
AN

N
A
L
E
S
D
E

L’INSTI
T

U
T
F
O
U
R

IE
R

ANNALES
DE

L’INSTITUT FOURIER

Aaron LANDESMAN, Peter RUHM & Robin ZHANG

Spin canonical rings of log stacky curves
Tome 66, no 6 (2016), p. 2339-2383.

<http://aif.cedram.org/item?id=AIF_2016__66_6_2339_0>

© Association des Annales de l’institut Fourier, 2016,
Certains droits réservés.

Cet article est mis à disposition selon les termes de la licence
CREATIVE COMMONS ATTRIBUTION – PAS DE MODIFICATION 3.0 FRANCE.
http://creativecommons.org/licenses/by-nd/3.0/fr/

L’accès aux articles de la revue « Annales de l’institut Fourier »
(http://aif.cedram.org/), implique l’accord avec les conditions générales
d’utilisation (http://aif.cedram.org/legal/).

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://aif.cedram.org/item?id=AIF_2016__66_6_2339_0
http://creativecommons.org/licenses/by-nd/3.0/fr/
http://aif.cedram.org/
http://aif.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/


Ann. Inst. Fourier, Grenoble
66, 6 (2016) 2339-2383

SPIN CANONICAL RINGS OF LOG STACKY CURVES

by Aaron LANDESMAN, Peter RUHM & Robin ZHANG

Abstract. — Consider modular forms arising from a finite-area quotient of
the upper-half plane by a Fuchsian group. By the classical results of Kodaira–
Spencer, this ring of modular forms may be viewed as the log spin canonical ring
of a stacky curve. In this paper, we tightly bound the degrees of minimal generators
and relations of log spin canonical rings. As a consequence, we obtain a tight bound
on the degrees of minimal generators and relations for rings of modular forms of
arbitrary integral weight.
Résumé. — Considérons les formes modulaires d’un quotient d’aire finie du

demi-plan de Poincaré par un groupe fuchsien. D’après un résultat classique de
Kodaira–Spencer, cet anneau de formes modulaires peut être considéré comme l’an-
neau log-canonique à spin d’une courbe champêtre. Dans cet article, nous obtenons
une borne optimale pour les degrés des générateurs minimaux et des relations mi-
nimales d’un tel anneau, et donc des anneaux de formes modulaires de poids entier
arbitraire.

1. Introduction

Let Γ be a Fuchsian group, i.e. a discrete subgroup of PSL2(R) acting
on the upper half plane H by fractional linear transformations, such that
Γ\H has finite area. We consider the graded ring of modular forms M(Γ) =⊕∞

k=0 Mk(Γ). One of the best ways to describe the ring M(Γ) is to write
down a presentation. To do so, it is useful to have a bound on the degrees
in which the generators and relations can occur. In the special case that
Γ has no odd weight modular forms, Voight and Zureick-Brown give tight
bounds [15, Chapters 7–9]. The main theorem of this work extends their
result to all Fuchsian groups Γ.

We can now consider the orbifold Γ\H over C. For example, in the case
Γ acts freely on H, Γ\H is a Riemann surface over C. Although Γ\H may

Keywords: Modular forms, canonical rings, theta characteristic, Petri’s theorem, stacks,
Groebner basis.
Math. classification: 14Q05, 11F11.



2340 Aaron LANDESMAN, Peter RUHM & Robin ZHANG

be non-compact, we can form a compact Riemann surface Γ\H∗ by adding
in cusps (with associated divisor of cusps ∆).
In order to find generators and relations for M(Γ), we translate the

seemingly analytic question of understanding the ring of modular forms
into the algebraic category, using a generalization of the GAGA principle.
As shown by Voight and Zureick-Brown [15, Proposition 6.1.5], there is an
equivalence of categories between orbifold curves and log stacky curves over
C. For the remainder of the paper, we will work in the algebraic category.
Let X be a smooth proper geometrically-connected algebraic curve of

genus g over a field k. It is well known that the canonical sheaf ΩX , with
associated canonical divisor KX , determines the canonical map π : X →
Pg−1
k . Then, the canonical ring is defined to be

R(X,KX) :=
⊕
d>0

H0(X, dKX),

with multiplication structure corresponding to tensor product of sections.
In the case that g > 2, ΩX is ample and therefore X ∼= Proj R. When
g > 2, Petri’s theorem shows that, in most cases, R(X,KX) is generated
in degree 1 with relations in degree 2 (see Saint-Donat [14, p. 157] and
Arbarello–Cornalba–Griffiths–Harris [3, Section 3.3]). This has the pleasant
geometric consequence that canonically embedded curves of genus > 4
which are not hyperelliptic curves, trigonal curves, or plane quintics are
scheme-theoretically cut out by degree 2 equations.
Following Voight and Zureick-Brown [15], we generalize Petri’s theorem

in the direction of stacky curves equipped with log spin canonical divisors.
For a stacky curve X with coarse space X and stacky points (also called
“fractional points”) P1, . . . , Pr with stabilizer orders e1, . . . , er ∈ Z>2, we
define

Div X =

 ⊕
P /∈{P1,...,Pr}

〈P 〉

⊕( r⊕
i=1

〈
1
ei
Pi

〉)
⊆ Q⊗DivX.

Then, a log spin curve is a triple (X ,∆, L) where ∆ ∈ DivX is a log
divisor and L ∈ Div X is a log spin canonical divisor, meaning 2L ∼
KX + ∆ +

∑r
i=1

ei−1
ei

Pi. The central object of study in this paper is the log
spin canonical ring of (X ,∆, L), defined as

R(X ,∆, L) :=
⊕
k>0

H0(X, bkLc).

A brief overview of stacky curves, log divisors, and log spin canonical rings
is given in Subsection 2.1.
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Our main theorem is to bound the degrees of generators and relations
of a log spin canonical ring. Let X be a stacky curve with signature σ :=
(g; e1, . . . , er; δ). The application of O’Dorney’s work [11, Chapter 5] to log
spin canonical rings gives a weak bound in the case g = 0 in terms of the
least common multiples of the ei’s. In their treatment of log spin canonical
rings, Voight and Zureick-Brown [15, Corollary 10.4.6] bounded generator
degrees by 6 ·max(e1, . . . , er) and relation degrees by 12 ·max(e1, . . . , er)
when L is effective. Note that the bounds we deduce differ from those stated
in Voight and Zureick-Brown [15, Corollary 10.4.6] by a factor of 2 because
their grading convention differs from ours by a factor of 2.
These bounds are far from tight and do not collectively cover all cases

in all genera. The main theorem of this paper gives significantly tighter
bounds for the log spin canonical ring of any log spin curve.

Theorem 1.1. — Let (X ,∆, L) be a log spin curve over a perfect field
k, so that X has signature σ = (g; e1, . . . , er; δ).
Then the log spin canonical ring is generated as a k-algebra by elements

of degree at most e := max(5, e1, . . . , er) with relations generated in degrees
at most 2e, so long as σ does not lie in a finite list of exceptional cases, as
given in Table 6.2 for signatures with g = 1 and Table 7.5 for signatures
with g = 0.

Remark 1.2. — In fact, the proof of Theorem 1.1 holds with ∆ replaced
by an arbitrary effective divisor of the coarse space. Furthermore, one may
relax the assumption that k is perfect. Instead, one only need assume that
the stacky curve is separably rooted, as described further in Remark 2.2.

Theorem 1.1 is proven separately in the cases that the genus g = 0, g = 1,
and g > 2 in Theorems 7.4, 6.1, and 5.6, respectively. In each of these proofs,
we follow a similar inductive process utilizing the lemmas of Section 4;
however, in the first two cases we explicitly construct specific base cases
and present a finite list of exceptional cases, whereas in the genus g > 2
case we deduce base cases from more general arguments.

Remark 1.3. — In addition to providing bounds on the degrees of gen-
erators and relations of log spin canonical rings, the proof of the genus one
and genus zero cases of our main theorem also yield explicit systems of gen-
erators and initial ideals of relations, as described in Remarks 6.2 and 7.5.
Furthermore, our proof of the genus g > 2 case provides an inductive proce-
dure for explicitly determining the generators and initial ideal of relations
of a log spin canonical ring given a presentation of the corresponding ring
on the coarse space, but actually computing such a presentation of log spin
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2342 Aaron LANDESMAN, Peter RUHM & Robin ZHANG

canonical on the coarse space can be difficult. Many explicit systems of
generators and relations for curves of genus 2 6 g 6 15 are detailed in
interesting examples by Neves [10, Section III.4].

Remark 1.4. — The explicit construction described in Remark 1.3
also reveals that the bounds given in Theorem 1.1 are tight. In almost
all cases, the log spin canonical ring requires a generator in degree e =
max(5, e1, . . . , er) and a relation in degree at least 2e − 4. Furthermore,
there are many infinite families of cases which require a generator in de-
gree e = max(5, e1, . . . , er) and a relation in degree exactly 2e. For further
detail, see Remarks 7.5, 6.2, and 5.7 in the cases that the genus is 0, 1, or
> 2 respectively.

Combining the main theorem of this paper, Theorem 1.1 with the main
theorem from Voight and Zureick-Brown [15, Theorem 1.4] and a minor
Lemma [15, Lemma 10.2.1] we have the following application to rings of
modular forms.

Corollary 1.5. — Let Γ be a Fuchsian group and X the stacky curve
associated to Γ\H with signature σ = (g; e1, . . . , er; δ).
If Mk(Γ) = 0 for all odd k, then the ring of modular forms M(Γ) is

generated as a C-algebra by elements of degree at most 6·max(3, e1, . . . , er)
with relations generated in degrees at most 12 ·max(3, e1, . . . , er).
If there is some odd k for which Mk(Γ) 6= 0, then the ring of

modular forms M(Γ) is generated as a C-algebra by elements of degree
at most max(5, e1, . . . , er) with relations generated in degree at most 2 ·
max(5, e1, . . . , er) so long as σ does not lie in a finite list of exceptional
cases which are listed and described in Table 6.2 for signatures with g = 1
and in Table 7.5 for signatures with g = 0.

Remark 1.6. — If M(Γ) has some odd weight modular form, then it
has an odd weight modular form in weight 3. When g > 2, we see that
this is true because dimkH

0(X , 3L) > 0 by Riemann–Roch and the fact
that degb3Lc > 2g − 1. When the genus is zero or one, we see that there
is a generator in weight 1 or weight 3 in the base cases given in Table 6.1
and Table 7.2. Hence, there is an odd weight modular form in weight 3 in
general. A consequence of this observation is that the bound on the degree
of generators and relations whenM(Γ) has some odd weight modular form,
as given in Corollary 1.5, is closely related to the degree of the minimal
odd weight modular form.

ANNALES DE L’INSTITUT FOURIER
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Example 1.7. — In this example, we deduce bounds on the weight of
generators and relations of the ring of modular forms associated to any
congruence subgroup Γ ⊂ SL2(Z). Since the action of SL2(Z) on H only
has points with stabilizer order 1, 2 and 3, and has at least one cusp, the
action of Γ on H can only have points with stabilizer order 1, 2 and 3, and
has at least one cusp.
If Γ has no nonzero odd weight modular forms, then Γ is generated in

weight at most 6 with relations in weight at most 12. This follows from
work by Voight and Zureick-Brown [15, Theorem 1.4 and Theorem 9.3.1].
Note that the exceptional cases of their result [15, Theorem 9.3.1], which
happen when the genus is zero, do not occur because δ > 0.

If Γ has some nonzero odd weight modular form, then it must have no
points with stabilizer order 2 by Remark 2.10. Therefore, by Corollary 1.5,
M(Γ) is generated in weight at most 5 with relations in weight at most 10.
Furthermore, it is not difficult to show that M(Γ) is generated in weight
at most 4 with relations in weight at most 8 when the genus of the stacky
curve associated to Γ\H∗ is 0 or 1, as noted in Remark 7.6. Note that the
exceptional cases in Tables 6.2 and 7.5 do not occur because Γ has a cusp,
so δ > 0.

Remark 1.8. — In the case thatMk(Γ) = 0 for all odd k, the generation
bound of 6 ·max(3, e1, . . . , er) and relation bound of 12 ·max(3, e1, . . . , er)
can be reduced to 2 · max(3, e1, . . . , er) and 4 · max(3, e1, . . . , er), apart
from several small families of cases. See [15, Theorem 9.3.1] and [15, The-
orem 8.7.1] for a more precise statement of these bounds in the cases that
g = 0 and g > 0 respectively. Note that we multiply all bounds given in
Voight and Zureick-Brown [15] by a factor of two. Our grading convention
for log spin canonical rings uses weight k for the degree whereas Voight
and Zureick-Brown d = 2k for degree.

The remainder of the paper will be primarily devoted to proving The-
orem 1.1. The idea of the proof will be to induct first on the number of
stacky points and then on the stabilizer order of those points. To this end,
we first review important background in Section 2; provide essential exam-
ples in Section 3; develop various inductive tools in Section 4; and prove
Theorem 1.1 in genus g > 2, genus g = 1, and genus g = 0 in Sections 5, 6,
and 7 respectively. Finally, in Section 8, we pose several questions for future
research.
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2. Background

Here we collect various definitions and notation that will be used
throughout the paper. For basic references on the statements and def-
initions used below, see Hartshorne [8, Chapter IV], Saint-Donat [14],
Arbarello–Cornalba–Griffiths–Harris [3, Section III.2], and Voight–Zureick-
Brown [15, Chapter 2, Chapter 5].

For the remainder of this paper, fix an algebraically closed field k. This is
no restriction on generality, as generator and relation degrees are preserved
under base change to the algebraic closure.

2.1. Stacky Curves and Log Spin Canonical Rings. We begin by
setting up the notation for stacky curves and canonical rings. Wherever
possible, we opt for a more elementary scheme-theoretic approach, instead
of a stack-theoretic one. See Remark 2.2 for more details.

Definition 2.1. — A stacky curve X over an algebraically closed field
k is the datum of a smooth proper integral scheme X of dimension 1,
together with a finite number of closed points ofX, P1, . . . , Pr, called stacky
points, with stabilizer orders e1, . . . , er ∈ Z>2. The scheme X associated
to a stacky curve X is called the coarse space of X .

Remark 2.2. — Stacky curves may be formally defined in the language
of stacks, as is done in the works of Voight and Zureick-Brown [15],
Abramovich and Vistoli [1], and Behrend and Noohi [4].
The results of this paper can be easily phrased in terms of the language

of stacks. If one works over an arbitrary field k (which need not be alge-
braically closed) one can extend Theorem 1.1 to hold in the case that the
stacky curve X is tame and separably rooted, i.e. the residue field of each
of the stacky points is separable.
With this stack-theoretic description in mind, the remainder of this paper

is primarily phrased using the language of schemes.

Definition 2.3. — Let X be a stacky curve over k with coarse space
X of genus g and stacky points P1, . . . , Pr with stabilizer orders e1, . . . , er ∈
Z>2. Then, we notate

Div X :=

 ⊕
P /∈{P1,...,Pr}

〈P 〉

⊕( r⊕
i=1

〈
1
ei
Pi

〉)
⊆ Q⊗DivX.

We can equip stacky curves with a log divisor ∆ that is a sum of distinct
points each with trivial stabilizer. A divisor ∆ of this form is called a

ANNALES DE L’INSTITUT FOURIER
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log divisor. We use δ := deg ∆ to refer to the degree of the log divisor.
If X has coarse space X of genus g, then we say X has signature σ =
(g; e1, . . . , er; δ).

Definition 2.4. — If divisor D ∈ Div X and D =
∑n
i=1 αiPi with

αi ∈ Q, the floor of a divisor bDc is defined to be bDc :=
∑n
i=1bαicPi.

A pair of a stacky curve and a log divisor (X ,∆) is called a log stacky
curve and the study of their canonical rings is the main focus of the work by
Voight and Zureick-Brown [15]. For this paper, we consider log spin curves
which are triples (X ,∆, L) where X is a stacky curve, ∆ is a log divisor,
and L ∈ Div X satisfies 2L ∼ KX + ∆ +

∑r
i=1

ei−1
ei

Pi. Such a divisor L
is called a log spin canonical divisor on (X ,∆). Throughout the paper,
we use the notation LX := bLc. to refer to the log spin canonical divisor
(also known as the half-canonical divisor, semi-canonical divisor, or theta
characteristic) associated to the coarse space X of X . (i.e. LX is a divisor
such that 2LX ∼ KX + ∆). We define H0 of a stacky divisor as follows.

Definition 2.5. — Recall the standard notation for the line bundle
O(D) on an integral normal scheme X associated to a divisor D ∈ DivX:

Γ(U,O(D)) := {f ∈ k(X)× : Div |Uf +D|U > 0} ∪ {0}.

Let X be a stacky curve with coarse space X. If D ∈ Div X is a Weil
divisor, then we define

H0(X , D) := H0(X, bDc)

H0(X ,O(D)) := H0(X , D)

h0(X ,O(D)) := dimkH
0(X ,O(D))

If R is a graded ring, then we let (R)k refer to the kth graded component
of R.

Remark 2.6. — The log canonical ring, defined to be the direct sum of
the even graded pieces of the log spin canonical ring, is Gorenstein. It is
Cohen–Macaulay from [16, Example 2.5(a)] and then Gorenstein by [16,
Corollary 2.9]. In particular, this tells us that a log spin canonical curve,
the projectivization of a log spin canonical ring, is projectively Gorenstein.

Remark 2.7. — Although Definition 2.5 may seem fairly ad hoc, it
is naturally motivated in the context of stacks. See Voight and Zureick-
Brown [15, Lemma 5.4.7] for a proof that Definition 2.5 is equivalent to the
stack-theoretic description.

TOME 66 (2016), FASCICULE 6
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Definition 2.8. — Let D ∈ Div X . If z 6= 0 is a rational section of
O(D) denote the order of zero of z at P by ordDP (z).

Definition 2.9. — The log spin canonical ring of (X ,∆, L) is

R(X ,∆, L) :=
⊕
k>0

H0(X , kL).

When the log spin curve is fixed, we usually use R or RL to represent
R(X ,∆, L).

Remark 2.10. — Suppose (X ,∆, L) is a log spin curve. Note that L is
of the form

L =
r∑
i=1

ei − 1
2ei

Pi +
s∑
i=1

aiQi

where ai ∈ Z and ei are odd. This is due to the fact that L ∈ Div X : if some
ei were even, then ei−1

2ei would be in reduced form implying L /∈ Div X .

Remark 2.11. — Except in degenerate cases, such as when the signature
is (0; 3, 3, 3; 0) as covered in the first line of Table 7.5, we have the following
important restriction on the generators of RL. For each ei in the signature
of X , there will be at least one generator with degree 0 mod ei and at
least one generator with degree −2 mod ei. Although this is an important
restriction on the generators, we will not use this in the remainder of the
paper.

Remark 2.12. — Suppose (X ,∆, L) is a log spin curve. Note that deg ∆
is even. because 2·degL = deg ∆+degbKc = deg ∆+2(g−1). In particular,
we shall often use deg ∆ 6= 1.

2.2. Saturation. We define the notion of the saturation of a divisor, as
can be found in Voight and Zureick-Brown [15, Section 7.2]. The classifica-
tion of the saturations of log spin canonical divisors are used in the proof
of the main theorem and the various lemmas in Section 4.

Definition 2.13. — Let D be a divisor on X . The effective monoid of
D is the monoid

Eff(D) := {k ∈ Z>0 : degbkDc > 0}.

Definition 2.14. — The saturation of a monoid M ⊆ Z>0, denoted
sat(M), is the smallest integer s such that M ⊇ Z>s, if such an integer
exists.

Remark 2.15. — For D ∈ Div X , we will often call sat(Eff(D)) the
saturation of a divisor D. For examples, see Subsection 7.1.
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2.3. Monomial Ordering. Here we give a brief overview of the three
monomial orderings that we use. For further reference on monomial order-
ings, initial ideals, and Gröbner bases, see Eisenbud [7, Section 15.9] and
Cox–Little–O’Shea [6, Chapter 2].
Definition 2.16. — Let k[x1, . . ., xn] be a graded polynomial ring with

deg xi = ki and let α :=
∏n
i=1 x

fi
i ∈ k[x1, . . ., xn] be a monomial. Then we

define the degree of α to be

degα :=
n∑
i=1

kifi.

Definition 2.17. — The graded reverse lexicographic order, or grevlex
≺grevlex is defined as follows. If α :=

∏n
i=1 x

fi
i and β :=

∏n
i=1 x

f ′
i
i are mono-

mials in k[x1, . . ., xn], then α �grevlex β if either

(2.1) degα =
n∑
i=1

kifi >

n∑
i=1

kif
′
i = deg β

or

(2.2) degα = deg β and fi < f ′i for thelargest i such that fi 6= f ′i .

Remark 2.18. — Note that the ordering of the variables matters in
Equation (2.2).
Our inductive arguments in Section 4 will usually have an inclusion R ⊇

R′ of log spin canonical rings such that RL is generated by elements xi
and R is generated over RL′ by elements yj . In these cases, it is natural to
consider term orders which treat these sets of variables separately.
Definition 2.19. — The block term order is defined as follows. Let

k[y1, . . . , ym] and k[x1, . . . , xn] be weighted polynomial rings with deg yi =
ci, deg xi = ki. Further assume we are given existing term orders ≺y and
≺x. Let α :=

∏m
j=1 y

hi
j

∏n
i=1 x

fi
i and β :=

∏m
j=1 y

h′
i
j

∏n
i=1 x

f ′
i
i be monomials

in k[y1, . . . , ym]⊗ k[x1, . . . , xn]. Let αy :=
∏m
j=1 y

hi
j be the part of α in

k[y1, . . . , ym] and likewise with αx, βy, and βx.
In the (graded) block (or elimination) term ordering on k[yk′

1,1, . . . ,

yk′
m,m

]⊗ k[xk1,1, . . . , xkn,n], we define α � β if
(i) degα > deg β or
(ii) degα = deg β and αy �y βy or
(iii) degα = deg β and αy = βy and αx �x βx.
Now we give brief definitions of initial terms and Gröbner bases. These

will be used in the proofs of the inductive lemmas in Section 4 as well as
in the proof of Theorem 1.1.
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Definition 2.20. — Let ≺ be an ordering on k[x1, . . ., xn], with
deg xi = ki, and let f ∈ k[x1, . . . , xn] be a homogeneous polynomial. The
initial term in≺(f) of f is the largest monomial in the support of f with
respect to the ordering ≺. Furthermore, we set in≺(0) := 0.

Definition 2.21. — Let I be a homogeneous ideal of k[x1, . . ., xn].
Then the initial ideal in≺(I) of I is the ideal generated by the initial terms
of homogeneous polynomials in I:

in≺(I) := 〈in≺(f)〉f∈I

Definition 2.22. — Let I be a homogeneous ideal of k[x1, . . ., xn].
A Gröbner basis for I, also known as a standard basis for I, is a set of
elements in I such that their initial terms generate the initial ideal of I.

3. Examples

In this section, we work out several examples of computing presentations
for spin canonical rings. In addition to providing intuition for the lemmas
of Section 4, these examples also serve as useful base cases for our inductive
proof of Theorem 1.1.

Example 3.1. — Let (X ′, 0, L′) be a log spin curve of genus g = 1, with
L′ = 0. Counting dimensions, we see h0(X , kL′) = 1 for all k ∈ Z>0 so it
is immediately clear that RL′ ∼= k[x] with x a generator in degree 1.

Remark 3.2. — In the following examples, in order to find the Hilbert
series of a stacky curve, we will cite [17, Theorem 4.2.1]. Note that [5,
Theorem 3.1] restates [17, Theorem 4.2.1] with the restriction that the
dimension of the orbifold (which is the same as a stacky curve in dimen-
sion 1, by [15, Proposition 6.1.5],) is strictly more than 1. The statement
holds equally well when the dimension is 1, but this restriction is included
in [5, Theorem 3.1] because in birational geometry “orbifolds” usually re-
fer to a normal variety ramified only in codimension at least 2, while the
stacky points we are dealing with appear in codimension 1.

Example 3.3. — Let (X , 3 · ∞, L) be a stacky curve with coarse space
X and signature (0; 3; 3). Let P1 denote the lone stacky point which has
stabilizer order 3 and suppose ∞ is a fixed closed point of X that is not
equal to P1.
Recall the notation LX = bLc ∈ DivX (i.e. the divisor without any

stacky points). We will deduce the structure of the log spin canonical ring

ANNALES DE L’INSTITUT FOURIER
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RL from the structure of the spin canonical ring RLX := R(X, 3 · ∞, LX).
This technique will later be generalized in Lemma 4.4.
Note that RLX ∼= k[x1, x2] where deg x1 = deg x2 = 1. To see this,

observe that we will need two generators in degree 1 because h0(X,LX) =
2 by Riemann–Roch. Because LX is very ample, we have that RLX is
generated in degree 1. To conclude, note that RLX does not have any
relations. If there exists some relation, then dimProj RLX < 1. This would
contradict the fact that LX is very ample. Thus, Proj RLX ∼= X which has
dimension 1.
Next, we construct generators and relations for RL using those of RLX .

Note that we have a natural inclusion ι : RLX ↪→ RL induced by the
inclusions H0(X , kLX) ↪→ H0(X , kL) for each k > 0. By Riemann–Roch,
we see there is some element y1,3 ∈ (RL)3 with ordP1(y1,3) = −1, not in
the image of the inclusion ι. We claim that there exist a1, a2 ∈ k and a
degree 4 polynomial f(x1, x2) ∈ k[x1, x2] such that

RL ∼= k[x1, x2, y1,3]/(a1x1y1,3 + a2x2y1,3 + f(x1, x2))

First, note that x1, x2, y1,3 generate all of RL from the Generalized Max
Noether Theorem for genus zero curves from Voight and Zureick-Brown [15,
Lemma 3.1.1]. That is, the maps

H0(X , 3L)⊗H0(X , (k − 3)L)→ H0(X , kL)

are surjective for k > 4. A relation of the form a1x1y1,3 + a2x2y1,3 +
f(x1, x2) = 0 must exist because h0(X , 4L)−h0(X , 4LX) = 1, but x1y1,3
and x2y1,3 define two linearly independent elements with nontrivial image
in the 1-dimensional vector space H0(X , 4L)/H0(X , 4LX). So, we obtain
a surjection

(3.1) k[x1, x2, y1,3]/(a1x1y1,3 + a2x2y1,3 + f(x1, x2))→ RL.

To complete the example, it suffices to show there are no additional
relations. One method would be to use [17, Theorem 4.2.1] to write down
the Hilbert series and then check this agrees with the Hilbert series of the
ring we constructed above. Here is an alternative method: First, note that
a1x1y1,3 + a2x2y1,3 + f(x1, x2) is irreducible because there are no relations
among x1, x2 and y1,3 in lower degrees. Hence, k[x1, x2, y1,3]/(a1x1y1,3 +
a2x2y1,3 + f(x1, x2)) is integral and is 2-dimensional. Thus, the map (3.1)
defines a surjection from an integral 2-dimensional ring to a 2-dimensional
ring. Therefore, it is an isomorphism.

Example 3.4. — Let (X ′, 0, L′) be a log spin curve with signature σ =
(0; 3, 7, 7; 0) and L′ ∼ −∞ + 1

3P1 + 3
7P2 + 3

7P3, where P1, P2, and P3 are
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distinct points. In this example, we will exhibit a minimal presentation for
R′ = R(X ′, 0, L′) and show that R′ is generated as a k-algebra in degrees
up to e := max(5, 3, 7, 7) = 7 with relations generated in degrees up to
2e = 14. Notice that degbkKX ′c = −k + bk3 c+ 2b 3k

7 c.
First, by [17, Theorem 4.2.1], the Hilbert series of this log spin curve is

P(X ′,0,L′)(k) = 1− 2k+ k2− 2k3 + k4

(1− k)2 + k3

(1− k)(1− k3) +2 k3 + k5 + k7

(1− k)(1− k7) .

For k = 0, 1, 2, . . . we have

P(X ′,0,L′)(k) = 1, 0, 0, 1, 0, 1, 1, 2, 1, 1, 2, 1, 3, 2, 3, . . .

soR′ must have some generators x3,1, x5,1, x7,1, x7,2 with xi,j ∈H0(X ′, iL′).
By the Generalized Max Noether Theorem for genus 0 curves (see Voight

and Zureick-Brown [15, Lemma 3.1.1]),

(3.2) H0(X ′, 21 · L′)⊗H0(X ′, (k − 21)L′)→ H0(X ′, kL′)

is surjective whenever deg(b(k− 21)L′c) > 0. It is fairly easy to see, by use
of Riemann–Roch, that the saturation of L′ is 5 (see Definition 2.14). Then
the map in (3.2) is surjective when k > 21 + s = 26 (i.e. R′ is generated up
to degree 25).
To show that these generate all of R′, we need to show that all

H0(X ′, kL′) are generated by lower degrees for k = 6 and 7 < k 6 25.
This can be seen by checking these remaining cases via pole degree con-
siderations or using the generalized Max Noether’s theorem. Thus, R′ is
generated in degrees {3, 5, 7, 7}.
By relabelling the variables if necessary, we can assume that x7,1 corre-

sponds to the generator with maximal pole order at P2 and x7,2 correspond
to the generator with maximal pole order at P3. We then have two relations

a1x
2
5,1 + a2x7,2x3,1 + a3x7,1x3,1 = 0 in degree 10

b1x
2
7,2 + b2x7,2x7,1 + b3x

2
7,1 + b4x5,1x

3
3,1 = 0 in degree 14.

Note that a1 and b1 are both nonzero. For example, if a1 = 0, we would
have

a2x7,2x3,1 = −a3x7,1x3,1

implying that a2 = a3 = 0, which would mean there is no relation at all. A
similar pole order consideration in forcing b1 to be nonzero.
Let I be the ideal generated by these relations in k[x7,2, x7,1, x5,1, x3,1].

Under grevlex with x3,1 ≺ x5,1 ≺ x7,1 ≺ x7,2, the initial ideal of I is

in≺(I) = 〈x2
7,2, x

2
5,1〉
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since a1 and b1 are nonzero. Since this ring has Hilbert series equal to
P(X ′,0,L′)(k), we have found all the relations.

Therefore, the canonical ring R′ has presentation R′ = k[x7,2, x7,1, x5,1,

x3,1]/I with initial ideal in≺(I) generated by quadratics under grevlex with
x3,1 ≺ x5,1 ≺ x7,1 ≺ x7,2. Thus, R′ is generated up to degree e = 7 with
relations up to degree 2e = 14, as desired.

Example 3.5. — Let (X ′, 0, L′) be a log spin curve of genus 1 with
L′ = P −Q+ 1

3P1 + 1
3P2. In this example, we show that

RL′ ∼= k[u, x3, y3, y4]/(x3y3 − αuy4, y
2
4 − βx2

3u− γy2
3u).

Let u ∈ H0(X , 2L′) be any nonzero element, let x3 ∈ H0(X , 3L′) be an
element with a pole at P1 but not at P2 and y3 ∈ H0(X , 3L′) be an element
with a pole at P2 but not at P1. Let y4 ∈ H0(X , 4L′) be an element with
a pole of order 1 at both P1 and P2. Note that x3 and y3 exist because the
linear systems 3P − 3Q ∼ P −Q, 3P − 3Q + P1, and 3P − 3Q + P1 + P2
are 0, 1, and 2 dimensional respectively.
Then, there exist constants α, β, γ ∈ k so that RL′ ∼= k[u, x, y3, y4]/(xy3−

αuy4, y
2
4−βx2u−γy2u). The proof of this is fairly algorithmic: We may first

write down the Hilbert series of (RL′)n over k using [17, Theorem 4.2.1],
then verify that these generators and relations produce the correct number
of independent functions via an analysis of zero and pole order. The details
are omitted as it is analogous to Example 3.4.

Example 3.6. — Let (X ′, 0, L′) be a log spin curve of genus 1 with
L′ = P − Q + 2

5P1. Let x2 ∈ (RL)2 be any nonzero element. We obtain
Div x2|P1 = 0, since 2P − 2Q ∼ 0 and by Riemann–Roch, dimk(PL)2 = 1.
Let y3 ∈ (RL)3 be any nonzero element. We obtain Div y3|P1 = −P1, by
Riemann–Roch, since if y3 did not have a pole at R, we would obtain
y3 ∈ H0(X , 3P − 3Q) ∼= H0(X , P − Q) ∼= 0 as P 6= Q. Finally, let
y5 ∈ (RL)5 be an element with y5|P1 = −P1. Then, we claim there is some
α ∈ k so that

RL ∼= k[x2, y3, y5]/(y4
3 − αx2y

2
5).

In order to show this is an isomorphism, one can write down the Hilbert
series using [17, Theorem 4.2.1] and then use pole order considerations
at P1 to check the above relation exists. One can then check that the
generators and relation determine a ring with the desired Hilbert series.
The verification is analogous to Example 3.4 and is omitted.
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Remark 3.7. — Examples 3.4, 3.5, and 3.6 are used as inductive base
cases in the genus 0 and genus 1 sections (see Tables 7.2 and 6.1).
We will come back to Examples 3.4 and 3.5 in Examples 4.10 and 4.11,

respectively, when checking an admissibility condition that will be defined
when introducing the lemmas used in Subsection 4.2 (see Definition 4.9).

4. Inductive Lemmas

First we present several lemmas which provide the inductive steps for the
proof of the main theorem (Theorem 1.1). In Subsection 4.1 we prove three
lemmas which determine the generators and relations of RL = RL′+α

β P

from those of RL′ , where L′ ∈ Q ⊗ DivX and α
β ∈ Q. In Subsection 4.2,

we prove an inductive lemma allowing us to transfer information about the
log spin canonical ring of a stacky curve to those of stacky curves with
stabilizer orders incremented by 2 and fixed log divisor and stacky points.

4.1. Adding Points. First, we give a criterion to determine if a set of
monomials generates the initial ideal of relations of k[x1, . . . , xm] → RD.
This criterion will be used repeatedly to show that a given homogeneous
ideal is in fact the ideal of relations.

Lemma 4.1. — Suppose L, L′ ∈ Q ⊗ DivX with L = L′+α
βP , such that

RL′ generated by x1, . . . , xm and RL is minimally generated by y1, . . . , yn
over RL′ . Let I ′ and I be the ideals of relations of φ′ : k[x1, . . . , xm]→ RL′

and φ : k[x1, . . . , xm, y1, . . . yn] → RL respectively. Suppose there are sets
of monomials S ⊆ RL − RL′ and T ⊆ RL − (S ∪ R′L), and a monomial
ordering ≺ such

(1) S forms a k-basis for RL over R′L
(2) T � S � k[x1, . . . , xn] (meaning all monomials in T are bigger

than all monomials in S which are bigger than all monomials in
k[x1, . . . , xn])

(3) All monomials in k[x1, . . . , xm, y1, . . . , yn] lie in

S ∪ 〈T 〉 ∪ in≺(I ′)k[x1, . . . , xm, y1, . . . , yn] ∪ k[x1, . . . , xm]

Then,

in≺(I) = in≺(I ′)k[x1, . . . , xm, y1, . . . , yn] + 〈T 〉.
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Idea of Proof. — To show ⊇, we show that T ⊆ in≺(I), which fol-
lows immediately from (1) and (2). We deduce ⊆ by noting that we can
reduce any monomial in k[x1, . . . , xm, y1, . . . , yn] to a monomial in the ba-
sis S via a set of relations whose initial terms include each monomial in
in≺(I ′)k[x1, . . . , xm, y1, . . . , yn] + 〈T 〉.

Proof. — First, notice that I ′ ⊆ I so

in≺(I) ⊇ in≺(I ′)k[x1, . . . , xm, y1, . . . , yn].

Now, let f ∈ T . Since S forms a k-basis of RL over RL′ by (1), we can
write a relation f−(

∑
g∈S′ Cgg)−r = 0 for some finite subset S′ ⊆ Sdeg(f),

Cg ∈ k for all g ∈ S′, and r ∈ RL′ . This demonstrates that in≺(I) ⊇ T ,
and hence

in≺(I) ⊇ in≺(I ′)k[x1, . . . , xm, y1, . . . , yn].
To complete the proof, it suffices to show the reverse inclusion holds.

By (2), any polynomial G ∈ k[x1, . . . , xm, y1, . . . , yn] with in≺(φ(G)) ∈ S
cannot have a term in T . Furthermore, since S forms a k-basis for RL over
RL′ by (1), and in≺(φ(G)) ∈ S, we obtain φ(G) /∈ RL′ ⊆ RL. Thus, G = 0
is not a relation, so f 6∈ in≺(I). Therefore,

in≺(I) ⊆ RL − S.

In particular, there are no monomials in I with initial terms in S. Finally,
note that

in≺(I) ∩ k[x1, . . . , xm] = in≺(I ′).
By (3), every monomial of k[x1, . . . , xm, y1, . . . , yn] is an element of either

S, 〈T 〉, or in≺(I ′)k[x1, . . . , xm, y1, . . . , yn]. Therefore,

in≺(I) ⊆ in≺(I ′)k[x1, . . . , xm, y1, . . . , yn] + 〈T 〉. �

To apply Lemma 4.1, we will need an appropriate monomial ordering.
The following definition provides the necessary ordering for the Lemma 4.4.

Definition 4.2. — Suppose L is a divisor of X such that RL is gen-
erated by x1, . . . xm. Then we have a map φ : k[z1, . . . zm] → RL, zi 7→ xi.
If P is a point in X, then φ defines a graded-P -lexicographic order (short-
ened to graded P -lex) on k[z1, . . . , zm] as follows. If f =

∏m
i=1 zi

qi and
g =

∏m
i=1 zi

ri with f 6= g, then f ≺ g if one of the following holds:
(1) deg(f) < deg(g)
(2) deg(f) = deg(g) and − ordP (f) < − ordP (g)
(3) deg(f) = deg(g), − ordP (f) = − ordP (g), and qi > ri for the largest

i such that qi 6= ri
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Remark 4.3. — Observe that Definition 4.2 remains the same if we
replace − ordP with − ordL

′

P for any divisor L′ of X.

One can easily verify graded P -lex is a monomial ordering in the sense
defined in Cox–Little–O’Shea [6, Chapter 2, §2, Definition 1].
We are almost ready to state Lemma 4.4, which will yield an induc-

tive procedure for determining the generators and relations of RD, where
D ∈ DivP1 is an effective Q-divisor. Whereas O’Dorney considers arbi-
trary Q-divisors in Div(P1) [11, Theorem 8], we restrict attention to effec-
tive divisors and in Lemma 4.4 we obtain much tighter bounds. Moreover,
Lemma 4.4 also extends to curves of genus g > 0. We next prove the first
of three lemmas used to inductively add points.

Lemma 4.4. — Let X be a genus g curve and let L′ ∈ Q⊗DivX satisfy
h0(X, bL′c) > 1. Suppose P is not a base-point of kL′ for all k ∈ N, meaning
we can choose generators u, x1, . . . , xm of RL′ in degree at most τ for some
τ ∈ N, with deg u = 1, ordL

′

P (xi) = 0 for all 1 6 i 6 m, and ordL
′

P (u) = 0.
Suppose L = L′ + α

βP for some α, β ∈ N such that α
β is reduced and

(4.1) h0(X, bkLc) = h0(X, bkL′c) +
⌊
k
α

β

⌋
for all k ∈ N.

Then,
(a) RL is generated over RL′ by elements y1, . . . , yn where deg(yi) =

ki < β, − ordL
′

P (yi) = ci for some ki’s and ci’s such that ci < ci+1 6
α and ki 6 ki+1 6 β for all i.

(b) Choose an ordering ≺ on k[u, x1, . . . , xm] such that

ordu(f) < ordu(h) =⇒ f ≺ h.

Equip k[y1, . . . , yn] with graded P -lex, as defined in Definition 4.2,
and equip k[y1, . . . , yn] ⊗ k[u, x1, . . . , xm] with block order. If I ′ is
the ideal of relations of k[u, x1, . . . , xm]→ RL′ and I is the ideal of
relations of k[u, x1, . . . , xm, y1, . . . , yn]→ RL, then

in≺(I) = in≺(I ′)k[u, x1, . . . , xm, y1, . . . , yn] + 〈Ui : 1 6 i 6 n− 1〉+ 〈V 〉

where V = {xiyj : 1 6 i 6 m, 1 6 j 6 n} and Ui is the set of
monomials of the form

∏i
j=1 y

aj
j with aj ∈ N>0 such that

(U-1)
∑i
j=1 ajcj > ci+1,

(U-2) there does not exist (b1, . . . bi) 6= (a1, . . . ai) with all bj 6 aj
and

∑i
j=1 bjcj > ci+1,

(U-3) there does not exist r < i such that
∑r
j=1 ajcj > cr+1.
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(c) Let τ = max(1,max16i6m(deg(xi))). Then, RL is generated over
R′L in degrees up to β with I generated over I ′ in degrees up to
max(2β, β + τ).

Idea of proof. — The proof will be fairly involved. To show part (a), we
use Riemann–Roch to reduce the problem to one of finding primitives of
cones; we then apply previous work on continued fractions to deduce these
primitives. To conclude this part of the problem, we show by dimension
count that these primitives induce all the generators of RL over RL’.
First define a set of generators of RL over RL′ . We then use Riemann–

Roch to count the dimension of RL over RL′ and show that the set of
elements we produce forms a basis.
Next, part (b) immediately follows from the conclusion of Lemma 4.1,

reducing the proof to verifying the hypotheses of that lemma. The first two
hypotheses follow immediately from the definition of block order. Checking
the third condition is quite technical, but follows from the construction of
V and the Ui’s.

Proof.

Part (a). — By Equation (4.1), for any k ∈ N such that bkαβ c > 0,

h0(X, kL) = h0(X, kL′) +
⌊
k
α

β

⌋
.

Thus, there exist rational sections ti of O(bkLc) with ordL
′

P (ti) = i for
any i ∈ {0, . . . , bkαβ c}. This reduces the problem at hand to finding the
primitives of the cone in Z× Z with x and y coordinates, bounded by the
lines y = 0 and y = α

βx.
Cohn’s geometric interpretation of Hirzebruch–Jung fractions, as de-

scribed in [12] yields an explicit formula for these primitives, as given in [12,
Proposition 4.3]. All primitives lie in degrees at most β (since points in de-
gree γ = β + ω can be written as a sum of points in degree β with those
in degree ω). Note that if two primitives had the same y coordinate, then
they would differ by a multiple of (1, 0) and thus could not both be gen-
erators. So, all the ci’s (the y-coordinates of the primitives) are distinct,
and we may assume ci < ci+1 for all i. Furthermore, note that in any de-
gree k greater than 1, there can be at most one primitive, since we can
construct points with y coordinates between 0 and bkαβ c as a sum of el-
ements in degree 1 and degree k − 1, and these new primitives have pole
order greater than all primitives of smaller x-coordinate. Therefore, the
ordering of primitives with ci < ci+1 for all i also ensures that the x-values
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ki are in weakly increasing order. Finally, let y1, . . . , yn be elements of RL
with pole orders given by c1, . . . , cn and degrees given by the x coordinates
of the corresponding primitives.
We now recursively define a k-basis for RL over RL′ . Define

S0 = {ul : l ∈ N>0}

and for each i ∈ N, suppose cj is the maximal element of c1, . . . , cn such
that cj 6 i. Note that such a cj exists because 1 = c1 6 i. Define

Si = yj · Si−j .

Since each yj has pole order cj , this recursive construction ensures that

z ∈ Si =⇒ − ordL
′

P (z) = i.

Then define

(4.2) S =
∞⋃
i=1

Si.

Note that S0 is not part of this union and in fact S ∩ S0 = ∅ by pole order
considerations.
By Equation (4.1) for k ∈ N,

h0(X, bkLc) = h0(X, bkL′c) +
⌊
k
α

β

⌋
,

so S contains elements in degree k ∈ N with each pole order in {1 . . . , bkαβ c}.
Thus, by dimension counting, S forms a k-basis for RL over RL′ , and we
have proven part (a).

Part (b). — Let S be as defined in Equation (4.2), define Ui and V as
in the lemma’s statement, and set

T =
(
n−1⋃
i=1

Ui

)
∪ V.

We check that S, T , and≺meet the hypothesis of Lemma 4.1. In part (a),
we showed that S forms a k-basis for RL over RL′ giving condition (1)
of Lemma 4.1. Our choice of monomial order in k[y1, . . . , yn] and block
order for k[y1, . . . , yn] ⊗ k[u, x1, . . . , xm, y1, . . . , yn] implies that T � S �
k[u, x1, . . . , xm], giving condition (2) of Lemma 4.1.

It only remains to check condition (3) of Lemma 4.1. To do this,
suppose f ∈ k[u, x1, . . . , xm, y1, . . . , yn] is a monomial not contained in
k[u, x1, . . . , xm], meaning there is some j such that yj |f . Further suppose
f 6∈ 〈V 〉, meaning that for each i ∈ {1, . . .m}, xiyj - f . Since yj | f but
xiyj - f , we obtain xi - f . Therefore, f ∈ k[u, y1, . . . , yn]. We note that
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S generates yj · (k[u, y1, . . . , yn]) as a k-algebra. That is, all monomials of
k[u, x1, . . . , xm, y1, . . . , yn] are contained in

k[u, x1, . . . , xm] ∪ V ∪
(

n⋃
i=1

yi · k[u, y1, . . . , yn]
)
.

Notice that S generates the ideal (y1, . . . , yn) considered as an ideal of the
subring k[u, y1, . . . , yn]. If f ∈ S, then f = ub

∏n
j=1 yj

aj . Let l be maximal
such that al 6= 0. Fix i ∈ {1, . . . , n}. If yi · f /∈ S, define

bj =
{
aj if j 6= i

aj + 1 if j = i.

Then, there is some h ∈ N such that i 6 h 6 max(i, l) satisfying
∏h
j=1 y

bj
j 6∈

S ∪ S0, and for all r < h we have
∏r
j=1 yj

bj ∈ S ∪ S0. Choose some tuple
(γ1, . . . , γn) which is minimal, in the sense that we cannot decrease any γj
and have the following still satisfied: each γj 6 bj and

∏h
j=1 yj

γj 6∈ S ∪ S0.
Our recursive definition of S and the fact that

∏r
j=1 yj

bj ∈ S ∪ S0 implies
that for each 1 6 r < h, we have

∏r
j=1 yj

γj ∈ S ∪ S0.
We now check that

∏h
j=1 y

γj
j ∈ Uh, by checking conditions (U-1), (U-2),

and (U-3). Notice that if r 6 n, ω1, . . . ωr ∈ Z>0, and
∏r
j=1 y

ωj
j ∈ S,

then our definition of S implies yr
∏r
j=1 y

ωj
j ∈ S if and only if cr is max-

imal among c1, . . . cn not greater than than cr +
∑r
j=1 cjωj . Therefore,

since
∏h−1
j=1 y

bj
j ∈ S but

∏h
j=1 y

bj
j 6∈ S, ch must not be maximal (among

c1, . . . , cn) such that ch 6
∑h
j=1 bjcj , which means ch+1 6

∑h
j=1 bjcj .

Therefore
∑h
j=1 yj

γj satisfies (U-1).
Next, suppose we choose ω1, . . . , ωh such that ωj 6 γj for all j and ωl 6 γl

for some l. Then, for all r < h we have
∏r
j=1 yj

γj ∈ S, implying that for
all r < h we also have

∏r
j=1 yj

ωj ∈ S. Furthermore, since (γ1, . . . , γh) was
chosen to be minimal to satisfy the previous condition and that

∏h
j=1 yj

γj 6∈
S ∪ S0, we have

∏h
j=1 yj

ωj ∈ S. Therefore, ch is minimal among c1, . . . cn

that is not greater than
∑h
j=1 cjωj , so in particular

∑h
j=1 cjωj < ch+1;

therefore,
∏h
j=1 yj

γj satisfies condition (U-2). Since for each r < h, we
have

∏r
j=1 y

γj
j ∈ S meaning that

∑r
j=1 γjcj < cr+1, condition (U-3) holds

for
∏h
j=1 y

γj
j . Thus

∏h
j=1 y

γj
j ∈ Uh.

Since the ideal in k[u, y1, . . . , yn] generated by is S is (y1, . . . , yn) ·k[u, y1,

. . . , yn] and
⋃n−1
i=1 Ui contains every monomial in

⋃n
i=1 yi·k[u, y1, . . . , yn]−S,
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we have shown that all monomials of k[u, x1, . . . , xm, y1, . . . , yn] are con-
tained in

k[u, x1, . . . , xm] ∪ 〈V 〉 ∪ S ∪
〈
n−1⋃
i=1

Ui

〉
⊆ S ∪ 〈T 〉 ∪ in≺(I ′)k[u, x1, . . . , xm, y1, . . . , yn] ∪ k[u, x1, . . . , xm].

This shows condition (3) of Lemma 4.1 holds. Thus, the conditions of
Lemma 4.1 are met. Finally, Lemma 4.1 implies part (b).

Part (c). — Finally, (c) of this lemma follows immediately by looking
at the constructions of parts (a) and (b). �

Remark 4.5. — If αβ = ei−1
2ei for some odd ei ∈ N>3, then T , as defined

in the beginning of the proof of (b) in Lemma 4.4 consists only of terms of
the form xiyj and yiyj , which are quadratic in the generators.

Remark 4.6. — The generators in Lemma 4.4 are generic if αβ 6 1 (since
there is at most one positive ci

ki
with ki = 1). When α

β > 1, the choice of
generators in degrees great than 1 is generic; furthermore, we can make the
choice in degree 1 generic by choosing bαβ c linearly independent elements
in degree 1 with pole at P of order bαβ c rather than elements with poles of
order 1, . . . , bαβ c; this requires minor complications in the construction of
generators of the ideal of relations.

We now restrict our attention to log canonical rings of stacky curves.
Lemma 4.4 accounts for many of the induction cases when the spin canon-
ical ring is saturated in degree 1, as defined in Definition 2.14. We comple-
ment Lemma 4.4 with the following two lemmas that allow us to inductively
add points, under certain conditions when the spin canonical ring is satu-
rated in degree two or three.

Lemma 4.7. — Let (X ,∆, L) and (X ′,∆, L′) be log spin curves with
the same coarse space X = X ′ having signatures (g; e1, . . . , er; δ) and
(g, e1, . . . , er−1, δ), where er = 3. Suppose g > 0, and, if g = 1, then
deg 3L′ > 2. Then, by Riemann–Roch sat(Eff(L′)) 6 2. Furthermore, let
RL′ = k[x2, x3, x5, . . . , xm]/I ′ and let L = L′+ 1

3P , where P ∈ X is a base
point of L′ (which includes the case when H0(X, bL′c) = 0). Suppose for
i ∈ {2, 3}, we generically choose xi satisfying deg xi = i and ordL

′

P (xi) = 0.
Choose an ordering on k[x2, . . . , xm] that satisfies

ordx2(f) < ordx2(h) =⇒ f ≺ h.

Then, the following statements hold:
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(a) General elements yi ∈H0(X , iL) for i ∈ {3, 4} satisfy − ordL
′

P (yi) =
1 and any such choice of elements y3, y4, minimally generate RL over
RL′ .

(b) Equip k[y3, y4] with grevlex so that y3 ≺ y4 and equip the ring
k[y3, y4]⊗ k[x2, . . . , xm] with block order. Then,

in≺(I) = in≺(I ′)k[x, y3, y4] + 〈y4xj | 2 6 j 6 m〉+ 〈y2
4〉.

Proof. — First, note that when genus is at least we shall show the as-
sumptions on g imply H0(X , 3L), H0(X , 4L) are both basepoint-free: If
g > 2 then deg 3L > 2g − 1 and deg 4L > 2g − 1, so H0(X , 3L) and
H0(X , 4L) are base point free. If g = 1, we assume deg 3L > 2 > 2g − 1,
so we also have deg 4L > 2 > 2g − 1, so again H0(X , 3L) and H0(X , 4L)
are base point free.
Therefore, general elements y3 and y4 satisfy − ordL

′

P (yi) = 1 by
Riemann–Roch, proving part (a).
A quick computation checks that the set

S = {ya3xb2xε3 | a > 0, b > 0, ε ∈ {0, 1}} ∪ {ya3y4 | a > 0}

is a k basis for RL over RL′ , thus completing part (a).
Letting

T = {y4xj | 2 6 j 6 m} ∪ {y2
4}

a similar (but much easier) computation to that of lemma 4.4 determines
that S, T , and ≺, using the ordering defined in (b), meet the conditions of
Lemma 4.1. Hence, by Lemma 4.1, part (b) holds. �

Lemma 4.8. — Suppose L′ is a log spin canonical divisor of X ′ with
coarse spaceX of genus 0 such that sat(Eff(L′)) = 3 and RL′ ∼= k[x3, x4, x5,
. . . , xm]/I ′. Choose x3, . . . , xm such that − ordL

′

P (xi) = 0 for all i, which
is possible as X has genus 0. Let L = L′ + 1

3P . Suppose deg xi = i for
i ∈ {3, 4, 5} and that the ordering on k[x3, . . . , xm] satisfies

ordx3(f) < ordx3(h) =⇒ f ≺ h.

Then, the following statements hold.
(a) General elements yi ∈H0(X , iL) for i∈{3,4,5} satisfy− ordL

′

P (yi)=
1 and any such choice of elements y3, y4, and y5 minimally generate
RL over RL′ .

(b) Equip k[y3, y4, y5] with grevlex so that y3 ≺ y4 ≺ y5 and equip the
ring k[y3, y4, y5]⊗ k[x3, . . . , xm] with the block order. Then,

in≺(I) = in≺(I)k[y3, y4, y5, x3, . . . , xm] + 〈yixj | 4 6 i 6 5, 3 6 j 6 m〉
+ 〈yiyk | 4 6 i 6 j 6 5〉.
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Proof. — Since X has genus 0, general elements y3, y4, and y5 in weights
3, 4, and 5 respectively satisfy − ordL

′

P (yi) = 1. We see by pole order
considerations that

(4.3) S = {ya3xb3xε4xε
′

5 | a > 0, b > 0, (ε, ε′) ∈ {(0, 0), (0, 1), (1, 0)}}

∪ {ya3y4, y
b
3y5 | a > 0, b > 0}

forms a k basis for RL over RL′ , which concludes part (a) of the proof.
Setting

T = {yixj | 4 6 i 6 5, 3 6 j 6 m} ∪ {yiyk | 4 6 i 6 j 6 5}

we can argue similarly to Lemma 4.4 that S and T along with ≺ satisfy
the hypothesis of Lemma 4.1, concluding part (b). �

One can prove similar results in cases with different conditions on sat-
uration, base-point freeness, and the coefficients of added points, but only
the cases of Lemmas 4.4, 4.7, and 4.8 are needed for the remainder of this
paper. We next turn to an inductive method to increment the ei’s.

4.2. Raising Stabilizer Orders. In this subsection, we present Lem-
ma 4.15, whose proof is almost identical to one of Voight and Zureick-
Brown [15, Theorem 8.5.7]. Lemma 4.15 implies that if the main result,
Theorem 1.1, holds for a curve with signature (g; e′1, . . . , e′`, e′`+1 . . . , e

′
r; δ)

with e′`+1 = · · · = e′r satisfying an admissibility condition (cf. Defini-
tion 4.9), then Theorem 1.1 also holds for a curve with signature
(g; e′1, . . . , e′`, e′`+1 + 2, . . . , e′r + 2; δ).

First, we define a notion of admissibility that is quite similar to the
admissibility defined by Voight and Zureick-Brown [15, Definition 8.5.1].
Our notion is an adaptation the case of log spin canonical divisors.

One key difference between the notion of admissibility in Definition 4.9
and that of Voight and Zureick-Brown [15, Definition 8.5.1] is that we can-
not assume that {Pi} ∩ Supp(L′X) = ∅, as L′X may have no nonzero global
sections. We circumvent this issue by working with the orders of zeros and
poles relative to L′X , rather than relative to the OX , using Definition 2.8.

Definition 4.9. — Let (X ′,∆, L′) be a log spin curve, with coarse
space X and stacky points Q1, . . . , Qr. Let J ⊂ {1, . . . , r}. Let ei := e′i +
2χJ(i) where

χJ(i) =
{

1 if i ∈ J
0 otherwise.
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Let R′ be the canonical ring associated to X ′. Define (X ′, L′, J) to be
admissible if R′ admits a presentation

R′ ∼=
(
k[x1, . . . , xm]⊗ k[yi,e′

i
]i∈J

)
/I ′

with each yi,e′
i
viewed in R′ through the image of this isomorphism and

such that for each i ∈ J such that the following three conditions hold:
(Ad-i) First,

deg ye′
i

= e′i and − ordL
′
X

Qi
(yi,e′

i
) = e′i − 1

2 .

(Ad-ii) Second, every generator z ∈ {x1, . . . , xm} ∪ {yj,e′
i

: j ∈ J − {i}}
satisfies

− ordL
′
X

Qi
(z)

deg z <
e′i − 1

2e′i
.

(Ad-iii) Third, we have

degbeiL′c > max(2g − 1, 0) + max
k>0

#Sσ,J(i, k)

where

Sσ,J(i, k) := {j ∈ J : j 6= i and e′j + 2k | ei − e′j}.

Before using this admissibility condition in the lemmas of this section,
we give a few explicit examples for which admissibility holds.

Example 4.10. — Here, we explicitly check admissibility in the context
of Example 3.4. Recall that the setup is that (X ′, 0, L′) is a log spin curve
with signature σ := (0; 3, 7, 7; 0) and L′ ∼ −∞+ 1

3P1 + 3
7P2 + 3

7P3, where
P1, P2, and P3 are distinct points. We demonstrate that (X ′, L′, {2, 3}) is
admissible.
As shown in Example 3.4, the log spin canonical ring corresponding

to (X ′, 0, L′) has a presentation k[x7,2, x7,1, x5,1, x3,1]/I with xi,j ∈
H0(X ′, iL′). Furthermore, we were able to chose generators such that x7,1
has maximal pole order at P2 and x7,2 has maximal pole order at P3.
Use the presentation given above with y2,e′

2
:= x7,1 and y3,e′

3
:= x7,2.

We see that (X ′, L′, {2, 3}) immediately satisfies (Ad-i) of Definition 4.9.
Next we check (Ad-ii). We may also choose pole orders of the generators
such that yi,e′

i
is the only generator lying on the line −ordPi(z) = deg( 3k

7 z)
in the (deg z,−ordPi(z)) lattice and with the other generators lying below
the line as seen in Figure 4.1 (e.g. the pole orders (−ordP1(z), −ordP2(z),
−ordP3(z)) may be chosen to be (1, 1, 1), (1, 2, 2), (2, 3, 2), and (2, 2, 3) for
z = x3,1, x5,1, x7,1, and x7,2 respectively).
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Figure 4.1. Generators in the (deg z,−ordP2(z)) lattice

Also note that e′j + 2k = 7 + 2k - 2 = ei − e′j for all i, j ∈ J = {2, 3}
such that j 6= i and for all k > 0. Thus, sσ,J(i, k) = ∅ for each i ∈ J .
Furthermore, degbeiLc = degb9Lc = 2b 4·9

9 c + b 9
3c − 9 = 2, so (Ad-iii) is

satisfied and (σ,X ′, {2, 3}) is admissible.

Example 4.11. — Let (X ′, 0, L′) be a log spin curve of genus 1 with L′ =
P −Q+ 1

3P1 + 1
3P2, as in Example 3.5. Here, we check that (X ′, L′, {1, 2})

is admissible.
Recall that

RL′ ∼= k[u, x3, y3, y4]/(x3y3 − αuy4, y
2
4 − βx2

3u− γy2
3u).

We have two generators x3 and y3 in degree 3 with a pole of order 1 = 3−1
2

by construction. Hence, (Ad-i) holds. We next check (Ad-ii) for the point
P1, as the case of P2 is symmetric. Here, by construction

− ordP1(z)
ord(z) =

{
0 if z ∈ {u, y3}
1
4 if z = y4.

Since 0, 1
4 < 1

3 , (Ad-ii) holds. Finally, to check (Ad-iii), note that
maxk>0 Sσ,J(i, k) = 0. Therefore, degb5Lc = 2 > 1 = (2g − 1) + 0.

The following lemma will slightly strengthen condition (Ad-ii) from
Definition 4.9. This improvement is crucial in the proof of part (c) of
Lemma 4.15.

Lemma 4.12. — For any z as in condition (Ad-ii) of Definition 4.9 the
inequality (Ad-ii) implies the tighter inequality that

− ordL
′
X

Qi
(z) 6 deg(z)e

′
i − 1
2e′i

− 1
e′i

Proof. — We know by (Ad-ii) that

− ordL
′
X

Qi
(z) < deg(z)e

′
i − 1
2e′i
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If we write α
β = deg(z) e

′
i−1
2e′
i

as a fraction in lowest terms, then we see β | e′i
since e′i−1 is even. Therefore, since − ordL

′
X

Qi
(z) is an integer, we must have

− ordL
′
X

Qi
(z) 6 deg(z)e

′
i − 1
2e′i

− 1
β
6 deg(z)e

′
i − 1
2e′i

− 1
e′i
. �

Lemma 4.13. — If (X ′,∆, L′) is a log spin curve, (X ′, L′, J) is admis-
sible and W ⊆ J is any subset, then (X ′, L′,W ) is also admissible.

Proof. — Each of the conditions (Ad-i), (Ad-ii), and (Ad-iii) hold for W
if they hold for J . �

Remark 4.14. — For our inductive arguments in Theorems 5.6, 6.1,
and 7.4, we will often add in a single stacky point with stabilizer order 3.
Say (X ,∆, L) is a log spin curve with signature σ := (g; e1, . . . , er; δ) =
(g; 3, . . . , 3; δ), and our base cases include signatures σ characterized by one
of the following: cases, which we will soon refer to in Lemma 4.15:

(1) g = 0, e1 = · · · = er = 3, δ = 0, and r > 5
(2) g = 1, e1 = · · · = er = 3, δ = 0, and r > 2
(3) g > 2, e1 = · · · = er = 3, δ arbitrary, and r > 1.

Lemma 4.15. — Suppose (X ′,∆, L′) is a log spin curve with coarse
space X ′ and signature σ := (g; e′1, . . . , e′r; δ). Define R′ := RL′ . Further,
assume either

(1) (X ′, L′, J) is admissible with generators x1, . . . , xm ∈ R′ and yi,e′
i
∈

R′ for all i ∈ J , as in Definition 4.9 or
(2) σ is one of the signatures described in Cases (1), (2) and (3) of

Remark 4.14 and y1,3 = y2,3 = . . . = yr,3 is a rational section of
O(LX) with ordL

′
X

Pi
(y1,3) = 1 for 1 6 i 6 r.

Let (X ,∆, L) be another log spin curve with coarse space X, so that
X ∼= X ′ and with signature (g; e1, . . . , er; δ) such that ei = e′i + 2 for all
i ∈ J and ej = e′j for j /∈ J . Define R := RL. Then the following are true:

(a) For all i ∈ J , there exists yi,ei ∈ H0(X , ei(KX )) so that

− ordL
′
X

Qi
(yi,ei) = ei − 1

2
and

− ordL
′
X

Qj
(yi,ei)

deg(yi,ei)
6
e′j − 1

2e′j
− 1

deg(yi,ei)e′j
for all j ∈ J with j 6= i.

(b) A choice of elements y1,e1 , . . . , yr,er as in part (a) minimally gener-
ate R over R′.
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(c) Endow k[yi,ei ]i∈J and k[x1, . . . , xm, yi,e′
i
]i∈J with graded monomial

orders and give k[yi,ei ]i∈J ⊗ k[x1, . . . , xm, yi,e′
i
]i∈J block order. Let

I be the kernel of k[x1, . . . , xm, yi,e′
i
, yi,ei ]i∈J → R. Then,

in≺(I) = in≺(I ′)k[x, y]
+ 〈yj,ejxi : 1 6 i 6 m, j ∈ J〉
+ 〈yj,ejyi,e′

i
: i, j ∈ J, i 6= j〉

+ 〈yj,ejyi,ei : i, j ∈ J, i 6= j〉.

(d) The triple (X , L′, J) is admissible.

Idea of Proof. — The construction of the yi,ei in Part (a) uses Riemann–
Roch and condition (Ad-iii). The inequality in Part (a) follows from the fact
that L is similar to L′, but with some of the ei incremented by 2. Part (b)
follows because the sub-lattice spanned by yi,ei and yi,e′

i
has determinant

1 for i ∈ J , so the generators in Part (a) generate all of RL over RL′ . To
check part (c), we construct relations between the generators of RL over
RL′ : we note that an element lies in RL′ if and only if its pole order at
Pi for i ∈ J is not too large, and use Lemma 4.12 to bound pole orders.
Part (d) follows fairly easily from the definition of admissibility.

Proof. — We prove this in case (1). Case (2) follows a similar procedure.
Part (a): By Definition 4.9, for all i ∈ J

S(i, 0) = {j ∈ J : j 6= i and e′j | ei − e′j} = {j ∈ J : j 6= i and e′j | ei}.

Define
Ei =

∑
j∈S(i,0)

Qj .

The assumption (Ad-iii) implies

deg (eiL′ − Ei) > max(2g − 1, 0),

and so H0(X ′, eiL
′−Ei+Qi) is base point free by Riemann–Roch. Hence,

a general element

yi,ei ∈ H0(X ′, eiL
′ − Ei +Qi)

satisfies
− ordL

′
X

Qi
(yi,ei) =

⌊
ei
e′i − 1

2e′i

⌋
+ 1 = ei − 1

2 .

Noting that
beiL′c+Qi 6 beiLc,

we obtain an inclusion

H0(X ′, eiL
′ − Ei +Qi)→ H0(X , eiL− Ei) ⊆ H0(X , eiL)

ANNALES DE L’INSTITUT FOURIER



SPIN CANONICAL RINGS OF LOG STACKY CURVES 2365

meaning that yi,ei ∈ H0(X , eiL) satisfies the first part of claim (a).
We next show yi,ei also satisfies the second part of the claim of (a), by

considering separately the cases in which j ∈ S(i, 0), and j /∈ S(i, 0).
If j ∈ S(i, 0), then Ei > Qj gives yi,ei ∈ H0(X ′, eiL

′−Ei+Qi) an extra
vanishing condition at Qj , so

− ordL
′
X

Qj
(yi,ei) 6 ei

e′j − 1
2e′j

− 1 6 ei
e′j − 1

2e′j
− 1
e′j
.

If instead j 6= i and j /∈ S(i, 0), then since e′j - ei, we know ei
e′
j−1
2e′
j
/∈ Z,

so

− ordL
′
X

Qj
(yi,ei) 6

⌊
ei
e′j − 1

2e′j

⌋
6 ei

e′j − 1
2e′j

− 1
e′j
,

completing the proof of (a).
Part (b): Define R0 = R′ and for i ∈ {1, . . . , r}, inductively define

Ri =
{
Ri−1 if i /∈ J
Ri−1[yi,ei ] if i ∈ J.

To prove (b), it suffices to show that elements of the form yai,e′
i
ybi,ei with

a > 0, b > 0 form a k-basis for Ri over Ri−1. These elements do not lie
in Ri−1 because the pole order of yai,e′

i
ybi,ei at Qi is larger than that of

any element in the kth component of Ri−1. Additionally, these elements
are linearly independent amongst themselves because of injectivity of the
linear map

(a, b) 7→
(

deg
(
yai,e′

i
ybi,ei

)
,− ordL

′
X

Qi

(
yai,e′

i
ybi,ei

))
= (a, b)

(
ei − 2 ei−3

2
ei

ei−1
2

)
.

Furthermore, {yai,e′
i
ybi,ei : a > 0, b > 0} span Ri over Ri−1, because the set

of integer lattice points in the cone generated by the vectors
(
ei − 2, ei−3

2
)

and
(
ei,

ei−1
2
)
is saturated, because the corresponding determinant is

(ei − 2)ei − 1
2 − ei

ei − 3
2 = 1.

This completes part (b).
Part (c): To show (c), we wish to show that yi,eiz ∈ R′ for all generators

z of R′ with z 6= yi,ei and z 6= yi,e′
i
. By definition of H0(X , L′), note that

f ∈ R further satisfies f ∈ R′ if and only if for all j ∈ J we have

(4.4) − ordL
′
X

Qj
(f) 6 deg(f)

(
e′j − 1

2e′j

)
.

TOME 66 (2016), FASCICULE 6



2366 Aaron LANDESMAN, Peter RUHM & Robin ZHANG

Now fix i ∈ J . We check that Inequality (4.4) holds with f = yi,eiz, imply-
ing yi,eiz ∈ R′ in the three following cases:

Case 1: j /∈ {i} ∪ S(i, 0). — Here, L|Qj = L′|Qj , so

− ordL
′
X

Qj
(yi,ei)− ordL

′
X

Qj
(z) 6 ei

e′j − 1
2e′j

+ deg(z)
e′j − 1

2e′j
= deg(yi,eiz)

e′j − 1
2e′j

.

Case 2: j = i. — By part (a), condition (Ad-ii), and Lemma 4.12 we
have

− ordL
′
X

Qj
(yi,ei)− ordL

′
X

Qj
(z) 6 ej − 1

2 + deg(z)
(
e′j − 1

2e′j

)
− 1
e′j

= ej − 1
2 − 1

e′j
+ deg(z)

(
e′j − 1

2e′j

)

= ej(ej − 3)
2(ej − 2) + deg(z)

(
e′j − 1

2e′j

)

= deg(yi,eiz)
e′j − 1

2e′j
.

Case 3: j ∈ S(i, 0). — In this case, we may first assume z 6= yj,ej , as
this is covered by case 2, with i and j reversed. Hence,

− ordL
′
X

Qj
(z) 6 deg z

e′j − 1
2e′j

,

implying

− ordL
′
X

Qj
(yi,ei)− ordL

′
X

Qj
(z) 6 ei

e′j − 1
2e′j

+ deg z
e′j − 1

2e′j
= deg(yi,eiz)

e′j − 1
2e′j

,

completing part (c).

Part (d): To check (d), we show (Ad-i), (Ad-ii), and (Ad-iii) are satisfied.
We know (Ad-i) holds by part (b), taking the yi,ei as the generators in
degree ei. Next, (Ad-ii) is strictly monotonic in the ei and hence also holds
for (X , J). Finally, if (Ad-iii) holds for e then it holds for e+2 by definition.
This is where we use that (Ad-iii) holds for k > 0 and not just for k = 0. �

Corollary 4.16. — Suppose (X ′, L′, J ′) is admissible with signature
σ′ = (e′1, . . . , e′r) or σ satisfies one of the conditions of Remark 4.14. Let
J ′ = {t, t + 1, . . . , r} and e′1 6 e′2 6 · · · 6 e′t = e′t+1 = · · · = e′r, so that
(X ′,∆, L) satisfies the conditions of Lemma 4.15 and Theorem 1.1. Then,
for any spin curve (X ,∆, L) so that X and X ′ have the same coarse
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space X = X ′ with the same set of stacky points, and X has signature
(g; e1, . . . , er; δ) with e1 6 e2 6 · · · er so that

ei = e′i if i /∈ J
ei > e

′
i if i ∈ J

then Theorem 1.1 holds for (X ,∆, L).

Proof. — For t 6 i 6 r, let (Xi,∆, Li) be the log spin curve with coarse
space Xi so that Xi = X ′, with the same stacky points as (X ′,∆, L), and
having signature (g; e1, . . . .ei−1, ei, ei, . . . , ei; δ). Let Ji = {i, . . . , r}. Note
that (X0, L0, J0) = (X ′, L′, J ′) and (Xr, Lr, Jr) = (X , L, {r}).
Let (∗i) denote the condition that (Xi,∆, Li) satisfies the conditions of

Lemma 4.15 and Theorem 1.1, and (Xi, Li, Ji) is admissible. Since (∗0)
holds by assumption, it suffices to show that if (∗i) holds then so does
(∗i+1). Indeed, (Xi, Li, Ji+1) is admissible by an application of Lemma 4.13
and the fact that Ji+1 ⊆ Ji. Then, applying Lemma 4.15 with the fixed set
Ji+1 repeatedly ( ei+1−ei

2 many times) yields (∗i+1). �

5. Genus At Least Two

We now consider the case when the genus is at least 2. In this case, we are
able to bound the degrees of generators of RL and its ideal of relations. In
this section, we do not obtain explicit presentations of RL. This contrasts
with Sections 6 and 7 where we not only obtain bounds, but also obtain
inductive presentations. The tradeoff is that in the genus zero and genus
one cases, we have to deal with explicit base cases. In this section we apply
general results.

5.1. Bounds on Generators and Relations in Genus At Least
Two. The main result of this subsection is that for a log spin curve with
no stacky points (X,∆, L), the spin canonical ring RL is generated in de-
gree at most 5, with relations in degree at most 10. The case that ∆ = 0
was completed by Reid [13, Theorem 3.4]. For ∆ > 0, the generation bound
is shown in Lemma 5.1 and the relations bound is shown in Lemma 5.4.
Throughout this subsection, we will implicitly use Remark 2.12, which im-
plies deg 2L > 2g so H0(X, 2L) is basepoint-free by Riemann–Roch. We
summarize the results of this subsection in Corollary 5.5.
The proofs of this subsection results are similar to those in Neves [10,

Proposition III.4 and Proposition III.12]. However, the statements differ,
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as we assume ∆ > 0 instead of ∆ = 0 and do not assume there is a
basepoint-free pencil contained in H0(X,L).

Lemma 5.1. — Let (X,∆, L) be a log spin curve of signature (g;−; δ),
(where − means X is a bona fide scheme and has no stacky points,) with
g > 2 and ∆ > 0. Let s1, s2 ∈ H0(X, 2L) be two independent sections
such that the vector subspace V = span(s1, s2) ⊆ H0(K) is basepoint-free.
Then, the map

V ⊗H0(nL)→ H0((n+ 2)L)
is surjective if n > 4. In particular, RL is generated in degree at most 5.

Proof. — To show there are no new generators in degree at least 6, it
suffices to show that if n > 4, the map

H0(nL)⊗H0(2L)→ H0((n+ 2)L)

is surjective. Indeed, since V = span(s1, s2) ⊆ H0(K) is basepoint-free, by
the basepoint-free pencil trick (see [14, Lemma 2.6] for a proof), we obtain
an exact sequence

0 −→ H0((n− 2)L) −→ V ⊗H0(nL) f−→ H0((n+ 2)L)

We wish to show f is surjective. Note that dimk ker f = dimkH
0((n −

2)L) = (n− 3)(g− 1 + δ
2 ) using Riemann–Roch and the assumption n > 4.

Additionally, dimk V ⊗H0(nL) = 2·(n−1)(g−1+ δ
2 ), again using Riemann–

Roch. Therefore,

dimk im f = 2 · (n− 1)(g − 1 + δ

2)− (n− 3)(g − 1 + δ

2)

= (n+ 1)(g − 1 + δ

2) = dimkH
0((n+ 2)L).

Ergo, f is surjective. �

The next step is to bound the degrees of the relations of RL when ∆ > 0.
This is done in Proposition 5.4 by using the basepoint-free pencil trick to
show that if a relation lies in a sufficiently high degree, it lies in the ideal
generated by the relations in lower degrees. In Definition 5.2, we fix notation
for the ideal generated by lower degrees relations:

Definition 5.2. — Let (X,∆, L) be a log spin curve of signature
(g;−; δ) with g > 2 and ∆ > 0. Choose generators x1, . . . , xn of RL so
that we obtain a surjection φ : k[x1, . . . , xn]� RL with kernel IL. Let IL,k
be the kth graded piece of IL and define

JL,k =
k−1∑
j=1

k[x1, . . . , xn]j · IL,k−j .
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Lemma 5.3. — Let (X,∆, L) be a log spin curve of genus g > 2, so
that ∆ > 0. Choose generators x1, . . . , xn of RL so that we obtain a sur-
jection φ : k[x1, . . . , xn] � RL with kernel IL. Let s1, s2 ∈ k[x1, . . . , xn]2
be two elements so that span(φ(s1), φ(s2)) = V ⊆ H0(X, 2L) is basepoint-
free. For any f ∈ k[x1, . . . , xn] such that deg f > 11, there exist g, h ∈
k[x1, . . . , xn]k−2 so that s1g + s2h ≡ f mod JL,k.

Proof. — By Lemma 5.1, deg xi 6 5 for 1 6 i 6 n. Therefore, we may
write f =

∑n
i=1 aixi with ai ∈ k[x1, . . . , xn]k−deg xi . We next show that

for all 1 6 i 6 n there exist gi, hi ∈ k[x1, . . . , xn]k−deg xi−2 so that ai =
s1gi + s2hi mod IL,deg ai .
By Lemma 5.1,

V ⊗H0((deg f − deg xi − 2)L)→ H0((deg f − deg xi)L)

is surjective because deg f > 11 implies that

deg ai = deg f − deg xi − 2 > 4.

In particular, there exist αi, βi ∈ RL so that

φ(ai) = φ(s1) · αi + φ(s2) · βi.

Choosing gi, hi ∈ k[x1, . . . , xn]deg(ai)−2 for 1 6 i 6 n so that φ(gi) =
αi, φ(hi) = βi, we have

ai ≡ s1gi + s2hi mod IL,deg ai ,

as claimed.
Finally, we may then take g =

∑
i gixi, h =

∑
i hixi, so that

f ≡
∑
i

aixi ≡
∑
i

(s1gi + s2hi)xi ≡ s1

(∑
i

gixi

)
+ s2

(∑
i

hixi

)
≡ s1g + s2h mod JL,k. �

Proposition 5.4. — Let (X,∆, L) be a log spin curve of signature
(g;−; δ) with g > 2 and ∆ > 0. Then IL is generated in degree at most 10.

Proof. — Suppose f ∈ IL with deg f > 11. To complete the proof, it
suffices to show f ∈ JL,k. By Lemma 5.3, this is the same as checking
s1g + s2h ∈ JL,k where φ(s1), φ(s2) ∈ H0(X, 2L) are two sections so that
span(φ(s1), φ(s2)) = V ⊆ H0(K) is basepoint-free. Consider the map

V ⊗H0((deg f − 2)L) f−→ H0((deg f)L),

we know that φ(s1)φ(g) + φ(s2)φ(h) 7→ 0. So by the explicit isomor-
phism given in the proof of the basepoint-free pencil trick, as shown in
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the proof of [14, Lemma 2.6], there exists some ρ ∈ k[x1, . . . , xn] so that
φ(ρ) ∈ H0((deg f−4)L) satisfies φ(g) = φ(s2)φ(ρ) and φ(h) = −φ(s1)φ(ρ).
Therefore, g ≡ s2ρ mod IL,k−2 and h ≡ −s1ρ mod IL,k−2. Hence,

s1g + s2h ≡ s1(s2ρ) + s2(−s1ρ) ≡ 0 mod JL,k. �

We now summarize what we have shown.

Corollary 5.5. — Let (X,∆, L) be a log spin curve of signature
(g;−; δ) with g > 2. Then X has minimal generators in degree at most
5 and minimal relations in degree at most 10.

Proof. — If δ = 0, the result is immediate from Reid [13, Theorem 3.4].
Otherwise, if δ > 0, the bound on the degrees of minimal generators follows
from Lemma 5.1, while the bound on the degrees of minimal relations
follows from Proposition 5.4. �

5.2. Main Theorem for Genus At Least Two. We are ready to
prove our main theorem, Theorem 1.1 in the case g > 2. The idea of the
proof is to use Corollary 5.5 to complete the base case when L = LX
and then apply Lemma 4.4, Lemma 4.7, and Lemma 4.15 to complete the
induction step.

Theorem 5.6. — Let g > 2 and let (X ,∆, L) be a log spin curve with
signature (g; e1, . . . , er; δ). Then the log spin canonical ring R(X ,∆, L) is
generated as a k-algebra by elements in degree at most e=max(5, e1, . . . , er)
with minimal relations in degree at most 2e.

Proof. — As the base case, let L = LX ∈ DivX satisfy 2L ∼ 2KX + ∆.
By Corollary 5.5, the theorem holds for (X ,∆, LX).

Next, suppose the theorem holds for L′ = LX +
∑r−1
i=1

1
3Pi. Let L be a

log spin canonical divisor of the form L = LX +
∑r
i=1

1
3Pi, which means

that L = L′ + 1
3Pr. If Pr is a basepoint of L′, then the theorem holds for

L by Lemma 4.7. Otherwise, Pr is not a basepoint of L′, meaning that in
particular RL′ is saturated in 1. Therefore, since Pr is a not basepoint of
L′, Equation (4.1) holds by Riemann–Roch. In this case, the theorem holds
for L by Lemma 4.4.
We have thus shown the theorem for all (X ,∆, L) with g > 2 and

signature (g; 3, . . . , 3; δ). Therefore, by Corollary 4.16, this theorem holds
for all log spin curves (X ,∆, L). �

Remark 5.7. — For this remark, we retain the terminology from the
proof of Theorem 5.6. Suppose e := max(e1, . . . , er). Then, RL has a gen-
erator in degree e when e > 5 and a relation in degree at least 2e− 4 when
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e > 7. Since the proof of Theorem 6.1 is given by inductively applying Lem-
mas 4.4 and 4.7, we obtain that RL is minimally generated over RL′ by
an element in degree e, assuming e > 5. Furthermore, if e > 7 and ei = e,
then there must be a relation with leading term yi,ei · yi,ei−4. Hence, there
is a relation in degree at least 2e − 4. Further, by examining the state-
ments of Lemma 4.4 and 4.7 in the case that there are 1 6 i < j 6 r

with ei = ej = e, then, there is necessarily a relation with leading term
yi,ei · yj,ej in degree 2e. This analysis also applies to the cases that g = 0
and g = 1.

6. Genus One

In this section, we prove Theorem 1.1 in the case that g = 1. We follow
a similar inductive strategy as in the genus g > 2 case, except unlike in the
g > 2 case we obtain explicit generators and relations here.
In the case of a genus 1 curve, X with no stacky points, we know KX ∼

0, and therefore the only possibilities for log spin canonical divisors are
L′ ∼ 0 or L′ ∼ P − Q where P,Q are distinct points, fixed under the
hyperelliptic involution. We inductively construct presentations by adding
points through Lemmas 4.4 and 4.7 and incrementing the values of the ei’s
using Lemma 4.15.

6.1. Genus One Base Cases. In this subsection we set up the base
cases needed for our inductive approach, of proving Theorem 1.1 in the
case g = 1.

L′ Generator Degrees Degrees of Minimal Relations e

0 {1} ∅ 1
3
7P1 {1, 5, 7} {15} 7

1
3P1+ 1

3P2 {1, 3, 3} {6} 5
P−Q+ 2

5P1 {2, 3, 5} {12} 5
P−Q+ 1

3P1+ 1
3P2 {2, 3, 3, 4} {6, 8} 5

Table 6.1. Genus 1 Base Cases

Generators and relations for RL′ with L′ = 0, L′ = P − Q + 1
3P1 +

1
3P2, and L′ = P − Q + 2

5P1 were checked in Examples 3.1, 3.5, and 3.6
respectively. Note that admissibility for (X ′, 0, P − Q + 1

3P1 + 1
3P2) is
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verified in Example 4.11. The verification of admissibility for the other
cases is similar.
The base cases of L′ = 3

7P1 and L′ = 1
3P1 + 1

3P2 can be similarly com-
puted. Although L′ = P −Q + 2

5P1, and L′ = 3
7P1 are used as base cases

for the induction, they are also exceptional cases; see Table 6.2.

6.2. Genus One Exceptional Cases. Let X be a stacky curve, with
P,Q distinct hyperelliptic fixed points on X. The following table provides
a list of all cases which are not generated in degrees e := max(5, e1, . . . , er)
with relations in degrees 2e, as described in Theorem 6.1.

L′ Generator Degrees Degrees of Minimal Relations e

P −Q {2} ∅ 1
P −Q+ 1

3P1 {2, 3, 7} {14} 5
P −Q+ 2

5P1 {2, 3, 5} {12} 5
1
3P1 {1, 6, 9} {18} 5
2
5P1 {1, 5, 8} {16} 5
3
7P1 {1, 5, 7} {15} 7

Table 6.2. Genus 1 Exceptional Cases

We have already checked the case of L′ = P −Q+ 1
5P1 above in Exam-

ple 3.6. The other cases are similar.

6.3. Main Theorem for Genus One. We now have all the tools nec-
essary to prove our main theorem, 1.1 in the case g = 1.

Theorem 6.1. — Let (X ,∆, L) log spin curve with signature σ :=
(1; e1, . . . , er; δ). If g = 1, then the log spin canonical ring R(X ,∆, L) is
generated as a k-algebra by elements of degree at most max(5, e1, . . . , er)
and has relations in degree at most 2e, so long as σ does not lie in a finite
list of exceptional cases, as listed in Table 6.2.

Idea of Proof. — We check the theorem in two cases, depending on if
δ > 0. If δ > 0, we first check that the theorem holds for LX by inductively
adding in log points to the base case of L′X = 0. Then we check that the
theorem holds for L by adding stacky points and then inductively raising
the stabilizer orders of stacky points in the following sequence of steps.
When raising the stacky orders, it is important that we increment the sta-
bilizer orders of as many stacky points as possible to maintain admissibility
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for the maximal possible sets of stacky points. Then, we may also use the
fact that raising the stabilizer orders of any subset of these maximal sets
of stacky points will still preserve admissibility.
The check for δ = 0 is similar, although in this case we do not need to

add in log points, only stacky points, and we will need to utilize the base
cases from Subsection 6.1.

Proof.

Case 1: δ > 0. — If δ > 0, we must have δ > 2, by Remark 2.12. In
this case, let LX ∈ DivX satisfy 2LX ∼ KX + ∆. We have degLX > 1, so,
by Riemann–Roch, h0(X , L) > 1. Therefore, L is linearly equivalent to an
effective divisor. Thus, without loss of generality, we may assume L is an
effective divisor.
We first now show the theorem holds for LX by induction. Since LX is

effective, we may induct on the degree of the log spin canonical divisor. The
base case is easy: the theorem holds for L′X = 0 by Example 3.1. Assume it
holds for L′X ∈ DivX, with L′X effective. We will show it holds for L′X +P ,
verifying the inductive step. There are two cases, depending on whether P
is a basepoint of L′X .

First, if P is not a basepoint of L′, then the hypotheses of Lemma 4.4
are satisfied. Therefore, by Lemma 4.4, the theorem holds for L = L′ + P .

Otherwise, P is a basepoint of L′X , so the hypotheses of Lemma 4.7 are
satisfied since deg 3(L′X) > 2 as degL′X > 1. Therefore, by Lemma 4.7, the
theorem holds for LX = L′X +P . By induction, the theorem holds for LX .

To complete the case that δ > 0, we now need show the theorem holds
for a stacky log spin canonical divisor L. It suffices to show that if the
theorem holds for a log spin canonical divisor L′ with degbL′c > 0, then
it holds for L′ + ei−1

2ei Pi with ei odd. As above, if P is not a basepoint of
L′ then the theorem holds for L′ + ei−1

2ei Pi by Lemma 4.4. On the other
hand, if P is a basepoint of L′ then the theorem holds for L′ + ei−1

2ei Pi by
Lemma 4.7.

Case 2: δ = 0. — Since δ = 0, we may write L = LX +
∑r
i=1

ei−1
2ei Pi.

There are now two further subcases, depending on whether LX = 0 or
LX = P −Q for P and Q two distinct hyperelliptic fixed points.
Case 2a: LX = P − Q,P 6= Q. — Note that we are assuming L is not

one of the exceptional cases listed in Table 6.2, so we may either assume
X has 1 stacky point with e1 > 5 or at least 2 stacky points.

First, we deal with the case X has at least 1 stacky point. By Exam-
ple 3.6, if L′ = P − Q + 2

5P1, then RL′ is generated in degrees 2, 3, and
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5 with a single relation in degree 12. Furthermore, (X , L′, {1}) is admis-
sible, and satisfies the hypotheses of Lemma 4.15. Observe that L′ itself
is an exceptional case, as it has a generator in degree 12 > 2 · 5. How-
ever, after applying Lemma 4.15, we see that P −Q+ 3

7P2 does satisfy the
constraints of this theorem, because only relations in degree 6 14 = 2 · 7
are added, and the relation in degree 12 coming from RL′ , lies in a degree
less than 2 · 7 = 14. Therefore, the Theorem holds for L′ = P −Q + 3

7P2.
Then, applying Lemma 4.15 e−7

2 times shows that the Theorem holds for
L = P −Q+ e−1

2e P1.
Second, we deal with the case that X has at least two stacky points. If

(X ′,∆, L′) is a spin canonical curve so that L′ = P −Q+ 1
3P1 + 1

3P2, then
as found in Example 3.5, the triple (X ′, 0, P −Q+ 1

3P1 + 1
3P2) satisfies the

hypotheses of Lemma 4.15. Therefore, applying Lemma 4.7 r− 2 times, we
see that the theorem holds for (X ′,∆′, L′) with L′ = P −Q +

∑r
i=1

1
3Pi.

Finally, by Corollary 4.16, this theorem holds for L′ = P−Q+
∑r
i=1

ei−1
2ei Pi,

as desired.
Case 2b: LX = 0. — This case is analogous to 2a: If there is only one

stacky point, we start at L = 3
7P1, and inductively increment the stabilizer

order. Note that by Table 6.1, L = 3
7P1, will have a relation in degree 15.

However, once e1 > 9, we have 2 · e1 > 15, so the theorem holds for such
stacky curves. Once the log spin canonical divisor has at least two stacky
points, the argument proceeds as in Case 2a. �

Remark 6.2. — In addition to the bound on the degree of the generators
and relations, as detailed in Theorem 6.1, the proof of Theorem 6.1 yields an
explicit procedure for computing those minimal generators and relations.
One can start with the generators and relations found in the base cases
and inductively add generators and relations as one adds stacky points
and increments stabilizer orders. As described in Remark 5.7, when e :=
max(e1, . . . , er) > 7, there is necessarily a generator in degree e and a
relation in degree 2e.

7. Genus Zero

We will prove that if (X ,∆, L) is a log spin curve and X has signature
σ := (0; e1, . . . , er; δ), then R(X ,∆, L) is generated in degree at most e :=
max(5, e1, . . . , er) with relations generated in degree at most 2e, so long as
σ does not lie in the finite list given in Table 7.5.

As noted in Remark 2.12, δ is even. Thus, we can reduce the problem
into two cases: δ > 2 and δ = 0. In the former case, L is linearly equivalent
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to an effective divisor, so the result of Theorem 1.1 follows immediately
by repeatedly applying Lemma 4.4 to add the necessary stacky points. On
the other hand, the proof when δ = 0 is more involved. We dedicate the
remainder of this section to that case in the following steps: characterizing
saturations (Subsection 7.1), describing base cases (Subsection 7.2), and
presenting exceptional cases (Subsection 7.3)(1) Finally, we apply inductive
processes using Lemma 4.8 and Lemma 4.15 to prove the main theorem in
the full genus zero case (Subsection 7.4).

Remark 7.1. — Since all points are linearly equivalent on P1
k, LX ∼ n∞

for some n ∈ N and KX ∼ −2∞. We will use this convention throughout
this section.

Signature σ Condition Saturation
(0; 3, 3, 3; 0) ∞
(0; 3, 3, 5; 0) 18
(0; 3, 3, 7; 0) 12
(0; 3, 3, 9; 0) 12
(0; 3, 5, 5; 0) 8
(0; 5, 5, 5; 0) 8

(0; 3, 3, 3, 3; 0) 6

(0; 3, 3, `; 0) ` > 9 9
(0; a, b, c; 0) not listed above 5

(0; e1, . . . , er; 0) not listed above 3

Table 7.1. Genus 0 Saturation

7.1. Saturation. First, we present the saturations of the log spin canon-
ical divisor (recall Definition 2.14) for all cases where g = 0 and δ = 0 in
Table 7.1. The saturations can be computed using Riemann–Roch. By clas-
sifying the saturations of all signatures, we can determine the base cases on
which we can apply inductive lemmas from Section 4. Note that the satu-
rations of log spin canonical divisors only depend on the signature here. In
Table 7.1, exceptional cases are listed first and generic cases follow.

(1)Several computations used to generate the tables in Subsection 7.2 and Subsec-
tion 7.3 were done using a modified version of the MAGMA code given in the work
of O’Dorney [11].
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7.2. Base Cases. In order to apply Lemma 4.8 and Lemma 4.15 when
δ = 0, we need to determine appropriate base cases that will cover all but
finitely many signatures by induction. Here we provide such base cases and
demonstrate that they satisfy all of the necessary conditions of Lemma 4.8
and Lemma 4.15 (e.g. admissibility as defined in Definition 4.9). We also
show that that the associated log spin canonical rings are generated in
degree at most e := max(5, e1, . . . , er) with relations generated in degree
at most 2e.

Lemma 7.2. — Let (X ′,∆, L′) be a log spin curve with signature σ :=
(0; e1, . . . , er; 0). Then, R′ := RL′ is generated by elements of degree at
most e = max(5, e1, . . . , er) with relations in degree at most 2e. Further-
more, each of the cases in Table 7.2 satisfy the conditions of Lemma 4.15
(i.e. either (X ′, L′, J) = (X ′,−∞ +

∑r
i=1

ei−1
2ei Pi, J) is admissible or the

stabilizer orders are all 3 as per Case (1) of Remark 4.14):

Case Signature σ J e

(a) (0; 3, 3, 11; 0) {3} 11
(b) (0; 3, 5, 9; 0) {3} 9
(c) (0; 3, 7, 7; 0) {2, 3} 7
(d) (0; 5, 5, 7; 0) {3} 7
(e) (0; 5, 7, 7; 0) {2, 3} 7
(f) (0; 7, 7, 7; 0) {1, 2, 3} 7
(g) (0; 3, 3, 3, 5; 0) {4} 5
(h) (0; 3, 3, 5, 5; 0) {3, 4} 5
(i) (0; 3, 5, 5, 5; 0) {2, 3, 4} 5
(j) (0; 5, 5, 5, 5; 0) {1, 2, 3, 4} 5
(k) (0; 3, 3, 3, 3, 3; 0) {1, 2, 3, 4, 5} 5

Table 7.2. Genus 0 Base Cases

Proof. — Recall that the generator and relation degree bounds for
case (b) are proven in Example 3.4 and the admissibility condition is
checked in Example 4.10. For the remaining cases, we follow a similar
method to find a presentation satisfying the desired conditions. The log
spin canonical ring R(X ′, 0, L′) is generated as a k-algebra by elements
of degree at most e with relations in degree at most 2e for each case as
described in the Table 7.3.
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Case Generator Degrees Degrees of Relations e

(a) {3, 7, 9, 11} {14, 18} 11
(b) {3, 5, 7, 9} {12, 14} 9
(c) {3, 5, 7, 7} {10, 14} 7
(d) {3, 5, 5, 7} {10, 12} 7
(e) {3, 5, 5, 7, 7} {10, 10, 12, 12, 14} 7
(f) {3, 5, 5, 7, 7, 7} {10, 10, 10, 12, 12, 12, 14, 14, 14} 7
(g) {3, 3, 4, 5} {8, 9} 5
(h) {3, 3, 4, 5, 5} {8, 8, 9, 9, 10} 5
(i) {3, 3, 4, 5, 5, 5} {8, 8, 8, 9, 9, 9, 10, 10, 10} 5
(j) {3, 3, 4, 5, 5, 5, 5} {8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10} 5
(k) {3, 3, 3, 4, 4, 5} {6, 7, 7, 8, 8, 8, 9, 9, 10} 5

Table 7.3. Generators and Relations for Genus 0 Base Cases

We can also always find a presentation for these cases such that they
satisfy (Ad-i) and (Ad-ii) and that in≺(I ′) is generated by products of
two monomials. Again, the procedure to verify these is similar to that in
Example 3.4 and Example 4.10.
Furthermore, each case always satisfies (Ad-iii) as demonstrated in Ta-

ble 7.4. Notice that the ei and {e′j : j 6= i} are equivalent for any choice of
i ∈ J for these cases, so degbeiLc and maxk>0 #S(σ,J)(i) are independent
of the choice of i.

Thus, all of the cases are admissible and satisfy the additional desired
conditions. �

7.3. Exceptional Cases. In this subsection, we describe the cases that
are not covered by induction, which are also the only exceptions to Theo-
rem 1.1 in the case g = 0. In Table 7.5 We present the explicit generators
and relations for the remaining cases given by signatures in the finite set

S := {(0; 3, 3, `; 0) : 3 6 ` 6 9 odd}
∪ {(0; 3, 5, 5; 0), (0; 3, 5, 7; 0), (0; 5, 5, 5; 0), (0; 3, 3, 3, 3; 0)}

Remark 7.3. — These cases give all of the exceptions to the e and 2e
bounds on the generator and relation degree. Notice that each of these
exceptional cases, apart from (0; 3, 5, 7; 0), also has exceptional saturation
as seen in Table 7.1. Intuitively, these exceptional saturations can be viewed
as “forcing” generators and relations in higher degrees than expected.
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Case Signature σ J degbeiLc maxk>0 #S(σ,J)(i)
(a) (0; 3, 3, 11; 0) {3} 1 0
(b) (0; 3, 5, 9; 0) {3} 1 0
(c) (0; 3, 7, 7; 0) {2, 3} 2 0
(d) (0; 5, 5, 7; 0) {3} 1 0
(e) (0; 5, 7, 7; 0) {2, 3} 2 0
(f) (0; 7, 7, 7; 0) {1, 2, 3} 3 0
(g) (0; 3, 3, 3, 5; 0) {4} 2 0
(h) (0; 3, 3, 5, 5; 0) {3, 4} 3 0
(i) (0; 3, 5, 5, 5; 0) {2, 3, 4} 4 0
(j) (0; 5, 5, 5, 5; 0) {1, 2, 3, 4} 5 0
(k) (0; 3, 3, 3, 3, 3; 0) {1, 2, 3, 4, 5} 5 0

Table 7.4. Checking (Ad-iii) for Genus 0 Base Cases

Signature σ Generator Degrees Degrees of Relations e

(0; 3, 3, 3; 0) {3} ∅ 5
(0; 3, 3, 5; 0) {3, 10, 15} {30} 5
(0; 3, 3, 7; 0) {3, 7, 12} {24} 7
(0; 3, 3, 9; 0) {3, 7, 9} {21} 9
(0; 3, 5, 5; 0) {3, 5, 10} {20} 5
(0; 3, 5, 7; 0) {3, 5, 7} {17} 7
(0; 5, 5, 5; 0) {3, 5, 5} {15} 5

(0; 3, 3, 3, 3; 0) {3, 3, 4} {12} 5

Table 7.5. Genus 0 Exceptional Cases

7.4. Main Theorem for Genus Zero. Now we can combine the base
cases from Subsection 7.2 with the inductive lemmas of Section 4.

Theorem 7.4. — Let (X ,∆, L) log spin curve with signature σ :=
(0; e1, . . . , er; δ). Then, the log spin canonical ring R(X ,∆, L) is generated
as a k-algebra by elements of degree at most e = max(5, e1, . . . , er) and has
relations in degree at most 2e, so long as σ does not lie in the finite list of
exceptional cases in Table 7.5.

Idea of Proof. — The method of this proof is almost identical to that of
Theorem 6.1. When δ > 0, we first add in log points, and then increment
the stabilizer orders of stacky points, checking that the theorem holds at
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each step. The more technical case occurs when δ = 0. In this case, we
increment the stabilizer orders of stacky points starting from one of the
base cases, and check that every stacky curve can be reached by a sequence
of admissible incrementations from a base case.

Proof. — If X has no stacky points, then we can assume that L ∼ n · ∞
with n ∈ Z>−1. This is a classical case done by Voight and Zureick-
Brown [15, Section 4.2]. When n = −1, then RL = k. When n = 0, then
RL = k[x]. When n > 0, inductively applying Lemma 4.4 tells us that RL
is generated in degree 1 with relations generated in degree 2.
First, let us consider the case when δ > 2. In any such case, bLc is an

effective divisor and the conditions of Lemma 4.4 are satisfied. Thus, we
can apply the Lemma 4.4 inductively from the classical case with no stacky
points to get that R(X ,∆, L) is generated up to degree e.

By Remark 2.12, it only remains to deal with the case δ = 0, so L is not
necessarily effective. Let the signature σ be such that it is not one of the
exceptional cases contained in Table 7.5. We get the following three cases,
depending on the value of r:

Case 1: r < 3. — If r < 3, then degbkLc < 0 for all k > 0 so we have
the trivial case where R(X ,∆, L) = k.

Case 2: 3 6 r 6 5. — If 3 6 r 6 5 and σ is not one of the exceptional
cases, then we may apply Lemma 7.2 and Corollary 4.16 to an appropriate
base case from Table 7.2 and deduce that R(X , δ, L) is generated up to
degree e := max(5, e1, . . . , er) with relations generated up to degree 2e.

Case 3: r > 5. — If r > 5, then we can use Lemma 4.8 to add stacky
points with stabilizer order 3 to case (k) of Table 7.2, which corresponds to
(σ = (0; 3, 3, 3, 3, 3; 0), J = {1, 2, 3, 4, 5}). This case satisfies the conditions
of Lemma 4.8 (recall from Table 7.1 that sat(Eff(σ)) = 3), and the immedi-
ate consequence of parts (a) and (c) of Lemma 4.8 is that any R(X ′,∆, L′)
corresponding to signatures σ′ with ramification orders all equal to 3 for
any r > 5 is generated up to degree e′ := max(5, e′1, . . . , e′r) with relations
generated up to degree 2e′. Furthermore, these cases satisfy all of the con-
ditions of Lemma 4.15. Now we can apply Corollary 4.16 to deduce that
R(X , δ, L) is generated up to degree e := max(5, e1, . . . , er) with relations
generated up to degree 2e. �

Remark 7.5. — The proof of Theorem 7.4 in genus zero gives an explicit
construction of the generators and relations for the log spin canonical ring
RL. This is similar to the case of genus 1 in Remark 6.2. Furthermore,
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there is a generator in degree e and a relation in degree at least 2e − 4
when e := max(e1, . . . , er) is at least 7 (see Remark 5.7). This can be seen
from the inductive application of Lemmas 4.4, 4.7, and 4.8.

Remark 7.6. — Here, we describe how to obtain a slightly better bound
for our application to modular forms from Example 1.7 in the cases g = 0
and g = 1. When g = 0, a careful scrutiny of Theorem 7.4 reveals that, if
∆ > 0 and X has signature (0; 3, . . . , 3; δ), then RL is generated in weight
at most 4. Since δ > 0, LX is effective. Additionally, RLX is generated
in weight 1, and inductive applications of Lemma 4.4 only add generators
in weights 3 and 4 and relations in weight at most 8. Therefore, RL is
generated in weight at most 4 with relations in weight at most 8. Note
that a similar analysis of the proof of Theorem 6.1 yields that when g = 1,
congruence subgroups are generated in weight at most 4 with relations in
weight at most 8.

8. Further Research

In this section, we present several directions for further research.
(1) As noted in Remark 1.3, the proof of Theorem 1.1 gives an explicit

procedure for computing the generators and relations of RL when
the genus of X is 0 or 1. When X has genus at least 2, Lemmas 4.4
and 4.7 allow us to explicitly construct a presentation of RL from a
presentation of RLX where X is the coarse space X. However, ob-
taining a presentation for X requires nontrivial computation. This
suggests the following Petri-like question:

Question 8.1. — Is there a general structure theorem describ-
ing a set of minimal generators and relations of RL where (X,∆, L)
is a log spin curve with no stacky points?

(2) One direction for further research is to extend the results of this
paper to divisors D ∈ Div X on a stacky curve X , where nD ∼
K for some integer n greater than 2. The canonical ringsof such
divisors often arise as rings of fractional weight 2

n modular forms.
For more details on fractional weight modular forms, see Adler and
Ramanan [2, p. 96] and Milnor [9, §6].

Question 8.2. — If X is a stacky curve and D ∈ Div X with
nD ∼ K, where K is the canonical divisor of X , can one bound
the degrees of generators and relations of RD?
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When g = 0 and D is effective, inductively applying Lemma 4.4
gives an affirmative answer to this question: If X has signature
(g; e1, . . . , er; δ) then RD is generated in degree at most e =
max(e1, . . . , er) with relations in degree at most 2e. It may be pos-
sible to modify the proof of Lemma 4.15 to extend to the setting
of fractional weight modular forms. Suitable generalizations of the
lemmas of Section 4 might allow one to follow similar questions to
this paper and provide a general answer to Question 8.2.

(3) The generic initial ideal encapsulates the idea of whether the rela-
tions for RL are generically chosen. See Voight and Zureick-Brown
[15, Definition 2.2.7] for a precise definition of the generic initial
ideal. The proof of Theorem 1.1 is decidedly non-generic. In par-
ticular, Lemma 4.15 constructs generators with non-maximal pole
orders at certain points, making the relations non-generic.
Question 8.3. — If (X ,∆, L) is a log spin curve, can one write

down the generic initial ideal explicitly?
(4) In Subsection 5.1, we reference the work of Reid [13, Theorem 3.4].

We use his proof that the spin canonical ring is generated in degree
at most 5 with relations in degree at most 10 in the non-log, non-
stacky case when genus is at least 2. We extend this bound of 5
and 10 to the log case, and then apply our inductive lemmas to add
stacky points and obtain bounds of e = max(5, e1, . . . , er) and 2e.
However, Reid in fact proves something slightly stronger [13, Theo-
rem 3.4]: that in most cases his bound is actually 3 and 6 with well-
characterized exceptions. Generalizing this slightly stronger bound
to the (non-stacky) log case case would allow us to inductively apply
the lemmas from Section 4 and improve Theorem 1.1 as follows:
Question 8.4. — When g > 2, can the bounds in Theorem 1.1

on the degrees of generation and relations be reduced from
e := max(5, e1, . . . , er) and max(10, 2e1, . . . , 2er) to e′ := max(4, e1,

. . . , er) and 2e′, apart from well a characterized list of families?
Remark 8.5. — Note that when L is not effective and X has a

stacky point, RL must have a generator in degree 4 with maximal
pole order at one of the stacky points. Therefore, these bounds
cannot in general be reduced further to e′′ := max(3, e1, . . . , er)
and 2e′′.

(5) While Theorem 1.1 gives a set of generators and relations for the
log spin canonical ring RL, these sets are not necessarily minimal.
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In many of the g = 0 and g = 1 cases, it is not too difficult to
see that our inductive procedure yields a minimal set of relations
for RL. One might investigate whether the generators and relations
given by the inductive proof of Theorem 1.1 are always minimal.
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