a proper modification of X. Then
the canonical homomorphism S → π∗(πTS ) is bijective, i.e.,

S ∼= π∗(πTS ).

In this situation, S can actually be represented as the direct image of a
locally free sheaf.
Let us mention two applications of Theorem 1.2. First, we will study ideal

sheaves. Let π : Y → X be a proper modification of a locally irreducible
complex space X, A ⊂ X an analytic subset with ideal sheaf JA, and
B := π−1(A) the analytic preimage with ideal sheaf JB . Then πTJA =
JB (cf. Lemma 7.2), and Theorem 1.2 yields that JB

∼= πTπ∗JB .
If we assume moreover that X is normal and that A is either a locally

complete intersection or a normal analytic set and that σ : Y → X is the
monoidal transformation with respect to JA, then JB = σTJA (is locally
free) and we have (see Lemma 7.3):

JA
∼= σ∗JB

∼= σ∗σ
TJA.

Second, let X be a locally irreducible complex space of pure dimension n,
and KX the Grauert–Riemenschneider canonical sheaf on X (as introduced
in [11]). Then there exists a resolution of singularities π : M → X (with
only normal crossings) such that πTKX is locally free, and so there is an
effective divisor D with support on the exceptional set of the modification
such that

(1.1) KX
∼= π∗π

TKX = π∗ΩnM (−D) = π∗
(
ΩnM ⊗O(−D)

)
ANNALES DE L’INSTITUT FOURIER
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(see Theorem 8.1). Let us explain briefly the meaning of (1.1). By defi-
nition of the Grauert–Riemenschneider canonical sheaf, we know already
that KX

∼= π∗ΩnM . (1.1) tells us that we can as well consider the push-
forward of holomorphic n-forms which vanish to the order of D on the
exceptional set. This is a useful information, particularly if π is explicitly
given so that D can be calculated explicitly. An example: If X is already
a manifold (i.e., KX = ΩnX) and π : M → X is the blow-up along a sub-
manifold of codimension s in X with exceptional set E, then (see e.g. [4,
Prop. VII.12.7]):

πTKX = π∗KX = ΩnM
(
− (s− 1)E

)
,

and so
ΩnX = KX

∼= π∗ΩnM
(
− (s− 1)E

)
.

Considerations of this kind are particularly important in the study of canon-
ical sheaves on singular complex spaces (see [21]). We will set up the rela-
tion (1.1) also for holomorphic n-forms with values in locally free coherent
analytic sheaves (see Theorem 8.3).
Using Theorem 1.4, we are able to generalize Takegoshi’s relative ver-

sion [23] of the Grauert–Riemenschneider vanishing theorem in several di-
rections. This is elaborated by the second author in [22].

The content of the present paper is organized as follows. After a brief re-
view of monoidal transformations with respect to coherent analytic sheaves
in Section 2, we will study linear spaces associated to torsion-free coherent
analytic sheaves in Section 3. There, we will prove Theorem 1.3. Then we
study direct images of (torsion-free) analytic preimage sheaves (including
the proof of Theorem 1.4) in Section 4, and torsion-free analytic preimages
of direct image sheaves in Section 5. In Section 6, we show that the analytic
inverse image functor preserves monomorphisms and epimorphisms and use
this fact in combination with the previous considerations to prove Theo-
rem 1.2. Section 7 and Section 8 contain the applications described above.
We complement the paper by analogous considerations on the non-analytic
inverse image functor in Section 9.

2. Monoidal transformations

Let us recall some preliminaries on monoidal transformations of complex
spaces with respect to coherent analytic sheaves.

TOME 67 (2017), FASCICULE 1



242 Jean RUPPENTHAL & Martin SERA

Definition 2.1. — A proper surjective holomorphic map ϕ : X → Y

of complex spaces X and Y is called a (proper) modification if there are
closed analytic sets A ⊂ X and B ⊂ Y such that

(1) B = ϕ(A),
(2) ϕ|X\A : X \A→ Y \B is biholomorphic,
(3) A and B are analytically rare, and
(4) A and B are minimal with the properties (1 – 3).

A is called the exceptional set of ϕ and B the center of the modification.

Rossi showed in [20] that coherent analytic sheaves can be made locally
free by use of modifications. This process has been treated more systemat-
ically by Riemenschneider [19]. Following [19, §2], we define:

Definition 2.2. — Let X be a complex space and S a coherent an-
alytic sheaf on X. Then a pair (XS , ϕS ) of a complex space XS and a
proper modification ϕS : XS → X is called the monoidal transformation
of X with respect to S if the following two conditions are fulfilled:

(1) the torsion-free preimage ϕTS S = ϕ∗S S /T (ϕ∗S S ) is locally free
on XS ,

(2) if π : Y → X is any proper modification such that (1) holds then
there is a unique holomorphic mapping ψ : Y → XS such that
π = ϕS ◦ ψ.

So, if XS exists, it is uniquely determined up to biholomorphism by (2).
But existence was first proven by Rossi (see Thm. 3.5 in [20]) and then
studied further by Riemenschneider (see Thm. 2 in [19]):

Theorem 2.3. — Let X be an (irreducible) complex space, S a coher-
ent analytic sheaf on X and A = Sing S := {x ∈ X : S is not locally free
at x} the singular locus of S . Then there exists the monoidal transfor-
mation (XS , ϕS ) of X with respect to S . XS is a reduced (irreducible)
complex space and ϕS is a projective proper modification such that

ϕS : XS \ ϕ−1
S (A)→ X \A

is biholomorphic. If U ⊂ X is an open subset, then (ϕ−1
S (U), ϕS ) is the

monoidal transformation of U with respect to SU .

3. Linear spaces of torsion-free coherent analytic sheaves

For a coherent analytic sheaf S on a complex space X, we work with the
linear (fiber) space S := L(S ) associated to S (in the sense of Fischer [6, 7]

ANNALES DE L’INSTITUT FOURIER
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and Grothendieck [12]). Note that if E is a locally free sheaf, then the linear
space L(E ) is the dual of the vector bundle which has E as sheaf of sections.
Linear fiber spaces are a special case of complex analytic cones, intro-

duced by R. Axelsson and J. Magnússon in [1]. Their further study of com-
plex analytic cones in [2] offers particularly also new, clarifying insights
into the theory of linear spaces.

3.1. Primary component of a linear space

In the following, we will always assume that X is a locally irreducible
complex space. Thus, X decomposes into disjoint connected components
which can be considered separately (see e.g. [10, Chap. 9 §2]). So, we can
assume that X is connected, thus also globally irreducible. For a coherent
analytic sheaf S , let A be the thin analytic set in X where S is not
locally free (see [9]). We call SingS = Sing S := A the singular locus of
S = L(S ) and S , respectively. As X is irreducible, X ′ := X\(A ∪Xsing)
and Ac := X\A are connected. SU ∼= U×Cr, for small open sets U ⊂ Ac,
implies that SAc is also connected. The set SA is an analytic subset of S. Let
E be the irreducible component of red(S) which contains SAc . PC(S) := E

is called the primary component of S (following the notation of [18]). We
have the decomposition S = E ∪ SA.

Remark 3.1. — Let S be a linear space associated to a coherent analytic
sheaf S . Let s ∈ Hom(SU , U×C) ∼= S (U) be a section. Then the primary
component E of S determines s up to torsion, i.e., if s|E = 0, then s ∈
T (S ). This is clear as s|E = 0 implies that s is supported only on an
analytically thin set.

The following observation can be deduced easily from the definition of
the primary component. It is also an immediate consequence of Thm. 3.10
in [2], so that we do not need to include a proof here:

Lemma 3.2. — Let X be a locally irreducible complex space and S a
coherent analytic sheaf on X. Let S = L(S ) be the linear space associated
to S and E its primary component. If S has a torsion element, then
E 6= S. In particular, S is reducible or non-reduced.

Obviously, a linear space can be reducible but reduced (for instance,
{xz = 0} ⊂ Cx×Cz). The case that a linear space is irreducible and
non-reduced can occur as well: Let S ⊂ C2

x,y × C2
z,w be the linear space

given by the ideal sheaf generated by h1(x, y; z, w) := y2z − xyw and

TOME 67 (2017), FASCICULE 1



244 Jean RUPPENTHAL & Martin SERA

h2(x, y; z, w) := xyz − x2w. Then the primary component E := PC(S) is
given by g(x, y; z, w) := yz − xw, i.e., E = redS and S is irreducible. Yet,
g does not vanish on S (in the unreduced sense) while g2 = yzg − xwg =
zh1 − wh2 does.

Remark 3.3. — The converse of Lemma 3.2 is not true:
Let J be the ideal sheaf generated by x2, xy, y2 on C2

x,y and S :=
L(J ) the linear space associated to J . Since J can not be generated by
2 elements, we get rkS0 = rk J0 = 3. Hence, S0 is a 3-dimensional analytic
subset of S. On the other hand, the primary component has dimension 2 +
rkS = 3. Hence, S is not irreducible. More precisely, S is given in C2

x,y×C3
z

by the ideal sheaf generated by h1(x, y; z) := yz1 − xz2 and h2(x, y; z) :=
yz2 − xz3 where z = (z1, z2, z3). Since y(z2

2 − z1z3) = z2h2, the primary
component PC(S) is defined by the functions h1, h2 and z2

2 − z1z3. This
shows also that the fibers of PC(S) are not linear (the fiber over the origin
is just {z2

2 = z1z3}). So, the primary component is in general not a linear
space, neither in the sense of Fischer [6, 7] nor in the sense of Grauert [9].(2)

Actually, we see that S is the linear space associated to a torsion-free
sheaf, and it is reduced but not irreducible. Considering analogously the
ideal sheaf given by x2, xy2, y4, then it turns out that the associated linear
space is neither irreducible nor reduced.
In general, for an ideal sheaf I on a reduced complex space X, the

primary component of the associated linear space is given by the analytic
spectrum of the Rees algebra of I (see [2, Exp. 3.12(1)]):

PC(L(I )) ∼= Specan
(⊕

m>0 Im
)
.

In particular, S(I ) ∼=
⊕

m>0 Im implies that L(I ) ∼= PC(L(I )) (e.g. if
I is generated by an OX -regular sequence or by two elements, see [3, §3]
and [13, (8) and Thm. 3.1] resp.).

Using Rossi’s monoidal transformation, we can make the following ob-
servation about the primary component:

(2) In contrast to Fischer’s notion of a linear space, where it is required that +: S×X S →
S is a holomorphic map, Grauert requires in [9] (only) that the addition +: S⊕X S → S is
holomorphic. That gives a different category of linear spaces (which is no longer dually
equivalent to the category of coherent analytic sheaves). In [17, p. 238], Rabinowitz
claims that the primary component of a linear space is a linear space in the sense of
Grauert [9], but not in the sense of Fischer [6, 7]. Our example shows that even this is
not the case. More details and criteria for a Grauert linear space to be linear in Fischer’s
sense can be found in [2, §3.3].

ANNALES DE L’INSTITUT FOURIER
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Theorem 3.4. — Let X be a locally irreducible complex space and S

a coherent analytic sheaf on X. Then the primary component E of the
linear space S associated to S is locally irreducible.

Proof. — As above, we can assume that X is connected, i.e., irreducible.
Let

ϕ := ϕS : XS → X

be the monoidal transformation of X with respect to S . This implies that
ϕ is biholomorphic on XS \ ϕ−1(A), where A ⊂ X is the thin analytic
subset where S is not locally free. Then

ϕ∗S = XS ×X S

is the linear space associated to ϕ∗S , and there is a proper holomorphic
projection

pr: ϕ∗S → S.

Now consider the natural surjective homomorphism

ϕ∗S −→ ϕTS = ϕ∗S /T (ϕ∗S )

which induces a closed embedding of the linear space V := L(ϕTS ) into
ϕ∗S. Note that V coincides with ϕ∗S on XS \ ϕ−1(A). Thus, the vector
bundle V is just the primary component of ϕ∗S, and V is clearly locally and
globally irreducible (because the base space XS is connected and locally
irreducible).
As pr is a proper holomorphic mapping, we have that pr(V ) is an irre-

ducible analytic subset of S by Remmert’s proper mapping theorem and
the fact that holomorphic images of irreducible sets are again irreducible
(see [10, Chap. 9, §1.3]). But pr(V ) coincides with E, the primary compo-
nent of S, over X \A. Thus:

(3.1) pr(V ) = E,

and so pr |V : V → E is a proper modification. Using this and the fact
that V is clearly locally irreducible, it is easy to see that E is also locally
irreducible: For an open connected set W ⊂ E, pr |−1

V (W ) ⊂ V is again
open and connected, thus irreducible since ϕ is a proper modification of
the irreducible X. But then W = pr |V

(
pr |−1

V (W )
)
is also irreducible by

the same argument as above (holomorphic images of irreducible sets are
irreducible). �

Lemma 3.5. — Let X be a locally irreducible complex space and S

a torsion-free coherent analytic sheaf on X. Then S = L(S ) is locally
irreducible if and only if the primary component of S is a linear space.

TOME 67 (2017), FASCICULE 1
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Proof. — Let E ⊂ S denote the primary component of S. As S is
torsion-free, [2, Thm. 3.10] implies that E = S if and only if the primary
component E is a linear space. Alternatively, this assertion can be proven
by elementary computations with [7, Lem. 1]. The statement of the lemma
follows now with Theorem 3.4. �

As we have seen in the counter-example Remark 3.3, the primary com-
ponent need not be a linear space (even in the sense of Grauert). Though,
it appears as the analytic spectrum of a connected graded OX -algebra of
finite presentation. So, it is locally isomorphic to a subcone of a trivial
linear space defined by quasihomogeneous polynomials (see [1, Cor. 1.13]).
Since a symmetric algebra and its torsion-free reduction is generated by
elements of degree one, R. Axelsson and J. Magnússon actually showed in
the proof of [1, Cor. 1.13] also the following:

Lemma 3.6. — Let X be a (locally irreducible) complex space and S a
coherent analytic sheaf on X. Then the primary component E of the linear
space S = L(S ) associated to S is fiberwise homogeneous and E is locally
defined as analytic set in U×CN by holomorphic fiberwise homogeneous
functions for U ⊂ X small enough.

If E×XE is locally irreducible, one can prove that the primary component
E is a linear space. Yet, for an irreducible fiber space E → X, the fiber
product of E×XE need not be reduced (not to mention locally irreducible;
for a counter-example, see [6, §4]). Therefore, the restriction of the addition
need not be holomorphic.

3.2. Linear spaces of small corank – Proof of Theorem 1.3

For a linear space to be (locally) irreducible, it is necessary that the
associated coherent analytic sheaf is torsion-free. In the following, we will
prove that this is a sufficient criterion under certain additional assumptions.

Definition 3.7. — For a coherent analytic sheaf S on a complex space
X, we define the corank of S in a point p ∈ X, corkp S , as the difference
of the minimal number of generators of Sp and the rank of S , and the
global corank cork S := supp∈X corkp S . The corank of a linear space is
defined as the corank of the associated coherent analytic sheaf.

We get the following relation between the corank and the homological
dimension of a coherent analytic sheaf:

ANNALES DE L’INSTITUT FOURIER



MODIFICATIONS OF TORSION-FREE SHEAVES 247

Lemma 3.8. — Let X be a complex space and S a coherent analytic
sheaf on X. Then, for all p ∈ X, the following is equivalent:

(1) There exists a neighborhood U of p such that the following sequence
is exact:

Ocorkp S
U

α−→ Ork S +corkp S
U → SU → 0.

(2) The homological dimension of S in p is less or equal 1, i.e., (by
definition) there exists a neighborhood U of p such that

0→ OmU
α→ ONU → SU → 0

is exact for suitable m and N .
If (1) and (2) are fulfilled, then α in (1) is injective, i.e., m and N in (2)
can be chosen to be m = corkp S and N = rk S +m.

Proof. — For the implication (1)⇒ (2), we just need to show that α
is injective: In points where S is locally free, α is injective (due to the
rank / dimension). Hence, Ker α has support on a proper analytic set in
U , i.e., is a torsion sheaf or the zero sheaf. Since OU does not contain
any torsion sheaf, α is a monomorphism. (Alternatively, one can apply
Lemma 3.19.)
(2)⇒ (1): By the uniqueness of the minimal resolution (see e.g. [5,

Thm. 20.2]), we can assume that N is equal to the minimal number of
generators of S in p, i.e.,

N = rkp S
def= corkp S + rk S .

The injectivity of α implies N −m = rk(ON/α(Om)) = rk S , i.e.,

m = N − rk S = corkp S . �

Remark 3.9. — We will work with Cohen–Macaulay spaces (for a def-
inition and some crucial properties, see e.g. [16, §5]). Let us recall the
following facts about Cohen–Macaulay spaces which will be used below:

(i) A complex space X is Cohen–Macaulay in p ∈ X if and only if for
any (or at least one) non-zero-divisor f in the maximal ideal sheaf
mp, {f = 0} is Cohen–Macaulay in p.

(ii) If X is Cohen–Macaulay and A is an analytic subset of X with
codimA > 2, then O(X)→ O(X\A) is bijective.

(iii) A Cohen–Macaulay space is normal if and only if its singular set is
at least 2-codimensional.

Lemma 3.10. — Let X be a normal or Cohen–Macaulay space and S ⊂
X×CN be a linear space over X with at least 2-codimensional singular

TOME 67 (2017), FASCICULE 1
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locus in X and defined by one fiberwise linear function h ∈ O(X×CN ).
Then S is locally irreducible. In particular, the coherent analytic sheaf
associated to S is torsion-free.

Proof. — Let A ⊂ X denote the singular locus of S (as linear space)
and E denote the primary component of S. Lemma 3.6 implies that E
is given by the ideal sheaf (h, g1, ..., gm) with gi holomorphic on X×CN
and fiberwise homogeneous (shrink X if necessary). On the regular part
X ′ := X\A of S, we get SX′ = EX′ , i.e., gi,(p,z) ∈ (h)(p,z) ∀(p, z) ∈ X ′×CN .
Therefore, fi := gi/hi is a holomorphic function on X ′×CN . Since we
assumed X to be normal or Cohen–Macaulay and A is of codimension 2
in X, fi can be extended to a holomorphic function on X×CN . We obtain
gi ∈ (h) and E = S. Now, Lemma 3.2 implies the second statement. �

Note that for the proof of Lemma 3.10, we hardly used the fact that
S is given by a principal ideal sheaf. If S is defined by more than two
functions while the corank of S is 1, it can happen that S =L (S) has
torsion elements with support on a 2-codimensional set. Since the singular
locus of a torsion-free coherent analytic sheaf on a normal complex space is
at least 2-codimensional (see Cor. of [14, Lem. 1.1.8]), we get the following
corollary from Lemma 3.10.

Corollary 3.11. — Let S be a torsion-free coherent analytic sheaf
on a normal complex space X such that OX → ONX → S → 0 is exact
(i.e., the homological dimension of S is at most 1, see Lemma 3.8). Then
the linear space associated to S is locally irreducible.

For a sheaf S of homological dimension one, but with arbitrary corank,
the associated linear space L(S ) is not necessarily locally irreducible (see
Remark 3.3, where the ideal sheaf is of homological dimension one and of
corank two). If codim{x : corkx S > k} > k for all k> 1, then L(S ) is
irreducible (see Prop. 3.11 in [2]). But, it is not clear whether L(S ) is
reduced. At least, we can prove that S is torsion-free:

Lemma 3.12. — Let X be a normal or Cohen–Macaulay space, and let
S be a coherent analytic sheaf on X such that the homological dimension
of S is at most one and Sing S has at least codimension 2 in X. Then S

is torsion-free.

Proof. — Let A denote the singular locus of S . By Lemma 3.8, every
point p ∈ X has a neighborhood U such that

(3.2) 0→ OmU
α−→ ONU → SU → 0,
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with m := corkp S and N := rk S + m. Therefore, the associated linear
space S := L(SU ) is defined by m holomorphic functions hj on U×CN
which are fiberwise linear. Let s be a torsion section of S , i.e., there exists
an r ∈ O∗X(U) with rs = 0 for small enough U . We can understand s(x, z) =∑N
i=1 si(x)zi as fiberwise linear holomorphic function on Ux×CNz , and will

show that s is zero on S, i.e., s is in the ideal sheaf generated by hj ,
j = 1, ...,m:
rs = 0 on S implies that there exist m holomorphic functions aj on U

(shrinking U if necessary) such that

rs =
∑m

j=0 ajhj .

Since s is represented by the tuple (si) in ONU , (aj) ∈ OmU is the preimage
α−1(r · (si)) = rα−1((si)) under α in (3.2). (aj) is uniquely determinate
since α is injective. The support of T (S ) is contained in A, i.e., s = 0 on S
over U ′ := U\A. In particular, for all x ∈ U ′, there exists the decomposition

sx =
∑m

j=0 bj,xhj,x.

A priori, bj depends on x. Yet, since they are uniquely determined (α is
injective), they are independent and exist on U ′. In particular, bj = aj

r on
U ′. Since A is at least 2 codimensional and U ⊂ X is normal or Cohen–
Macaulay, ajr are holomorphic maps on U (see e.g. Remark 3.9(ii)). Hence,

s =
∑m

j=0
aj
r hj ,

as desired. �

We call a normal complex space factorial if its structure sheaf is factorial
(also called unique factorization domain). In this case, hypersurfaces are
(locally) given as the zero set of one holomorphic function. The simplest
examples for factorial spaces are manifolds.

Theorem 3.13. — Let S be a linear space over a factorial complex
space X which is locally defined by one holomorphic fiberwise linear func-
tion in X×CrkS+1 (i.e., the associated ideal sheaf is a principal ideal sheaf).
Then the primary component of S is a linear space.

Proof. — Let S⊂X×CN be given by the fiberwise linear h ∈ O(X×CN ).
The primary component E of S is an irreducible hypersurface. Since X
(and, hence, X×CN ) is factorial, the ideal sheaf JE is generated by one
element g. By Lemma 3.6, we get g is fiberwise homogeneous. Moreover,
g divides h. Hence, it has to be fiberwise linear. This implies that E is a
linear space. �
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Lemma 3.14. — Let X be a factorial complex space and S ⊂ X×CN
a linear space associated to a torsion-free coherent analytic sheaf on X.
Then S can be defined by locally irreducible holomorphic fiberwise linear
functions.

Proof. — Let the linear space S be defined by fiberwise linear h1, .., hm ∈
O(X×CN ). Let Si := PC({hi = 0}) be defined by the fiberwise linear gi ∈
O(X×CN ) (using Theorem 3.13). We will prove S =

⋂
Si, i.e., (hi)mi=1 =

(gj)mj=1:
Since gj |hj , we get (hi)mi=1 ⊂ (gj)mj=1. On the other hand, gj vanishes

on Sj . Hence, it vanishes on PC(S), as well. Since the coherent analytic
sheaf L (S) associated to S is torsion-free, we get gj = 0 on S (in the
non-reduced sense; see Remark 3.1), i.e., gj ∈ (hi)mi=1. �

Theorem 3.15. — Let S be a torsion-free coherent analytic sheaf of
corank 1 on a factorial complex space X. Then the linear space associated
to S is locally irreducible and, for small enough open U ⊂ X, there exists
an exact sequence

0→ OU → Ork S +1
U → SU → 0,

i.e., the homological dimension of S is at most 1 (see Lemma 3.8).

Proof. — Lemma 3.14 implies, for small enough open U ⊂ X, that the
linear space S associated to SU can be defined by irreducible fiberwise
linear h1, ..., hm ∈ O(U×CN ) with N = rk S + 1. Yet, the primary com-
ponent E of S is already an irreducible hypersurface in U×CN . Hence, E
coincides with Si := {hi = 0} and is a linear space. Lemma 3.5 implies
S = E = Si.

We obtain the exact sequence OU
h∗i−→ ONU → SU → 0. Lemma 3.8,

(1)⇒ (2) or Lemma 3.19 give the injectivity of h∗i . �

Let us generalize this for sheaves with corank 2:

Theorem 3.16. — Let X be a factorial Cohen–Macaulay space and
let S be a linear space of corank 2 on X such that SingS has at least
codimension 3 in X and the coherent analytic sheaf L (S) associated to S
is torsion-free. Then S is locally irreducible.

Proof. — The proof is similar to the proof of Lemma 3.10. Let S ⊂
U×CN be defined by the fiberwise linear h1, ..., hm ∈ O(U×CN ) for an
open subset U ⊂ X with N = 2+ rk S . Because of Lemma 3.14, we can
assume that Si := {hi = 0} is locally irreducible. In particular, Si is Cohen–
Macaulay. Let us assume h1, h2 6= 0 and h2 /∈ (h1). Since h1 is irreducible,
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S12 := S1 ∩ S2 is a linear space with the same rank as S. We will prove
that S12 coincides with E := PC(S):
By Lemma 3.6, E is defined by g1, ..., gk (in particular, hi ∈ (g1, ..., gk)).

Let A denote the singular locus of S and U ′ = U\A. Since E ⊂ S12 and
dimEU ′ = dimS12,U ′ , we get E = S12 over U ′. Hence, we obtain gj,(p,z) ∈
(h1, h2)(p,z) for all (p, z) ∈ S1,U ′ . This means gj

h2
is a holomorphic function

on S1,U ′ . By assumption, codimS1((A×CN )∩S1) > codimU×CN (A×CN )−
1 > 2. Taking into account that S1 is Cohen–Macaulay, we conclude that
gj
h2

is holomorphic on S1 and, hence, gj ∈ (h1, h2), i.e., E = S12. Lemma 3.5
implies the claim. �

Corollary 3.17. — Let X be a factorial Cohen–Macaulay space and
S be a torsion-free coherent analytic sheaf S of corank 2 on X with at
least 3-codimensional singular locus. Then the linear space associated to
S is locally irreducible and, for small enough open U ⊂ X, there exists an
exact sequence

0→ O2
U → Ork S +2

U → SU → 0,
i.e., the homological dimension of S is at most 1.

Keeping the counter-example Remark 3.3 in mind, one sees the assump-
tion on the codimension is necessary.

Proof of Theorem 1.3. — Lemma 3.2 gives the implication (2)⇒ (1),
and Theorem 3.15 and Corollary 3.17 yield the implication (1)⇒ (3, 4).
(4)⇒ (1) is obtained by Lemma 3.12. There is one implications left.
(3)⇒ (2): Assume that (3) is satisfied, i.e., that S := L(S ) is locally

irreducible. By definition, this implies that S is reduced. But S is connected.
So, there can be just one irreducible component, i.e., (2) holds also. �

If the codimension of the singular set of S is big enough, we can prove
normality of the linear space associated to S .

Theorem 3.18. — Let X be a factorial Cohen–Macaulay space and
S be a torsion-free coherent analytic sheaf on X of corank at most 2
with codim Sing S > 2 + cork S . Then the linear space associated to S is
normal.

Proof. — Let S ⊂ U×CN be the linear space associated to S on an open
subset U of X with N = rk S + cork S . Theorem 3.15 or Corollary 3.17
implies that S is Cohen–Macaulay. Let A := SingS = Sing SU ⊂ U denote
the singular locus of S as linear space. The singular set Ssing of S as analytic
subset of U×CN is contained in ((A×CN ) ∩ S) ∪ SUsing\A. We get

codimS((A×CN ) ∩ S) > codimU A− cork S > 2

TOME 67 (2017), FASCICULE 1



252 Jean RUPPENTHAL & Martin SERA

and codimS SUsing\A > codimUsing > 2 since U ⊂ X is normal and SU\A
is a vector bundle. Hence, codimS Ssing > 2. Remark 3.9(iii) (see e.g. [16,
Cor. 5.2]) implies that S is actually normal. �

3.3. More preliminaries on torsion

Throughout the paper, we will use the following observation without
mentioning explicitly. Let ψ : F → G be a morphism of analytic sheaves on
a (locally irreducible) complex space (X,OX). Then ψ induces a canonical
map

ψ̂ : F/T (F )→ G /T (G )

because the torsion sheaf T (F ) of F is mapped by ψ into the torsion sheaf
T (G ) of G : rxψ(sx) = ψ(rxsx) = 0 for germs rx ∈ OX,x, sx ∈ T (F )x
with rxsx = 0. Note that particularly T (F ) ⊂ kerψ if G is torsion-free.

Lemma 3.19. — Let X be a locally irreducible complex space, F and G

coherent analytic sheaves on X such that there exists a morphism ψ : F →
G which is a monomorphism on an open dense subset of X. If F is
torsion-free, then ψ is a monomorphism. If not, ψ induces a monomor-
phism ψ̂ : F/T (F )↪→G /T (G ).

Proof. — The second statement follows from the considerations above
and the torsion-free case. Hence, we can assume that F is torsion-free.
Let F and G denote the linear spaces associated to F and G , respec-
tively. Theorem 3.4 implies that PC(F ) and PC(G) are locally irreducible.
Let ψ be a monomorphism on the open dense subset W of X with W ⊂
X\(Sing F ∩ Sing G ). Thus, ψ induces a holomorphic fiberwise linear map
ψ∗ : G → F such that ψ∗W : GW → FW is a surjective map of vector bun-
dles. Let s be a section in Ker ψ, i.e., ψ∗ ◦ s vanishes on G. We get that s
vanishes on FW and, hence, on PC(F ). Since F is torsion free, we obtain
s = 0 (cf. Remark 3.1). �

Alternatively, one can prove this lemma by using only sheaf-theoretical
terminology and arguments (cf. the proof of Lemma 5.1).

Note the following trivial consequence of the definition of the pullback:

Lemma 3.20. — Let S ⊂ U×CN be a linear space over a complex space
U , and let π : V → U be a holomorphic map. Then the pullback π∗(S) =
V×US can be embedded in V×CN .
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Remark 3.21. — Let S be a coherent analytic sheaf over a locally irre-
ducible complex space X. Let ϕ = ϕS : XS → X be the monoidal trans-
formation of X with respect to S , i.e., E := ϕTS is locally free. Note that
XS is again locally irreducible. Then ϕ∗S has torsion in a point q if and
only if S is not locally free in ϕ(q) (see [18]). We will give a short, alter-
native proof with the statements from above. Let S, S∗ and E denote the
linear complex spaces associated to S , ϕ∗S and E , respectively. If S is not
locally free in ϕ(q), then dimEq < dimSϕ(q) (as dimEq = rkE = dimS

q̃

in all points q̃ where S is locally free, see [11, §1.1]). Lemma 3.20 implies
dimS∗q = dimSϕ(q) > dimEq. Since PC(S∗) = E, we obtain that S∗ is
reducible in (q, 0), i.e., ϕ∗S has torsion in q by Lemma 3.5. The other
implication of the claim is trivial.

4. Direct images of torsion-free preimage sheaves

In this section, we will prove Theorem 1.4 and more:

Theorem 4.1. — Let X be a locally irreducible complex space, S a
torsion-free coherent analytic sheaf on X and π : Y → X a proper modifi-
cation of X.

(i) Then the canonical homomorphisms S → π∗(π∗S ) and S →
π∗(πTS ) both are injective, where πTS is the torsion-free preim-
age sheaf of S under π.

(ii) If the linear space L(S ) associated to S is locally irreducible and
L(π∗S ) is reduced, then π∗(π∗S )→ π∗(πTS ) is injective.

(iii) If the linear space L(S ) is normal, then

S ∼= π∗(πTS ).

Proof. — We can assume that X is connected. Let S denote the linear
space associated to S , A ⊂ Y the set where π is not biholomorphic and Ac
the complement. S∗ = Y×XS is the linear space associated to S ∗ := π∗S .
Let pr: S∗ → S denote the projection, let E be the linear space associated
to E := πTS , let U be an open Stein set in X, and let V := π−1(U). The
construction of the linear spaces implies

Hom(SU , U×C) ∼= S (U),
Hom(S∗V , V×C) ∼= π∗S (V ) =

(
π∗(π∗S )

)
(U)

and Hom(EV , V×C) ∼= E (V ) = (π∗E )(U).
Let N be an integer big enough, so that SU can be realized as a subset

of U×CN . We obtain closed embeddings EV ⊂ S∗V ⊂ V×CN , and (q, z) is
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in S∗V if and only if (π(q), z) ∈ S. Since obviously pr(EAc) = Sπ(Ac) and
proper holomorphic images of irreducible sets are irreducible, we obtain
(cf. (3.1))

(4.1) pr(PC(EV )) = PC(SU ).

(i) S ↪→ π∗(π∗S ) and S ↪→ π∗(πTS ): This follows from Lemma 3.19.
(ii) Assume S is locally irreducible and S∗ is reduced. To prove that the

natural map given by the restriction Hom(S∗V , V×C)→ Hom(EV , V×C) is
injective, we apply pr(PC(EV )) = SU (use (4.1) and that S is irreducible):
Let s ∈ Hom(S∗V , V×C) with s|E = 0, i.e., s|PC(E) = 0. Let s(q, z) =

(q, f(q, z)) ∈ Hom(S∗V , V×C) be not the zero section, i.e., there is a point
(q′, z0) ∈ S∗ with f(q′, z0) 6= 0. There is a q′′ ∈ π−1(π(q′)) such that
(q′′, z0) ∈ E. Since π−1(π(q′))×{z0} is a compact analytic set in S∗V , we
get f(q′, z0) = f(q′′, z0), i.e., f |E 6= 0 and s|E 6= 0.

(iii) Assume that S is normal. Fix a section s(q, z) = (q, f(q, z)) ∈
Hom(EV , V×C). Since pr: PC(EV ) → PC(SU ) = SU is a proper modifi-
cation (surjectivity is (4.1)), the map f̃ := f ◦ pr−1 : SU → C is a bounded
meromorphic function, i.e., it is weakly holomorphic. Since SU is normal,
f̃ is holomorphic. Obviously, it is linear in the second argument. Hence,
pr−1 gives a map (pr−1)∗ : Hom(EV , V×C)→ Hom(SU , U×C), s 7→ s̃ with
s̃(p, z) = (p, f̃(p, z)). Since f ◦ pr−1 = f̃ = 0 implies f = 0, this map is
injective. It is now easy to see that (pr−1)∗ : π∗πTS ↪→ S is the inverse
to the natural mapping S ↪→ π∗π

TS . �

Remark 4.2. — Without the additional assumption about normality,
the natural map S ↪→ π∗π

TS is not necessarily bijective. The following
counter-example is derived from one due to Mircea Mustaţă.
Let S = (x3, y3) be the ideal sheaf on C2

x,y generated by the functions
x3 and y3, and let π : M → C2 be the blow up of the origin, i.e.,

M = {(x, y; [t1 : t2]) ∈ C2×CP1 : xt2 = yt1}.

Then
S = L(S ) = {(x, y; z1, z2) ∈ C2×C2 : z2x

3 = z1y
3},

and sections in S correspond to sections in Hom(S,C2×C) via the assign-
ment x3 7→ [(x, y; z1, z2) 7→ z1], y3 7→ [(x, y; z1, z2) 7→ z2]. Now,
S∗=L(π∗S ) ={(x, y; [t1:t2]; z1, z2) ∈ C2×CP1×C2 : xt2=yt1, z2x

3=z1y
3},

E =L(πTS )={(x, y; [t1:t2]; z1, z2) ∈ C2×CP1×C2 : xt2=yt1, z2t
3
1=z1t

3
2}.

Thus, S∗ = E ∪ T with

T = {(x, y; [t1:t2]; z1, z2) ∈ C2×CP1×C2 : x = y = 0}.

ANNALES DE L’INSTITUT FOURIER



MODIFICATIONS OF TORSION-FREE SHEAVES 255

In Hom(E,M×C), we have now also the section{
( t2
t1
z1 : t1 6= 0); ( t

2
1
t22
z2 : t2 6= 0)

}
,

corresponding to x2y in πTS , and the section{
( t22
t21
z1 : t1 6= 0); ( t1

t2
z2 : t2 6= 0)

}
,

corresponding to xy2, but these two do not extend to S∗ = E ∪ T because
there is no relation between z1 and z2 on T . In Hom(S∗,M×C), however,
we have the section {

(y t2
t1
z1 : t1 6= 0); (y t21

t22
z2 : t2 6= 0)

}
,

corresponding to x2y2 in π∗S . Moreover, it is easy to check that x, x2, y,
y2, xy are neither contained in π∗π∗S nor in π∗πTS . Hence, we have:

S ( (x3, x2y2, y3) = π∗π
∗S ( (x3, x2y, xy2, y3) = π∗π

TS .

Let us present a counter-example for (ii) in Theorem 4.1 if S is not
irreducible:
Let X = {x3 = y2} ⊂ C2 be the cusp, π : C → X, π(t) := (t2, t3) the

normalization and let ÔX denote the sheaf of weakly holomorphic func-
tions on X. Then one can compute that π∗π∗ÔX has torsion elements with
support in 0. Yet, π∗πT ÔX = π∗OC = ÔX is torsion-free. Hence, there can
not exist an injective morphism π∗π

∗ÔX → π∗π
T ÔX .

Remark 4.3. — In order to get the isomorphism S = π∗π
TS , normal-

ity is a natural assumption. For example, if E is locally free, we obtain
π∗π

∗E ∼= E if and only if π∗OY ∼= OX .

5. Torsion-free preimages of direct image sheaves

Lemma 5.1. — Let π : Y → X be a proper modification between com-
plex spaces Y , X, and E a torsion-free coherent analytic sheaf on Y . Then
the canonical homomorphism π∗π∗E → E induces a canonical injection

(5.1) πTπ∗E ↪→ E ,

where πTπ∗E = π∗π∗E /T (π∗π∗E ) is the torsion-free preimage of π∗E .

The following proof was communicated to us by Matei Toma. Alterna-
tively, Lemma 5.1 follows also from Lemma 3.19.
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Proof. — Let T denote the torsion sheaf of π∗π∗E , and let ψ : π∗π∗E →
E denote the natural map. Since E is torsion-free, ψ(T ) = 0 and, hence,
ψ factors through ψ̂ : πTπ∗E → E . Since ψ is an isomorphism outside of a
thin analytic set A ⊂ X, an element in the kernel of ψ has support in A.
Therefore, the kernel is a subset of T , i.e., ψ̂ is injective. �

Remark 5.2. — Let us give a counter-example showing that (5.1) is in
general not an isomorphism. Consider a modification π : M → Cn whereM
is a complex manifold with canonical sheaves ΩnM and ΩnCn ∼= OCn . Then
π∗ΩnM = ΩnCn ∼= OCn so that πTπ∗ΩnM ∼= πTOCn ∼= OM . But OM 6=ΩnM in
general.

However, we can be a bit more precise in Lemma 5.1 by use of the
following observation if E is locally free of rank 1:

Lemma 5.3. — Let X be a complex space and i : F ↪→ G an injective
morphism between two coherent locally free sheaves of rank 1 over X. Then
there exists an effective Cartier divisor, D > 0, such that

i(F ) = G ⊗OX(−D).

In particular, i is an isomorphism precisely on X − |D|.

Proof. — Let {Xα}α be a locally finite open cover of X such that both,
F and G , are free over each Xα. So, there are trivializations

φα : F |Xα
∼−→ OXα ,

ψα : G |Xα
∼−→ OXα ,

and forXαβ := Xα∩Xβ 6= ∅, we have transition functions Fβα := φβ◦φ−1
α ∈

O∗(Xαβ) andGβα := ψβ◦ψ−1
α ∈ O∗(Xαβ) satisfying the cocycle conditions.

In trivializations
ψα ◦ i|Xα ◦ φ−1

α : OXα → OXα
is given by a holomorphic function iα ∈ O(Xα), vanishing nowhere identi-
cally, with (unreduced) divisor (iα). It is easy to see that Gβα · iα = iβ ·Fβα
on Xαβ , so that iα/iβ = Fβα/Gβα ∈ O∗(Xαβ). Thus D := {(Xα, iα)}α
defines in fact an effective Cartier divisor with support |D|.
To see that i(F ) = G ⊗OX(−D), note that G ⊗OX(−D) is a coherent

subsheaf of G because OX(−D) is a sheaf of ideals in OX , and that

ψα ⊗ 1: G ⊗OX(−D)|Xα
∼−→ OXα ⊗OXα(−(iα)). �
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So, we can deduce the following direct consequence of Lemma 5.1:

Theorem 5.4. — Let π : Y → X be a proper modification of X, E a
locally free analytic sheaf of rank 1 on Y and assume that πTπ∗E is also
locally free. Then there exists an effective Cartier divisor D on Y such
the following holds: The canonical homomorphism π∗π∗E → E induces a
canonical injection

i : πTπ∗E ↪→ E

and
i(πTπ∗E ) = E ⊗OY (−D).

In particular, i is an isomorphism precisely on Y −|D|, and |D| is contained
in the exceptional set of π.

6. πT preserves injectivity and surjectivity

In this section, we consider properties of πT as functor and use them to
prove Theorem 1.2.

Lemma 6.1. — Let π : Y → X be a proper modification of a complex
space X such that Y is locally irreducible. Let

ψ : F → G

be a morphism of coherent analytic sheaves. If ψ is an epimorphism, then
the induced mapping

πTψ : πTF → πTG

is also an epimorphism. If ψ is a monomorphism, then πTψ is also a
monomorphism.

Proof. — Let ψ be an epimorphism, i.e., surjective. Recall that π∗ is
right-exact. So, π∗ψ : π∗F → π∗G is still surjective. But then it is easy to
see that the induced mapping πTψ : πTF → πTG is also surjective.
For the second statement, let ψ be injective. Let fx ∈ (πTF )x such

that πTψ(fx) = 0. This means that there is an open set U ⊂ Y and a
representative f ∈ πTF (U) such that πTψ(f) = 0. But πTψ is injective
on a dense open subset W ⊂ X. Thus, f = 0 on U ∩W , i.e., f has support
on a thin set. But πTF is torsion-free. So, fx = 0 and f = 0. �

Note that πT is not exact. A simple counter-example is as follows. Let
m be the maximal ideal sheaf of the origin in C2. Then 0 → m ↪→ OC2 →
OC2/m→ 0 is exact. Let π be just the identity on C2. So, we have πTm = m,
πTOC2 = OC2 and πT

(
OC2/m

)
= 0. The resulting sequence 0 → m ↪→

OC2 → 0 is clearly not exact.
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Proof of Theorem 1.2. — Let π : Y → X be a proper modification be-
tween locally irreducible complex spaces. Let F and G be coherent analytic
sheaves on X and Y , respectively.

(i) The case F = π∗G : By Theorem 4.1(i), the natural map F →
π∗π

TF is injective. Moreover, Lemma 5.1 yields injectivity of the natural
map

πTF = πTπ∗G → G .

Since π∗ is left-exact, we obtain the second natural injection

π∗π
TF ↪→ π∗G = F .

(ii) The case G = πTF : As above, Lemma 5.1 gives πTπ∗G ↪→ G . By
Theorem 4.1(i) we have also the natural injection

F ↪→ π∗π
TF = π∗G .

But πT preserves injectivity (Lemma 6.1) so that we obtain the injection

G = πTF ↪→ πTπ∗G . �

7. Application to ideal sheaves

In this section, we discuss the application of Theorem 1.2 to reduced
ideal sheaves. As a preparation, note the following:

Lemma 7.1. — Let π : Y → X be a holomorphic mapping between
complex spaces Y , X. Then π∗OX = OY .

Proof. — As π−1OX ⊂ OY , we have that π∗OX = π−1OX⊗π−1OXOY =
OY , because π−1OX contains (the germ of) the function 1 at any point
of Y . �

Coming to ideal sheaves, let us start with the following observation:

Lemma 7.2. — Let X be a locally irreducible complex space and A ⊂ X
an (unreduced) analytic subspace with ideal sheaf JA. Let π : Y → X be
a proper modification and B := π−1(A) the unreduced analytic preimage
with ideal sheaf JB . Then:

πTJA = JB .
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Proof. — Consider the short exact sequence of sheaves over X:

0→JA
α−→ OX −→ OX/JA → 0.

By right-exactness of π∗, we deduce the exact sequence

π∗JA
π∗α−→ π∗OX −→ π∗

(
OX/JA

)
→ 0.

Now, we use Lemma 7.1 twice: π∗OX = OY and π|∗BOA = OB (which
implies that π∗(OX/JA) = OY /JB using the definition of the analytic
preimage, see e.g. Prop. 0.27 in [8]). As OY is torsion-free, it is clear that

(7.1) T (π∗JA) ⊂ Ker π∗α.

Consider πTα : πTJA → πTOX = π∗OX = OY . By (7.1), it follows that
Im (π∗α) = Im (πTα), and Lemma 6.1 tells us that πTα is injective. So,
we obtain the short exact sequence

0→ πTJA
πTα−→ OY −→ OY /JB → 0,

telling us that in fact πTJA = JB . �

It is clear that JA (and πTJA = JB) are torsion-free, and so we obtain
from Theorem 1.2(ii) that:

(7.2) JB
∼= πTπ∗JB .

Under some additional assumptions, we have also:

Lemma 7.3. — Let X be a normal complex space, and let A be a locally
complete intersection or a normal analytic set in X with (reduced) ideal
sheaf JA. Let σ : X̃ → X denote the blow up of X with center A, i.e. the
monoidal transformation with respect to JA, and let JB be the (reduced)
ideal sheaf associated to the reduced exceptional set B := σ−1(A). Then:

(7.3) JA
∼= σ∗JB .

Proof. — The statement is local with respect to X, so we can assume
that A is the zero-set of reduced holomorphic functions f0, ..., fm. (JA)p is
generated by the germs f0,p, .., fm,p, and X̃ ⊂ X×CPm (see e.g. [19, §2.5]
for the monoidal transformation of ideal sheaves). We show that

OA ∼= σ∗OB .

(I) A is a complete intersection, i.e., m + 1 = codimA: This implies
B = A×CPm. For all open subsets U ⊂ A, we obtain

OA(U) ∼= OA×CPm(U×CPm) = OB(σ−1(U)).

(II) A is normal: In this case, B is an analytic subset of A×CPm, and by
the surjectivity σ(B) = A, we get the injection OA ∼= σ∗OA×CPm ↪→ σ∗OB .
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On the other hand, a section in OB(σ−1(U)) gives a weakly holomorphic
function on A: With part (I) applied on the regular part Areg of A, we get
a holomorphic function on Areg which is bounded in points of Asing. Since
we assumed A to be normal, we get σ∗OB ∼= ÔA ∼= OA.
Thus, OA ∼= σ∗OB as desired. In other words: OX/JA

∼= σ∗(OX̃/JB).
We obtain the exact commutative diagram:

0 // σ∗JB
// σ∗OX̃ //

o

σ∗(OX̃/JB)

o

0 // JA
// OX // OX/JA

// 0.

It follows that in fact σ∗JB
∼= JA. �

In the situation of Lemma 7.3, we can now apply Theorem 1.2(i) to
JA
∼= σ∗JB and obtain:

(7.4) JA
∼= σ∗σ

TJA.

8. Holomorphic n-forms on singular spaces

As a consequence of Theorem 1.2 and Theorem 5.4, we get also the
following application to holomorphic n-forms:

Theorem 8.1. — Let X be a complex space of pure dimension n and
KX the Grauert–Riemenschneider canonical sheaf on X. Then there exist
a resolution of singularities π : M → X and an effective divisor, D > 0,
with support on the exceptional set of the resolution such that

(8.1) πTKX
∼= ΩnM (−D) = ΩnM ⊗OM (−D),

where ΩnM is the canonical sheaf of holomorphic n-forms on M , and (8.1)
is induced by the natural mapping π∗KX = π∗π∗ΩnM → ΩnM . Moreover, we
get

π∗ΩnM = KX
∼= π∗ΩnM (−D).

Proof. — Let π : M → X be a resolution of singularities such that πTKX

is locally free. Such a resolution exists due to Rossi and Hironaka (apply
first Rossi’s Theorem 2.3 and then Hironaka’s resolution of singularities).
Recall that KX = π∗ΩnM by definition of the Grauert–Riemenschneider
canonical sheaf. So, the assertion follows directly from Theorem 5.4 and
Theorem 1.2. �
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The following observation is also useful:

Lemma 8.2. — Let F , G be torsion-free coherent analytic sheaves on
a locally irreducible complex space X and let π : Y → X be a proper
modification of X such that πTG is locally free. Then

πT
(
F ⊗ G

)
= πTF ⊗ πTG

and there is a natural injection

F ⊗ G ↪→ π∗
(
πTF ⊗ πTG

)
.

Proof. — Note that Y is also locally irreducible. Consider the two natural
surjections π∗F → πTF and π∗G → πTG . These yield a natural surjection

π∗(F ⊗ G ) = π∗F ⊗ π∗G −→ πTF ⊗ πTG

which is an isomorphism on an open dense subset of Y . Since the tensor
product of a torsion-free and a locally free sheaf is torsion-free,(3) we obtain
by use of Lemma 3.19 a natural isomorphism

(8.2) πT
(
F ⊗ G

)
= π∗(F ⊗ G )

T
(
π∗(F ⊗ G )

) ∼−→ πTF ⊗ πTG .

The second statement follows by taking the direct image of (8.2) under π
and Theorem 4.1(i). �

This lemma and the projection formula gives directly the following corol-
lary of Theorem 8.1.

Theorem 8.3. — Let X be a complex space of pure dimension n, KX

the Grauert–Riemenschneider canonical sheaf on X and F a torsion-free
coherent analytic sheaf on X. Then there exists a resolution of singularities
π : M → X and an effective divisor, D > 0, with support on the exceptional
set of the resolution such that

πT (F ⊗KX) ∼= πTF ⊗ ΩnM (−D).

If F is locally free, then

π∗(π∗F ⊗ ΩnM ) ∼= F ⊗KX
∼= π∗ (π∗F ⊗ ΩnM (−D)) .

(3)The tensor product of two torsion-free sheaves need not be torsion-free. E.g. let I
be the ideal sheaf generated of (z2, zw) on C2

z,w and J be the ideal sheaf generated
by (w2, zw). Then z2⊗w2 − zw⊗zw ∈ I⊗J is not zero; yet, z · (z2⊗w2 − zw⊗zw) =
z3⊗w2 − z2⊗zw2 = 0.
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9. Non-analytic preimages and direct images
In this section, we will finally study non-analytic preimages of direct

image sheaves and vice versa. For our purpose, the following definition is
useful:
Definition 9.1. — Let F be a sheaf on a complex space X. We say

that F satisfies the property (id) if the following holds: For any irreducible
open set W ⊂ X and sections s, t ∈ F (W ), the equality s = t on a non-
empty open subset of W implies that s = t on W .
Property (id) means that the identity theorem generalizes to sections

of F . Actually, the identity theorem for irreducible complex spaces
(cf. e.g. [10, Chap. 9, §1.3]) implies that the structure sheaf OX of a com-
plex space satisfies (id). Moreover, we have:
Lemma 9.2. — Let X be a locally irreducible complex space. Then a

coherent analytic sheaf F on X satisfies the property (id) if and only if it
is torsion-free.
Proof. — Let F be a torsion-free coherent sheaf on X and F := L(F )

the associated linear space. Then, by Remark 3.1, a section of F is uniquely
defined by it values on the locally irreducible primary component E :=
PC(F ) of F . I.e., for W ⊂ X and s, t ∈ F (W ) = Hom(FW ,W×C), s|E =
t|E is equivalent to s = t. So, the desired property follows by the identity
theorem applied to E.

Conversely, it is clear that sheaves with torsion on a locally irreducible
space do not satisfy (id). �

For non-coherent sheaves, the equivalence of Lemma 9.2 does not hold
in general: The sheaf C of continuous functions on an irreducible complex
space X is torsion-free as OX -module sheaf, but it does not satisfy (id).

The property (id) is useful in the context of non-analytic preimages:
Lemma 9.3. — Let π : Y → X be a proper modification of a locally

irreducible complex space X, and F a sheaf on X satisfying (id). Then for
U ⊂ Y open:

(9.1) π−1F (U) = lim−→
V⊃π(U)

F (V ),

where the limit runs over the open neighborhoods of π(U).
Proof. — As X is locally irreducible, we can assume that X and Y are

connected. Recall that π−1F is the sheaf associated to the presheaf

U 7→ F (U) := lim−→
V⊃π(U)

F (V )
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where U ⊂ Y is open and the limit runs over the open neighborhoods of
π(U). We have to show that the presheaf F is canonical (i.e., it is already
a sheaf).

(i) Existence/Gluing-axiom: Let U ⊂ Y be covered by open sets Ui,
i ∈ I, and let si ∈ F (Ui) satisfy si = sj on Uij := Ui ∩ Uj . By definition
of the inductive limit, si ∈ F (Ui) means there are an open set Vi ⊃ π(Ui)
and a section fi ∈ F (Vi) with si = [fi] (si is represented by fi). A priori,
we just get fi = fj on π(Uij)⊂Vij , where Vij = Vi ∩ Vj . Without loss of
generality, we can assume that each connected component of Vij contains
an open subset of π(Uij) (π is a modification). So, (id) for F implies that
fi = fj on Vij . As F is a sheaf, there is a section f ∈ F (V ) with f |Vi = fi,
where V :=

⋃
i∈I Vi ⊃ π(U). f represents an s ∈ F (U) with s|Ui = si.

(ii) Uniqueness-axiom: Let U ⊂ Y be a connected open set, covered by
open sets Ui, i ∈ I, and let s, t ∈ F (U) satisfy s = t on Ui for all i ∈ I. By
definition of the inductive limit, there are a connected open set V ⊃ π(U)
and sections f, g ∈ F (V ) with s = [f ] and t = [g]. We get f = g on π(Ui).
Since π(Ui) contains an open subset of V , (id) implies that f = g on V . (We
have not directly used the uniqueness-axiom for F because it is contained
in (id)). �

As a special case, we have:

Lemma 9.4. — Let π : Y → X be a proper modification of a locally
irreducible complex space X, and G a sheaf on Y satisfying (id). Then for
U ⊂ Y open:

(9.2) π−1π∗G (U) = lim−→
V⊃π(U)

G (π−1(V )),

where the limit runs over the open neighborhoods of π(U), and the canon-
ical homomorphism π−1π∗G → G is injective so that π−1π∗G is a subsheaf
of G .

Proof. — As X is locally irreducible, we can assume that X and Y are
connected. Here, π−1π∗G is the sheaf associated to the presheaf

U 7→ F (U) := lim−→
V⊃π(U)

G (π−1(V ))

where U ⊂ Y is open and the limit runs over the open neighborhoods of
π(U). The canonical homomorphism π−1π∗G → G is then induced by the
restrictions G (π−1(V ))→ G (U).
By Lemma 9.3, F is canonical, i.e., (9.2) holds. It is now easy to see

that the canonical homomorphism ψ : π−1π∗G → G is injective. Let sx ∈
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(
π−1π∗G

)
x
. Then (9.2) implies that sx is represented by a section s ∈ G (U),

where U is an open neighborhood ofKx := π−1(π(x)). But our assumptions
yield that Kx is connected, and so we can assume that U is a connected
neighborhood ofKx. Assume that ψ(sx) = 0. This means that s is vanishing
on a neighborhood of the point x. But then s = 0 as U is connected (and
G satisfies (id)). �

Lemma 9.4 allows for the following interpretation of π−1π∗G : The sec-
tions of π−1π∗G are the sections of G which extend along fibers of the
modification π. This is of particular interest for the choices G = OM or
G = ΩnM when π : M → X is a resolution of singularities, giving the useful
injections π−1π∗OM ↪→ OM and π−1π∗ΩnM ↪→ ΩnM , respectively.

For the direct image of a non-analytic inverse image sheaf, Lemma 9.3
implies

(π∗π−1F )(U) = (π−1F )(π−1(U)) = lim−→
V⊃U

F (V ) = F (U),

i.e., we obtain:

Corollary 9.5. — Let π : Y → X be a proper modification of a locally
irreducible complex space X, and F a sheaf on X satisfying (id). Then

π∗π
−1F = F .

BIBLIOGRAPHY

[1] R. Axelsson & J. Magnússon, “Complex analytic cones”, Math. Ann. 273 (1986),
no. 4, p. 601-627.

[2] ———, “A closure operation on complex analytic cones and torsion”, Ann. Fac.
Sci. Toulouse Math. (6) 7 (1998), no. 1, p. 5-33.

[3] J. Barshay, “Graded algebras of powers of ideals generated by A-sequences”, J.
Algebra 25 (1973), p. 90-99.

[4] J.-P. Demailly, “Complex Analytic and Differential Geometry”, Institut
Fourier, Université de Grenoble I. OpenContent AG-Book, http://www-fourier.
ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf, 2012.

[5] D. Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150,
Springer-Verlag, New York, 1995, With a view toward algebraic geometry,
xvi+785 pages.

[6] G. Fischer, “Eine Charakterisierung von holomorphen Vektorraumbündeln”,
Bayer. Akad. Wiss. Math.-Natur. Kl. S.-B. 1966 (1967), p. 101-107.

[7] ———, “Lineare Faserräume und kohärente Modulgarben über komplexen Räu-
men”, Arch. Math. (Basel) 18 (1967), p. 609-617.

[8] ———, Complex analytic geometry, Lecture Notes in Mathematics, Vol. 538,
Springer-Verlag, Berlin, 1976, vii+201 pages.

[9] H. Grauert, “Über Modifikationen und Exzeptionelle Analytische Mengen”, Math.
Ann. 146 (1962), p. 331-368.

ANNALES DE L’INSTITUT FOURIER

http://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf
http://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf


MODIFICATIONS OF TORSION-FREE SHEAVES 265

[10] H. Grauert & R. Remmert, Coherent analytic sheaves, Grundlehren der Mathe-
matischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol.
265, Springer-Verlag, Berlin, 1984, xviii+249 pages.

[11] H. Grauert & O. Riemenschneider, “Verschwindungssätze für analytische Koho-
mologiegruppen auf komplexen Räumen”, Invent. Math. 11 (1970), p. 263-292.

[12] A. Grothendieck, “Techniques de construction en géométrie analytique. V: Fibres
vectoriels, fibres projectifs, fibres en drapeaux.”, in Sem. H. Cartan 13 (1960/61),
no. 12, 1962, p. 15 (French).

[13] C. Huneke, “On the symmetric and Rees algebra of an ideal generated by a d-
sequence”, J. Algebra 62 (1980), no. 2, p. 268-275.

[14] C. Okonek, M. Schneider & H. Spindler, Vector bundles on complex projec-
tive spaces, Modern Birkhäuser Classics, Birkhäuser/Springer Basel AG, Basel,
2011, Corrected reprint of the 1988 edition, With an appendix by S. I. Gelfand,
viii+239 pages.

[15] T. Peternell, “Modifications”, in Several complex variables, VII, Encyclopaedia
Math. Sci., vol. 74, Springer, Berlin, 1994, p. 285-317.

[16] T. Peternell & R. Remmert, “Differential calculus, holomorphic maps and linear
structures on complex spaces”, in Several complex variables, VII, Encyclopaedia
Math. Sci., vol. 74, Springer, Berlin, 1994, p. 97-144.

[17] J. H. Rabinowitz, “Moišezon spaces and positive coherent sheaves”, Proc. Amer.
Math. Soc. 71 (1978), no. 2, p. 237-240.

[18] ———, “On monoidal transformations of coherent sheaves”, Proc. Amer. Math.
Soc. 74 (1979), no. 2, p. 389-390.

[19] O. Riemenschneider, “Characterizing Moišezon spaces by almost positive coherent
analytic sheaves”, Math. Z. 123 (1971), p. 263-284.

[20] H. Rossi, “Picard variety of an isolated singular point”, Rice Univ. Studies 54
(1968), no. 4, p. 63-73.

[21] J. Ruppenthal, “L2-theory for the ∂-operator on compact complex spaces”, Duke
Math. J. 163 (2014), no. 15, p. 2887-2934.

[22] M. Sera, “A generalization of Takegoshi’s relative vanishing theorem”, J. Geom.
Anal. 26 (2016), no. 3, p. 1891-1912.

[23] K. Takegoshi, “Relative vanishing theorems in analytic spaces”, Duke Math. J. 52
(1985), no. 1, p. 273-279.

Manuscrit reçu le 20 avril 2015,
révisé le 24 mars 2016,
accepté le 6 avril 2016.

Jean RUPPENTHAL
ruppenthal@uni-wuppertal.de
University of Wuppertal
Department of Mathematics and Informatics
Gaußstr. 20, 42119 Wuppertal (Germany)
Martin SERA
sera@math.uni-wuppertal.de
University of Wuppertal
Department of Mathematics and Informatics
Gaußstr. 20, 42119 Wuppertal (Germany)

TOME 67 (2017), FASCICULE 1

mailto:ruppenthal@uni-wuppertal.de
mailto:sera@math.uni-wuppertal.de

	1. Introduction
	2. Monoidal transformations
	3. Linear spaces of torsion-free coherent analytic sheaves
	3.1. Primary component of a linear space
	3.2. Linear spaces of small corank – Proof of Theorem 1.3
	3.3. More preliminaries on torsion

	4. Direct images of torsion-free preimage sheaves
	5. Torsion-free preimages of direct image sheaves
	6. Pi^T preserves injectivity and surjectivity
	7. Application to ideal sheaves
	8. Holomorphic n-forms on singular spaces
	9. Non-analytic preimages and direct images
	Bibliography

