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THE LIOUVILLE PROPERTY AND HILBERTIAN
COMPRESSION

by Antoine GOURNAY

Abstract. — Lower bounds on the equivariant Hilbertian compression expo-
nent α are obtained using random walks. More precisely, if the probability of return
of the simple random walk is� exp(−nγ) in a Cayley graph then α > (1−γ)/(1+γ).
This motivates the study of further relations between return probability, speed, en-
tropy and volume growth. For example, if |Bn| � en

ν then the speed exponent is
6 1/(2− ν).

Under a strong assumption on the off-diagonal decay of the heat kernel, the
lower bound on compression improves to α > 1 − γ. Using a result from Naor &
Peres on compression and the speed of random walks, this yields very promising
bounds on speed and implies the Liouville property if γ < 1/2.
Résumé. — Des bornes inférieures sur l’exposant de compression hilbertienne

équivariante α sont données en utilisant les marches aléatoires. Plus précisément, si
la probabilité de retour de la marche aléatoire est � exp(−nγ) pour un graphe de
Cayley, alors α > (1− γ)/(1 + γ). Ceci motive l’étude de relations supplémentaires
entre la probabilité de retour, la vitesse, l’entropie et la croissance du volume. Par
exemple, if |Bn| � en

ν , alors l’exposant de vitesse est 6 1/(2− ν).
Avec une hypothèse plus forte sur le comportement du noyau de la chaleur hors

de la diagonale, la borne inférieure sur la compression α > 1 − γ. Par un résultat
de Naor et Peres sur la compression et la vitesse des marches aléatoires, ceci donne
un estimé prometteur sur la vitesse et implique la propriété de Liouville si γ < 1/2.

1. Introduction

Throughout the text, G will be a finitely generated discrete group and
it will be studied using its Cayley graph. The finite symmetric generating
set S chosen to produce the Cayley graph will not be explicitly mentioned
unless it is of importance; finiteness and symmetry will also always be
assumed. P is the distribution of a lazy random walk. More precisely, it

Keywords: Hilbertian compression, random walks on groups, entropy, drift, growth of
groups.
Math. classification: 20F69, 60J50, 60G50, 37A35, 43A65.



2436 Antoine GOURNAY

is obtained from a simple random walk distribution P ′ = 1S/|S| by P =
1
2 (δe + P ′). P (n) is the nth-step distribution of the lazy random walk, i.e.
the nth-convolution of P with itself.

For further definitions, the reader should consult §2.

Theorem 1.1. — If P (n)(e) > Le−Kn
γ where L,K > 0 then the equi-

variant compression exponent of G, α(G), satisfies α(G) > (1− γ)/(1 + γ).

This improves a lower bound from Tessera [34, Proposition 15]: α(G) >
(1 − γ)/2. The proof of Theorem 1.1 is contained in §3. Recall that re-
turn probability are stable under quasi-isometries between Cayley graphs
(see Pittet & Saloff-Coste [30, Theorem 1.2]). There are many possible
behaviours for γ, see Pittet & Saloff-Coste [31, Theorem 1.1].
The speed [or drift] of a random walk is defined as E|P (n)| =

∫
|g|dP (n)(g)

where |g| is the word length of g (i.e. the graph distance in the Cayley
graph between g and the identity element). The speed [or drift] exponent
is β = sup{c ∈ [0, 1] | there exists K > 0 such that E|P (n)| > Knc}.
Surprisingly, there is little known on how much β depends on S.
Naor & Peres showed in [28, Theorem 1.1] that α(G) 6 1/2β. Since the

map n 7→ E|P (n)| is sub-additive, the sequence E|P (n)|/n always as a limit.
Compression is a natural way to show that β is bounded away from 1 (for
any generating set) and hence, that the afore-mentioned limit is 0. This is
interesting because a group has the Liouville property if and only if E|P (n)|
is o(n).

However, the above result on compression only yields β 6 (1+γ)/2(1−γ)
which is non-trivial only if γ < 1

3 . Let Bn be the ball of radius n, i.e.
Bn = {g ∈ G | |g| 6 n}. Recall that, if there are K,L > 0 so that

(1.1) ∀n, |Bn| > KeLn
v

then ∀n, P (n)(e) 6 K ′e−L
′nc with c 6 v

2 + v
,

for some K ′, L′ > 0 (e.g. see [38, (14.5) Corollary]). Hence the bound on
speed is not interesting from the point of view of the Liouville property:
by (1.1), γ < 1/3 implies the group is of subexponential growth and so auto-
matically Liouville. See §4 for more details. However, this bound motivates
further investigations on possible relations between the various quantities
in groups of intermediate growth.
Recall the entropy is defined by H(P (n)) := −

∑
g∈G P

(n)(g) lnP (n)(g).

Theorem 1.2. — Assume G is so that |Bn| 6 LeKn
ν for some K,L > 0

and ν ∈]0, 1].
(1) Then E|P (n)| 6 K ′n1/(2−ν) (hence β 6 1/(2 − ν)) and H(P (n)) 6

L′′ +K ′′nν/(2−ν) for some K ′,K ′′, L′′ > 0.

ANNALES DE L’INSTITUT FOURIER



LIOUVILLE PROPERTY AND COMPRESSION 2437

(2) α(G) > 1− ν.
(3) If H(P (n)) > K ′ + L′nh for some K ′, L′ > 0, then βν > h and

2hα 6 ν.

For example, ν = k−1
k gives α > 1

k , E|P
(n)| 6 K ′nk/(k+1) and H(P (n)) 6

L′′ +K ′′n(k−1)/(k+1).
The bound on speed extends to measures with finite second moment and

improves the 1+ν
2 bound from Erschler & Karlsson [21, Corollary 13]. The

upper bound on entropy also holds for measures of finite second moment
and implies a result of Coulhon, Grigor’yan & Pittet [16, Equation (7.5)
in Corollary 7.4]. For finitely supported measures, these bounds are in Er-
schler [20, Lemma 5.1] (explicitly for the speed and implicitly in the proof
for entropy).
The lower bound α(G) > 1 − ν is obtained as a corollary of Theo-

rem 1.1 and of the estimate on return probabilities coming from volume
growth: P (n)(e) > K ′′eL

′′nν/(2−ν) . This lower bound is already present in
Tessera [34, Proposition 14] but comes here from a slightly different method.
For more discussions on the various exponents in groups, see §2.2 and §4.
The methods in the proof of Theorem 1.1 give a particularly interesting

result if one makes a strong hypothesis on the off-diagonal behaviour of
the heat kernel. The most natural estimate which is conjectural for most
groups is: for some M,N > 0

(OD) P (n)(g) 6 P (n)(e)Ne−M |g|
2/n.

where |g| is the word length of g (i.e. the distance between g and the
identity in the Cayley graph). This estimate is true for groups of polynomial
growth (and free groups) but there are no other groups where it is known
to hold. Weaker forms are sufficient. Very recently, Brieussel & Zheng [12,
Problem 9.3 and foregoing paragraphs] have used Theorem 1.3 below to
give examples of groups where this estimate fails. See §2.3 for more on this
topic.
Before stating the next result recall that P (n)(e) > Ke−Lnγ for γ < 1

implies the group is amenable (see Kesten [24]). Furthermore, a result
known as “Gromov’s trick” shows non-equivariant compression is equal
to equivariant compression in amenable groups.

Theorem 1.3. — Assume that P (n)(e) > Ke−Lnγ (with γ < 1) in some
Cayley graph of G and (OD) holds in some [possibly different] Cayley graph
of G. Then α(G′) > 1 − γ for any group G′ with a Cayley graph quasi-
isometric to that of G. Consequently, β 6 1

2(1−γ) so that, if γ < 1
2 , the

graph is Liouville.

TOME 66 (2016), FASCICULE 6



2438 Antoine GOURNAY

The bound obtained above is significantly more interesting; for example,
if γ = 1

3 it would yield β 6 3
4 . Also, if |Bn| 6 KeLn

ν it would yield,
α(G) > 1−ν

1−ν/2 . However the upper bound on the speed in Theorem 1.2
does not follow from Theorem 1.3 if the estimate on the probability of
return is only given by volume growth.
Theorem 1.3, the discussion below and §5 motivated the author to make

the following

Conjecture 1.4. — If there are K,L > 0 so that P (n)(e) > KeLnγ in
a Cayley graph of G then β 6 1/2(1− γ) in all Cayley graphs of G.

This is now a theorem of Saloff-Coste & Zheng [33, Theorem 1.8] (their
result is more precise than just an estimate on β and covers many measure
P driving the random walk).

Sharpness of Theorems 1.1 and 1.3: Nothing indicates Theorem 1.1
is sharp. Sharpness of Theorem 1.3 (assuming the hypothesis is satisfied!)
are discussed in detail in §5. In short, there are groups with γ = 0, 1

3 ,
1
2 or

1 for which, if (OD) were to hold, Theorem 1.3 is sharp (i.e. α = 1 − γ;
also β = 1/2(1 − γ) if γ 6= 1). There are also groups with γ = 1

3 ,
1
2 or

1 where the conjectural bounds of Theorem 1.3 meet neither compression
nor speed. Thus, it seems unlikely that there is a better estimate in terms
of those quantities (see Question 4.5 for a possible improvement).
Bartholdi & Erschler [8, §1.2 and §7] showed that some groups of in-

termediate growth have arbitrarily bad compression, in particular α = 0.
Consequently, there are Liouville groups with arbitrarily quickly decaying
return probability (hence return exponent γ > 1/2). Also, since growth
is an invariant of quasi-isometry, the stability under quasi-isometry of the
Liouville property is known for this class of groups.
On the other hand, recent work of M. Kotowski & Virág [26] shows

there are groups with − lnP (n)(e) . n1/2 +o(1) (the “error” being at most
ln lnn/ lnn) which are not Liouville.

An interesting point of investigation would be to determine whether all
groups with P (n)(e) � e−n1/2 are Liouville (or exhibit a counterexample).

Around Theorem 1.2: It is difficult to discuss the sharpness of The-
orem 1.2 because the present construction of groups intermediate growth
focus on controlling one parameter. These constructions often leave, in the
meantime, the other parameters uncomputed (and hard to compute). It
might, for this precise reason be even more interesting to have bounds be-
tween those quantities (see Amir [1] or Brieussel & Zheng [12] for recent

ANNALES DE L’INSTITUT FOURIER



LIOUVILLE PROPERTY AND COMPRESSION 2439

developments). In fact, too good improvements of the bounds in Theo-
rem 1.2 would lead to some forms of the gap conjecture on volume growth.
This leads the author to believe that these are sharp.

Isoperimetry: How slowly must the Følner function of a group grow so
that one can deduce that the group is Liouville? Theorem 1.3 hints at an
answer using the link between the Følner function and return probability
from Bendikov, Pittet & Sauer [10].
There are also descriptions in term of “adapted isoperimetry”. For “Føl-

ner couples” the reader is referred to Coulhon, Grigor’yan & Pittet [16,
Theorem 4.8]). For “controlled Følner sequences” (and its relation to com-
pression) see Tessera [34, Corollary 13]. Of course, “adapted isoperimetry”
mixes distances and isoperimetry, and are a priori not completely deter-
mined by the Følner function.

Amenability: The method presented in §3 is reminiscent of Bekka,
Chérix & Valette [9]. To show amenable groups have the Haagerup property,
they used wn = 1Fn where Fn is a Følner sequence. See also Valette [36,
Proposition 1 in §2].
Recently, M. Carette [13] showed that the Haagerup property is not an

invariant of quasi-isometry; in [13, Appendix A], Arnt, Pillon & Valette use
these same examples to show that the equivariant compression exponent is
not an invariant of quasi-isometry.

Compression of Thompson’s group F : It is straightforward to reread
the paper of Naor & Peres [28] [and/or the current text] while keeping track
of compression functions instead of taking only the exponent. Introduce
s−1(k) = inf{k ∈ R | E|P (n)| < k}. Under the (mild) assumption that
ρ− is sub-additive, then [ρ− is up to multiplication by 2 concave and so]
ρ− is less (up to constants) than k 7→ (s−1(k))1/2. Hence, a compression
function strictly better than n 7→ Kn1/2 implies the Liouville property. As
noted in [28] this improves a result of Guentner & Kaminker [22] (since the
Liouville property implies amenability).
Here is an application of this remark. It seems known (see Kaimanovich

in [23]) that Thompson’s group F is not Liouville (this does not have any
impact on its amenability). In the case of non-Liouville groups the sub-
additivity [or concavity] hypothesis may be discarded (by using arguments
from Austin, Naor & Peres [5]). This provides the answer to a question
of Arzhantseva, Guba & Sapir [3, Question 1.4]: the best Hilbertian equi-
variant compression function for Thompson’s group F is (up to constants)
ρ−(x) ' x1/2.

TOME 66 (2016), FASCICULE 6
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2. Definitions and preliminary results

Cayley graphs are defined by right-multiplication: x and y are neighbours
if ∃s ∈ S such that xs = y. Though common for the setting of random
walks, this convention is slightly uncommon when one speaks of actions
and convolutions.
The word length (for the implicit generating set S) of an element g will

be noted |g|.

2.1. Compression

Definition 2.1. — Let B be a Banach space and π : G→ IsomB be a
representation of G in the isometries of B. An equivariant uniform embed-
ding f : G → B is a map such that there exist an unbounded increasing
function ρ− : R>0 → R>0 and a constant C > 0, satisfying ∀x, y ∈ G

ρ−(|y−1x|) 6 ‖f(x)− f(y)‖ 6 C|y−1x|+ C,

and f(γx) = π(γ)f(x).
The function ρ− : R>0 → R>0 is called the compression function (asso-
ciated to f). The [equivariant] compression exponent is α(f) = sup{c ∈
[0, 1] | ∃K > 0 such that ρ−(n) > Knc}. The compression exponent of G,
α(G), is the supremum over all α(f).

ANNALES DE L’INSTITUT FOURIER



LIOUVILLE PROPERTY AND COMPRESSION 2441

It follows easily from the definition that changing the generating set does
not change α.

An equivariant uniform embedding is, in fact, very constrained. Indeed,
one may (by translating everything) always put f(e) = 0 ∈ B for simplicity.
Next, recall that an [surjective] isometry of a [real] Banach space is always
affine (Mazur–Ulam theorem). Write π(y)v = λ(y)v+b(y) where λ is a map
from G into the linear isometries of B and b is a map from G to B. Note
that f(y) = π(y)f(e) = π(y)0 = b(y). Furthermore π(xy)v = π(x)π(y)v
(for all v ∈ B) implies that λ is a homomorphism and b satisfies the cocycle
relation:

b(xy) = λ(x)b(y) + b(x).
The strategy that will be used here to make an interesting equivariant
uniform embedding (i.e. a λ-cocycle) is to use a “virtual coboundary”. A
coboundary would be a cocycle defined by

f(y) = λ(y)v − v

for some v ∈ B. The idea is to define such a cocycle using a v which does
belongs to B but to some bigger space B̃ (to which the action λ extends).
Note that if f(s) belongs to B for any s in the generating set S, then this
also holds for f(g) for any g ∈ G (thanks to the cocycle relation).

Finally, a quick calculation (using that λ is isometric and writing g as
a word) shows that cocycles always satisfy the upper bound required by
equivariant uniform embedding. Also, it suffices to check that ‖f(g)‖ >
ρ−(|g|):

‖b(gh)− b(g)‖ = ‖λ(g)b(h)‖ = ‖b(h)‖
This explains why §3 only discusses this lower bound.

2.2. Probabilistic parameters for groups

The entropy of a probability measure Q is H(Q) = −
∑
g∈GQ(g) lnQ(g)

(when convergent). The group G is Liouville (for the [finite symmetric]
generating set S) if any of the following equivalent conditions hold:

(i) There are no non-constant bounded harmonic functions on the
Cayley graph;

(ii) H(P (n)) is o(n);
(iii) E|P (n)| is o(n).

(iii) =⇒ (ii) can be obtained as in Lemma 4.2; see also Erschler [19,
Lemma 6]. The implication (ii) =⇒ (i) may be found in Avez [6]. For a

TOME 66 (2016), FASCICULE 6



2442 Antoine GOURNAY

complete (and more modern) picture see Erschler & Karlsson [21] and ref-
erences therein.
Recall that E|P (n+m)| 6 E|P (n)|+E|P (m)| and H(P (n+m)) 6 H(P (n))+

H(P (m)). Let f : R>0 → R>0 be increasing, unbounded, f(n + m) 6
f(n)+f(m) and f(0) = 0. Recall that limn→∞ f(n)/n exists. One can also
define two exponents:

φ = inf{c ∈ [0, 1] | ∃K > 0, L ∈ R such that f(n) 6 L+Knc for all n}
= sup{c ∈ [0, 1] | ∃K > 0, L ∈ R such that f(n) > L+Knc

for infinitely many n}

= lim sup
n→∞

ln f(n)
lnn

φ = sup{c ∈ [0, 1] | ∃K > 0, L ∈ R such that f(n) > L+Knc for all n}
= inf{c ∈ [0, 1] | ∃K > 0, L ∈ R such that f(n) 6 L+Knc

for infinitely many n}

= lim inf
n→∞

ln f(n)
lnn

The constant L is unnecessary. The exponents are obviously related by
φ 6 φ. Note that if φ < 1 then f(n) is o(n) (since f is sub-additive).

Definition 2.2. — Let Bn be the ball of radius n. Define

γ = γ = φ for f(n) = − lnP (n)(e) γ = φ for f(n) = − lnP (n)(e)

ν = ν = φ for f(n) = ln |Bn| ν = φ for f(n) = ln |Bn|

η = η = φ for f(n) = H(P (n)) η = φ for f(n) = H(P (n))

β = φ for f(n) = E|P (n)| β = β = φ for f(n) = E|P (n)|

Simple bounds between these quantities are explored in §4.

2.3. Off-diagonal decay

An estimate which goes back to Carne [14] and Varopoulos [37] on the
“off-diagonal” behaviour of random walks is, for some M,N > 0,

(2.1) P (n)(g) 6 Ne−M |g|
2/n.

Improvements of this theorem are known. For example, under a regularity
hypothesis, there is a similar estimate due to Coulhon, Grigor’yan & Zucca,

ANNALES DE L’INSTITUT FOURIER



LIOUVILLE PROPERTY AND COMPRESSION 2443

see [17, Theorem 5.2] but it concerns the ration P (kn)(g)/P (n)(e) for some
k > 2. When the group is of polynomial growth this actually implies (OD).
It seems challenging to produce groups which violate the off-diagonal

estimate from (OD). As pointed out in Dungey [18, End of §1], an interpo-
lation argument shows this estimate is close to be true in all groups. More
precisely: there are constant M,N > 0 so that for any ε ∈ [0, 1],

(2.2) P (n)(g) 6 P (n)(e)1−εN εe−εM |g|
2/n.

Note that the estimate (OD) is not the only estimate which would suffice
for the proof of Theorem 1.3. The first obvious relaxation would be to
have this estimate for n < L|g|2−ε (for any ε > 0 with L = L(ε)). The
following condition would be also sufficient for the proof: for any ε > 0,
there exists n0,K, L such that for any n > L|g|2+ε and |g| > n0, one has
P (2n)(g)
P (2n)(e) 6 e−K|g|

2/n. Of course, any estimate with a fixed ε could also be
of interest.
Recently, Brieussel & Zheng [12, Problem 9.3 and foregoing paragraphs]

have shown that there are groups for which the conclusion of Theorem 1.3
cannot hold. They give a family of groups for which α < 1−γ (see Brieussel
& Zheng [12, First line of Table 1]: α = 1/(1 + θ) while γ = (1 + θ)/(3 + θ)
and take θ > 1). This implies that these groups violate (OD) (and its
relaxations). Furthermore, as they also provide an estimate on the speed
and entropy exponents (both equal (1 + θ)/(2 + θ)), so that these groups
are Liouville. B. Virág pointed out to the author that the lamplighter on
Z3 might also violate (OD) (by fine estimates on the return probability).
Interestingly, all these groups have return exponent > 1/2.

3. A lower bound using random walks

The idea will be to construct an equivariant uniform embedding of G
into H := ⊕n∈N`2G. The isometric action is simply the diagonal action of
G on each factor by the right-regular representation. The idea is to define a
cocycle using a virtual coboundary of the form w = (anwn)n∈N ∈ ⊕n∈N`2G

where wn ∈ `2G and an ∈ R. This yields a cocycle (in ρN`2G) if, for any
s ∈ S,

‖w − ρNsw‖2
2 =

∑
n

a2
n‖wn − ρswn‖2

2 < +∞.

Simply put a2
n =

(
maxs∈S ‖wn − ρswn‖2

)−2
n−1−ε, where ε > 0. The gra-

dient of a function f : G → R is defined by ∇f(x, y) = f(y) − f(x) for
two adjacent vertices x, y in the Cayley graph. This operator is essentially

TOME 66 (2016), FASCICULE 6



2444 Antoine GOURNAY

build up by the various f − ρsf , and ∇f can be interpreted as a function
G× S → R. The gradient is a bounded operator (since S is finite) and its
adjoint ∇∗ can be used to form the Laplacian ∆. These are related to P
by ∆ = ∇∗∇ = |S|(I − P ′) = 2|S|(I − P ).
As mentioned in §2.1, it now remains to find a lower bound for the norm

of b(g) = ρN(g)w − w. Using that maxs∈S ‖wn − ρswn‖2
2 6

∑
s∈S ‖wn −

ρswn‖2 = ‖∇wn‖2
2, one has

‖b(g)‖2
2 >

∑
n>1

n−1−ε ‖wn − ρgwn‖2
2

‖∇wn‖2
2

The idea will be to take wn = P (kn) for some kn ∈ [n, 2n] (the kth
n -step

distribution of a lazy random walk starting at e ∈ G).

Lemma 3.1. — ‖P (n) − ρg−1P (n)‖2
2 = 2

(
P (2n)(e)− P (2n)(g)

)
.

Proof. — Indeed,

‖P (n) − ρgP (n)‖2
2 = 〈P (n) − ρgP (n) | P (n) − ρgP (n)〉

= 2‖P (n)‖2 − 2〈P (n) | ρgP (n)〉

Since S is symmetric, note that 〈f | P ∗ g〉 = 〈P ∗ f | g〉. Consequently,

〈P (n) | ρgP (n)〉 = 〈P (n) | P (n) ∗ δg−1〉 = 〈P (2n) | δg−1〉 = P (2n)(g−1).

To get the claimed equality, use that, similarly, P (2n)(e) = ‖P (n)‖2
2 and

replace g by g−1. �

Lemma 3.2. — ‖∇P (n)‖2
2 = 2|S|

(
P (2n)(e)− P (2n+1)(e)

)
Proof. — This is a simple calculation using the relation ∆ = ∇∗∇ =

2|S|(I − P ):

‖∇P (n)‖2
2 = 〈∆P (n) | P (n)〉 = 2|S|

(
P (2n)(e)− P (2n+1)(e)

)
. �

Putting Lemmas 3.1 and 3.2 together gives:

|S| ‖P
(n) − ρgP (n)‖2

‖∇P (n)‖2 = P (2n)(e)− P (2n)(g)
P (2n)(e)− P (2n+1)(e)

= 1− P (2n)(g)/P (2n)(e)
1− P (2n+1)(e)/P (2n)(e)

The next step is to find satisfying bounds for this quantity. There are
reasonable estimates for the denominator, the following lemma is essentially
from Tessera [34, Proof of Proposition 7.2]. For similar estimates on the
entropy, see Erschler & Karlsson [21, Lemma 10] (see also Remark 3.5
below).
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Lemma 3.3. — If P (n)(e) > e−fP (n) for a positive sub-additive increas-
ing function fP . Then, for any n there is a k ∈ [n, 2n](

1− P (2k+1)(e)
P (2k)(e)

)
6 8fP (n)/n.

Proof. — For readability, start with F (n) = − lnP (n)(e). Let Cn be the
largest real number such that, for any q ∈ [n, 2n].

F (q + 1)− F (q) > CnfP (n)/n.

This implies F (2n)−F (n) > CnfP (n), and in particular F (2n) > CnfP (n)
(since F (n) > 0). By hypothesis, F (2n) 6 fP (2n) 6 2fP (n) so that Cn 6 2.
Thus, for any n, there exists a k ∈ [n, 2n] such that F (k + 1) − F (k) 6
2fP (n)/n. This implies

1− P (k+1)(e)
P (k)(e)

6 1− e−2fP (n)/n 6
2fP (n)
n

,

where the last inequality comes from 1− e−x 6 x for x > 0.
The actual statement is obtained by doing the same argument with

G(n) = F (2n) and noticing that an additional constant comes in since
one then looks at the gradient defined for the generating set S′ = S2. �

Proof of Theorems 1.1 and 1.3. — By hypothesis, P (n)(e) > Ke−Lnγ so
that, in Lemma 3.3, fP (n) = − lnK + Lnγ 6 2 max(− lnK,L)nγ . Using
wn = P (kn) where kn ∈ [n, 2n] is given by Lemma 3.3 and the bound
mentioned above for the numerator, one finds (using 1 6 kn

n 6 2) and
K ′′ =

(
16 max(− lnK,L)|S|

)−1

‖b(g−1)‖2
2 >

∑
n>1

K ′′n−γ−ε(1− P (2n)(g)/P (2n)(e))

Since |g−1| = |g|, the question boils down to showing for which n one has,
P (2n)(g)
P (2n)(e) 6 1/2.
For example, assuming the estimate (OD) holds, one sees this is true for

n 6 M |g|2/ ln(2N) (since, necessarily, N > 1). Hence, restricting the sum
to those values of n:

‖b(g)‖2
2 >

∑
n6M ′|g|2/ ln(2N)

K′′

2 n−γ−ε > K̃|g|2(1−γ−ε).

where the second inequality can be obtained from the Euler–Maclaurin
approximation method and K̃ = K ′′(M/ ln(2N))1−γ−ε/4(1−γ−ε). Letting
ε→ 0 proves Theorem 1.3 (even though the constant gets worse as ε→ 0).

Using (2.1) instead of (OD), one must restrict the sum to n <K ′|g|2/(1+γ)

where K ′ = 1
4L
(√

(ln(2N/K))2 + 4LM − ln(2N/K)
)
. This yields a weaker
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lower bound of α > 1−γ
1+γ (but is true in any group) and proves Theo-

rem 1.1. �

If the reader is interested in compression functions (rather than expo-
nents), then it is fairly easy to check that, given fP as in Lemma 3.3,
ρ−(k) > k1/(1+γ)/fP (k2/(1+γ))1/2 and, if (OD) holds, > k/fP (k2)1/2.

Remark 3.4. — It would be interesting to generalise this proof by pick-
ing vn elements which are in Vλn with λn → 0, where Vλ is the image of
the spectral projection (of the Laplacian) to eigenvalues 6 λ. This would
ensure a good bound for the denominator. For the numerator, one needs
to elucidate how to relate bound on the von Neumann dimension of Vλ to
upper estimates on 〈v | ρgv〉 for v ∈ Vλ.
More precisely, if λn = 1/n and vn ∈ V1/n then one would require

– either, for some K > 0, 〈vn | ρgvn〉 6 1/2 when |g|2−2γ > Kn;
– or, for some K,K ′ > 0 and ε > 0, 〈vn | ρgvn〉 6 exp(−K|g|2−2γ/n)

when n > K ′|g|2−2γ+ε.
Using the results of Bendikov,Pittet & Sauer [10], note that P (n)(e) <

exp(−nγ) (near infinity) corresponds to the fact that the von Neumann
dimension of Vλ < exp(−λγ/(1−γ) (near zero).

Remark 3.5. — There is an alternative proof of Lemma 3.3 along the
lines of Erschler & Karlsson [21, Lemma 10]. Let F (n) = − lnP (2n)(e).
Then it is well-known that F (n + 1) − F (n) is decreasing, see Woess’
book [38, (10.1) Lemma].

4. Some relations between the exponents

The aim of this section is to relate the return, speed, entropy and growth
exponents. An elementary computation (see Avez [7, Theorem 3]) shows,
using concavity of ln, that

(4.1) H(P (n)) > − ln
(∑
g∈G

P (n)(g)2
)

= − ln ‖P (n)‖2
2 = − lnP (2n)(e).

Hence, γ 6 η and γ 6 η. (With Kesten’s criterion [24], this shows Liouville
=⇒ amenable.)
(2.1) gives P (n)(g) 6 Ne−M |g|

2/n. This, together with convexity of x 7→
x2, gives another useful bound, found in either Amir & Virág [2, Proposi-
tion 8] or Erschler [19, Lemma 7.(i)]:

(4.2) H(P (n)) > lnN +M
∑
g∈G

P (n)(g) |g|
2

n > lnN + M
n (E|P (n)|)2.
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Thanks to Erschler & Karlsson [21, Corollary 9.ii], this inequality is also
true for measures with finite second moment. This implies that β 6 1+η

2
and β 6 1+η

2 and constitutes a proof of (ii) =⇒ (iii) in the equivalences of
the Liouville property described in §2.2.
There is also “classical” bound obtained by Varopoulos’ method (see e.g.

Woess’ book [38, (14.5) Corollary]) relating growth and return exponent:
γ > ν

2+ν .
The following lemma (see e.g. [11, §1.2]) will be useful.

Lemma 4.1. — Let f : N → R>0 be a sub-additive, non-decreasing
function with f(0) = 0. If g is the concave hull of f then f(x) 6 g(x) 6
2f(x).

The upcoming lemma is an improvement of a standard inequality (see
e.g. Erschler [19, Lemma 6]) and of the simple inequality H(P (n)) 6 ln |Bn|
(see Erschler & Karlsson [21, Lemma 1]). For finitely supported measures
and volume growth |Bn| 6 Kexp(Lnν) , it is implicit in Erschler [20,
Lemma 5.1].
Since it might be of larger use, it will be stated in full generality, namely

P will be some measure and S∗ some finite (symmetric) generating set.

Lemma 4.2. — Let |g|∗ be the word length for S∗. Assume P has finite
first moment (i.e.

∑
g∈G P (g)|g|∗ < +∞ ), and Bn = {g ∈ G | |g|∗ 6 n}.

Let |Bn| = efV (n) and assume |Bn| is at least quadratic in n. Then

H(P (n)) 6 L+ 4fV (E|P (n)|∗).

In particular, βν > η, βν > η and βν > η.

Proof. — The idea is to compare a measure m to a measure m′ which is
uniform on spheres. First,

H(m)−
∑
g∈G

m(g) ln( 1
m′(g) ) =

∑
g∈G

m(g)
(
− ln m(g)

m′(g)

)
6 0

using − ln t 6 1
t −1. Now let ai = |δBi| where δBi = Bi\Bi−1 and B−1 = ∅

and m′(g) = φ(|g|∗)/a|g|∗ where φ(k) = L1|Bk|−1 and L1 chosen so that∑
k>0 φ(k) = 1. Then,

H(m) 6
∑
g∈G

m(g)
(

ln a|g|∗ − lnφ(|g|∗)
)
.

Then, one has (with L′ = ln(L1))

H(m) 6 L′ + 2
∑
g∈G

m(g)fV (|g|∗) 6 L′ + 4fV
(∑
g∈G

m(g)|g|∗
)
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by passing to the concave hull of fV and using Lemma 4.1 to bound this
by 2fV . This shows H(P (n)) 6 L′ + 4fV (E|P (n)|∗), as desired.
The bound η 6 βν follows directly while the others follow by applying

the inequality for infinitely many n. �

If one assumes |Bn|6LeKn
ν , one can also obtain the statementH(P (n))6

L′+K ′(E|P (n)|∗)ν with K ′ as close as desired to K, as in Erschler & Karls-
son [21, Lemma 1].

Corollary 4.3. — Assume |Bn| 6 LeKn
ν and |Bn| is more than qua-

dratic. For any measure of finite second moment (i.e.
∑
g∈G P (g)|g|2 <

+∞), one has:
– E|P (n)| 6 K ′n1/(2−ν),
– H(P (n)) 6 L′′ +K ′′nν/(2−ν),
– and P (2n)(e) > exp

(
−H(P (n))

)
> L′′exp(−K ′′nν/2−ν).

In particular,

β 6 β 6 1
2−ν and γ 6 η 6 βν 6

ν

2− ν .

Proof. — Using first (4.2) (which extends to measures of finite second
moment by Erschler & Karlsson [21, Corollary 9.ii]) then Lemma 4.2,
one has (E|P (n)|)2 6 n

(
L̃ + 4(lnK)(E|P (n)|)ν

)
. Putting K ′ =

(
4 lnK +

L̃/E|P (1)|ν
)1/(2−ν), this implies the first claim. The second claim is ob-

tained by concatenating Lemma 4.2 and the bound on speed just obtained.
The relation (4.1) is also used in the sequence of inequalities in term of
exponents. �

Lemma 4.2 and Corollary 4.3 finish the proof of Theorem 1.2.
Let us mention an additional inequality. This inequality is already

present in Coulhon & Grigoryan [15, §6] in a sharper form but with extra
hypothesis. The proof presented here is elementary if one knows (2.2) and
could be improved in the case of polynomial growth (though it does not
meet [15]).

Lemma 4.4. — Assume |Bn| = efV (n) is at least cubic. Let f be the
concave hull of fV , and F the inverse function of [the strictly increasing
function] k 7→ k2/f(k). Then P (n)(e) > K ′′|BF (L′′n)|−2F (L′′n)−1 for some
K ′′, L′′ > 0.
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Proof. — Write |Bn| = efV (n) as before.Then, using the bound (2.2) one
has, for any ε ∈]0, 1[,

1 =
∑
g∈G

P (n)(g) 6
n∑
k=0
|Bk|P (n)(e)1−εN εe−Mεk2/n

6 P (n)(e)1−ε
n∑
k=0

N εef(k)−Mεk2/n,

where f is the concave hull of fV . Let n0 = inf{k | k2/f(k) > n/Mε}.
Note that k 7→ k2/f(k) is strictly increasing. Indeed, since f is concave
and f(0) = 0 one has f(n) =

∑n
i=1 f(i) − f(i − 1) > n

(
f(n) − f(n − 1)

)
.

That (k + 1)2/f(k + 1) > k2/f(k) then follows from:

k2(f(k+ 1)− f(k)
)
6 k2f(k+1)

k+1 < k
(
f(k) + f(1)

)
6 2kf(k) < (2k+ 1)f(k).

Hence, the exponent of the exponential is negative if k > n0. Since
P (n)(e)1−εn→ 0 for some ε ∈]0, 1[ (because |Bn| > Kn3 implies P (n)(e) 6
K ′n−3/2), one may write (with δn → 0 as n→∞)

1− δn 6 P (n)(e)1−ε
n0∑
k=0

N εef(k)−Mεk2/n6 P (n)(e)1−ε
n0∑
k=0

N εef(k)

6 n0P
(n)(e)1−εef(n0).

This implies that P (n)(e) > K ′′e−f(n0)n−1
0 . To conclude apply Lemma 4.1:

f(x) 6 2fV (x). �

The preceding lemma implies γ 6 ν/(2−ν) and γ 6 ν/(2−ν), but these
inequalities already follows for a larger class of measures from (4.1) and
Corollary 4.3. One cannot deduce γ 6 ν/(2− ν) from Lemma 4.4.

Lastly, the estimate γ > ν
2+ν can be deduced from Coulhon, Grigoryan

& Pittet [16, Corollary 7.2]. The estimates cited or proved in this paper
can also be summed up by:

β
ii
6

1 + η

2 ,
ν

2 + ν
6 γ

i
6 η

i
6 min(βν, βν)

ii
6

ν

2− ν

and ν

2 + ν
6 γ

i
6 η

i
6 βν

ii
6

ν

2− ν
where i (resp. ii) denotes inequality which hold for measures with finite
first (resp. second) moment, the remaining inequalities hold only for finitely
supported measures and the absence of bars [above or below] the exponent
mean it holds if bars are put on both sides at the same place.
The lower bound β > ν/ν(2 + ν) is not optimal (B. Virág gave a [sharp]

lower bound of 1
2 ; see Lee & Peres [27]).
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Other inequalities which could be interesting to explore are: η 6 ν
2−ν ?

γ 6 ν
2−ν ? A more interesting one (since a positive answer combined

with (4.2) gives a proof of Conjecture 1.4) is

Question 4.5. — Does the inequality η 6 γ
1−γ hold? Could it even

hold for all measures with finite second moment?

This has been answered in the positive by Saloff-Coste & Zheng [33,
Theorem 1.8].

Let us conclude with this possibly well-known lemma.

Lemma 4.6. — Assume ψ : G� H is a surjective homomorphism. Let
S = SuppP be generating for G (hence ψ(S) generates H). Let P ′ = ψ∗P ,
i.e. P ′(A) = P

(
ψ−1A

)
. Then E|P (n)

eG | > E|P ′neH | (where the word lengths | · |
are for S and ψ(S) respectively).

Proof. — Let dH be the distance of the Cayley graph with respect to
SH = support of P ′. Define the function d′ :G→N by d′(γ) = dH

(
ψ(γ), eH

)
.

Note that d′(γ) 6 dG(γ, e): indeed dH(h1, h2) = dG
(
ψ−1(h1), ψ−1(h2)

)
, so

that d′(γ) = dG(γN,N) where N = kerψ. Let WG
n be the random walker

on G and WH
n be the random walker on H (which moves according to P ′

as in the statement). Note that P
(
dH(WH

n , eH) = i
)

= P
(
d′(WG

n ) = i
)
.

This implies

E|P ′n| = E
(
dH(WH

n , eH)
)

= E
(
d′(WG

n )) 6 E
(
dG(WG

n , eG)
)

= E|P (n)| �

In particular, this proves that E|P (n)| > KPn
1/2 for any G with a

non-trivial homomorphism to Z (this is true for any group, due to Virág,
see [27]).
The statement of Lemma 4.6 may be generalised to coverings of graphs

and more general maps. Here is a classical example. Define “levels” in the
k-regular tree by looking at points which are at the same distance to some
[fixed] point at infinity. The “level maps” gives a morphism from the tree
to the line Z. The arguments of the above Lemma apply to this map, but
yield a biased random walk on Z. This gives a rather precise estimate of
the speed.

5. Some known values

Below is a table containing cases where α, β and γ are known. The con-
vention for wreath products L oH is that L is the “lamp state” group, e.g.
Z2 oZ is the usual lamplighter on the line. One could complete the table for
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many other wreath products using Naor & Peres [28, Theorem 6.1], Naor
& Peres [29, Theorem 3.1], Pittet & Saloff-Coste [31, Theorem 3.11 and
Remark (ii) after Theorem 3.15] and Revelle [32, Theorem 1].
The lower bound of Theorem 1.3 [assuming (OD) holds] meets compres-

sion in (A), (C), (D) if d = 2, (E) if H has polynomial growth, (H) and (I).
It also meets speed, except in the last two cases. The lower bound meets
neither speed nor compression in (B), (E) if H is polycyclic [since γ = 3

5 ]
and (F) if k > 3. All the groups mentioned that have γ = 1

2 are Liouville.
Except in (H) and (I), the upper bound α 6 1/2β of Naor & Peres [28]

meets compression. “Incompressible” (i.e. of compression exponent 0)
amenable groups were first constructed by Austin (a solvable group, see [4])
and, more recently, Bartholdi & Erschler [8, §1.2 and §7]. It seems reason-
able to believe there is an amenable group where the compression meets
neither the upper bound of [28] nor the lower bound of Theorem 1.3 [as-
suming (OD) holds].

Group β γ 1− γ α 1/2β

A:Polynomial growth 1
2

(1) 0(7) 1 1(2) 1
B:Polycyclic of

1
2

(2) 1
3

(8) 2
3 1(2) 1exponential growth

or F oZ with F finite
C:ZoZ 3

4
(3) 1

3
(9) 2

3
2
3

(11) 2
3

D:F oH with F finite or
1(4) d

d+2
(9) 2

d+2
1
2

(12) 1
2Z and H polynomial

growth of degree d> 2
E:H oZ2 withH amenable 1(4) > 1

2
(9) 6 1

2
1
2

(13) 1
2and α(H) > 1

2

F:(. . . ((ZoZ)oZ) . . .)oZ

1− 1
2k

(3) k−1
k+1

(9) 2
k+1

1
2−21−k

(11) 1
2−21−k

iterated wreath
product with k “Z”,
k > 1

G:Intermediate growth [ 1
2 ,

1
2−ν ](5)

[ 1−ν
1−ν/2 ,

1
1+v/2 ] ? [1− ν

2 ,1]
en

v � |Sn| � enν [ v
2+v ,

ν
2−ν ](10)

H:“Incompressible” ? 1 0 0(14) > 1
2amenable groups

I:Property (T ) groups 1(6) 1(6) 0 0(6) 1
2
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Table’s references
(1)The upper bound is classical; see §4. The (general) matching lower bound

is due to Virág (see Lee & Peres [27]); this particular instance could be
obtained by arguments of §4.

(2)The value of compression (from Tessera [34, Theorems 9 and 10]) imply the
value of speed. For finer estimates on speed see Thompson [35, Theorem 1].

(3)This may be found either in Erschler [19, Thm. 1] or Revelle [32, Thm. 1].
(4) See Erschler [19, Theorem 1] or Naor & Peres [28, Theorem 6.1].
(5)The upper bound is easy; see §4. The lower bound is the general one due

to Virág, see the introduction of Lee & Peres [27].
(6)Kesten’s criterion for amenability [24] shows γ = 1, use Kesten [25, Theo-

rem 5] or Lemma 4.2 to get β = 1. Property (T) groups do not have the
Haagerup property. In particular, they have no proper affine action on a
Hilbert space; hence α = 0.

(7) 0 should be interpreted as arbitrarily small. This is the classical estimate
of Varopoulos, see Woess’ book [38, (14.5) Corollary].

(8)Due to Varopoulos; see [31, §1.1] for a list of possible references.
(9) See Pittet & Saloff-Coste [31, Theorems 3.11 and 3.15]
(10) For the lower bound see Woess’ book [38, (14.5) Corollary]. The upper

bound is Coulhon, Grigor’yan & Pittet [16, Corollary 7.4]; see also §4 of
the present text.

(11) See Naor & Peres [28, Corollary 1.3].
(12) See Naor & Peres [29, Theorem 3.1].
(13) See Naor & Peres [28, Remark 3.4].
(14) See Austin [4] or Bartholdi & Erschler [8, §1.2 and §7]. α=0 implies γ=1.
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