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NON-REDUCTIVE AUTOMORPHISM GROUPS, THE
LOEWY FILTRATION AND K-STABILITY

by Giulio CODOGNI & Ruadhaí DERVAN (*)

Abstract. — We study the K-stability of a polarised variety with non-reduc-
tive automorphism group. We associate a canonical filtration of the co-ordinate
ring to each variety of this kind, which destabilises the variety in several examples
which we compute. We conjecture this holds in general. This is an algebro-geometric
analogue of Matsushima’s theorem regarding the existence of constant scalar cur-
vature Kähler metrics. As an application, we give an example of an orbifold del
Pezzo surface without a Kähler-Einstein metric.
Résumé. — Nous étudions la K-stabilité des variétés polarisées telles que leur

groupe d’automorphismes ne soit pas réductif. Nous construisons une filtration ca-
nonique, que l’on appelle filtration de Loewy, de l’anneau des coordonnées homo-
gènes, qui déstabilise la variété dans beaucoup d’exemples. Nous conjecturons que
cette filtration déstabilise toutes les variétés avec groupe d’automorphismes non
réductif. Ceci est un analogue algébro-géométrique du théorème de Matsushima
sur la non-existence de métriques Kahleriennes avec courbure scalaire constante
sur les variétés avec un groupe d’automorphismes non réductif. En tant qu’appli-
cation, nous donnons un exemple de surface orbifolde de del Pezzo qui n’admet pas
de métrique de Kähler-Einstein.

One of the most important problems in complex geometry is to under-
stand the relationship between the existence of certain canonical metrics
and algebro-geometric notions of stability. For vector bundles, the funda-
mental result is that a vector bundle admits a Hermite-Einstein metric if

Keywords: K-stability, reductive groups, Kähler-Einstein metrics, radical filtration.
Math. classification: 32Q26, 32M99, 32Q20, 17B20.
(*) This project started during the school “Minicourses on Stability” at the University
of Coimbra in April 2014; we thank the organisers for the stimulating environment. We
would like to thank Giovanni Cerulli Irelli, Jesus Martinez Garcia, Julius Ross, Roberto
Svaldi, Filippo Viviani and Xiaowei Wang for useful discussions. Both authors would
especially like to thank David Witt Nyström and Jacopo Stoppa for several discussions
on the present work. We thank the referee for several helpful comments. The research
leading to these results has received funding from the European Research Council under
the European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC Grant
agreement no. 307119. GC was funded by the grants FIRB 2012 “Moduli Spaces and
Their Applications” and by the ERC StG 307119 - StabAGDG. RD was funded by a
studentship associated to an EPSRC Career Acceleration Fellowship (EP/J002062/1)
and a Fondation Wiener-Anspach Scholarship.



1896 Giulio CODOGNI & Ruadhaí DERVAN

and only if it is slope polystable. Moreover, when the vector bundle is un-
stable, it admits a unique Harder-Narasimhan filtration of subsheaves such
that each quotient is semistable.
The analogous question for polarised varieties (X,L) is the question of

existence of constant scalar curvature Kähler (cscK) metric in the first
Chern class of L. Here the notion of stability is K-polystability, and the
Yau-Tian-Donaldson conjecture states that (X,L) admits a cscK metric if
and only if it is K-polystable [11]. Loosely speaking, one assigns a certain
weight (called the Donaldson-Futaki invariant) to each flat degeneration
(called a test configuration) of (X,L); K-semistability requires that this
weight is non-negative for every test configuration. This is a weaker notion
than K-polystability, and it is known, for example, that when X is smooth
that the existence of a cscK metric implies K-semistability [12]. The Yau-
Tian-Donaldson conjecture has recently been proven when X is Fano with
L = −KX , so that the metric is Kähler-Einstein [2, 5, 27].
Through the work of Witt Nyström [28] and Székelyhidi [25, 26], one

can interpret test configurations as admissible filtrations of the co-ordinate
ring. Roughly speaking, a filtration is called admissible if it is multiplicative
and satisfies a linear boundedness condition. This is reviewed in Section 1.
The approach to K-polystability via filtrations has at least two advan-

tages. The first is conceptual: by including filtrations with non finitely
generated Rees algebra, the notion of K-polystability is enhanced; this is
discussed in [26]. A classical example where non-finitely generated filtra-
tions naturally occur is Zariski’s example, as presented in [13, Section 5.5].
The second is more practical: in some situations, it is easier to produce and
describe examples of filtrations rather than of test configurations.

A natural geometric situation in which (X,L) admits no cscK metric
is when X is smooth and the automorphism group Aut(X,L) is non-
reductive [20]. Therefore, in this case, one would expect that such (X,L) is
not K-polystable. The goal of the present work is to construct a canonical
filtration of the co-ordinate ring of a variety with non-reductive automor-
phism group. We call this filtration the Loewy filtration; it is defined in
Section 2.

Theorem A. — Let (X,L) be a polarised variety. Then, the Loewy
filtration is admissible. Moreover, the Loewy filtration is Aut(X,L)-equi-
variant, and is trivial if and only if Aut(X,L) is reductive.

This result means that we can test K-polystability with this filtration.

ANNALES DE L’INSTITUT FOURIER



THE LOEWY FILTRATION 1897

Conjecture B. — Suppose (X,L) is a polarised variety with non-
reductive automorphism group. Then the Loewy filtration destabilises
(X,L).

In Section 3, we prove this conjecture in several cases.

Theorem C. — The Loewy filtration destabilises the following vari-
eties:

(i) P2 blown up at one point with respect to all polarisations.
(ii) P2 blown up at n points on a line, with L = aH − b(E1 . . .+ En).
(iii) The Hirzebruch surfaces with respect to all polarisations.
(iv) Some projective bundles over P1 with respect to all polarisations.
(v) A projective bundle over P2 with respect to the anti-canonical po-

larisation.
(vi) An orbifold del Pezzo surface with respect to the anti-canonical

polarisation.

It follows that none of the above polarised varieties admit constant scalar
curvature Kähler metrics.

A motivation for studying Conjecture B is its relation to the proof of the
Yau-Tian-Donaldson conjecture. One of the main technical steps in Chen-
Donaldson-Sun’s proof that a K-polystable Fano manifold admits a Kähler-
Einstein metric was to show, using analytic methods, that if a Kawamata
log terminal Fano variety admits a Kähler-Einstein metric, then its auto-
morphism group is reductive [6, Theorem 4]. It is known, however, that
the existence of a Kähler-Einsten metric on such singular Fano varieties
implies K-polystability [2]. A proof of Conjecture B would therefore give
an algebraic proof of Chen-Donladson-Sun’s result. It is natural to expect
that this would be important more generally in any attempt to show that
K-polystability of a polarised variety implies the existence of a constant
scalar curvature Kähler metric.

Another motivation for this work is to give a new method of destabilis-
ing varieties. All previous destabilising test configurations have either arisen
from holomorphic vector fields, or used a particularly simple flat degener-
ation of the variety, namely deformation to the normal cone [22]. Stability
with respect to such test configurations is called slope stability, and it is
known that slope stability is strictly weaker to K-polystability. For exam-
ple, the blow-up of P2 at two points is slope stable, but admits no cscK
metric [21]. Our method gives an algebro-geometric proof that the blow-up
P2 at two points is K-unstable.

TOME 66 (2016), FASCICULE 5
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Notation and conventions. — We often use the same letter to denote a
divisor and the associated line bundle, and mix multiplicative and additive
notation for line bundles. A polarised variety (X,L) is a normal projective
variety X together with an ample line bundle L. Our results are indepen-
dent of scaling L, as such we sometimes assume that L is very ample and
projectively normal.

1. Preliminaries on K-polystability

1.1. Filtrations and K-semistability

Let (X,L) be a polarised variety. We are interested in the algebro-
geometric concept of K-polystability; to define it, we associate to each
filtration of the co-ordinate ring of (X,L) a weight called the Donaldson-
Futaki invariant. In this section we proceed in a purely algebraic way. In
Section 1.3, we will explain, following [25, 26], how to describe these con-
cepts in a more geometric, and perhaps more familiar, language.

Definition 1.1 ([28]). — Denote the co-ordinate ring of (X,L) by

R(X,L) =
⊕
k>0

Rk,

=
⊕
k>0

H0(X,Lk).

We define an admissible decreasing filtration, or, for short, a decreasing
filtration, F of R to be sequence of vector subspaces

· · · ⊃ FiR ⊃ Fi+1R ⊃ · · ·

which is
(i) linearly right bounded: there exists a constant C such that FCkRk =
{0} for every k,

(ii) pointwise left bounded: for every k there exists a j = j(k) such that
FjRk = H0(X,Lk),

(iii) multiplicative: (FiRl)(FjRm) ⊂ Fi+jRl+m,
(iv) homogeneous: if f ∈ FiR then each homogeneous piece of f is in

FiR; in other words FiR =
⊕

k FiRk.
Here we have denoted FiRk = FiR ∩Rk.

The Loewy filtration defined in Section 2, which is the main object of
study in the present work, is an example of a decreasing filtration. Associ-
ated to each decreasing filtration are the following algebraic objects.

ANNALES DE L’INSTITUT FOURIER
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Definition 1.2. — Given a decreasing filtration F on R(X,L) we de-
fine its

(i) Rees algebra as Rees(F) =
⊕

i(FiR)ti ⊂ R[t],
(ii) graded algebra as gr(F) =

⊕
i(FiR)/(Fi+1R).

We say a filtration is finitely generated if its Rees algebra is finitely gener-
ated as a C[t] module. Note that, in the definition of the graded algebra,
the grade of (FiR)/(Fi+1R) is i.

To each decreasing filtration, one can associate the following weight func-
tions.

Definition 1.3. — Given a filtration F , define corresponding functions

w(k) =
∑

i

i(dimFiRk − dimFi+1Rk),

d(k) =
∑

i

i2(dimFiRk − dimFi+1Rk).

We call w(k) the weight function and d(k) the trace squared function. Let
n be the dimension of X. We say that a filtration is polynomial if w(k) and
d(k) are polynomials of degree n+ 1 and n+ 2 respectively, for sufficiently
large k.

Another invariant, which is associated just to the pair (X,L) and is
independent of the filtration, is the Hilbert function

h(k) = dimRk.

For k sufficiently large this is always a polynomial of degree n.
Let F be a polynomial filtration. Expand the associated Hilbert, weight

and trace squared polynomials of F respectively as

h(k) = a0k
n + a1k

n−1 +O(kn−2),

w(k) = b0k
n+1 + b1k

n +O(kn−1),

d(k) = d0k
n+2 +O(kn+1).

Definition 1.4. — We define the Donaldson-Futaki invariant of a poly-
nomial filtration to be

DF(F) = b0a1 − b1a0

a0
.

We define the norm of a polynomial filtration to be

‖F‖2 = d0a0 − b2
0

a0
.

TOME 66 (2016), FASCICULE 5
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Definition 1.5. — We say that (X,L) is K-semistable if for all polyno-
mial filtrations F , the Donaldson-Futaki invariant DF(F) is non-negative.
If (X,L) is not K-semistable we say that it is K-unstable.

As proven in [28, 25] and reviewed in Section 1.3, finitely generated fil-
trations are equivalent to test configurations and the respective Donaldson-
Futaki invariants are equal. In particular, all finitely generated filtrations
are polynomial. On the other hand, [25, Example 4] is an example of a
polynomial filtration which is not finitely generated. The coherence of our
definition of the Donaldson-Futaki invariant and K-semistability for poly-
nomials filtrations with the convention used in the literature is proved in
Section 1.2, see in particular Theorem 1.10.

The conjecture that motivates this definition is the following. We give a
precise definition of K-polystability in Section 1.3, for the moment all we
need is that K-polystability implies K-semistability.

Conjecture 1.6 (Yau-Tian-Donaldson, [10]). — A smooth polarised
variety (X,L) is K-polystable if and only if X admits a cscK metric in
c1(L).

Remark 1.7. — By work of Donaldson, it is known that the existence of
a cscK metric implies K-semistability [12]. Stoppa has strengthened this to
K-polystability, provided the automorphism group of (X,L) is discrete [24].
Therefore, the existence of a polynomial filtration with negative Donaldson-
Futaki invariant implies that no cscK metric exists in c1(L).

While the filtration that we study in this paper naturally fits into the
definition of a decreasing filtration, there is a another equivalent definition
of filtrations which is more suitable to be translated into a geometric lan-
guage. We will use this second notion to discuss the link between filtrations
and test configurations, which are the more familiar object introduced by
Donaldson [11].

Definition 1.8 ([25]). — Denote by R(X,L) the co-ordinate ring of
(X,L). We define an admissible increasing filtration, or, for short, an in-
creasing filtration, G of R be sequence of vector subspaces

C = G0R ⊂ G1R ⊂ · · ·

which is
(i) pointwise right bounded: for every k there exists a j = j(k) such

that GjRk = H0(X,Lk),
(ii) multiplicative: (GiRl)(GjRm) ⊂ Gi+jRl+m,

ANNALES DE L’INSTITUT FOURIER



THE LOEWY FILTRATION 1901

(iii) homogeneous: f ∈ GiR then each homogeneous piece of f is in GiR.

Remark that the linear right bound in the decreasing case corresponds
to the fact that the filtration starts at 0 and G0 = C. In this setup, the
weight function is

wG(k) =
∑

i

(−i)(dimGiRk − dimGi−1Rk).

Lemma 1.9. — There is a (non-canonical) way to pass from a decreasing
polynomial filtration to an increasing polynomial filtration preserving both
the Donaldson-Futaki invariant and the norm.

Proof. — Given a decreasing filtration F , we define G0 = C and Gi(Rk) =
F−i+Ck(Rk), where C is the constant appearing in the definition of decreas-
ing filtration (remark that C is not unique). It is easy to show that G is
point wise right bounded and homogenous; we now show that it is multi-
plicative. Indeed,

(Gi1Rk1)(Gi2Rk2) = (FCk1−i1Rj1)(FCk2−i2Rj2),
⊂ FC(k1+k2)−i1−i2Rj1+j2 ,

= Gi1+i2Rk1+k2 .

Remark that the linearity of the bound is key in this proof. To calculate
the weight polynomials, note that we have added Ck to the weight of each
section of weight i. The weight polynomials are related by

wG(k) + Ckh(k) = wF (k),

in particular

b0,G = b0,F + Ca0, b1,G = b1,F + Ca1.

Similarly

d0,G = d0,F + 2Cb0,F + C2a0.

Computing the relevant Donaldson-Futaki invariants and norms we see
that they are equal. For the reverse direction, it is enough to define FiR :=
G−iR; all the verifications are straightforward, the constant C can be taken
equal to 0. �

The procedure defined in the proof also gives an isomorphism between
the Rees algebras of F and G. This isomorphism does not preserve the
grading, however finite generation is preserved.

TOME 66 (2016), FASCICULE 5
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1.2. Approximating filtrations

In this section, just to fix the notation, we assume that F is an increasing
filtration; however, in view of Lemma 1.9, this does not really matter.
The Donaldson-Futaki invariant of a non-finitely generated filtration F
is defined in [25, Section 3.2] by choosing a specific approximation χ(k)

of F . It is not clear to us if this invariant depends on the choice of the
approximation. A priori, for polynomial non-finitely generated filtrations,
this definition does not coincide with ours. We avoid such issues by using
the following result.

Theorem 1.10. — Let F be a polynomial filtration. Then there exists
a finitely generated filtration G such that

DF (F) = DF (G),

with the definition of the Donaldson-Futaki invariant as in Definition 1.4.

Theorem 1.10 follows from the following two Lemmas.

Lemma 1.11. — Let F be an increasing filtration with Rees algebra R.
For every integer r, there exists a finitely generated filtration F (r) of R
such that for all p 6 r and all i we have

F (r)
i H0(X,Lp) = FiH

0(X,Lp).

Proof. — This is essentially contained in [25, Section 3.1]. We construct
the finitely generated filtration through its Rees algebra R(r), by defining
R(r) ⊂ R[t] to be the C[t]-subalgebra generated by

r⊕
p=1

j(p)⊕
i=1

(FiRp)ti
 .

Here j(p) is the bound appearing in Definition 1.8. Since the filtration F
is multiplicative, this gives a well defined, finitely generated algebra. The
corresponding filtration is

F (r)
i R = {s ∈ R : tis ∈ R(r)}. �

Remark 1.12. — The geometric version of Lemma 1.11 in terms of test
configurations is [22, Proposition 3.7], which states that a test configuration
is equivalent to an embedding of X into projective space P(H0(X,Lk)) for
some k and a choice of C∗-action on this projective space.

ANNALES DE L’INSTITUT FOURIER
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Lemma 1.13. — Let F be a polynomial filtration and F (r) be filtrations
as in Lemma 1.11. Then, for r sufficiently large, we have

DF(F (r)) = DF(F).

Proof. — Since F is polynomial, its weight function is a polynomial of
degree n+1. Because of this, the weight polynomial is determined by finitely
many values of w(k). Take an approximating sequence as in Lemma 1.11,
with r sufficiently big such that the weight polynomial is determined by
the weight values for p < r. Then F (r) has the same weight polynomial as
F . Therefore DF(F (r)) = DF(F), as required. �

To prove Theorem 1.10 just remark that we can take as G the filtration
F (r) constructed in Lemma 1.11 for r sufficiently large and then apply
Lemma 1.13. Theorem 1.10 implies the following.

Corollary 1.14. — The following are equivalent:
(i) For any filtration of the co-ordinate ring, the Donaldson-Futaki in-

variant is non-negative;
(ii) For any polynomial filtration of the co-ordinate ring, the Donaldson-

Futaki invariant is non-negative;
(iii) For any finitely generated filtration of the co-ordinate ring, the

Donaldson-Futaki invariant is non-negative.

This Corollary means that the definition of K-semistability 1.5 is equiv-
alent to the usual definition. In particular, we can use Definition 1.4 for the
Donaldson-Futaki invariant of a polynomial filtration which is not finitely
generated.

1.3. Test configurations and filtrations

We now turn to the more geometric notion of test configurations, and
recall how they relate to filtrations.

Definition 1.15. — A test configuration for (X,L) is a polarised vari-
ety (X ,L) together with

(i) a proper flat morphism π : X → C,
(ii) a C∗-action on X covering the natural action on C,
(iii) and an equivariant relatively ample line bundle L on X

such that the fibre (Xt,Lt) over t is isomorphic to (X,Lr) for one, and
hence all, t ∈ C∗ and for some r > 0.

TOME 66 (2016), FASCICULE 5
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Remark 1.16. — One should think of test configuration as geometrisa-
tions of the one-parameter subgroups that are considered when applying
the Hilbert-Mumford criterion to GIT stability on Hilbert schemes.

As the C∗-action on (X ,L) fixes the central fibre (X0,L0), there is an
induced action on H0(X0,Lk

0) for all k. Denote by Ak the infinitesimal
generator of this action, so that C∗ acts as t → tAk on H0(X0,Lk

0). The
total weight tr(Ak) of the C∗-action onH0(X0,Lk

0) is a polynomial of degree
k + 1, expanding the Hilbert and weight polynomials as in Definition 1.4
we can define the Donaldson-Futaki invariant of a test configuration, just
as we did for polynomial filtrations. Similarly, using tr(A2

k), one can define
the norm of a test configuration.

Remark 1.17. — There is a geometric interpretation of test configura-
tions with zero norm: a test configuration (X ,L) has norm zero if and only
if it has normalisation equivariantly isomorphic to the product configura-
tion X × C with the trivial action on X [9, 4].

One classical source of test configurations are those arising from auto-
morphisms.

Definition 1.18. — Given a one parameter subgroups of Aut(X,L),
define the corresponding product test configuration by (X ,L) = (X×C, L)
with the action on the central fibre over 0 ∈ C induced by the automor-
phism.

Given such an automorphism, Futaki showed that the corresponding
Donaldson-Futaki invariant must vanish ifX admits a cscK metric in c1(L);
see [11] for a discussion of this point.
The relationship between test configurations and filtrations is as follows.

Theorem 1.19. — [25, 28] Given an arbitrary test configuration, there
exists a finitely generated filtration with the same Donaldson-Futaki invari-
ant. Conversely, given any finitely generated filtration, one can construct a
test configuration with the same Donaldson-Futaki invariant.

Proof. — We recall the strategy of the proof. Let (X ,L) be a test con-
figuration, and let s ∈ H0(X,Lk). We think of s as a section of Xt for all
t 6= 0 using the C∗-action on X . In particular, s can be thought of as a
section defined when t 6= 0, so is a meromorphic section, with a pole of
some order along t = 0. Therefore tis is a holomorphic section for i ∈ N
sufficiently large. We then define a filtration by saying that s belongs to Fi

if tis is regular on all of X .

ANNALES DE L’INSTITUT FOURIER
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Conversely, given a finitely generated filtration F , the associated test
configuration is ProjC[t](Rees(F)) with its natural O(1) polarisation. The
C∗-action is given by the grading of the Rees algebra. �

This theorem implies that finitely generated filtration are polynomials.
With all of this in place, we can define K-polystability.

Definition 1.20 ([19, Section 8.2][23]). — We say that a polarised va-
riety is K-polystable if for all test configurations (X ,L), the corresponding
Donaldson-Futaki invariant satisfies DF(X ,L) > 0, with equality if and
only if (X ,L) is isomorphic to a product test configuration away from a
closed subscheme of codimension two. Otherwise we say (X ,L) destabilises
(X,L).

Remark 1.21. — The definition of K-polystability is independent of scal-
ing L → Lr. In particular, it makes sense for pairs (X,L) where X is a
variety and L is a Q-line bundle. From another point of view, there is no
loss in assuming that L is very ample and projectively normal.

2. The Loewy filtration

In this section we define the Loewy filtration and prove Theorem A.
The Loewy filtration is a canonical decreasing filtration of the co-ordinate
ring of any polarised variety (X,L). The construction uses the automor-
phism group Aut(X,L) of (X,L); the filtration is non-trivial if and only
if Aut(X,L) is non-reductive. This filtration satisfies the hypotheses of
Definition 1.1: it is homogeneous and point-wise left bounded by construc-
tion, multiplicative because of Lemma 2.4 and linearly right bounded by
Lemma 2.6. We assume that L is very ample and projectively normal; in
particular Aut(X,L) is a closed sub-group of GL(H0(X,Lk)) for every k.

2.1. The Loewy filtration of a module

Let G be a linear algebraic group defined over C and V be a G-module.
We are interested in the cases where G is either Aut(X,L) or its unipotent
radical and V = H0(X,Lk); however, our definition makes sense in a more
general context. We define the filtration inductively.

TOME 66 (2016), FASCICULE 5
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Definition 2.1. — Let V be a finite dimensionalG-module. The Loewy
filtration F•V is defined as

(i) F0V = V ;
(ii) for i > 0, FiV is the minimal G-submodule of Fi−1V such that the

quotient Fi−1V/FiV is semi-simple.

Equivalently, we can define FiV to be the intersection of all maximal
non-trivial submodules of Fi−1V . The Loewy filtration is sometimes called
radical filtration or Loewy decreasing filtration. See [1, Section V.1] or [16,
Section I.2.14 and Chapter D] for a general discussion. In what follows,
we will give another description of the Loewy filtration. Before that, let us
point out the following important consequence of the definition.

Proposition 2.2. — The Loewy filtration is G-equivariant; namely,
each FiV is a G-submodule of V .

We wish to compute the weight of F•, as defined in Definition 1.3. In
order to do this more easily, we introduce another description of the Loewy
filtration.

Lemma 2.3. — Let U be the unipotent radical of G and V be a G-
module. Then the Loewy filtration of V as a G-module is equal to the
Loewy filtration of V as a U -module.

Proof. — The unipotent radical of G is its maximal normal connected
unipotent subgroup; it is trivial if and only if G is reductive. In character-
istic zero, we have the Levi decomposition

G = Rn U

where R is a reductive group. A U -module is semi-simple if and only if the
action of U is trivial. Because of the normality of the radical, a maximal
trivial U -submodule is also a G submodule. Moreover it is a semi-simple
G-submodule, because U acts trivially and R is reductive. �

Lemma 2.3 simplifies the study of the Loewy filtration because a repre-
sentation of a unipotent group is semi-simple if and only if the action of
the group is trivial.

2.2. The Loewy filtration of the co-ordinate ring

We now consider the Loewy filtration of the co-ordinate ring. Let (X,L)
be a polarised variety and let

R =
⊕
k>0

Rk =
⊕
k>0

H0(X,L⊗k)

ANNALES DE L’INSTITUT FOURIER
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Each module Rk has a Loewy filtration F•; we define

FiR :=
⊕

k

FiRk.

Lemma 2.4. — The Loewy filtration is multiplicative.

Proof. — We use a further description of the Loewy filtration. Let u be
the Lie algebra of U and A be the universal enveloping algebra U(u) of
u. The advantage of this point of view is that A is an associative (non-
commutative) algebra. We can thus consider its Jacobson radical J(A),
see for example [1, Section I.3]. It can be defined as the intersection of
all maximal left ideals and one can show that it is a two-sided ideal. The
relationship between the Loewy filtration and the Jacobson radical is

FiRk = J(A)iRk,

this follows from [1, Proposition I.3.7 and Corollary I.3.8]. From this we
can show that the Loewy filtration is multiplicative. Indeed,

FiRl · FjRs = J(A)iRl · J(A)jRs,

⊂ J(A)i+jRl+s,

= Fi+jRl+s. �

Definition 2.5. — We define the length of a filtration to be the maxi-
mum i such that FiV is not trivial. We then define the Loewy length ``(V )
of a module V is the length of the Loewy filtration. The Loewy length of
a graded ring

R =
⊕

k

Rk

is a function of k, and we denote by ``R(k) the Loewy length of Rk. The
Loewy length of a polarised variety (X,L) is the length of its co-ordinate
ring, seen as an Aut(X,L)-module.

General discussions about the Loewy length of a fixed module can be
found in [1, Chapter V] and [16, Chapter D].

Lemma 2.6. — The Loewy filtration is linearly right bounded. That is,
there exists a constant C such that

``(k) 6 Ck.

We can take C = h0(X,L).
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Proof. — Let V := H0(X,L). Since we have assumed that L is projec-
tively normal, we have a surjective map

Symk V → H0(X,Lk).

The Loewy length of the domain is bigger than the Loewy length of the
codomain (cf. [1, Proposition I.3.7]), so it is enough to prove the statement
for Symk V . The unipotent radical U of Aut(X,L) is a subgroup of some
maximal unipotent subgroup T of GL(V ). The Loewy length of Symk V

as Aut(X,L)-module is smaller than its Loewy length as a T -module.
Below we will show that the Loewy length of Symk V as a T module is
k(dimV − 1) + 1, and this is enough to conclude the proof.
To compute the Loewy length of Symk V as a T module fix a basis ei

for which T is the group of upper triangular matrices. Assign weight n− i
to ei, where n = dimV . Each monomial in Symk V now has a weight and
there are exactly k(n−1)+1 different weights. The point is that this weight
corresponds to the grade assigned by the Loewy filtration because T can
only increase the weight. �

Remark that in our examples the Loewy length is linear. It is an inter-
esting question to ask for which class of varieties this is true; moreover,
when the Loewy length is a linear function, we do not know if its slope has
a geometric meaning.

Conjecture 2.7. — Let (X,L) be a polarised variety with non-reduc-
tive automorphism group. Then the Loewy filtration is polynomial, and
destabilises (X,L). In particular, (X,L) is not K-polystable.

By destabilises we mean either that it has strictly negative Donaldson-
Futaki invariant (which is the case in all the examples), or that the
Donaldson-Futaki invariant is zero and one of the corresponding finitely
generated filtrations that we can associate to F via Theorem 1.10 is not
isomorphic to a product test configuration away from a closed subscheme
of codimension two.

2.3. Vanishing order filtration

So far, we have just used representation theory and the geometry of X
never appeared. Motivated by understanding the geometry of the Loewy fil-
tration, we introduce another related geometric filtration of the co-ordinate
ring of (X,L). We will use this filtration in Propositions 3.1 and 3.2 to
prove, in some cases, that the Loewy filtration is finitely generated.
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Let U be the unipotent radical of the automorphism group Aut(X,L),
and let E := XU be the fixed sub-scheme of the action of U onX. There are
a few general results about the geometry of E. The key one is Borel’s fixed
point theorem, which guarantees that E is non-empty. Horrocks showed
that E is connected [15]. For related work, see [14] when X is projective
and [17] for X affine. We can define a multiplicative decreasing filtration
on R by the vanishing order along E, namely

ViH
0(X,Lk) := H0(X,Lk(−iE)).

We do not have a general bound on the length of this filtration. In all our
examples XU is a reduced divisor; we do not know how general this fact
is. In some cases, such as the Hirzebruch surfaces, this filtration equals the
Loewy filtration; in other cases, such as P2 blown up at two points, the
filtration by vanishing order is strictly included in the Loewy filtration.

3. Examples

In this section we describe the Loewy filtration of some varieties, giving
a proof of Theorem C. In all examples the filtration is polynomial, so we
do not need to take approximations to compute the Donaldson-Futaki in-
variant. In all of our examples, the Donaldson-Futaki invariant is negative,
confirming Conjecture 2.7 in these cases. Some examples are special cases
of others, we include them for the sake of clarity. We will use Lemma 2.3
to compute the Loewy filtration.

3.1. Degree 8 del Pezzo

Let X be the blow-up of P2 at a point p. Fix an ample line bundle
L = aH − bE, recall that the ampleness is equivalent to a > b > 0. Fix a
basis x, y, z of H0(P2,O(1)) such that p = [1, 0, 0]. In this basis, we have
an identification

Rk := H0(X, kL),
= Span{degree ka monomials such that deg y + deg z > bk}.

The Hilbert polynomial is

h(k) =
ak−bk∑

i=0
(ak − i+ 1),

= 1
2(a2 − b2)k2 + 1

2(3a− b)k + 1,
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which can also be seen from Riemann-Roch. We now describe the Loewy
filtration. The automorphism group G is the sub-group of PGL(3) fixing p;
its unipotent radical U is

U =

 1 ∗ ∗
0 1 0
0 0 1

 .

Recall that, in view of Lemma 2.3, it is enough to study the action of U .
On the space of sections we have the dual action, so this group fixes y and
z. This means that F1Rk is generated by all monomials for which x does
not appear with maximal degree; indeed, in this way F1Rk is a submodule
and quotienting gives a trivial U -module. Remark that the maximal degree
of x in Rk is ak − bk. More generally, we have

Fi(Rk) = Span{degree ka monomials such that
deg y + deg z > bk and deg x 6 ak − bk − i}.

For the associated graded modules we have

gri(Rk) = Span{degree ka monomials such that
deg y + deg z > bk and deg x = ak − bk − i}.

As an example, for a = 3, b = 1, k = 1, the graded module associated to
the Loewy filtration of H0(X,−KX) is

gr0 = Span{x2y, x2z}, gr1 = Span{xy2, xyz, xz2},

gr2 = Span{y3, z3, y2z, yz2}.

We wish to count the dimension of the weight space of weight i. Since
deg x = ak − bk − i, we have deg y + deg z = bk + i. There are bk + i + 1
polynomials in two variables of degree bk + i. Therefore the dimension of
the weight space is bk + i+ 1. The weight polynomial is

w(k) =
ak−bk∑

i=0
i(bk + i+ 1),

=
(

1
3a

3 − 1
2a

2b+ 1
6b

3
)
k3 +

(
a2 − 3

2ab+ 1
2b

2
)
k2 +

(
2
3a−

2
3b
)
k.

The numerator of the Donaldson-Futaki invariant is

DFnum = −1
6b

4
(a
b
− 1
)3
.
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This is negative exactly when a > b, which is required for ampleness.
The Loewy length is ``(k) = (a− b)k. The norm is

‖F‖2 = a4

4 −
2(a3 − b3)2

9(a2 − b2) ,

which is positive for a > b. For a = b the Donaldson-Futaki invariant
vanishes. This is not surprising because, in this case, we are dealing with a
line bundle which is a bull-back from P1, which is K-polystable.

3.2. P2 blown up at n points on a line

Let X be the blowup of P2 at n points p1, . . . , pn on a line, with p1 =
[1 : 0 : 0] and p2 = [0 : 1 : 0]. The picard rank is ρ(X) = n + 1, generated
by H, which is the pullback of the hyperplane class from P2, and the n
exceptional divisors E1, . . . , En. To check a line bundle L is ample on X,
it suffices to show it has positive intersection with H − E1 − . . . − En

and the exceptional divisors E1, . . . , En. The ample cone is therefore those
L = aH−b1E1−. . .−bnEn such that a > b1+. . .+bn, with a, b1, . . . , bn > 0.
For simplicity for the rest of this calculation we assume b1 = . . . = bn =: b,
so that the condition for ampleness becomes a > nb. We also assume that
n > 2, having considered the n = 1 case in Section 3.1. Denote L =
aH − bE1 − . . . − bEn, and Rk = H0(X, kL). For ease of notation denote
E = E1 + . . .+ En. E has the property that E.E = −n, L.E = nb.
The anti-canonical class of X is −KX = 3H − E, which intersects L

as −KX .L = 3a − nb. L has self-intersection L.L = a2 − nb2 > 0. By
Riemann-Roch the Hilbert polynomial is given as

h(k) = a2 − nb2

2 k2 + 3a− nb
2 + 1.

The automorphism group of X is the subgroup of PGL(3) consisting
of 3 × 3 matrices which either fix the line [a : b : 0] or permute some of
the n points on the line. The permutations do not lie in the connected
component of the identity, so the maximal normal unipotent subgroup of
Aut(X), which we denote by U , is given by matrices of the form

U =

 1 0 ∗
0 1 ∗
0 0 1

 .

Note that matrices of this form fix the line which joins the blown-up points.
The space Rk is the space of degree ak polynomials which vanish with

order at least kb at each point pi; therefore it contains all polynomials
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whose degree in z is at least bk, and some of the others. The action of U
on H0(P2,O(1)) fixes exactly z, so the Loewy filtration is

FiRk = {monomials in Rk such that deg z > i}.

For i > kb, the Loewy filtration is

FiRk = {deg ka monomials with deg z > i}.

Thus, for i > kb, we have dimFiRk − dimFi−1Rk = ka− i+ 1.
We now calculate the dimensions of the spaces FiRk for i < kb. Fixing

some deg z = i, we wish to count the number of degree ka− i polynomials
in 2 variables which vanish along n points on a line with order at least
kb − i at each point pi. Such polynomials have weight i, and vanish order
at least kb along n points. The number of such polynomials is given by
Riemann-Roch on P1. Indeed, let

M = (ka− i)OP1(1)− (kb− i)p1 − . . .− (kb− i)pn,

where we consider those points to be in P1. By Riemann-Roch for curves
we have

dimH0(P1,M) = degM + 1,
= ka− i− n(kb− i) + 1,
= k(a− nb) + (n− 1)i+ 1.

So for i 6 kb we have

dimFiRk − dimFi−1Rk = k(a− nb) + (n− 1)i+ 1.

The Loewy length is ``(k) = ak. Using this method, the Hilbert polynomial
is

h(k) =
kb−1∑
i=0

(k(a− nb) + (n− 1)i+ 1) +
ka∑

i=kb

(ka− i+ 1),

which agrees with the calculation using Riemann-Roch. Note that when
i = kb the two summands are equal. The weight polynomial is

w(k) =
kb−1∑
i=0

i(k(a− nb) + (n− 1)i+ 1) +
ka∑

i=kb

i(ka− i+ 1).
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The weight polynomial has highest terms

b0 = a3 − nb3

6 , b1 = a2

2 .

The numerator of the Donaldson-Futaki invariant is

12 DF(F)num = 12(b0a1 − b1a0),

= (a3 − nb3)(3a− bn)− 3(a2)(a2 − nb2).

Expanding and setting c = a
b we get

12
b4 DF(F)num = −nc3 + 3nc2 − 3nc+ n2.

The condition a > nb becomes c > n > 2. Dividing by n we wish to show

−c3 + 3c2 − 3c+ n < 0.

Note that when n = c this is given as c(c(3 − c) − 2), which is less than
or equal to zero when c > 2. Its derivative is −3(c− 1)2, which is negative
when c > 1. In particular, this is a decreasing polynomial in c when c > 1,
which is negative when c = 2. So it is negative for all c > 2, therefore this
filtration destabilises. The norm is given as

‖F‖2 = 1
36

(
3(a4 − b4n)− 2a

3 − nb3

a2 − nb2

)
,

setting c = a
b and using c > n > 2 and b > 0 one sees that this is strictly

positive.

3.3. An orbifold del Pezzo surface

This example is based on the analysis developed in the previous section,
hence we will keep the same notations. Let µ : X → P2 be the blow up of
P2 at 3 points pi on a line `. Let ˆ̀be the proper transform of `, its class is
H − E. The divisor ˆ̀ is a −2 curve so we can consider its blow-down

ν : X → F.

The variety F is a singular Fano; the singular point is an A1 singularity
so the surface is an orbifold. The singularity is rational, so ν∗KF = KX

(this can be shown also by explicit computation). For any line bundle L on
F , the pull-back defines an isomorphism

ν∗ : H0(F,L)→ H0(X, ν∗L).

Since ˆ̀ is fixed by U , the isomorphism is an isomorphism of U -modules,
so it preserves the Loewy filtration. This means that the Loewy filtration,
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and its Donaldson-Futaki invariant, can be equivalently computed on X

or on F . Line bundles on X which are of the form ν∗L are the ones with
zero intersection with ˆ̀, therefore we are interested in multiples of 3H−E,
which is actually the anti-canonical class of X. Plugging c = n = 3 in the
formula for the numerator of the Donaldson-Futaki invariant obtained in
the previous section, we see that the Loewy filtration destabilises (F,−KF ).

3.4. Hirzebruch surfaces

We consider the Hirzerburch surface

X = P(O ⊕O(n)).

This is a P1-bundle over P1. Denote by H the pull-back of the hyperplane
from P1 and O(1) the tautological line bundle. Let

L = aO(1) + bH,

this is ample if and only if a, b > 0. Pushing forward to P1, we have

Rk := H0(X, kL),

=
ka⊕

i=0
H0(P1,OP1(bk + in)).

The Hilbert polynomial is

h(k) =
ak∑

i=0
(bk + in+ 1),

= k2(1
2a

2n+ ab) + k(1
2an+ a+ b) + 1.

Let us describe the Loewy filtration. The unipotent radical of the auto-
morphism group is H0(P1,O(n)); it acts on the total space of O⊕O(n) as
the upper triangular matrices [8, Section 5.11][18]. That is, a section s of
H0(P1,O(n)) maps an element c⊕ 0 of O⊕O(n) to c⊕ s. The induced ac-
tion on Rk maps H0(P1,O(bk+in)) to H0(P1,O(bk+in))⊕H0(P1,O(bk+
(i+ 1)n)). The Loewy filtration is thus

FiHk =
ka⊕

j=i

H0(P1,O(bk + jn)).

The graded modules are

gri = H0(P1,O(bk + in)).
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The weight polynomial is

w(k) =
ak∑

i=0
i(bk + in+ 1),

so that
b0 = 1

3a
3n+ 1

2a
2b, b1 = 1

2a
2n+ 1

2a
2 + 1

2ab.

The numerator of the Donaldson-Futaki invariant is

DFnum = − 1
12a

4n2 + 1
12a

4n− 1
6a

3bn,

which is negative. The Loewy length is ``(k) = ak. The norm is

‖F‖2 = a3(a2n2 + 6abn+ 6b2)
36(an+ 2b) ,

which is positive for a, b > 0. Remark that for n = 1 the Hirzebruch
surface is isomorphic to the blow up at P2 at one point, and the Loewy
filtrations using both descriptions coincide. This can be checked by an
explicit computation. Indeed, to compare the two descriptions take b = b′

and a = a′+b′, where a and b are the parameters appearing in the del Pezzo
description, and a′ and b′ are the parameters appearing in the projective
bundle description.
We now use the filtration defined in Section 2.3 to show that the Loewy

filtration is finitely generated.

Proposition 3.1. — The Loewy filtration of a Hirzebruch surface
equals the filtration by vanishing order along the fixed locus. Moreover,
it is finitely generated.

Proof. — The fixed locus of the action of U on X is the −n curve E.
This curve has class E = O(1)− nH. We have

ViRk = H0(X, kaO(1) + kbH − iE),

= H0(X, (ak − i)O(1) + (kb+ ni)H).

Pushing forward to P1 we get

H0(P1,O(kb+ in)⊗ Symak−i(O ⊕O(n))) =
ak−i⊕
j=0

H0(P1,O(kb+ (i+ j)n)),

=
ak⊕

j=i

H0(P1,O(kb+ jn)).
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This coincides with the Loewy filtration. The Rees algebra associate to this
filtration is isomorphic to ⊕

d,m

H0(X, dL−mE).

We claim this ring is finitely generated. This is a standard argument
that follows from the Minimal Model Program, using that X is a toric
variety, hence a log Fano variety. Set F to be an integral divisor lying
on the boundary of the effective cone of X which is linearly equivalent
to aL − bE, with a, b positive integers. F is automatically effective as the
effective cone of a log Fano variety is rational polyhedral, hence closed [3].
Using [7, Lemma 2.3.3], it is enough to show the ring

R(X,L, F ) =
⊕

m′,d′∈N2

H0(X, d′L+m′F )

is finitely generated. Since X is toric, there exists an ample Q-divisor A
and an effective Q-divisor Ê with

KX +A+ Ê ∼ 0.

Set ∆1 = A + Ê + 1
n1
L and ∆2 = A + Ê + 1

n2
F with n1, n2 � 0 chosen

so that Di = KX + ∆i are divisorially log terminal divisors for i = 1, 2.
Remark that D1 ∼ 1

n1
L, and D2 ∼ 1

n2
F . By [3, Corollary 1.1.9], the ring⊕

m′′,d′′∈N2

H0(X, bd′′D1 +m′′D2c)

is finitely generated. Using again [7, Lemma 2.3.3], this is equivalent to
finite generation of R(X,L, F ), as required. �

Following [28, Section 8], the test configuration associated to this filtra-
tion is the deformation to the normal cone of the −n-curve with parameter
a. To identify the two filtrations we used that Loewy length is linear.

3.5. Projective bundles P(O⊕r ⊕O(n)) over Ps - partial
computation

This is a generalisation of the Hirzerbrch surface example. Let X =
P(O⊕r ⊕ O(n)) over Ps. Take as polarisation L = aO(1) + bH, where H
is the pull-back of the hyperplane section of Ps. We take a,b and n strictly
positive. Pushing-forward we have

H0(X, kL) = H0(Ps,O(bk)⊗ Symka(O⊕r ⊕O(n))).
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The right hand side is isomorphic to⊕
J

H0(Ps,O(bk + Jr+1n)),

where the sum runs over all partitions J = (J1, · · · , Jr+1) of ak into r + 1
non-negative numbers. Here we are just writing out monomials in r + 1
variables, Jr+1 is the exponent of O(n). The unipotent radical of the auto-
morphism group is H0(P1,O(n))⊕r, see [8, Section 5.11]. It maps O⊕r to
O⊕r⊕O(n). The graded module associated filtration induced by the action
is

gri = H0(Ps,O(bk + in))⊕P (ak−i,r),

where P (ak − i, r) is the number of partition of ak − i into r non-negative
numbers. The index i ranges from 0 to ak. That is, gri is isomorphic to
the sub-vector space where O(n) appears with multiplicity exactly i. The
Loewy length is ``(k) = ak. The Hilbert polynomial is

h(k) =
ak∑

i=0

(
bk + in+ s

s

)
P (ak − i, r).

The weight polynomial is

w(k) =
ak∑

i=0
i

(
bk + in+ s

s

)
P (ak − i, r).

Using the vanishing order filtration as defined in Section 2.3, we now
show that the Loewy filtration is finitely generated.

Proposition 3.2. — The Loewy filtration equals the filtration by van-
ishing order along the fixed locus. Moreover, it is finitely generated.

Proof. — The fixed locus E of the action of H0(P1,O(n))⊕r is the re-
duced divisor corresponding to the quotient

π : O⊕r ⊕O(n)→ O⊕r

because O(n) is the maximal sub-vector bundle of O⊕r ⊕ O(n) which is
H0(P1,O(n))⊕r invariant. A section of kL vanishes along E if and only if it
is in the kernel of Symk(π), so the Loewy filtration equals the filtration by
vanishing order along E. The Rees algebra of this filtration is isomorphic
to ⊕

m,d∈N2

H0(X, dL−mE).

This is finitely generated using the same argument as Proposition 3.1. �
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Counting the number of partitions of an integer is well-known to be a
difficult problem, in the sequel we will carry out the computation in some
special cases.

3.6. Projective bundles P(O ⊕O ⊕O(n)) over P1

Keeping the notation of the previous section, take s = 1 and r = 2. In
particular, P (ak − i, 2) = ak − i+ 1. The variety X now has dimension 3.
In this set up, the Hilbert polynomial is

h(k) =
ak∑

i=0
(ak − i+ 1)(bk + in+ 1),

and so

a0 = 1
6a

3n+ 1
2a

2b, a1 = 1
2a

2n+ 1
2a

2 + 3
2ab.

The weight polynomial is

w(k) =
ak∑

i=0
i(ak + 1)(bk + in+ 1),

this gives

b0 = 1
12a

4n+ 1
6a

3b b1 = 1
3a

3n+ 1
6a

3 + 1
2a

2b.

The numerator of Donaldson-Futaki invariant is

DFnum = − 1
72a

6n2 + 1
72a

6n− 1
24a

5bn.

This is negative since n2 is bigger than n. The norm is

‖F‖2 = 1
144a

3(18a4bn+ 6a4n2 + 24a3b2 + 8a3bn− an− 2b),

which is positive as a,b and n are positive integers.
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3.7. Projective bundle P(O ⊕O(1)) over P2

Let
X = P(OP2 ⊕OP2(1)).

We have
−KX = 2(O(1) +H).

To ease notation we denote L = − 1
2KX . Using the formulae of Section 3.5,

the Hilbert polynomial is

h(k) =
k∑

i=0

(
2 + i+ k

i+ k

)
,

giving
a0 = 7

6 , a1 = 7
2 .

The unipotent radical of the automorphism group is H0(P2,O(1)). The
graded modules associated to the Loewy filtration are

gri = H0(P2,O(i+ k)).

The weight polynomial is

w(k) =
k∑

i=0
i

(
2 + i+ k

i+ k

)
,

so
b0 = 17

24 , b1 = 9
4 .

The numerator of the Donaldson-Futaki invariant is

DFnum = − 7
48 ,

which is negative. The Loewy length is ``(k) = k. The norm is ‖F‖2 = 97
1120 .
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