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A COMPLEX IN MORSE THEORY COMPUTING
INTERSECTION HOMOLOGY

by Ursula LUDWIG

Abstract. — Let X be a space with isolated conical singularities. The aim of
this article is to establish, using anti-radial Morse functions on X, a combinatorial
complex which computes the intersection homology of X. The complex constructed
here, is generated by the smooth critical points of the Morse function and repre-
sentatives of the de Rham cohomology (in low degree) of the link manifolds of
the singularities of X. It can be seen as an analogue of the famous Thom-Smale
complex for smooth Morse functions and singular homology on a compact mani-
fold. The article also discusses the homotopy principle familiar in smooth Morse
homology in this singular context.
Résumé. — Dans cet article on associe à une fonction de Morse f anti-radiale

sur un espace singulier X à singularités coniques un complexe généré par les points
critiques de f et par certaines formes sur le link de la singularité. Ce complexe cal-
cule de façon canonique l’homologie d’intersection. Également on discute le com-
portement de ce complexe par rapport aux homotopies. Le complexe construit dans
cet article est un analogue du complexe de Thom-Smale sur une variété lisse pour
une fonction de Morse lisse et l’homologie singulière.

1. Introduction

Let M be a smooth compact manifold and f : M → R a smooth Morse
function. The famous Morse inequalities state that there is a relation be-
tween the number of critical points of index i of the Morse function f ,
denoted by ci(f) and the i-th Betti number (for singular homology) of M ,
denoted by bi(M). More precisely in their strong form the Morse inequali-
ties state, that for all k, 0 6 k 6 dimM :

(1.1)
k∑
i=0

(−1)k−ici(f) >
k∑
i=0

(−1)k−ibi(M).

Keywords: intersection homology, Morse theory, radial vector fields, Thom-Smale
complex.
Math. classification: 55N33, 58A35, 58K05, 57R70.



198 Ursula LUDWIG

A way to prove this Morse inequalities is to show the existence of a
combinatorial complex (C∗, ∂∗), which is generated by the critical points
of f and whose homology is isomorphic to the singular homology H∗(M)
(see e.g. [7], pg. 106). Let g be a Riemannian metric on M , such that
the pair (f, g) satisfies the Morse-Smale transversality condition, i.e. all
intersections of stable and unstable manifolds of critical points of f (and
the flow associated to the vector field −∇gf) are transverse. Then, such a
complex has first been established by Thom [44] and Smale [43], using the
unstable cell decomposition of M for the negative gradient flow, i.e. the
flow associated to the vector field −∇gf .
The Thom-Smale complex has seen a revival in the 1990s, where the idea

of counting trajectories between critical points, has been exploited in an
infinite dimensional context by Floer [13]. Generalisations to Morse-Bott
functions (see [3]), invariant Morse functions (see [5], [3]), to manifolds with
boundaries (see [1, 26, 28]) and to stratified spaces (see [31]), have been
studied since.

In the 1980s, inspired by ideas in quantum field theory, Witten [51] de-
fined another complex, generated by the critical points of a Morse function,
which this time computes the singular cohomology ofM . The Witten com-
plex is produced in an analytic way, using a deformation of the de Rham
complex by means of the Morse function. It was conjectured by Witten,
that for big deformation parameter the Witten complex converges to the
dual Thom-Smale complex. A rigorous proof of Witten’s approach has been
given by Helffer and Sjöstrand using semi-classical analysis in [23]. An-
other proof of the comparison theorem between the Witten complex and
the Thom-Smale complex has been given by Bismut and Zhang in [5]. The
approach in [5] is based on a result of Laudenbach [27], who gave a reinter-
pretation of the Thom-Smale complex in terms of currents. The comparison
result of these two complexes in Morse theory, was used in [4] and [5] to
generalise the Cheeger-Müller theorem on the comparison of Reidemeister
and analytic torsion.
For singular spaces, an important topological invariant is the intersection

homology introduced by Goresky and MacPherson in the 1980s (see [16,
17], see also the book [25] for an introduction to intersection homology;
the definition of intersection homology will be recalled in Section 5.1).
Intersection homology on singular spaces does satisfy essentially all nice
properties (Poincaré duality, Lefschetz hyperplane theorem etc.), singular
homology satisfies on smooth manifolds.
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A COMPLEX IN MORSE THEORY 199

The aim of this article is to define an analogue of the Thom-Smale com-
plex on singular spaces with isolated singularities, which computes the
intersection homology of the space. Let us point out, that the complex
constructed here is a complex of R-vector spaces. This is in contrast to
the smooth situation, where the Thom-Smale complex can also be defined
over Z.
Let us explain the setting and the main result of this paper: In the whole

article, the space X will be a space with isolated conical singularities of
dimension dimX = n. Let us recall the main properties of such a space
(see Definition 2.1 for full details): Outside a finite set of points Sing(X),
called the singular set, X is a smooth manifold. Moreover, for each point
p ∈ Sing(X) there exists an open neighbourhood U(p) ⊂ X, which is
homeomorphic to a cone

(1.2) U(p) ' cLp :=
(
[0,∞)× Lp

)
/ ∼,

where Lp is a smooth compact connected manifold, called the link of X at
p. The top stratum X \ Sing(X) is equipped with a conical Riemannian
metric g.

Let f : X → R be an anti-radial Morse function (see Definition 2.6).
We denote by Crit(f) := Crit(f|X\Sing(X)) ∪ Sing(X) the set of critical
points of f . Singular points of X are local maxima of the anti-radial Morse
function. After possibly perturbing the conical metric g outside a neigh-
bourhood of Crit(f), we can assume that the negative gradient flow satisfies
the Morse-Smale transversality condition (see Definition 3.1 and the dis-
cussion thereafter). We will moreover assume that the gradient vector field
is standard near critical points (see Definition 2.7).
For p ∈ Sing(X), let us denote by H∗(Lp) the de Rham cohomology of

the link manifold Lp. Let

(1.3) Ξn−kp := {ξn−kp,l | l = 1, . . . ,dimHn−k(Lp)} ⊂ Ωn−k(Lp)

be a set of closed forms, such that {[ξn−kp,l ] | l = 1, . . . ,dimHn−k(Lp)} ⊂
Hn−k(Lp) is a basis of Hn−k(Lp). Let us denote by

(1.4) Ξp :=
⋃

k>n
2 +1

Ξn−kp and by Ξ :=
⋃

p∈Sing(X)

Ξp.

We equip each unstable cell Wu(p), p ∈ Crit(f), with an orientation.
Using the negative gradient flow, this gives a way of “counting with signs”
the trajectories of the negative gradient flow between two smooth critical
points p, q ∈ Crit(f|X\Sing(X)), with ind(p) − ind(q) = 1. We denote this
number by n(p, q) (see Definition 3.3). We moreover assume in the whole
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200 Ursula LUDWIG

paper that the top stratum X \Sing(X) is oriented. Hence, as explained in
Section 3.2, all stable cells W s(p) as well as all intersections W s(p) ∩ Lq,
q ∈ Sing(X), p ∈ Crit(f|X\Sing(X)), inherit orientations.
We denote by fsm := f|X\Sing(X) and by Critk(fsm) the set of smooth

critical points of index k.
The main idea of the article consists in the construction of the following

complex:

Definition. — To the anti-radial, standard Morse-Smale pair (f, g)
and the set Ξ we associate a complex (Cu∗ (f, g,Ξ), ∂∗) as follows:
Cuk = Cuk (f, g,Ξ)

:=



⊕
p∈Critk(fsm)

R · [Wu(p)]⊕
⊕

p∈Sing(X),
ξn−k
p,l
∈Ξn−kp

R · [ξn−kp,l ] if k > n
2 + 1,

⊕
p∈Critk(fsm)

R · [Wu(p)] if k < n
2 + 1.

The boundary operator ∂∗ is defined as follows:

(1.5) ∂[Wu(p)] =
∑

q∈Critk−1(fsm)

n(p, q) · [Wu(q)] for p ∈ Critk(fsm);

and

(1.6) ∂[ξn−kp,l ] =
∑

q∈Critk−1(fsm)

(∫
W s(q)∩Lp

ξn−kp,l

)
· [Wu(q)]

for p ∈ Sing(X), ξn−kp,l ∈ Ξn−kp .

We denote by IH∗(X) the intersection homology with lower middle per-
versity of X and real coefficients. The main result of this article is the
following theorem:

Main Theorem. — Let X be a singular space with isolated conical
singularities. Let (f, g) be an anti-radial, standard Morse-Smale pair and
let Ξ be a set of representatives of the de Rham cohomology of the link
manifolds of Sing(X) as in (1.3) and (1.4).

Then the complex (Cu∗ (f, g,Ξ), ∂∗) is well-defined, i.e. ∂2
∗ = 0, and com-

putes the intersection homology with lower middle perversity of X,

(1.7) H∗
(
(Cu∗ (f, g,Ξ), ∂∗)

)
' IH∗(X).

Moreover, let (fα, gα) and (fβ , gβ) be two anti-radial Morse-Smale pairs.
Then there is a canonical isomorphism of homologies:

(1.8) H∗
(
(Cu∗ (fα, gα,Ξ), ∂∗)

)
−→ H∗

(
(Cu∗ (fβ , gβ ,Ξ), ∂∗)

)
.

ANNALES DE L’INSTITUT FOURIER



A COMPLEX IN MORSE THEORY 201

For p ∈ Sing(X), let us denote by IH∗(cLp, Lp) the relative intersection
homology with lower middle perversity of the cone cLp. Set

(1.9) ci(f) := ci(fsm) +
∑

p∈Sing(X)

IHi(cLp, Lp).

As a corollary of the Main Theorem, one gets the following Morse inequal-
ities for the intersection Betti numbers Ibi(X) := dim IHi(X):

(1.10)
k∑
i=0

(−1)k−ici(f) >
k∑
i=0

(−1)k−iIbi(X), 0 6 k 6 n.

In the definition of the complex (Cu∗ (f, g,Ξ), ∂∗) we have used a set of
representatives Ξ of the de Rham cohomology of the link manifolds. The
set Ξ contains only forms of “low degree”, the degree at which we truncate
is related to the lower middle perversity. For any other perversity p in
the sense of the theory of Goresky and MacPherson [16], one can define
in a completely analogous way a combinatorial complex computing the
intersection homology of X with perversity p. For this, one has to choose,
in the definition of Ξ a truncation at a different degree which only depends
on the perversity p (see Example 8.2.2).

The Main Theorem gives a way of computing the intersection homol-
ogy of a singular space using Morse theory. While this is interesting in
itself, the initial motivation of the present article originated from a dif-
ferent mathematical problem: In [30] the author has studied the Witten
deformation of the complex of L2-forms on a singular space with isolated
conical singularities using anti-radial Morse functions. The combinatorial
complex has been defined in a special situation (for so-called special anti-
radial Morse functions) and it has been shown (Theorem II in [30]), that
for special anti-radial Morse functions the Witten complex converges to
the dual combinatorial complex. Using the results of the present article
and combining them with the analytic result of [30], one can show that
for an arbitrary anti-radial Morse function, the Witten complex in [30]
converges to the dual of (Cu∗ (f, g,Ξ), ∂∗).
The motivation for [30] as well as for the present article, comes from a

topic in global analysis of singular spaces, which has achieved some interest
in recent years, namely the study of analytic torsion for spaces with conical
singularities [12, 47, 21, 22]. Comparison theorems between analytic and
topological torsion on smooth manifolds, aka Cheeger-Müller type theo-
rems, have been an object of intensive study during the last 40 years in
global analysis (see [39, 9, 34, 35]). As mentioned before, the most general
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202 Ursula LUDWIG

comparison result of torsions on smooth compact manifolds is due to Bis-
mut and Zhang [4], who approached the question using Morse theory and
the Witten deformation, as well as local index techniques. It is therefore
natural to try to generalise the approach in [4] to the singular context. The
present article is a step in this direction.
Let us give some indications on the ideas used in the proof of the Main

Theorem and how they are related to existing literature: For the proof of
the first part of the theorem, the main idea is to study the compactification
of the unstable manifolds of critical points and to refine the unstable cell
decomposition. This is done by adapting to the singular setting the result
of Laudenbach [27] (see also the book [29] for more detailed proofs). Let
us underline, that throughout the article, we will use the compactification
of stable and unstable manifolds à la Laudenbach (see Remark 3.5 for its
relation to the compactification in the topology of “broken trajectories”).

For discussing how the geometric complex changes, when passing from
the anti-radial Morse-Smale pair (fα, gα) to another anti-radial Morse-
Smale pair (fβ , gβ), we use Morse theory on the product space X̃ = X×S1.
This approach is close to the approach used in smooth Morse homology
inspired from Floer homology (see Section 4.1.3 in [42], also Section 4.2
in [49]). Thus, at this stage, we do not proceed as in Section (f) and (g)
in [27], where this passage is explained using ideas from bifurcation theory
(in particular in [27] the phenomenon of birth-death points is discussed in
detail). However, still our compactification of stable and unstable cells is
the compactification à la Laudenbach.
Let us mention, that the complex constructed here, using the smooth

critical points of the anti-radial Morse function and forms on the links of
singular points, is related to the definition of the complex associated to
a Morse-Bott function on a smooth manifold (see Section 3 in [3]). With
the right interpretations, the complex (Cu∗ (f, g,Ξ), ∂∗) can be seen as a
subcomplex of the Morse-Bott complex associated to the “blow-up” of X
with the “blow-up” function of f on it.
The present article uses anti-radial Morse functions. They are inspired

from radial vector fields as introduced by Marie-Hélène Schwartz in [40, 41]
in her study of characteristic classes on singular spaces via obstruction the-
ory. Another powerful tool on singular spaces are stratified Morse functions
as introduced by Goresky and MacPherson in [19]. While one can get the
Morse inequalities (1.10) as well using methods in [19], the dynamical sys-
tem point of view in Morse theory is much easier adapted to anti-radial
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A COMPLEX IN MORSE THEORY 203

Morse functions. Note that, as has been seen in [20], even to define sta-
ble/unstable manifolds in the context of stratified Morse theory is not an
easy task.
The article is organised as follows: In Section 2 we recall some basic

notions, in particular we recall the notion of a singular space with conical
singularities and we define anti-radial Morse functions on a singular space.
Moreover we recall the notion of an smcs in the sense of Laudenbach [27]. In
Section 3 we study the decomposition of X into stable resp. unstable cells
of an anti-radial Morse function. This is a straightforward generalisation of
smooth Morse theory. In Section 4 we give a refinement of the unstable cell
decomposition. In Section 5 we use the construction of Section 4 to define
a subcomplex (D∗(f, g,Ξ, T ), ∂∗) of the intersection chain complex of X.
In Section 6 we prove the first part of the Main Theorem, i.e. we prove
that the abstract complex (Cu∗ (f, g,Ξ), ∂∗) is well-defined. Moreover, using
the constructions of Section 5, we prove that the complex (Cu∗ (f, g,Ξ), ∂∗)
computes the intersection homology of X. Moreover we define a pairing
of (Cu∗ (f, g,Ξ), ∂∗) with the complex of L2-forms on X, which induces the
canonical pairing between intersection homology and L2-cohomology of X.

In Section 7 we consider two anti-radial Morse-Smale pairs (fα, gα) and
(fβ , gβ) and construct the quasi-isomorphism of complexes leading to (1.8).
To this purpose we generalise some of the concepts from Section 3 and
Section 4 to the singular space X̃ = X ×S1, which is a singular space with
an one-dimensional singular stratum. Finally, in Section 8 we illustrate our
construction by several examples.

Acknowledgements. — First and foremost I would like to thank Jean-
Michel Bismut for many discussions and for his support throughout my
long-term research project. I have profited a lot from long discussions with
François Laudenbach and Markus Banagl, and I would like to thank them
for their generosity. I would also like to thank Jean-Paul Brasselet and
David Trotman for discussions during the final redaction of this paper.
The author has been supported by the Marie Curie Intra European Fel-

lowship (within the 7th European Community Framework Programme)
COMPTORSING and wishes to thank the Département de Mathéma-
tiques, Université Paris-Orsay, for hospitality.
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2. Some basic definitions

2.1. Singular spaces with isolated conical singularities.

In this subsection we recall the definition of a space with isolated conical
singularities.

In the whole article the following notations will be used: For Z a topo-
logical space, we will denote by

(2.1) cZ :=
(
[0,∞)× Z

)
/(0,x)∼(0,y),

the infinite cone over Z. We will denote by r ∈ [0,∞) the radial coordinate
in cZ and by 0 the cone point. For δ > 0 we denote by

(2.2) cδZ :=
(
[0, δ)× Z

)
/(0,x)∼(0,y),

the open cone truncated at r = δ.

Definition 2.1. — Let X be a topological space, Sing(X) ⊂ X a finite
set of points, such that Xsm := X \Sing(X) is a smooth oriented manifold
of dimension n. Let g be a Riemannian metric on Xsm. The pair (X, g)
is called a space with isolated conical singularities if it admits a disjoint
decomposition

(2.3) X = M ∪

 ⋃
p∈Sing(X)

Uδ(p)

 ,

with the following properties:
(1) M is a smooth compact manifold with boundary of dimension

dimM = n.
(2) For p ∈ Sing(X), Uδ(p) denotes an open neighbourhood of p. There

exists a diffeomorphism

(2.4) ϕ : Uδ(p) \ {p} ' cδLp \ {0},

where Lp is a smooth compact connected manifold of dimension
dimLp = n− 1 =: m, called the link of X at p. Moreover

(2.5) g|Uδ(p)\{p} = ϕ∗
(
dr2 + r2gLp

)
,

where gLp is a fixed metric on the manifold Lp (not depending
on r); and the diffeomorphism ϕ extends to a homeomorphism, still
denoted by ϕ,

(2.6) ϕ : Uδ(p) ' cδLp.

ANNALES DE L’INSTITUT FOURIER
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(3) The boundary of M is the disjoint union of the link manifolds Lp:

(2.7) ∂M =
⋃

p∈Sing(X)

Lp.

The set Sing(X) is called the singular set of X.

For p ∈ Sing(X) the open neighbourhood Uδ(p) appearing in part (2) of
Definition 2.1 is the δ-neighbourhood of p, with respect to the inner metric
induced from g. Note that, for 0 < ε < δ, the ε-neighbourhood of p, Uε(p)
can be identified via the chart ϕ with cεLp. Moreover we identify ∂Uε(p)
with Lp,ε := {ε} × Lp ⊂ cLp.

2.2. Submanifolds with conical singularities (smcs) in the sense
of Laudenbach

In this subsection, for convenience of the reader, we will recall the notion
of a submanifold with conical singularities of dimension k of a smooth
manifold N as defined by Laudenbach in [27], Section (a). In the rest of
the article we will refer to it as smcs in the sense of Laudenbach or more
shortly as smcs. In Definition 2.4 we extend the notion of an smcs to closed
subsets of the singular space X. The reader is warned that the meaning of
“conical” is slightly different in Definition 2.1 and Definition 2.2.
Let N be a smooth manifold of dimension n. Let Σ ⊂ N be a closed

subset. A stratification of Σ is a filtration by closed subsets

(2.8) Σ = Σk ⊇ Σk−1 ⊇ . . . ⊇ Σ0.

The following definition is inductive.

Definition 2.2 (Section (a) in [27]). — Let N be a smooth manifold
of dimension n. An smcs of N of dimension 0 is a discrete finite set of
points in N . A stratified subset Σ = (Σk,Σk−1, . . . ,Σ0) of N is an smcs of
dimension k if the following conditions are satisfied:

(1) For any i 6 k the set Σ(i) := Σi \Σi−1 is either empty or a smooth
submanifold of N of dimension i. The sets Σ(i) are called the strata
of Σ.

(2) For any point x ∈ Σ(i), there exist a neighbourhood V in N , a
diffeomorphism ϕ : V ' Di ×Dn−i from V into a product of discs,
and an smcs T = (Tk−i, . . . , T0, ∅, . . . , ∅) of dimension k− i in Dn−i

such that:

(2.9) ϕ(V ∩ (Σk, . . . ,Σ0)) = Di × (Tk−i, . . . , T0, ∅, . . . , ∅).

TOME 67 (2017), FASCICULE 1
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(3) If x ∈ Σ0 = Σ(0), there is an n-dimensional C1-ball B in N centred
at x such that

Σ′ := Σ ∩ ∂B
is an smcs of dimension (k − 1) in the (n− 1)-sphere ∂B, and

(2.10) (B,B ∩ Σk, . . . B ∩ Σ1) = (B, cΣ′k−1, . . . , cΣ′0),

where cΣ′i denotes the cone over Σ′i with respect to the linear struc-
ture of the C1-parametrised ball B.

Let N be a smooth manifold. A submanifold S of N is said to be trans-
verse to an smcs Σ of N , if S is transverse to each stratum Σ(i) of Σ.

Proposition 2.3 (Lemma 1 in [27]). — If a submanifold S ⊂ N of
codimension q is transverse to an smcs Σ = (Σk,Σk−1, . . . ,Σ0) of N of
dimension k, then the intersection Σ ∩ S = (Σk ∩ S,Σk−1 ∩ S, . . . ,Σ0 ∩ S)
is an smcs of dimension k − q of S.

We extend the notion of an smcs to closed subsets Σ of a singular space
with conical singularities (X, g) as follows:

Definition 2.4. — Let (X, g) be a space with isolated conical singu-
larities and let Σ ⊂ X be a closed subset of X with a stratification

(2.11) Σ = Σk ⊇ Σk−1 ⊇ . . . ⊇ Σ0.

We call Σ = (Σk, . . . ,Σ0) an smcs of X of dimension k if the following
conditions hold:

(1) Singular points of X are contained in Σ0,

(2.12) Sing(X) ∩ Σ ⊂ Σ0.

(2) The closed subset Σ ∩Xsm of Xsm with the stratification

(2.13) Σk ∩Xsm ⊇ Σk−1 ∩Xsm ⊇ . . . ⊇ Σ0 ∩Xsm

is an smcs of dimension k of the smooth manifold Xsm.
(3) For any p ∈ Σ ∩ Sing(X) there exists an ε > 0 such that the in-

tersection of Σ with ∂Uε(p) is transverse and in the chart (2.6) we
have

(2.14) ϕ|Uε(p)∩Σ : Uε(p) ∩ Σ ' cε
(
Lp,ε ∩ ϕ(Σ)

)
⊂ cε

(
Lp,ε

)
.

In the following, we will often denote an smcs of dimension k simply by
Σ or by (Σ,Σk−1).
In Section 4, Section 5 and Section 6 we will use the following result,

which follows from existing literature on stratified spaces:

ANNALES DE L’INSTITUT FOURIER



A COMPLEX IN MORSE THEORY 207

Proposition 2.5. — Let X be a singular space with conical singular-
ities, dimX = n. Let Σ = (Σn, . . . ,Σ0) be an smcs of X of dimension n,
with Σn = X. Then X admits a triangulation compatible with the strat-
ification Σ, i.e. each closed subset Σi of the filtration is a union of closed
simplices of the triangulation.

Sketch of proof. — Let us first explain the result for the case where
X is smooth. One of the most prominent notions for stratified spaces is
the so-called Whitney-(b) condition introduced by Whitney in [50] (see
also e.g. Section 1.4.3 in the book [38] for the definition). The Whitney-(b)
condition is a C1-invariant (see Corollary 3.3 in [45]). The charts appearing
in Definition 2.2 are C1-charts in which the Whitney-(b) condition holds.
Therefore Σ is a Whitney-(b) stratification of X and Whitney stratified
sets admit triangulations compatible with the stratification (see [14], [24],
[46] and the references therein). By inspecting the proof of [14] and [15] one
can check that in the case of an smcs the triangulation constructed in [14]
is a smooth triangulation of the smooth manifold X.
Let now X be a space with isolated conical singularities. One gets the

claim, using condition (3) in Definition 2.4, the above arguments in the
smooth case and the construction in [14]. �

2.3. Anti-radial Morse functions. Standard Morse functions

Definition 2.6. — Let (X, g) be a space with isolated conical singu-
larities. A continuous function f : X → R is called an anti-radial Morse
function, if the following two conditions hold:

(1) The restriction fsm := f|Xsm is a smooth Morse function.
(2) Near a singular point p ∈ Sing(X) the function f has the following

normal form in the local coordinates (r, y) ∈ Uδ(p) ' cδLp in (2.6):

(2.15) f(r, y) = f(p)− 1
2r

2.

Condition (2) in Definition 2.6 implies in particular that every singular
point p ∈ Sing(X) is a local maximum for the anti-radial Morse function.
We will use the following convention for p ∈ Sing(X),

(2.16) ind(p) := dimX = n.

We denote by Crit(fsm) the set of critical points of fsm, by Criti(fsm)
the set of critical points of fsm of index i. We denote by

(2.17) Crit(f) := Crit(fsm) ∪ Sing(X).

TOME 67 (2017), FASCICULE 1
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Let p ∈ Criti(fsm). By Morse Lemma (see e.g. Lemma 2.2 in [32]) there
exists an open neighbourhood U(p) of p and local coordinates x1, . . . , xn
near p such that for x = (x1, . . . , xn) ∈ U(p):

(2.18) f(x) = f(p) + 1
2
(
−x2

1 . . .− x2
i + x2

i+1 + . . .+ x2
n

)
.

Definition 2.7. — Let (X, g) be a space with isolated conical singu-
larities and let f : X → R be an anti-radial Morse function. We say that
the pair (f, g) is Standard Morse, shortly (SM), if for all p ∈ Criti(fsm) we
have

(2.19) −∇gf = x1
∂

∂x1
+ . . .+ xi

∂

∂xi
− xi+1

∂

∂xi+1
− . . .− xn

∂

∂xn

in a Morse chart (2.18) near p.

3. The negative gradient flow. Stable and unstable cell
decomposition

This section discusses stable and unstable manifolds, trajectory spaces,
as well as the Morse-Smale transversality condition in our singular setting.
The results are straightforward generalisations of smooth Morse theory.

3.1. The negative gradient flow and the Morse-Smale condition

In this subsection (X, g) is a singular space with conical isolated singu-
larities and f : X → R an anti-radial Morse function. For a set A ⊂ X, we
will denote by A the closure of A in X.

The negative gradient vector field −∇gf on Xsm induces a smooth flow
on Xsm, which extends continuously to a flow on X

(3.1) Φ : R×X −→ X.

For p ∈ Crit(f) the stable resp. unstable set of p is defined as follows

(3.2) W s/u(p) = W s/u(p, (f, g)) :=
{
x ∈ X | lim

t→±∞
Φ(t, x) = p

}
.

For p ∈ Crit(fsm), by smooth Morse theory (see e.g. Theorem 2.7 in [49]),
both the stable and unstable set W s/u(p) are submanifolds of Xsm.
For p ∈ Sing(X), using the anti-radiality of the Morse function, it is easy

to see that W s(p) = {p}. Moreover Wu(p) ∩Xsm is a submanifold of Xsm

with Wu(p) ∩ Sing(X) = {p}.
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Note that one has a (disjoint) decomposition of X into unstable resp.
stable cells

(3.3) X =
⋃

p∈Crit(f)

Wu/s(p).

Note that by the anti-radiality condition, for p ∈ Sing(X), q ∈ Crit(fsm)
the intersection Wu(p)∩W s(q) lies in Xsm and W s(p)∩Wu(q) = ∅. More-
over for p, p′ ∈ Sing(X), p 6= p′,

(3.4) Wu(p) ∩W s(p′) = ∅.

Hence, one can generalise the Morse-Smale transversality condition to this
singular setting:

Definition 3.1. — Let (X, g) be a space with isolated conical singu-
larities and let f : X → R be an anti-radial Morse function. The pair (f, g)
satisfies the Morse-Smale transversality condition, if

for all p, q ∈ Crit(f), the intersection Wu(p) ∩W s(q) is transverse. (T )

The Morse-Smale condition (T) implies that the intersection Wu(p) ∩
W s(q) is a smooth manifold of dimension ind(p) − ind(q). Note that, it
is easily seen by adapting the arguments in [43] (in particular Lemma 1.2
in [43]) that the Morse-Smale transversality condition (T ) can always be
achieved by a small perturbation of the metric g outside a small neigh-
bourhood of Crit(f) (in Proposition 6.4 of [31] a proof of this fact has been
given in a more general situation).

Remark 3.2. — For a smooth manifold equipped with a smooth Morse
function the stable and unstable cell decomposition (3.3) has been noticed
already by Thom in [44]. The Morse-Smale condition for smooth Morse
functions on smooth manifolds is not yet present in Thom’s note [44]. It
has been introduced by Smale [43].

3.2. Orientation

For the rest of the article we will assume that (X, g) is a space with
isolated conical singularities, f : X → R is an anti-radial Morse function
such that the pair (f, g) satisfies the conditions (T ) and (SM).
In this subsection we will shorty explain our conventions on orientation.
Stable and unstable cells of critical points are contractible and there-

fore orientable. By choosing an orientation on all unstable cells one gets
induced orientations on all intersections Wu(p) ∩ W s(q), p, q ∈ Crit(f)
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(for more details we refer the reader to e.g. [49], Section 3.4). The orienta-
tion of Wu(p) ∩W s(q) together with the negative gradient flow induce an
orientation of the unparametrised trajectory space

(3.5) M̃(p, q) := Wu(p) ∩W s(q) ∩ f−1(a),

where a ∈ ]f(q), f(p)[ is a regular level. In particular, if ind(p) = ind(q) + 1,
the unparametrised trajectory space M̃(p, q) is a finite set of points
equipped with signs. Hence, we can define, precisely as in smooth Morse
theory:

Definition 3.3. — Let p, q ∈ Crit(f), ind(p)− ind(q) = 1. We define

(3.6) n(p, q) := number of points in M̃(p, q) counted with signs.

Recall that in this article Xsm was assumed to be oriented (see Defi-
nition 2.1). For p ∈ Sing(X) the orientation of the unstable cell Wu(p)
will be chosen to be compatible with that of Xsm. Moreover we will ori-
ent the stable cells compatibly, i.e. we have for each p ∈ Crit(fsm) that
TpW

u(p) ⊕ TpW s(p) = TpXsm and the orientations are such that the ori-
entation of Wu(p) followed by that of W s(p) gives the orientation of Xsm.
Let L be the link manifold of a singularity of X. Using the gradient flow,

we have induced orientations on the intersection L∩W s(p), p ∈ Crit(fsm).
The orientation of L∩W s(p) is used in the definition (1.6) of the boundary
operator of the complex (C∗(f, g,Ξ), ∂∗): the closed forms in Ξ will be
integrated over the oriented smcs L ∩W s(p).

The orientability of X (more precisely the orientability of the link man-
ifold L) is crucial in this article: Poincaré duality on the oriented link
manifold is used in the proof of Theorem 6.2 (more precisely in (6.10)).
For a non-orientable space X the constructions of this article can be

adapted by using a set Ξ of closed forms with values in the orientation
bundle of L instead (see Example 8.3).

3.3. The stable/unstable cell decomposition

For p ∈ Crit(f), we denote byW s/u(p) the closure of the stable/unstable
set W s/u(p) in X. Recall from Section 2.1 that for p ∈ Sing(X) and ε > 0
small enough, we can identify a small neighbourhood Uε(p) with cεLp and
the boundary ∂Uε(p) with Lp. We omit the subscript p in the following for
simplicity.
The next proposition generalises Proposition 2 in [27] to our setting:
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Proposition 3.4.
(a) Let r ∈ Crit(f). Then Wu(r) is an smcs of X. The strata of

Wu(r) \Wu(r) are unstable manifolds Wu(q), where q ∈ Crit(fsm)
with ind(q) < ind(r). Let q ∈ Critind(r)−1(fsm) with Wu(q) ⊂
Wu(r). Then, nearWu(q),Wu(r) consists of n+(r, q)+n−(r, q) con-
nected components, Wu(q) being the oriented boundary of n+(r, q)
of these. Moreover n(r, q) = n+(r, q)− n−(r, q).

(b) For r ∈ Crit(fsm), the set W s(r) is an smcs of X. The strata of
W s(r) \W s(r) are stable manifolds W s(q), where q ∈ Crit(f) with
ind(q) > ind(r). Moreover, if ind(r) = ind(q)−1, nearW s(q),W s(r)
consists of n+(q, r) + n−(q, r) connected components, W s(q) being
the oriented boundary of n+(q, r) (resp. n−(q, r)) of these.

Proof. — By anti-radiality, the negative gradient flow does only leave
singular points of X in positive time. Hence the smcs-property in (a) and
(b) follow, as in smooth Morse theory, by a repeated application of Lemma
4 in [27] (see also Section A.7 in [29]). Note that, if p ∈ W s(r) ∩ Sing(X)
by the anti-radiality condition the intersection W s(r)∩L is transverse and
therefore by Proposition 2.3 also an smcs. Since the negative gradient vector
field has the form r ∂∂r near a singular point, we have

(3.7) W s(r) ∩ Uε(p) = cε(W s(r) ∩ L).

This shows that W s(r) satisfies the condition (3) in the Definition 2.4 of
an smcs in X. �

Remark 3.5. — Let us mention, that the literature inspired from Floer
theory usually considers the closure of stable and unstable cells with respect
to the topology of broken trajectories Wu(p)

broken
. This compactification

takes place outside the manifold. The space Wu(p)
broken

is homeomor-
phic to a manifold with corners, and there is a natural surjective map
Wu(p)

broken
→ Wu(p). The interested reader is referred to Section 4.4 of

the book [37] where the two ways of compactifying trajectory spaces in
smooth Morse theory, as well as the relation between them, is discussed in
detail.

Corollary 3.6. — Let p ∈ Sing(X) be a singular point of X with
link manifold L. Then the decomposition of L induced from the stable cell
decomposition (3.3) of X induces a stratification ΣsL,

(3.8) L =
⋃

q∈Crit0(fsm)

W s(q) ∩ L ⊇ . . . ⊇
⋃

q∈Critn−1(fsm)

W s(q) ∩ L,
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which makes L into an smcs. Moreover, if ind(r) = ind(q)−1, nearW s(q)∩
L,W s(r)∩L consists of n+(q, r)+n−(q, r) connected components,W s(q)∩L
being the oriented boundary of n+(q, r) (resp. n−(q, r)) of these.

Proof. — From Proposition 3.4 (b) we deduce, that the stratification
of Xsm

Xsm =
⋃

q∈Crit0(fsm)

W s(q) \ Sing(X) ⊇ . . . ⊇
⋃

q∈Critn(fsm)

W s(q) \ Sing(X)

makes Xsm into an smcs. Note that⋃
q∈Critn(fsm)

W s(q) \ Sing(X) = Critn(fsm).

The claim follows by applying Proposition 2.3. �

Remark 3.7. — In Section 8 of [31] it has been proved that, as in smooth
Morse theory, the stable manifolds of the anti-radial Morse function f gen-
erate a Thom-Smale complex for the singular space X. For p ∈ Crit(f)
we denote by [W s(p)] the corresponding generator. As a consequence of
Proposition 3.4 (b) one gets, that the boundary operator in this complex
is defined by

(3.9) ∂[W s(r)] = ±
∑

ind(q)=ind(r)+1

n(q, r) · [W s(q)].

The main result in [31] (Theorem 8.2) states, that the complex generated
by the stable manifolds of an anti-radial Morse function does compute the
singular homology of X. Actually, the theory in [31] is developed in a more
general setting, namely on general Thom-Mather stratified spaces.

4. A refinement of the unstable cell decomposition of X

In this section we will define a refinement of the unstable cell decomposi-
tion X =

⋃
q∈Crit(f)W

u(q), by decomposing Wu(p) for each singular point
p ∈ Sing(X). Since f is anti-radial, there are no flow lines between two
points p, p′ ∈ Sing(X). It is therefore enough to explain the construction
for the case where Sing(X) = {p}. We denote by L the link of X at p.

4.1. Compatible triangulation T of the link manifold L

Let ΣsL be the stratification of L induced from the stable cell decomposi-
tion (see Corollary 3.6). By Corollary 3.6 and Proposition 2.5, there exists
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a smooth triangulation T of L, compatible with the stratification ΣsL. By
a result in [36], we can moreover assume that the dual cell decomposition
is a smooth cell decomposition of L. Let Ds

n−k be an open (n − k)-cell of
T . Since the triangulation T is compatible with the stratification ΣsL of L,
there exists exactly one q ∈ Crit(fsm) with

(4.1) Ds
n−k ⊂W s(q) ∩ L

and we write

(4.2) Ds
n−k ∼W s(q).

Note that, since n− k = dimDs
n−k 6 dimW s(q)− 1 = n− 1− ind(q),

(4.3) ind(q) 6 k − 1.

Recall that X is oriented (see Definition 2.1), all unstable and all stable
cells are oriented according to the conventions in Section 3.2. We choose
orientations on all cells of T as follows: All (n− k)- cells Ds

n−k of T with

(4.4) Ds
n−k ∼W s(q) for some q ∈ Critk−1(fsm)

inherit an orientation from the orientation of W s(q)∩L. All other cells are
oriented arbitrarily.
Let us denote by (T s∗ , ∂s∗) the complex generated by the closed cells of

the triangulation T . We denote the generator corresponding to the closed
cell Ds

i by [Ds
i ] ∈ T si . The boundary map ∂si : T si → T si−1 is the unique R-

linear map such that ∂s[Ds
i ] =

∑
[Di−1]∈T s

i−1
±[Ds

i−1]; the sign in the above
definition is + if the orientations of [Ds

i ] and [Ds
i−1] are compatible and −

else. Up to signs the complex (T s∗ , ∂s∗) can be identified with the complex
of simplicial chains of L with respect to the triangulation T .
Let T ′ be the barycentric subdivision of T . We denote byDu

k−1 the (open)
dual cell of Ds

n−k in the barycentric subdivision T ′. We orient Du
k−1 such

that the orientation of Du
k−1 followed by the negative gradient flow and the

orientation of Ds
n−k yields the orientation of X. We denote by (Tu∗ , ∂u∗ ) the

complex dual to (T s∗ , ∂s∗). It is generated by the (closed) dual cells [Du] of
cells [Ds] ∈ T s∗ . Note that with the orientations chosen above, we have
that

(4.5) 〈∂u[Du], [Ds]〉 = ±〈[Du], ∂s[Ds]〉 for all [Du] ∈ Tu, [Ds] ∈ T s;

the sign in (4.5) depends only on the dimension of the cells.
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4.2. The cone c̃Du

We denote by R := R ∪ {±∞}.

Definition 4.1. — For a dual cell [Du
k−1] ∈ Tuk−1, we define the “cone

over Du
k−1 with respect to the flow Φ” by

(4.6) c̃Du
k−1 := {Φt(x) | x ∈ Du

k−1, t ∈ R}.

Note that, from (4.6) and the fact that the flow Φ is continuous and
Morse-Smale, we have c̃Du

k−1 = c̃Du
k−1. Moreover, p ∈ c̃Du

k−1. The cone
c̃Du

k−1 intersects the open cell Ds
n−k in a single point and the intersection

is transverse. The flow Φ and the orientation of Du
k−1 induce an orientation

of the interior of c̃Du
k−1.

The next proposition gives a description of the boundary of c̃Du
k−1.

Proposition 4.2. — Let Ds
n−k be an (n− k)-dimensional open cell in

T , with Ds
n−k ∼ W s(q) for some q ∈ Crit(fsm). Denote by Du

k−1 the dual
cell of Ds

n−k. Then c̃Du
k−1 is an smcs of X. More precisely

(a) Let ind(q) = k − 1. Then,

(4.7) Wu(q) ⊂ c̃Du
k−1.

Near Wu(q) the cone c̃Du
k−1 is diffeomorphic to a (single) half-

space Rk−1 × R>0 with boundary Wu(q) ' Rk−1 and the orienta-
tions of Wu(q) and of c̃Du

k−1 are compatible.
Moreover

(4.8) Wu(q′) ∩ c̃Du
k−1 6= ∅ for all q

′ ∈
( ⋃
l>k−1

Critl(fsm)
)
\ {q}.

(b) Let ind(q) < k − 1. Then,

(4.9) Wu(q) ⊂ c̃Du
k−1.

Moreover

(4.10) Wu(q′) ∩ c̃Du
k−1 6= ∅ for all q

′ ∈
⋃

l>k−1
Critl(fsm).

Proof. — By Morse-Smale transversality we can assume that f is self-
indexing. Note first, that since the triangulation T is compatible with the
stratification ΣsL of L, and since Du

k−1 is a dual cell in the barycentric
subdivision of T , Du

k−1 is an smcs of L transverse to every stable man-
ifold W s(q′), q′ ∈ Crit(fsm). Let Uε(p) be a small neighbourhood of the
singularity p of X. Then, by anti-radiality, obviously

(4.11) c̃Du
k−1 ∩ Uε(p) = cεDu

k−1.
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Therefore c̃Du
k−1 ∩ f−1(]n− 1 + ε, n]) is an smcs of f−1(]n− 1 + ε, n]). By

downward induction on k ∈ {0, . . . n−1} and applying Lemma 4 in [27] (see
also Section A.7 in [29]), c̃Du

k−1∩f−1(]k−ε, n]) is an smcs of f−1(]k−ε, n]).
In particular, c̃Du

k−1 = c̃Du
k−1 is an smcs of X.

The claims (4.7)-(4.10) follow from the following observation:Du
k−1 inter-

sects only cells D̃s of the triangulation T , which are adjacent to Ds
n−k, i.e.

Ds
n−k ⊂ D̃s. Since the triangulation T is compatible with the stratification

ΣsL of L, we have that

�(4.12) D̃s ∼W s(r) for some r ∈ Crit(f) with ind(r) 6 ind(q).

4.3. The map τT from forms on L to currents on L

We denote by (CT ′∗ (L), ∂∗) the complex of simplicial chains of L with
respect to the triangulation T ′. Note that (CT ′∗ (L), ∂∗) can be seen as a
sub-complex of the complex of de Rham currents on L, by associating to
each closed simplex the current of integration over it.
The constructions in this section are adapted from [27], [29].

Definition 4.3. — For ξ ∈ Ωn−k(L) we define

(4.13) τT (ξ) :=
∑

[Ds
n−k]∈T s

n−k

(∫
Ds
n−k

ξ

)
· [Du

k−1] ∈ CT
′

k−1(L).

We denote by (Ω∗(L), d̃) the de Rham complex of smooth forms on L.

Proposition 4.4. — Let ξ ∈ Ω∗(L).
(a) We have τT (d̃ξ) = ±∂τT (ξ). In particular ∂τT (ξ) = 0, when ξ is

closed.
(b) For a closed form ξ ∈ Ω∗(L) the regular current ξ and the integra-

tion current ±τT (ξ) are homologous.

Proof. — (a) For a cell [Ds
n−k] ∈ T sn−k, we denote by [Du

k−1] ∈ Tuk−1 the
dual cell. For cells [Ds

n−k+1] ∈ T sn−k+1 and [Ds
n−k] ∈ T sn−k let us denote by

α(Ds
n−k+1, D

s
n−k) ∈ {±1} the coefficients defining the boundary operator

in the complex (T s∗ , ∂s∗):

(4.14) ∂[Ds
n−k+1] =

∑
[Ds
n−k]∈T s

n−k

α(Ds
n−k+1, D

s
n−k) · [Ds

n−k].

The boundary operator in the dual complex (Tu∗ , ∂u∗ ) is then given by

∂[Du
k−1] = ±

∑
[Du
k−2]∈Tu

k−2

α(Ds
n−k+1, D

s
n−k) · [Du

k−2].(4.15)
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Therefore:

∂τT (ξ) =
∑

[Ds
n−k]∈T s

n−k

(∫
Ds
n−k

ξ

)
· ∂[Du

k−1]

= ±
∑

[Ds
n−k+1]∈T s

n−k+1

(∫
∂[Ds

n−k+1]
ξ

)
· [Du

k−2]

= ±
∑

[Ds
n−k+1]∈T s

n−k+1

(∫
Ds
n−k+1

d̃ξ

)
· [Du

k−2] = ±τT (d̃ξ)

(4.16)

(b) To proof the claim one can proceed exactly as in [29], Proposi-
tion 6.6.4. �

5. A subcomplex of the intersection chain complex

The aim of this section is to construct a subcomplex (Du
∗ (f, g,Ξ, T ), ∂∗)

of the intersection chain complex, associated to the anti-radial standard
Morse-Smale pair (f, g), the set of representatives Ξ of the cohomologies of
the link manifolds (see (1.3) and (1.4)) and the compatible triangulations T
of the link manifolds. The construction uses the refinement of the unstable
cell decomposition done in Section 4.
The subcomplex (Du

∗ (f, g,Ξ, T ), ∂∗) will be used in Section 6 to prove
the first part of the Main Theorem.

5.1. Definition of the subcomplex (Du
∗ (f, g,Ξ, T ), ∂∗) of the

intersection chain complex

The intersection homology of a singular space has been defined by
Goresky and MacPherson in [16] and [17]; we recall the definition (of sim-
plicial intersection homology) for convenience of the reader (see [16], see
also [25] Section 4.2): Let S̃ be a triangulation of X which is compatible
with the stratification (X,Sing(X)). We denote by CS̃i (X) the space of sim-
plicial i-chains in S̃ (with coefficients in R). A simplicial chain σ ∈ CS̃i (X)
is allowed for the lower middle perversity m if

(5.1) dim (Sing(X) ∩ σ) 6 dim σ − n+
(⌊n

2

⌋
− 1
)
.

By convention, we set dim ∅ = −∞. We denote by ICS̃i (X) the subspace
of the space of simplicial i-chains in S̃, consisting of allowable i-chains σ,
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such that ∂σ is an allowable (i− 1)-chain. We denote by ICi(X) the limit
of ICS̃i (X) over all triangulations S̃ of X compatible with the stratification
(X,Sing(X)). The complex (IC∗(X), ∂∗) is the intersection chain complex
of X with lower middle perversitym. Its homology is called the intersection
homology with lower middle perversity m:

(5.2) IH∗(X) := IH
m
∗ (X) := H∗

(
(IC∗(X), ∂∗)

)
.

Since X has isolated singularities only, every triangulation S̃ compatible
with the stratification (X,Sing(X)) is flag-like. Hence, by a result in [18],
the natural map (ICS̃∗ (X), ∂∗) −→ (IC∗(X), ∂∗) is a quasi-isomorphism

(5.3) H∗
(
(ICS̃∗ (X), ∂∗)

)
' IH∗(X).

We have a decomposition of X given by all unstable cells of Crit(f). As
explained in Section 4, for each p ∈ Sing(X) we choose a triangulation
Tp of the link Lp, compatible with the stable cell decomposition. As in
Section 4 we can then decompose Wu(p) into cones c̃Du

p . Recall that by
Proposition 3.4 and Proposition 4.2 the closures of all unstable cells and
each cone c̃Du

p is an smcs. Thus we get a decomposition of X into all
unstable cells of Crit(fsm), all singular points in Sing(X) and all interiors
of the cones c̃Du

p . This decomposition induces a stratification Σ of X, which
gives X a structure of an smcs. Thus, by Proposition 2.5, X admits a
triangulation S compatible with the stratification Σ of X. Note that S is
therefore also compatible with the stratification (X,Sing(X)) of X. We
denote by (ICS∗ (X), ∂∗) the complex of intersection chains of X in S.

Definition 5.1. — Let p ∈ Sing(X). For ξ ∈ Ωn−k(Lp) we define

(5.4) c̃τTp(ξ) :=
∑

[Ds
p,n−k]∈T s

p,n−k

(∫
Ds
p,n−k

ξ

)
· [c̃Du

p,k−1] ∈ CSk (X).

Lemma 5.2. — Let p ∈ Sing(X). Let k > n
2 + 1 and ξ ∈ Ωn−k(Lp) a

closed form. Then

(5.5) c̃τTp(ξ) ∈ ICSk (X)

with boundary

(5.6) ∂c̃τTp(ξ) =
∑

q∈Critk−1(fsm)

(∫
W s(q)∩Lp

ξ

)
· [Wu(q)] ∈ ICSk−1(X).

Proof. — For simplicity we omit the subscript p in the following. For
k > n

2 + 1 the chain c̃τT (ξ), which contains the singular point of X, sat-
isfies the allowability condition (5.1) for lower middle perversity. Using
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Proposition 4.2 and Proposition 4.4 (a) we get

∂c̃τT (ξ) =
∑

q∈Critk−1(fsm)

∑
Ds
n−k∼W s(q)

(∫
Ds
n−k

ξ

)
· [Wu(q)]

=
∑

q∈Critk−1(fsm)

(∫
W s(q)∩L

ξ

)
· [Wu(q)] ∈ CS(X).

(5.7)

Therefore ∂c̃τT (ξ) is allowed, since it does not contain the singular point.
We conclude that c̃τT (ξ), ∂c̃τT (ξ) ∈ ICS∗ (X). �

Let Ξ be the set of representatives of
⊕

p∈Sing(X),
k>n

2 +1

Hn−k(Lp) as defined

in (1.3) and (1.4).

Definition/Lemma 5.3. — We denote by (Du
∗ (f, g,Ξ, T ), ∂∗) the fol-

lowing subcomplex of (ICS∗ (X), ∂∗):
Du
k = Du

k (f, g,Ξ, T )

:=



⊕
p∈Critk(fsm)

R · [Wu(p)]⊕
⊕

p∈Sing(X),
ξn−k
p,l
∈Ξn−kp

R · [c̃τT (ξn−kp,l )] if k > n
2 + 1,

⊕
p∈Critk(fsm)

R · [Wu(p)] if k < n
2 + 1.

Proof. — From (5.6) we have that ∂c̃τT (ξn−kp,l ) ∈ Du
k−1(f, g,Ξ, T ). More-

over, by Lemma 5.2, all chains in Du
k (f, g,Ξ, T ) are intersection chains in

ICSk (X). �

5.2. Dependence of the subcomplex (Du
∗ (f, g,Ξ, T ), ∂∗) on the

choice of representatives Ξ and on the choice of the
compatible triangulation T

Proposition 5.4. — Let k > n
2 + 1. Let ξ, ξ′ ∈ Ωn−k(L) be two closed

forms representing the same cohomology class [ξ] = [ξ′] ∈ Hn−k(L), i.e. for
some form α ∈ Ωn−k−1(L):

(5.8) ξ′ = ξ + dα.

Then we have

(5.9) c̃τT (ξ′) = c̃τT (ξ)±∂c̃τT (α)±

 ∑
r∈Critk(fsm)

(∫
W s(r)∩L

α

)
· [Wu(r)]
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and

(5.10) ∂c̃τT (ξ′) = ∂c̃τT (ξ)± ∂

 ∑
r∈Critk(fsm)

(∫
W s(r)∩L

α

)
· [Wu(r)]

 .

Proof. — The claim in (5.9) follows using Proposition 4.2 and Propo-
sition 4.4 and arguing as in Lemma 5.2. The claim in (5.10) is a direct
consequence of (5.9). �

Proposition 5.5. — Let T and T̃ be two triangulations of L compatible
with the stratification ΣsL. Let k > n

2 + 1 and let ξ ∈ Ωn−k(L) be a closed
form. Then

(5.11) c̃τT (ξ)− c̃τ T̃ (ξ) ∈ ∂(IC∗(X)).

Proof. — Note that, by Proposition 4.4 the regular current ξ (in L) is
homologous to both integration currents τT (ξ) and τ T̃ (ξ). We deduce that
[τT (ξ)] = [τ T̃ (ξ)] ∈ H∗(L), i.e. for some k-chain σ in L,

(5.12) τT (ξ)− τ T̃ (ξ) = ∂σ.

The chain σ can be moved to be transverse to all cellsW s(q), q ∈ Crit(fsm).
Set

(5.13) c̃σ := {Φt(x) | x ∈ σ, t ∈ R}.

Since by (5.6) we have ∂(c̃τT (ξ)) = ∂(c̃τ T̃ (ξ)), we get

(5.14) ∂c̃σ = c̃τT (ξ)− c̃τ T̃ (ξ) ∈ ICk(X).

Note that

(5.15) dim(c̃σ) = k + 1 > n

2 + 2,

and therefore c̃σ ∈ ICk+1(X). This proves the claim. �

6. The geometric complex. Main Theorem (first part)

Section 6.1 and Section 6.2 give a proof of the first part of the Main
Theorem.
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6.1. Well-definedness of the abstract geometric complex
(Cu∗ (f, g,Ξ), ∂∗)

We denote by (Cu∗ (f, g,Ξ), ∂∗) the complex defined in the introduction.

Lemma 6.1. — The boundary operator ∂∗ is well-defined and ∂2
∗ = 0.

Proof. — Let us denote by iε : Lp,ε = Lp × {ε} → X the inclusion and
by π : cLp \ {0} ' (0,∞)× Lp → Lp the projection. By abuse of notation
we will denote the pull-back π∗ξ ∈ Ω∗(cLp \ {p}) of a form ξ ∈ Ω∗(Lp) still
by ξ.
Recall first that for q ∈ Critk−1(fsm) by Proposition 3.4 and Proposi-

tion 2.3, W s(q) ∩ L is an smcs of L of dimension m− (k − 1) = n− k. By
A.2 and A.3 of [29] integration of smooth forms on an smcs is well-defined.
Therefore the integral

(6.1)
∫
W s(q)∩Lp

ξ :=
∫
W s(q)∩Lp,ε

i∗επ
∗ξ

is well-defined. Using Stokes’ theorem, one sees that the right hand side
of (6.1) does not depend on ε > 0 chosen small enough.
We now prove that ∂2

∗ = 0. By the anti-radiality of f , the fact that
∂2[Wu(p)] = 0 for p ∈ Crit(fsm) can be proved using smooth Morse theory.

In the following, we write simply ξ for ξn−kp,l ∈ Ξ. Using Corollary 3.6 (for
the last equality in (6.2)) we have:

∂2[ξ] = ∂

 ∑
q∈Critk−1(fsm)

(∫
W s(q)∩L

ξ

)
· [Wu(q)]


=

∑
q∈Critk−1(fsm)

(∫
W s(q)∩L

ξ

)
· ∂[Wu(q)]

=
∑

q∈Critk−1(fsm)

(∫
W s(q)∩L

ξ

) ∑
r∈Critk−2(fsm)

n(q, r) · [Wu(r)]

=
∑

r∈Critk−2(fsm)

∫∑
q∈Critk−1(fsm)

n(q,r)·[W s(q)∩L]
ξ

 [Wu(r)]

= ±
∑

r∈Critk−2(fsm)

(∫
∂[W s(r)∩L]

ξ

)
[Wu(r)].

(6.2)

Using Stokes’ formula we get from (6.2) that ∂2[ξ] = 0. �
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6.2. Embedding of the geometric complex into the intersection
chain complex. Proof of the isomorphism (1.7) of the Main

Theorem

By (1.6) and (5.6) the map

(6.3) (Cu∗ (f, g,Ξ), ∂∗) −→ (Du
∗ (f, g,Ξ, T ), ∂∗)

defined by

(6.4) Wu(p) 7→ Wu(p), p ∈ Crit(fsm)
ξ 7→ c̃τ(ξ), ξ ∈ Ξ,

is a well-defined isomorphism of chain complexes between the complex
(Cu∗ (f, g,Ξ), ∂∗) and the complex (Du

∗ (f, g,Ξ, T ), ∂∗). By composition with
the natural map

(6.5) (Du
∗ (f, g,Ξ, T ), ∂∗) ⊂ (ICS∗ (X), ∂∗) −→ (IC∗(X), ∂∗),

we get a chain map

(6.6) h(Ξ,T ) : (Cu∗ (f, g,Ξ), ∂∗) −→ (IC∗(X), ∂∗).

The next theorem proves the isomorphism (1.7) of the Main Theorem:

Theorem 6.2. — The chain map (6.6) induces an isomorphism of ho-
mologies:

(6.7) H∗
(
(Cu∗ (f, g,Ξ), ∂∗)

)
' IH∗(X).

Proof. — Let us denote by (Cu∗ (fsm), ∂∗) ⊂ (Cu∗ (f, g,Ξ), ∂∗) the subcom-
plex generated by all unstable cells of points in Crit(fsm). From smooth
Morse theory (see Theorem 7.4 in [33]) we know that the homology of this
complex computes canonically the absolute homology of the manifold with
boundary M (see Definition 2.1),

(6.8) H∗
(
(Cu∗ (fsm), ∂∗)

)
' H∗(M).

Let p ∈ Sing(X). Let us denote by IH∗(cLp, Lp) the relative intersection
homology with lower middle perversity of the cone cLp. Recall that the
local calculation of intersection homology gives (see Section 2.4 in [17],
also Proposition 4.7.2 in [25])

(6.9) IHi(cLp, Lp) =
{
Hi−1(Lp) for i > n

2 + 1,
0 otherwise.
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The quotient complex ((Cu(f, g,Ξ)/Cu(fsm))∗, ∂∗) has boundary oper-
ator ∂∗ = 0 and we have using de Rham’s Theorem and Poincaré Duality
on the link:

Hi

(
((Cu(f, g,Ξ)/Cu(fsm))∗, ∂∗)

)
=
{
⊕p∈Sing(X)H

n−i
dR (Lp) for i > n

2 +1,
0 otherwise,

=
{
⊕p∈Sing(X)Hi−1(Lp) for i > n

2 +1,
0 otherwise.

(6.10)

Therefore, by (6.9) and (6.10) we get

(6.11) H∗
(
(Cu(f, g,Ξ)/Cu(fsm)∗, ∂∗)

)
'

⊕
p∈Sing(X)

IH∗(cLp, Lp).

We have a commutative diagram of chain complexes, with exact rows
(6.12)
0 → (Cu

∗ (fsm), ∂∗) //

ιM

��

(Cu
∗ (f, g, Ξ), ∂∗) //

hΞ,T

��

(Cu
∗ (f, g, Ξ)/Cu

∗ (fsm), ∂∗) → 0

hcL,L,Ξ,T

��
0 → (C∗(M), ∂∗) // (IC∗(X), ∂∗) // (IC∗(X, M), ∂∗) → 0.

From (6.8) and (6.11) we deduce that the maps ιM resp. hcL,L,Ξ,T are
quasi-isomorphisms. Using the long exact homology sequences associated
to the short exact sequences in (6.12) and the 5-Lemma we deduce the
isomorphism (6.7). �

6.3. The pairing with L2-cohomology

The conical Riemannian metric g on X induces an L2-metric on forms
on Xsm. We denote by (C∞, d) the complex of smooth L2-forms on Xsm,
i.e.

(6.13) C∞,i = {ω ∈ Ωi(Xsm) | ω ∈ L2, dω ∈ L2}.

The cohomology of the complex of L2-forms is the so-called L2-cohomology
of X, first introduced by Cheeger [10]:

(6.14) H∗(2)(X) := H∗((C∞, d)).

By the result of Cheeger-Goresky-MacPherson [11], for spaces with iso-
lated conical singularities, the integration map

(6.15)
∫

: (IC∗(X), ∂∗)× (C∞, d) −→ R
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induces an isomorphism between intersection cohomology with lower mid-
dle perversity and L2-cohomology.
The integration map (6.15) induces a pairing

(6.16) P(Ξ,T ) =
∫
◦ (hΞ,T , id) : (Cu∗ (f, g,Ξ), ∂∗)× (C∞, d) −→ R.

Theorem 6.3. — The restriction of the integration map

(6.17) P(Ξ,T ) : (Cu(f, g,Ξ), ∂)× (C∞, d) −→ R

to closed L2-forms does not depend on the choice of the triangulation T

of the links of points in Sing(X) used in the construction of hΞ,T . The
isomorphism induced from integration

(6.18) H∗(2)(X) ' H∗
(
Hom

(
Cu∗ (f, g,Ξ), ∂∗

))
,

is the canonical isomorphism between intersection cohomology and L2-
cohomology.

Proof. — Let T and T̃ be two triangulations of L compatible with the
stratification ΣsL. Let k > n

2 + 1 and ξ ∈ Ωn−k(L) ∩ Ξ a closed form.
Then from Proposition 5.5 and Stokes’ theorem we get that P(Ξ,T )(ξ, ω) =
P(Ξ,T̃ )(ξ, ω). �

7. Homotopy. Main Theorem (second part)

7.1. Radial Morse function on X × S1

The space X̃ := X × S1 is a stratified space of dimension n + 1, with
two strata: the singular 1-dimensional stratum X̃(1) = Sing(X) × S1 and
the top stratum X̃(n+1) = (X \ Sing(X))× S1 = X̃ \ X̃(1).

Let (fα, gα) and (fβ , gβ) be two anti-radial Morse-Smale pairs on X.
Let us fix a homotopy {gs}s∈[0,1] of conical Riemannian metrics on X:
For p ∈ Sing(X) there exists an open neighbourhood U(p) as well as a
homotopy {gLp,s} of Riemannian metrics on the link manifold Lp, such
that

(7.1) gs|U(p) = dr2 + r2gLp,s.

We also fix a homotopy {fs}s∈[0,1] of anti-radial Morse functions: For p ∈
Sing(X), U(p) as above and s ∈ [0, 1], we have

(7.2) fs|U(p)(r) = fs(p)−
1
2r

2.
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We will moreover assume that the homotopies gs and fs are constant near
the end points, i.e. that for some fixed δ ∈ [0, 1/4] we have

(fs, gs) = (fα, gα) for s ∈ [0, δ],

(fs, gs) = (fβ , gβ) for s ∈ [1− δ, 1].
(7.3)

We parametrise the circle S1 by [−1, 1], with the endpoints being identified.

Proposition 7.1. — The function F = Fκ : X × S1 → R defined by

(7.4) F (x, s) = κ

2 (1 + cosπs) + f|s|(x)

has the following properties:
(a) The function F is continuous and strata-wise smooth.
(b) For κ � 0 the set of critical points of the restriction F|X̃(n+1)

is
given by

(7.5) Crit(F|X̃(n+1)
) =

(
Critfαsm × {0}

)
∪
(
Critfβsm × {1}

)
.

All critical points of F|X̃(n+1)
are non-degenerate and have Morse

index

(7.6) indF (p, 0) = indfα(p) + 1 and indF (p, 1) = indfβ (p).

(c) The set of critical points of the restriction F|X̃(1)
: Sing(X)×S1 → R

is precisely given by
(
Sing(X)×{0}

)
∪
(
Sing(X)×{1}

)
; the points in

Sing(X)×{0} are maxima, the points in Sing(X)×{1} are minima.

Let gS1 denote the standard metric on the circle. Set G := gx,|s| + gS1 ,
which is a Riemannian metric on X̃(n+1). The negative gradient vector field
−∇GF satisfies the following conditions:

(i) Let p ∈ Sing(X). In U(p) × S1 the negative gradient vector field
−∇GF is of the form

(7.7) r
∂

∂r
− πκ

2 sin πs ∂
∂s
.

(ii) The flow induced from −∇GF is well defined for all times and
yields a continuous, strata-preserving, strata-wise smooth map Φ̃ :
R× X̃ → X̃.

(iii) The sets X ×{0} and X ×{1} are invariant under the flow Φ̃. The
flow Φ̃ restricted to X × {0} coincides with the flow on X induced
by (fα, gα) and similarly for X × {1} and (fβ , gβ).

(iv) For κ chosen big enough, there are no flow lines from X × {1} to
X × {0}.
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(v) For p ∈ Sing(X) the point (p, 0) is a local maximum of F . The only
trajectories ending in positive infinite time in (p, 1) are trajectories
coming from (p, 0).

Note that from (7.7), one sees that the gradient −∇GF is “tangential”
to the singular stratum X̃(1) and is “radial”. For a point y ∈ Crit(F ) we
denote by W̃ s/u(y) the stable resp. unstable set with respect to the flow Φ̃.
For q ∈ Crit(fαsm), we write W s/u((q, 0)) := W s/u(q, (fα, gα), X × {0}) for
the stable/unstable manifold of q ∈ X × {0} with respect to the negative
gradient flow associated to the pair (fα, gα) on X × {0}. Similarly, for
q ∈ Crit(fβsm) and W s/u((q, 1)) := W s/u(q, (fβ , gβ), X × {1}) .

Proposition 7.2.
(a) For y ∈ Crit(F|X̃(n+1)

), the stable set W̃ s(y) is a smooth submani-

fold of X̃(n+1). The unstable set W̃u(y) is a smooth submanifold of
X̃(n+1) and W̃u(y) ∩ X̃(1) = ∅.

(b) For q ∈ Crit(fαsm) we have W̃ s((q, 0)) = W s((q, 0)) ⊂ X × {0}. For
q ∈ Crit(fβsm) we have W̃u((q, 1)) = Wu((q, 1)) ⊂ X × {1}.

(c) Let p ∈ Sing(X). The stable sets of (p, 0) resp. (p, 1) are submani-
folds of dimension 0 resp. 1 of X̃(1). The unstable sets are stratified
spaces with two strata.

Proof. — As noted before −∇GF is tangential and radial. One therefore
gets the claim by adapting Proposition 5.1 and Proposition 5.2 in [31] to
the present situation. �

Note that from Proposition 7.2 one has that, for x, y ∈ Crit(F ), either
W̃u(x)∩ W̃ s(y) ⊂ X̃(1) or W̃u(x)∩ W̃ s(y) ⊂ X̃(n+1). We say that the pair
(F,G) satisfies the Morse-Smale condition if the intersection W̃u(x)∩W̃ s(y)
is transverse (in X̃(1) resp. in X̃(n+1)). Applying the Morse theory for strati-
fied spaces with tangential conditions developed in [31] (more precisely, see
the proof of Proposition 6.4 therein) one can prove that, after possibly
perturbing, one can in addition to (i)-(v) assume:

(vi) The pair (F,G) satisfies the Morse-Smale condition.
Analogously to Proposition 3.4 one can study the closure of the stable

and unstable sets of critical points of F . In Proposition 7.3 we will only
give the result related to the closure of W̃ s((q, 1)), q ∈ Crit(fβsm), which
will be needed in Lemma 7.4.
We orient the unstable cells of (F,G) as follows: For p ∈ Crit(fβ), the

unstable cells W̃u((p, 1)) = Wu((p, 1)) ⊂ X×{1} inherit orientations from
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the orientations of the unstable cells of (fβ , gβ). For p ∈ Crit(fα), we orient
the unstable cells W̃u((p, 0)) by the orientation induced by ∂

∂s followed
by the orientation of the cell Wu(p, 0). We orient X̃ by ∂

∂s followed by
the orientation of X. All stable cells W̃ s are oriented according to our
convention explained in Section 3.2.
Let p ∈ Sing(X). We will identify a tubular neighbourhood of {p}×S1 ⊂

X̃ with cεLp×S1 and its boundary with Lp×S1. By abuse of notation, for a
form ξ ∈ Ω∗(Lp), we still denote by ξ the pull-back form π∗ξ ∈ Ω∗(Lp×S1),
where π : Lp×S1 → Lp. For r, q ∈ Crit(fβ) with indfβ (r)−indfβ (q) = 1, we
denote by nβ(r, q) the number of trajectories, counted with signs, between
r and q for the flow associated to (fβ , gβ) on X ' X × {1}. Note that
with our convention for the orientation of unstable cells, this is as well
the number of trajectories, counted with signs, for the flow Φ̃ between the
points (r, 1) and (q, 1). For r ∈ Critk−1(fαsm) and q ∈ Critk−1(fβsm) we
denote by
(7.8)

ñ(r, q) =
{
number of trajectories of the flow Φ̃ between (r, 0) and (q, 1)
which pass through X × {1/2} (counted with signs).

Proposition 7.3. — Let the pair (F,G) be as constructed above, such
that (i)-(vi) hold. Let q ∈ Critk−1(fβsm).

(a) The closure of W̃ s((q, 1)) is an smcs in X̃(n+1).
(b) For p ∈ Sing(X), the transverse intersection W̃ s((q, 1))∩ (Lp×S1)

is an smcs of Lp×S1. Moreover the boundary of W̃ s((q, 1))∩ (Lp×
[0, 1]) is given by:

∂
[
W̃ s(q, 1) ∩ (Lp × [0, 1])

]
=

±
( ∑
r∈Critk(fβsm)

nβ(r, q)
[
W̃ s(r, 1) ∩ (Lp × [0, 1])

]
− [W s(q, 1) ∩ (Lp × {1})]

+
∑

r∈Critk−1(fαsm)

ñ(r, q)
[
W̃ s(r, 0) ∩ (Lp × {0})

] )
.

Proof. — The notation in the part (b) has to be understood in the sense
of Remark 3.7. The proof is a direct generalisation of Proposition 3.4 and
Corollary 3.6. �
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7.2. The geometric complex associated to (F,G)

For p ∈ Sing(X) let Ξn−kp be the set of representatives ofHn−k(Lp) as de-
fined in (1.3). As in (1.4), set Ξp :=

⊕
k>n

2 +1 Ξn−kp and Ξ =
⊕

p∈Sing(X) Ξp.
Let us denote by (Cu∗ (fα, gα,Ξ), ∂α∗ ) resp. (Cu∗ (fβ , gβ ,Ξ), ∂β∗ ) the

abstract geometric complex (as defined in the introduction) associated
to the pair (fα, gα) resp. (fβ , gβ) and the set Ξ. In the next definition,
for q ∈ Crit(fβsm), we will simply write [q] for the generator [Wu(q)]
of (Cu∗ (fβ , gβ ,Ξ), ∂β∗ ); similarly for q ∈ Crit(fαsm) seen as generator of
(Cu∗ (fα, gα,Ξ), ∂α∗ ).

Definition/Lemma 7.4. — The map

(7.9) Ψ : (Cu∗ (fα, gα,Ξ), ∂α∗ ) −→ (Cu∗ (fβ , gβ ,Ξ), ∂β∗ )

defined by

ξp 7→ ξp −
∑

q∈Critk(fβsm)

(∫
W̃ s(q,1)∩(L×[0,1])

ξ

)
· [q],

for p ∈ Sing(X), ξp ∈ Ξn−kp , and

[r] 7→
∑

q∈Critk(fβsm)

ñ(r, q) · [q], for r ∈ Crit(fαsm).

is a map of chain complexes.

Proof. — To show that the map Ψ is a map of chain complexes, we follow
an idea from smooth Morse theory (see e.g. Section 4.2.1 in [49]) and study a
geometric complex associated to the Morse-Smale pair (F,G) and the set Ξ.
In the following we will use two copies of Ξ, one for the Morse pair (fα, gα)
and one for the Morse pair (fβ , gβ). We denote these two copies by Ξα
and Ξβ respectively. For ξn−kp ∈ Ξn−kp , we denote by ξn−k,αp ∈ Ξn−k,αp resp.
ξn−k,βp ∈ Ξn−k,βp the two copies. In the next definition, we identify the point
p ∈ Crit(fβ) with (p, 1) ∈ Crit(F ). We identify the point p ∈ Crit(fα) with
(p, 0) ∈ Crit(F ). We denote by (C∗(F,G,Ξ),∆∗) the following abstract
complex:

(7.10) Ck(F,G,Ξ) := Ck−1(fα, gα)⊕ Ck(fβ , gβ).

The boundary operator ∆∗ is defined as:

(7.11) ∆k =
(
−∂αk−1 0
Ψk−1 ∂βk

)
.
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Note that only “half” of the trajectories between (r, 0) and (q, 1), r ∈
Crit(fα), q ∈ Crit(fβ), are counted in the definition of the boundary oper-
ator ∆∗.

By definition of the boundary operator ∆∗ and the fact that (∂α∗ )2 =
(∂β∗ )2 = 0, one has the following equivalence

(7.12) ∆2 = 0⇐⇒ −Ψ∂α + ∂βΨ = 0.

Again one can use smooth Morse theory (see e.g. [49], Section 4.2.1) to
prove that for y ∈ Crit(F|X̃(n+1)

): ∆2y = 0. To show that for p ∈ Sing(X)
and ξn−k,αp ∈ Ξn−k,αp :

(7.13) ∆2ξα =
(
−Ψ∂α + ∂βΨ

)
ξα = 0,

one uses the definition of Ψ, ∂α, ∂β and part (b) of Proposition 7.3. �

7.3. The canonical isomorphism for two anti-radial Morse-Smale
pairs (fα, gα) and (fβ , gβ)

Theorem 7.5. — Let (fα, gα) and (fβ , gβ) be anti-radial Morse-Smale
pairs. Then there is a canonical isomorphism between the associated ho-
mologies

(7.14) Ψβα : H∗
(
(Cu∗ (fα, gα,Ξ), ∂α∗ )

)
→ H∗

(
(Cu∗ (fβ , gβ ,Ξ), ∂β∗ )

)
.

Moreover the following functorial relations are fulfilled for the family
{Ψαβ | (fα, gα), (fβ , gβ) anti-radial Morse-Smale pairs} :

• Ψγβ
∗ Ψβα

∗ = Ψγα
∗

• Ψαα
∗ = id.

Sketch of proof. — In addition to the considerations done in Section 7.2,
one has to treat homotopies of homotopies similarly to Section 4.2.2 in [49]
(see also Section 4.3.1 in [42]). This can be done considering Morse theory
(and an associated complex) for an appropriate function X×S1×S1 → R.
In Section 7.2, we have shown how to generalise the construction of Sec-
tion 4.2.1 in [49] to anti-radial Morse-Smale pairs on the singular space X.
Along the same lines, also the construction of homotopies of homotopies
in Section 4.2.2. in [49] can be generalised to anti-radial Morse-Smale pairs
on X. �
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8. Examples

8.1. The case of a smooth manifold

Let M be a smooth manifold of dimension n and let (f, g) be a smooth
standard Morse-Smale pair. Let p ∈ Critn(f). We now artificially see
X := M as a singular space with a conical singularity at p and link manifold
Lp ' Sn−1. The Morse function f is an anti-radial Morse function on the
“singular space” X. The complex (Cu∗ (f, g,Ξ), ∂∗) is the usual Thom-Smale
complex (with real coefficients). For a smooth manifold, the intersection ho-
mology for an arbitrary perversity p is isomorphic to the singular homology
of M .
Let us give a concrete, simple example: Let X = S2 and let f : X → R

be the smooth Morse function pictured below with Crit2(f) = {p1, p2},
Crit1(f) = {q}, Crit0(f) = {r}.

We will artificially see the local maximum p1 as a singular point of X with
link manifold L = S1.
The constant function ξ = a ∈ R∗ is a non-trivial closed 0-form on S1.

Let

(8.1) Ξ = Ξ0
p1

:= {ξ := ξ0
p1

:= a}.

The complex (Cu∗ (f, g,Ξ), ∂∗) is defined as follows: For the chain groups we
have:

Cu2 := R · [Wu(p2)]⊕ R · [ξ],
Cu1 := R · [Wu(q)],
Cu0 := R · [Wu(r)].

(8.2)
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For the boundary operator we have:

∂ξ = ±
(∫

W s(q)∩L
a

)
· [Wu(q)] = ±a · [Wu(q)],

∂[Wu(p2)] = ±[Wu(q)],
∂[Wu(q)] = 0 = ∂[Wu(r)];

(8.3)

the signs above depend on the chosen orientations of the Wu’s. Note that,
for ξ = 1, we recover the usual Thom-Smale complex for the smooth Morse
function f and the manifold S2.

8.2. The suspension of the torus

Let X = ΣT 2 be the unreduced suspension of the torus. The space X has
two isolated singularities, which we denote by P and Q. The link manifolds
are LP = LQ = T 2. It is not difficult to see, that there exists an anti-
radial Morse function f on X, with exactly 4 smooth critical points, which
are all lying in {1/2} × T 2. We denote them as follows: Crit2(f) = {p},
Crit1(f) = {q1, q2}, Crit0(f) = {r}.

8.2.1. Lower middle perversity

Set ΞP = Ξ0
P := {ξP := ξ0

P := a}, and ΞQ = Ξ0
Q := {ξQ := ξ0

Q := b},
where a, b ∈ R∗. The complex (Cu∗ (f, g,Ξ), ∂∗) is defined as follows:
For the chain groups we have:

Cu3 := R · [ξP ]⊕ R · [ξQ],
Cu2 := R · [Wu(p)],
Cu1 := R · [Wu(q1)]⊕ R · [Wu(q2)],
Cu0 := R · [Wu(r)].

(8.4)

For the boundary operator we have:

(8.5)
∂[ξP ] = ±a · [Wu(p)], ∂[ξQ] = ±b · [Wu(p)],
∂[Wu(p)] = ∂[Wu(q1,2)] = ∂[Wu(r)] = 0.

One verifies easily that the complex (Cu∗ (f, g,Ξ), ∂∗) computes the inter-
section homology with lower middle perversity of X:

(8.6) H∗((Cu∗ (f, g,Ξ), ∂∗)) ' IH∗(X) =


R i = 0, 3,
0 i = 2,
R2 i = 1.

ANNALES DE L’INSTITUT FOURIER



A COMPLEX IN MORSE THEORY 231

8.2.2. Upper middle perversity n

The suspension of the torus is an odd-dimensional singular space, which
is not a Witt space. Therefore the intersection homology with lower middle
perversity is not self-dual, but dual to the intersection homology with upper
middle perversity n. We have shortly mentioned in the introduction that
the method explained in the paper can be adapted easily for any other
perversity p in the sense of the theory of Goresky and MacPherson. Let us
illustrate this in the present example for the upper middle perversity n. In
this case the “truncation degree” in the definition of Ξ (see (1.4)) is k > 2,
hence Ξ will be a set of representatives of the homology of the link manifold
in degree 0 and 1. Let us denote by x, y the coordinates of the plane R2,
which covers T 2 = R2/Z2. We have that H1(T 2) = span{[dx], [dy]}.
Hence set:

(8.7) Ξ0
P := {ξ0

P :=1},
Ξ1
P := {ξ1

P,1 :=dx, ξ1
P,2 :=dy}, and Ξ0

Q := {ξ0
Q :=1},

Ξ1
Q := {ξ1

Q,1 :=dx, ξ1
Q,2 :=dy}.

The complex (Cu∗ (f, g,Ξ, n), ∂∗) is defined as follows: For the chain groups
we have:

Cu3 := R · [ξ0
P ]⊕ R · [ξ0

Q],

Cu2 := R · [Wu(p)]⊕ span Ξ1
P ⊕ span Ξ1

Q,

Cu1 := R · [Wu(q1)]⊕ R · [Wu(q2)],
Cu0 := R · [Wu(r)].

(8.8)

Let us assume for simplicity, that the unstable manifold Wu(q1) (resp.
Wu(q2)) is the image under the quotient map R2 → R2/Z2 = T 2 of the y-
(resp. the x-axes). For the boundary operator we have:

(8.9)
∂[ξ0

P ] = ±[Wu(p)], ∂[ξ0
Q] = ±[Wu(p)],

∂[ξ1
P/Q,1] = ±[Wu(q1)], ∂[ξ1

P/Q,2] = ±[Wu(q2)],
∂[Wu(p)] = ∂[Wu(q1,2)] = ∂[Wu(r)] = 0.

This time the complex computes the intersection homology ofX with upper
middle perversity IHn

∗ (X):

(8.10) H∗((Cu∗ (f, g,Ξ, n), ∂∗)) ' IH
n
∗ (X) =


R i = 0, 3,
R2 i = 2,
0 i = 1.
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8.3. The suspension of the real projective plane RP2

Let us illustrate how to adapt the method explained in the article to the
non-orientable case. Let X be the unreduced suspension of the real pro-
jective plane. The space X has two isolated singularities, which we denote
by P and Q. The link manifolds are LP = LQ = RP2. The space X is
non-orientable, we denote by o(X) the orientation bundle of Xsm. It is not
difficult to see, that there exists an anti-radial Morse function f on X, with
exactly 3 smooth critical points, which are all lying in {1/2} × RP2. We
denote them as follows: Crit2(f) = {p}, Crit1(f) = {q}, Crit0(f) = {r}.
With other words the restriction f|{1/2}×RP2 is a smooth Morse function on
RP2, which gives the usual decomposition of RP2 into a CW-complex with
one cell in dimension 0, 1 and 2.
In this case we have to choose ΞP = ΞQ ⊂ H0(RP2, o(X)) = 0. Hence,

the complex (Cu∗ (f, g,Ξ), ∂∗) is defined as follows: For the chain groups we
have:

Cu3 := 0,
Cu2 := R · [Wu(p)],
Cu1 := R · [Wu(q)],
Cu0 := R · [Wu(r)].

(8.11)

For the boundary operator we have:

(8.12) ∂[Wu(p)] = 2 · [Wu(q)], ∂[Wu(q)] = 0, ∂[Wu(r)] = 0.

The complex computes the intersection homology of X with lower middle
perversity:

(8.13) H∗((Cu∗ (f, g,Ξ), ∂∗)) ' IH∗(X) =
{
R i = 0,
0 otherwise.

8.4. Quotients under finite group action

Let G be a compact Lie group acting on a smooth manifold M . Let
f̃ : M → R be a G-invariant Morse function on M , i.e. f̃(hx) = f̃(x) for
all h ∈ G, x ∈M . In this situation one can study the G-equivariant Morse
theory and establish Morse inequalities for the G-equivariant homology
HG
∗ (M). The study of G-equivariant Morse theory has been initiated by

Atiyah and Bott [2]. The reader is referred to [6], [8] for an account of the
equivariant Morse inequalities, and to [3] for the Thom-Smale complex for
G-invariant Morse functions and G-equivariant homology.
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In the particular case of (certain) finite group actions, the present paper
suggest yet another way of studying Morse theory: namely by studying
Morse theory on the (singular) quotient space. We will shortly explain this
point of view in this subsection.

Let M be an oriented manifold with an orientation preserving action of
a finite group G. Let g̃ be a G-invariant Riemannian metric on M . Let
f̃ : M → R be a smooth G-invariant Morse function on M . For finite
groups G-invariant Morse functions exist (see [48], Lemma 4.8).
The quotient spaceX := M/G has a natural stratification by orbit types,

which gives X the structure of a Whitney stratified space (see e.g. [38],
Theorem 4.4.6).
Let us assume that X has only isolated singularities. The metric g in-

duced from g̃ is conical in the sense of Definition 2.1. Let us assume, that
every fixed point of the action of G is a critical point of f̃ of index dimM .
Then f̃ descends to an anti-radial Morse function f : X → R.

For p ∈ Crit(f̃) let us denote by W̃u(p) the unstable manifold of p with
respect to the flow induced from the negative gradient flow ∇

g̃
f̃ on M .

One has:

(8.14) h(W̃u(p)) = ±W̃u(h(p)) for all h ∈ G, p ∈ Crit(f̃).

The sign in (8.14) depends on the orientation of the unstable cells, and
the orientation can be chosen such that the sign is +. The unstable/stable
cell decomposition of M for the Morse function f̃ , descends into the unsta-
ble/stable cell decomposition of X for the Morse function f . If the gradient
vector field ∇

g̃
f̃ on M is Morse-Smale, so is the gradient vector field ∇gf

on X.
The space X is a homology manifold, therefore the intersection homology

IH∗(X) is isomorphic to the singular homology of X (see [16], Section 6.4).
For p ∈ Sing(X) the link manifold Lp is a homology sphere. Hence Ξp ⊂
H0(Lp) ' R does contain a single element. The complex (Cu∗ (f, g,Ξ), ∂∗)
does compute the singular homology of X.
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