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ON AUTOMORPHIC L-FUNCTIONS IN
POSITIVE CHARACTERISTIC

by Luis Alberto LOMELÍ

Abstract. — We give a proof of the existence of Asai, exterior square, and
symmetric square local L-functions, γ-factors and root numbers in characteris-
tic p – the case of p = 2 included. Our study is made possible by developing the
Langlands-Shahidi method over a global function field in the case of a Siegel Levi
subgroup of a split classical group or a quasi-split unitary group. The resulting
automorphic L-functions are shown to satisfy a rationality property and a func-
tional equation. A uniqueness result of G. Henniart and the author allows us to
show that the definitions provided in this article are in accordance with the lo-
cal Langlands conjecture for GLn. Furthermore, in order to be self contained, we
include a treatise of L-functions arising from maximal Levi subgroups of general
linear groups.
Résumé. — Nous donnons une preuve de l’existence des fonctions L locales

d’Asai, extérieur et symétrique carré ainsi que des facteurs γ et ε correspondants
en caractéristique p – le cas p = 2 étant inclus. Notre étude est possible grâce à la
méthode de Langlands-Shahidi sur un corps de fonctions global dans le cas d’un
sous-groupe de Siegel Levi d’un groupe classique déployé ou d’un groupe unitaire
quasi-déployé. Les fonctions L qui en résultent satisfont une propriété de rationalité
et une équation fonctionnelle. Un résultat d’unicité de G. Henniart et de l’auteur
permet de montrer que les définitions données dans cet article sont compatibles
avec la conjecture de Langlands locale pour GLn. De plus, afin d’être complet,
nous décrivons les fonctions L provenant d’un sous-groupe maximal de Levi d’un
groupe linéaire général.

Introduction

We develop the Langlands-Shahidi method over a global function field
in the case of a Siegel Levi subgroup of a split classical group or a quasi-
split unitary group. In particular, we complete the study of exterior and

Keywords: Automorphic L-funcitons, functional equation, Langlands-Shahidi method,
local factors.
Math. classification: 11F70, 11M38, 22E50, 22E55.



1734 L. A. Lomelí

symmetric square L-functions of [9, 20] and establish the existence of Asai
L-functions, and related local factors, in positive characteristic; these are
uniquely characterized in [10]. The cases treated in this article include an
induction step, necessary to develop the LS method for the classical groups
in positive characteristic [21].
A thorough understanding of automorphic L-functions and related local

factors for the classical groups also requires Godement-Jacquet L-func-
tions [7, 12] as well as Rankin-Selberg products for representations of GLm
and GLn [13]. Indeed, Godement-Jacquet factors appear intrinsically in
our study of the symplectic group and Rankin-Selberg products, which are
ubiquitous in the Langlands program, are needed in a crucial multiplicativ-
ity property for representations obtained via unitary parabolic induction.
In order to be self contained, our treatise includes L-functions arising from
maximal Levi subgroups of general linear groups.
Thanks to a characterization of local factors with G. Henniart [9, 10], we

can be certain that our definitions are in accordance with the Langlands
conjectures for GLn in positive characteristic [16, 18].

While one purpose of the article is to complete our understanding of the
Siegel Levi case for the split classical groups, the cases involving quasi-split
unitary groups are new in positive characteristic. Thus, we establish exis-
tence of Asai γ-factors and prove that they satisfy a global functional equa-
tion involving partial L-functions; uniqueness of Asai γ-factors is proved
in [10]. Furthermore, Asai L-functions are important in our study of auto-
morphic L-functions in the case of a general maximal Levi subgroup of a
unitary group [19]. The following theorem summarizes the global results of
this article (see Theorem 7.2); its proof begins on §1 and ends on §7.

Theorem. — Let k be a global function field with finite field of con-
stants Fq. Let M be a Siegel Levi subgroup of a split classical group or a
quasi-split unitary group. Let π be a cuspidal automorphic representation
of M(Ak). Then, the L-functions L(s, π, ri) are nice, i.e., for each i:

(i) (Rationality) L(s, π, ri) has a meromorphic continuation to a ratio-
nal function on q−s;

(ii) (Functional equation) L(s, π, ri) = ε(s, π, ri)L(1− s, π̃, ri).

Remark. — Over a number field, global L-functions are said to be nice
if they have a meromorphic continuation, are bounded on vertical strips,
and satisfy a global functional equation. In the function field case, the
rationality of L(s, π, ri) implies boundedness on vertical strips away from
poles.
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L-FUNCTIONS IN POSITIVE CHARACTERISTIC 1735

The automorphic L-functions of the theorem are indexed by representa-
tions ri depending on the classical group, which we now describe. Let F
be a non-archimedean local field of characteristic p and let ψ be a non-
trivial character of F . Consider M ' GLn as a Siegel Levi subgroup of
G = SO2n+1 or SO2n. Let r = Sym2 when G = SO2n+1, and let r = ∧2

when G = SO2n.
Given a smooth irreducible representation π of GLn(F ), let σ be the `-

adic n-dimensional Frobenius semisimple representation of the Weil-Deligne
group corresponding to π under the local Langlands correspondence [18].
The Langlands-Shahidi local coefficient Cψ(s, π, w0), defined via intertwin-
ing operators of induced representations and the uniqueness property of
Whittaker models when π is ψ-generic, allows us to give a definition of
γ(s, π, r ◦ ρn, ψ). In [9], the following equality is established

γ(s, π, r ◦ ρn, ψ) = γ(s, r ◦ σ, ψ),

where we have a Deligne-Langlands γ-factor on the right hand side. It
is the case of a quasi-split even unitary group U2n that leads us to the
existence of Asai γ-factors. Namely γ(s, π, rA, ψ), whose existence we prove
in this article via the LS method in characteristic p. There is an underlying
degree-2 extension. If E/F is a quadratic extension of non-archimedean
local fields, the local Langlands correspondence for a smooth irreducible
representation π of GLn(E) gives a representation σ of W ′E . Let ⊗I(σ)
be the representation of W ′F obtained from σ via tensor induction [5].
Compatibility with the local Langlands conjecture via tensor induction is
established in [10], where we show the equality

γ(s, π, rA, ψ) = γ(s,⊗I(σ), ψ).

In all of these cases, we obtain only one L-function indexed by r = Sym2,
∧2 or rA depending on the quasi-split classical group. Next, when π is
ψ-generic, the cases of Sp2n and U2n+1 yield

Cψ(s, π, w0) = γ(s, π, r1, ψ)γ(2s, π, r2, ψ),

where γ(s, π, r1, ψ) is a Godement-Jacquet γ-factor and r2 is either an
exterior square or a twisted Asai representation (see 6.2 Theorem′).

We take the opportunity to build the theory from the ground up, begin-
ning with abelian local factors of Tate’s thesis, which arise as Langlands-
Shahidi local coefficients of semisimple rank one classical groups. The the-
ory of principal series is then presented; essential, since an automorphic
representation is class one at almost every place. Local coefficients arise in
the global theory via Fourier coefficients of appropriately chosen Eisenstein
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1736 L. A. Lomelí

series and satisfy a crude functional equation. It is via γ-factors, defined by
means of the local coefficient, that we define L-functions and root numbers.
We remark that, recording results for future reference along the way, we
are able to provide a thorough and linearly ordered proof of Theorem 7.2
beginning in §1. Also, we take [4] to be an appropriate setting for working
with quasi-split classical groups over function fields. In particular, unitary
groups are defined over a degree-2 finite étale algebra K over a field k.
Let us now give a more detailed description of the contents of the ar-

ticle. In §1, the necessary properties of γ-factors are gathered in the case
of GL1 over a non-archimedean local field F . Already in this setting, lo-
cal L-functions and root numbers, or ε-factors, are defined via γ-factors.
In addition, given a degree-2 finite étale algebra E over F , Langlands λ-
factors give a connection between γ-factors over E and F . The case of a
separable quadratic algebra E ' F ×F arises when considering quasi-split
unitary groups over global fields at split places. In §2, we extend the basic
definitions to this general setting. Recall that the local coefficient is defined
via intertwining operators of parabolically induced representations and the
uniqueness property of Whittaker models. Throughout the article, G is
either a general linear group or one of the classical groups SO2n+1, Sp2n,
SO2n, U2n or U2n+1. When G is a classical group, the theory is studied
for a standard Siegel parabolic subgroup P = MN; the Siegel Levi sub-
group M is isomorphic to GLn, except for the case of U2n+1, where it is
isomorphic to GLn ×U1.
The semisimple rank one local computations of §3 are key to the

Langlands-Shahidi method, they give compatibility of the method for the
classical groups with local class field theory. The cases G = SL2 and SU3
are mentioned in characteristic zero in [15], where it is shown how to extend
these results via restriction of scalars. We provide a straight forward and
self contained proof when G = U3, including the case of residual charac-
teristic two in the setting of a degree-2 finite étale algebra E over F .

In §4, we fix a system of Weyl group element representatives and make
the appropriate normalization of Haar measures. This is done via Shahidi’s
approach to Langlands’ lemma, which gives an algorithm to decompose
Weyl group elements, and the corresponding unipotent radical, leading to-
wards a multiplicativity property of the local coefficient. Notice that we
can extend the algorithm to include unitary groups over a degree-2 finite
étale algebra E over the local field F . When the parabolic subgroup is a

ANNALES DE L’INSTITUT FOURIER



L-FUNCTIONS IN POSITIVE CHARACTERISTIC 1737

Borel subgroup, multiplicativity allows one to reduce the theory of princi-
pal series to semisimple rank one cases; it can be seen as the formula of
Gindikin and Karpelevič in this setting.
The link to the global theory is made via the theory of Eisenstein series,

which is available over a global function field [8, 22, 23]. We continue the
discussion on the crude functional equation of [20] in §5 in order to include
quasi-split unitary groups (see Theorem 5.1). For appropriately chosen
Eisenstein series corresponding to globally generic cuspidal automorphic
representations, the global intertwining operator appearing in their func-
tional equation decomposes into a product of local intertwining operators
discussed in §2. Whittaker models allow one to compute Fourier coeffi-
cients, making the connection to the local coefficient possible. The formula
of Casselman-Shalika for Whittaker models of unramified principal series
and a formula for the intertwining operator in terms of L-functions, when
it is evaluated at the identity, provide the necessary local results required
in the proof of the crude functional equation.
A refinement of the crude functional equation leads to a definition of γ-

factors, given in §6. When G = GLm+n, SO2n+1, SO2n and U2n, the crude
functional equation satisfied by the local coefficient involves only one partial
L-function of a cuspidal automorphic representation of M(Ak). These cases
give the main induction of the Langlands-Shahidi method for the classical
groups. When G = Sp2n, n > 1, or U2n+1, the crude functional equation
gives rise to two individual functional equations in terms of γ-factors. In
§6.3, we provide all of the properties necessary to uniquely characterize
γ-factors (see [9, 10]). In [11], we give the characterization for the case of
a general linear group.
We define local L-functions and root numbers, or ε-factors, in §7. First,

for tempered representations. Then, in general via Langlands classification
and analytic continuation. The global functional equation takes its final
form in terms of completed L-functions and global root numbers in §7.5.
Let π be a cuspidal automorphic representation of M(Ak), then

L(s, π, ri) = ε(s, π, ri)L(1− s, π̃, ri),

where π̃ denotes the contragredient of π and the representations ri are
described in §5.1. This includes exterior square, symmetric square, Asai and
Rankin-Selberg L-functions. Notice that the functional equation of Tate’s
thesis over a global function field is obtained by studying a Größencharakter
viewed as an automorphic representation of the maximal torus M ' GL1
of G = SL2.

TOME 66 (2016), FASCICULE 5



1738 L. A. Lomelí

The approach taken in this article does not make use of Lie algebras,
other than to check that our definition of L-functions agrees with the defi-
nition using L-groups via the adjoint action of LM on Ln and the Satake
parametrization for unramified principal series. For a general smooth irre-
ducible representation, the results of [9, 10] and the appendix, show that
our γ-factors and related local factors agree with those of the corresponding
representation of the Weil-Deligne group via the local Langlands correspon-
dence.

I would like to thank F. Shahidi for his guidance and support, in addition
to many interesting mathematical discussions held over the course of several
years. I also wanted to take the opportunity to thank G. Henniart for many
insightful remarks; joint work on the characterization of γ-factors helped
solidify the induction step of the Langlands-Shahidi method for the classical
groups. Mathematical conversations with L. Lafforgue and J.-K. Yu were
very helpful while writing this paper; I am thankful to them for taking
interest in this project. The author also thanks the anonymous referee for
making very good observations. Work was begun at Purdue University
and continued at the Institut des Hautes Études Scientifiques during the
academic year 2010 – 2011, where a first version of the article was produced.
A final version was written while the author was at the Max-Planck Institut
für Mathematik and the Instituto de Matemáticas de la PUCV. I am very
grateful to these institutions for their hospitality and support.

1. Abelian γ-factors

Let OF be the ring of integers of a non-archimedean local field F . Let pF
be the maximal ideal of OF and let qF denote the cardinality of OF /pF . For
every continuous non-trivial character ψ : F → C× of level l, fix a Haar
measure µψ of F such that µψ(OF ) = q

l/2
F . Let C∞c (F ) be the Bruhat-

Schwartz space of complex valued locally constant functions on F with
compact support. The Fourier transform Fψ : C∞c (F )→ C∞c (F ) is defined
by

Fψ(f)(x) =
∫
F

f(y)ψ(xy)dµψ(y).

Given a function f with domain F and a ∈ F×, let fa denote the function
on F defined by the rule fa(x) = f(ax). Then

(1.1) Fψa ◦Fψb(f) =
∣∣ab−1∣∣ 1

2
F
f−ab

−1
,
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L-FUNCTIONS IN POSITIVE CHARACTERISTIC 1739

for every f ∈ C∞c (F ), a, b ∈ F×. Notice that the level of ψa is l − ordF (a)
and µψa = |a|1/2F µψ. Also, every continuous non-trivial additive character
of F is of the form ψa, for some a ∈ F×.
Fix Haar measures µ×ψ on F× so that

dµ×ψ (x) = qF
qF − 1

dµψ(x)
|x|F

.

Then µ×ψ (O×F ) = µψ(OF ).
Given a continuous character χ : F× → C×, f ∈ C∞c (F ), and s ∈ C, the

integral

ζψ(s, χ, f) =
∫
F×

f(x)χ(x) |x|sF dµ
×
ψ (x),

defines a Laurent power series on q−sF . These ζ-functions converge and
define a rational function on q−sF in some right half plane (<(s) > 0 if χ is
unitary). Given a continuous multiplicative character χ, a continuous non-
trivial additive character ψ, and a ∈ F×, the abelian γ-factor γ(s, χ, ψa)
is the unique function on the variable s satisfying Tate’s local functional
equation

(1.2) ζψ(1− s, χ−1,Fψa(f)) = γ(s, χ, ψa)ζψ(s, χ, f),

for every f ∈ C∞c (F ). This γ-factor is a rational function on q−sF . Equa-
tion (1.2), applied twice in combination with (1.1), gives

(1.3) γ(s, χ, ψ)γ(1− s, χ−1, ψ) = 1.

The relationship between µψa and µψ, together with (1.2), yields

(1.4) γ(s, χ, ψa) = χ(a) |a|s−
1
2

F γ(s, χ, ψ).

Root numbers, or ε-factors, are defined via the equation

(1.5) ε(s, χ, ψ) = γ(s, χ, ψ) L(s, χ)
L(1− s, χ−1) ,

where L(s, χ) = 1 if χ is ramified, and L(s, χ) = (1− q−sF χ($F ))−1 if χ is
unramified. They satisfy

ε(s, χ, ψ)ε(1− s, χ−1, ψ) = 1,(1.6a)

ε(s, χ, ψa) = χ(a) |a|s−
1
2

F ε(s, χ, ψ).(1.6b)

Additionally, if χ is unramified and l = 0 then ε(s, χ, ψ) = 1, i.e.,

(1.7) γ(s, χ, ψ) = L(1− s, χ−1)
L(s, χ) .

TOME 66 (2016), FASCICULE 5



1740 L. A. Lomelí

Extend every f ∈ C∞c (F×) to a function in C∞c (F ) by setting f(0) = 0.
Then C∞c (F ) = span(1OF

, C∞c (F×)), where 1A denotes the characteristic
function of a set A ⊂ F . Taking N with χ1+pN

F
= 1 and setting f = 11+pN

F

in (1.2) yields the formula

γ(s, χ, ψ) =
∫
pl−N

F

χ−1(x) |x|−sF ψ(x)dµψ(x).

The integral is zero on small couronnes around 0, and converges as a prin-
cipal value integral. Therefore, the formula is valid for all s ∈ C, and it is
also possible to write

γ(s, χ, ψ) =
∫
F

χ−1(x) |x|−sF ψ(x)dµψ(x),

which converges as a principal value integral. Combining this with (3) gives

γ(s, χ, ψ)−1 =
∫
F

χ(x) |x|s−1
F ψ(x)dµψ(x)

= (1− q−1
F )

∫
F×

χ(x) |x|sF ψ(x)dµ×ψ (x).

Given a separable quadratic extension E/F of locally compact non-
archimedean fields, let ηE/F : F× → C× be the character given by the
rule: ηE/F (x) = 1 if x ∈ NE/F (E×); ηE/F (x) = −1 if x /∈ NE/F (E×).
Define

λ(E/F, ψ) =
∫
F×

ηE/F (x)ψ(x)dµ×ψ (x)∣∣∣∫F× ηE/F (x)ψ(x)dµ×ψ (x)
∣∣∣ .

It satisfies
λ(E/F, ψ)λ(E/F, ψ) = 1.

To avoid confusion, given a continuous character χ′ : E× → C× and a
continuous non-trivial character ψ′ : E → C×, write γE(s, χ′, ψ′) for the
corresponding γ-factor. Then

(1.8) λ(E/F, ψ)γE(s, χ ◦NE/F , ψ ◦ TrE/F )
= γ(s, χ|F× , ψ)γ(s, ηE/Fχ|F× , ψ).

To simplify notation, it is convenient to write ψE = ψ ◦ TrE/F .
Now, let E ' F×F . We can assume E is the separable quadratic algebra

F × F by fixing a basis. For every x = (x1, x2) ∈ E, let |x|E = |x1x2|F ,
x̄ = (x2, x1), NE/F (x) = xx̄, and TrE/F (x) = x + x̄. A smooth character
χ : E× → C× is of the form χ = χ1 ⊗ χ2, with χ1 and χ2 continuous
characters of F×. Complex valued locally constant functions f ∈ C∞(E×)

ANNALES DE L’INSTITUT FOURIER



L-FUNCTIONS IN POSITIVE CHARACTERISTIC 1741

are extended to complex valued locally constant functions C∞(E) by set-
ting f(x) = 0 for x ∈ E − E×. Embed F diagonally in E, in order to
interpret χ|F× and ψE = ψ ◦ TrE/F correctly. Let µψE

= µψ × µψ. Then,
equation (1.8) also holds in this case with ηE/F = 1 and λ(E/F, ψ) = 1,
i.e.:

γE(s, χ ◦NE/F , ψ ◦ TrE/F ) = γ(s, χ1χ2, ψ)2.

2. On the local coefficient and the classical groups

Given an algebraic group G defined over a field k, or an algebra A over
k, G will denote the group of rational points, i.e., G = G(k) or G(A). Let
F be a non-archimedean local field.

2.1. The general linear group

Let G be the general linear group GLn1+n2 . Let E be either the field
F or a degree-2 finite étale algebra over F . Let B = TU be the Borel
subgroup of G with maximal torus T and unipotent radical U, whose group
of rational points B over E consists of upper triangular matrices. The non-
trivial character ψ : F → C× extends to a character of U , also denoted by
ψ, by setting ψ(u) = ψE(u1,2 + · · · + un1+n2−1,n1+n2), for u = (ui,j) ∈ U .
Here, ψE = ψ ◦ TrE/F if E = F × F , and ψE = ψ if E = F . Consider the
maximal Levi subgroup M ' GLn1 ×GLn2 , whose group of rational points
over E is

M =
{(

g1 0
0 g2

)
| g1 ∈ GLn1(E), g2 ∈ GLn2(E)

}
.

Let P = MN denote the standard parabolic subgroup of G with unipotent
radical N.
Given smooth irreducible representations π1 of GLn1(E) and π2 of

GLn2(E), let π be the representation π1⊗π̃2 with space V . Here, π̃2 denotes
the contragredient representation of π2. Consider the unitarily induced rep-
resentation

I(s, π) = indGP (|det(·)|
s
2
E π1 ⊗ |det(·)|−

s
2

E π̃2).
More precisely, let V(s, π) be the space of functions f : G → V satis-
fying the following properties: there exists a compact open subgroup K

of G such that f(gk) = f(g) for every g ∈ G, k ∈ K; and, f(mng) =
|det(m1)|

s
2
E π1(m1) ⊗ |det(m2)|−

s
2

E π̃2(m2) δ
1
2
P (m) f(g), for every m =

TOME 66 (2016), FASCICULE 5



1742 L. A. Lomelí

(m1,m2) ∈ M , n ∈ N , g ∈ G, where δP denotes the modulus charac-
ter of P . Then, I(s, π) is the right regular representation of G on the space
of functions V(s, π).
Elements of the Weyl group W = W (T,G) will be identified with a

fixed representative in H(F ), where H is the normalizer of T in G and
F is embedded diagonally if E = F × F . This is done globally in such a
way that the theory matches the semisimple rank one local theory of §3,
and similarly for Haar measures. Let w0 = wlwl,M the Weyl group element
which is the product of the longest Weyl group element wl and the longest
Weyl group element wl,M with respect to M. We have the character ψM
of M , defined in a way which is w0 compatible with ψ:

ψM (u) = ψ(w0uw
−1
0 ), u ∈ U ∩M.

Let M′ = w0Mw−1
0 , and let P′ be the corresponding standard parabolic

subgroup of G with unipotent radical N′. Given a representation π ofM , let
w0(π) denote the representation ofM ′ given by π(w−1

0 m′w0),m′ ∈M ′. If π
is ψM -generic, then w0(π) is ψM ′ -generic, where ψM ′(u′) = ψM (w−1

0 u′w0),
u′ ∈M ′ ∩ U .

The intertwining operator A(s, π, w0) : V(s, π) → V(−s, w0(π)), is de-
fined by

A(s, π, w0)f(g) =
∫
N ′
f(w−1

0 n′g)dn′,

where the integral converges in a right half plane. In fact, it is a rational
operator in the sense of Waldspurger, §IV of [29].
Let C∞c (G,V ) be the space of locally constant functions with values

in the space V of π. For every s ∈ C, there is a surjective map Ps :
C∞c (G,V )→ V(s, π), given by

Psϕ(g) =
∫
P

|det(mp,1)|−
s
2

E |det(mp,2)|
s
2
E δ

1
2
P (mp)π−1(mp)ϕ(pg)dp.

Here, every p ∈ P can be written as p = mpnp for some mp ∈M , np ∈ N ;
furthermore, mp is identified with (mp,1,mp,2) ∈ GLn1(E) × GLn2(E) by
means of the embedding of M inside G. We note that the Haar measure
dp on P is right invariant.
Let K be a special maximal compact open subgroup of G. For each s ∈ C,

consider the function f0
s = Ps(1Pw0B∩K). Notice that ψ restricted toM∩U

defines a character, which we denote by ψM . Then, if π is ψM -generic with
Whittaker functional λψM

, the function

λψ(s, π)f0
s =

∫
N ′
λψM

(f0
s (w−1

0 n))ψ(n)dn
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L-FUNCTIONS IN POSITIVE CHARACTERISTIC 1743

defines a non-zero polynomial function on
{
q−sF , q sF

}
(Theorem 1.4 of [20]).

It is possible to use the previous integral to define a Whittaker functional
for I(s, π). The local coefficient is defined using the uniqueness property of
Whittaker models and is given by

Cψ(s, π, w0) = λψ(s, π)f0
s

λψ(−s, w0(π))A(s, π, w0)f0
s

.

It is a non-zero rational function on q−sF [20, 24].

2.2. Siegel Levi subgroups of classical groups

Let G = Gn be either a split classical group SO2n+1, Sp2n, SO2n, or
a quasi-split unitary group U2n, U2n+1. A definition of the split classical
groups over a non-archimedean local field or a global function field k can
be found in §3 of [20], including the case char k = 2. A definition of the
quasi-split unitary groups, suitable for computing with local coefficients, is
provided below.
Let K be a degree-2 finite étale algebra over a field k. Let θ denote the

non-trivial involution of K over k. Write x̄ = θ(x), for x ∈ K. Extend
conjugation to elements g = (gi,j) ∈ GLm(K), by setting ḡ = (ḡi,j). Given
a positive integer n, consider

h2n(x) =
n∑
i=1

x̄ix2n+1−i −
n∑
i=1

x̄2n+1−ixi, x ∈ K2n,

h2n+1(x) =
2n∑
i=1

x̄ix2n+2−i − x̄n+1xn+1, x ∈ K2n+1.

The unitary group G = Um, m = 2n or m = 2n+ 1, is defined so that its
group of rational points is given by

G = {g ∈ GLm(K)|hm(gx) = hm(x) for every x ∈ Km} .

Remark. — Throughout the article, we assume that split classical
groups are defined over k and non-split quasi-split classical groups are ob-
tained via a degree-2 extension K/k.

For every positive integer n, let Φn be the n × n matrix with ij-entries
(δi,n−j+1). Fix the Siegel Levi subgroup M of G so that its group of rational
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points M is embedded in G as follows:

M =


 g

1
Φntg−1Φn

| g ∈ GLn(k)

 if G = SO2n+1;

M =
{(

g

Φntg−1Φn

)
| g ∈ GLn(k)

}
if G = Sp2n or SO2n;

M =


 g

z

Φntḡ−1Φn

| g∈GLn(K), z∈ker(NK/k)

 if G = U2n+1;

M =
{(

g

Φntḡ−1Φn

)
| g ∈ GLn(K)

}
if G = U2n.

Let T be the maximal torus whose group of rational points T consists of
diagonal matrices, and let B = TU be the Borel group of G with unipotent
radical U, whose group of rational points B consists of upper triangular
matrices. Let P = MN be the standard parabolic subgroup of G with Levi
M and unipotent radical N.

If G is a split classical group, let E be the non-archimedean local field
F . If G is a quasi-split unitary group, let E be a degree-2 finite étale
algebra over F . HenceM ' GLn(E), unless G = U2n+1. In this latter case,
M ' GLn(E) × E1, where E1 = ker(NE/F ). Given a smooth irreducible
representation π of M , consider the unitarily induced representation

(2.1) I(s, π) =
{

indGP (|det(·)|sE π) if G = SO2n,Sp2n or U2n+1

indGP (|det(·)|
s
2
E π) if G = SO2n+1 or U2n

.

In the case of U2n+1, notice that a smooth irreducible representation π ofM
is of the form π = π′⊗ν, where π′ is a smooth irreducible representation of
GLn(E) and ν is a smooth character of E1. Also in this case, the character
|det(·)|E of GLn(E) is extended to a character of M , trivial on E1.

The space of I(s, π) is denoted by V(s, π). The Weyl group element
w0 = wlwl,M will be identified with a fixed representative in G. Notice
that P is self-associate. The intertwining operator A(s, π, w0) : V(s, π) →
V(−s, w0(π)) is then defined by

A(s, π, w0)f(g) =
∫
N

f(w−1
0 ng)dn,

There is a surjective map Ps : C∞c (G,V )→ V(s, π), s ∈ C, defined by

Psϕ(g) =
∫
P

|det(mp)|−isE δ
1
2
P (mp)π−1(mp)ϕ(pg)dp,
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where i = 1 or 1/2 depending on (2.1), and each p ∈ P has p = mpnp,
mp ∈ M , np ∈ N . Let K be a maximal compact open subgroup of G such
that G = PK, and consider the function f0

s = Ps(1Pw0B∩K).
The non-trivial character ψ : F → C× extends to a character of ψE of

E. As before, it then gives a character of the unipotent upper triangular
matrices in GLn(E). This defines a non-degenerate character ψM ofM ∩U .
Let G1 be a classical group of semisimple rank one, and assume G = Gn is
a classical group of the same type as G1 with n > 1. Given a non-negative
integer m, let Im denote the m × m identity matrix. Then, the group of
rational points G1 is identified with a subgroup of G:

(2.2) G1 '


 In−1

g

In−1

 | g ∈ G1

 ⊂ G.
The character ψM is then extended to a character ψ of U so that ψ|G1∩U
agrees with the semisimple rank one definitions of the next section. Then, if
π is a ψM -generic irreducible representation ofM with Wittaker functional
λψM

, the function

λψ(s, π)f0
s =

∫
N

λψM
(f0
s (w−1

0 n))ψ(n)dn,

is an non-zero Laurent polynomial function on q−sF (Theorem 1.4 of [20]).
The local coefficient is then given by

Cψ(s, π, w0) = λψ(s, π)f0
s

λψ(−s, w0(π))A(s, π, w0)f0
s

.

It is a non-zero rational function on q−sF [20, 24].

3. The local coefficient for semisimple rank one classical
groups

3.1. Definitions

First, let G = U2 or U3, let E be either the algebra F×F or let E/F be a
separable quadratic extension of non-archimedean local fields. Let E → E,
x 7→ x̄, denote conjugation on E. If E = F ×F , let β = (0, 1). Assume that
E/F is an extension of local fields, then: if char(F ) = 2, there is a β ∈ O×E
with galois conjugate β̄ ∈ O×E such that TrE/F (β) ∈ O×F , NE/F (β) ∈ O×F ,
and E = F (β); if char(F ) 6= 2, then there is a β ∈ E such that β̄ = −β
and E = F (β). Fix such a β.
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If G = U3, the elements of the maximal torus T = M are of the form
t = diag(a, b, ā−1), a ∈ E, b ∈ E1 = ker(NE/F ). The elements of U are of
the form

n(x, z(x, y)) =

 1 x z(x, y)
1 x̄

1

 , x ∈ E, y ∈ F,

where z(x, y) ∈ E satisfies the equation TrE/F (z(x, y)) = NE/F (x). In the
case of a field extension E/F , this implies that

z(x, y) =
{
y + β(TrE/F (β))−1NE/F (x) if char(F ) = 2
1
2NE/F (x) + βy if char(F ) 6= 2

.

If E = F × F , x = (x1, x2), then

z(x, y) = (y,−y) + βx1x2.

To abbreviate, write z = z(x, y). The non-trivial character ψ of F defines
a character of U , also denoted by ψ, via the relationship

ψ(n(x, z)) = ψ ◦ TrE/F (x).

Let Nα = {n(x, z(x, 0))|x ∈ E} and N2α = {n(0, z(0, y))|y ∈ F}. Then
N = NαN2α, Nα ∩ N2α = {I3}. Notice that, as a topological group, E =
F ⊕ βF . Let µ be the Haar measure on E given by∫

E

f(x1 + βx2)dµ(x1 + βx2) =
∫
F

∫
F

f(x1 + βx2)dµψ(x1)dµψ(x2).

Uniqueness of Haar measures gives

(3.1) µψE
= cµ.

The measure µψE
of E defines a Haar measure on Nα, and the measure

µψ of F defines a Haar measure on N2α. Then, fix the Haar measure on
N = NαN2α to satisfy dn = c dµ dµψ. If E = F × F , c = 1. Otherwise, c
depends on the level of ψE with respect to ψ. If char(F ) = 2, the level of
ψE equals l and c = 1. It is an exercise to compute the constant c in the
case of char(F ) 6= 2, note that care must be taken for dyadic fields.

If G = SO3, the elements of the maximal torus T = M are of the form
t = diag(a, 1, a−1). The elements of U are of the form

n(x) =

 1 −2x −x2

1 x

1

 , x ∈ F.
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This includes the case char(F ) = 2. The self-dual Haar measure µψ of F
defines a Haar measure on N = {n(x)|x ∈ F}. The character ψ of F is then
extended to a character ψ of U satisfying ψ(n(x)) = ψ(x).

If G = GL2, SL2, then the elements of U are of the form

n(x) =
(

1 x

1

)
, x ∈ E.

And, the character ψ of F is extended to a character of U by setting
ψ(n(x)) = ψE(x).

If G = U2, then

n(x) =
(

1 x

1

)
, x ∈ F.

Recall that x is identified with (x, x) ∈ E in the case E = F × F . The
character ψ of F is extended to a character of U by setting ψ(n(x)) = ψ(x).
Fix representatives of the Weyl group element w0 appearing in the defi-

nition of the local coefficient:

(3.2) w0 =
(

0 1
−1 0

)
, if G = GL2, SL2, or U2,

and

(3.3) w0 =

 0 0 1
0 −1 0
1 0 0

 , if G = SO3, or U3.

3.2. Compatibility with class field theory

Recall that we take E = F in the case G is a split classical group, and
we let E be a degree-2 étale algebra over F if G is a quasi-split unitary
group. If G is a general linear group, E can be as in either of these two
cases.

Proposition 3.1. — Let χ, χ1, and χ2 be continuous characters of
GL1(E).

• If G = GL2 and π is the smooth representation of T given by
π(diag(t1, t2)) = χ1(t1)χ−1

2 (t2), then

Cψ(s, π, w0) = γ(s, χ1χ2, ψ).

• If G = SO3 and π is the smooth representation of T given by
π(diag(t, 1, t−1)) = χ(t), then

Cψ(s, π, w0) = γ(s, χ2, ψ).
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• If G = SL2 and π is the smooth representation of T given by
π(diag(t, t−1)) = χ(t), then

Cψ(s, π, w0) = γ(s, χ, ψ).

• If G = U2 and π is the smooth representation of T given by
π(diag(t, t̄−1)) = χ(t), then

Cψ(s, π, w0) = γ(s, χ|F× , ψ).

• If G = U3 and ν is a continuous character of E1, extend ν to a
character of E× via Hilbert’s Theorem 90 (i.e., by setting ν(z) =
ν|E1(z̄z−1) for z ∈ E×). If π is the smooth representation on T

given by π(diag(t, z, t̄−1)) = χ(t)ν(z), then

Cψ(s, π, w0) = λ(E/F, ψ) γE(s, χν, ψE) γ(2s, ηE/Fχ|F× , ψ).

Remark. — When G is a quasi-split unitary group and E = F × F ,
embed F diagonally in E. The character χ is then of the form χ1⊗χ2, and
χ|F× is given by χ|F×((x, x)) = χ1(x)χ2(x).

Proof. — The case of U3 is presented, with all details given in the case
when E = F × F or E/F is an extension of local fields with char(F ) = 2.
With the above notation:

λψ(−s, w0(π))(A(s, π, w0)f0
s )

=
∫
N

A(s, π, w0)f0
s (w−1

0 n(u, v))ψE(u)dn(u, v)

=
∫
N

∫
N

f0
s (w−1

0 n(x, z)w−1
0 n(u, v))ψE(u)dn(x, z)dn(u, v).

Using the Bruhat decomposition with z 6= 0 gives this equal to∫
N

∫
N−{I3}

f0
s (diag(z̄−1, z̄z−1, z)n(−xz̄z−1, z̄)w0n(−xz−1, z−1)n(u,v))

× ψE(u)dn(x, z)dn(u,v),

and noticing that n(−xz−1, z−1)n(u, v) = n(u, v)n(−xz−1, z′), for some
z′ ∈ E, makes this equal to∫

N

|z̄|−(s+1)
E χ−1(z̄)ν(z)ψE(−xz−1)dn(x, z)

(
λψ(s, π)f0

s

)
.

Therefore

Cψ(s, π, w0)−1 =
∫
N

|z̄|−(s+1)
E χ−1(z̄)ν(z)ψE(xz−1)dn(x, z).
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Consider the cases E = F × F or char(F ) = 2 (it is an exercise to adapt
the following discussion to the remaining case when E/F is an extension
of local fields with char(F ) 6= 2). Notice that z(x, (β + β̄)−1xx̄y) = (β +
β̄)−1xx̄(y + β). Temporary notation: if E = F × F and y ∈ F , identify y
with (y,−y) ∈ E. Then, the integral∫
E

∫
F

|z̄(x, y)|−(s+1)
E χ−1(z̄(x, y))ν(z(x, y))ψE(xz(x, y)−1)dµψ(y)dµψE

(x)

is equal to∫
F

∫
E

∣∣y + β
∣∣−s−1
E

|x|−2s−1
E χ−1((β + β̄)−1xx̄(y + β))ν(y + β)

× ψE((β + β̄)(y + β)−1x̄−1)dµψ(x)dµψE
(y).

Hence, after taking x 7→ (β + β̄)(y + β)−1x,

Cψ(s, π, w0)−1 = c χ−1(β + β̄)
∫
F

|y + β|s−1
E χ(y + β)ν(y + β)dµψ(y)

×
∫
E

|x|−2s−1
E χ−1(NE/F (x))ψE(x−1)dµψE

(x),

where c is the constant of equation (3.1). This is introduced by going from
the product Haar measure on N to that of E. Now, notice that

χ−1(β+ β̄) γ(2s, χ|F× , ψ)−1
∫
F

|y+β|s−1
E χ(y+β)ν(y+β)dµψ(y)

=
∫
F

|x|F
∫
F

|yx+βx|s−1
E χ(yx+βx)ν(yx+βx)ψ((β+ β̄)x)dµψ(y)dµψ(x)

=
∫
F

∫
F

|y+βx|s−1
E χ(y+βx)ν(y+βx)ψ◦TrE/F (y+βx)dµψ(y)dµψ(x)

= c−1
∫
E

|z|s−1
E χ(z)ν(z)ψE(z)dµψE

(z)

= γE(s, χν, ψE)−1.

Also, taking x 7→ x−1 followed by x 7→ x̄, gives∫
E

|x|−2s−1
E χ−1(NE/F (x))ψE(x̄−1)dµψE

(x)

= γE(2s, χ ◦NE/F , ψE)−1

= λ(E/F, ψ) γ(2s, χ|F× , ψ)−1γ(2s, ηE/Fχ|F× , ψ)−1,

where the Langlands λ-factor comes from equation (1.8). Thus

Cψ(s, π, w0) = λ(E/F, ψ)γE(s, χν, ψE)γ(2s, ηE/Fχ|F× , ψ). �
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4. Principal series

4.1. Weyl group elements

For every simple root α, fix a Weyl group element representative wα
in such a way that is in accordance with the semisimple rank one theory.
Specifically, given a classical group G = Gn (n > 2), for each i, 1 6 i 6
n− 1, let αi be the simple root ei − ei+1 in the Bourbaki notation. Embed
Gαi

= GL2 in G so that

Gαi
=




Ii−1

g

I2n−2i−2
Φ2

tḡ−1Φ2
Ii−1

 | g ∈ GL2(E)

 ⊂ G.
Then, the representatives wαi

are fixed for 1 6 i 6 n− 1. The wα’s corre-
sponding to the remaining simple roots are given by the embedding of (2.2),
unless G = SO4. In this latter case, let wα1 correspond to the simple root
α1 = e1 − e2 as before, and fix

wα2 =


−1

1
1
−1


for the simple root α2 = e1 + e2.
Given an element w of the Weyl group, it has a reduced decomposition

into a product of simple roots. The representative of w given by this product
is independent of the reduced decomposition.

4.2. Multiplicativity and Haar measures

For future reference, Langlands’ lemma is recalled below for a quasi-split
connected reductive group G defined over a field k. Shahidi’s proof (see §2.1
of [24], originally written for non-archimedean local fields of characteristic
zero), provides an algorithm to properly decompose the unipotent radical
N of a parabolic subgroup P of G with respect to the decomposition of the
corresponding Weyl group elements. If G is viewed as a reductive group
scheme, the algorithm further extends to include quasi-split unitary groups
with respect to a degree-2 finite étale algebra over k (see 4.4.5 of [4]).
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Let G be a quasi-split connected reductive algebraic group defined over k.
Let B be a borel subgroup of G with maximal split torus A0 and unipotent
radical U. Denote the roots of G with respect to A0 by Σ, the positive roots
with respect to B by Σ+, and the simple roots by ∆. Parabolic subgroups
P of G correspond to subsets θ of ∆. Then P = Pθ has Levi decomposition
MθNθ. Let Pθ, Mθ, Nθ denote the groups of rational points. Let W be the
Weyl group of Σ, and for each α ∈ ∆ let wα be its corresponding reflection.
Given θ ⊂ ∆, let Wθ be the subgroup of W generated by wα, α ∈ θ, and
let wl,θ be the longest element of Wθ. Let Σθ be the set of roots spanned
by θ and let Σ+

θ = Σ+ ∩ Σθ.
Two subsets θ and θ′ of ∆ are said to be associate if the set

W (θ, θ′) = {w ∈W |w(θ) = θ′}

is non-empty. Given two such sets, the corresponding parabolic subgroups
Pθ and Pθ′ of G are associate. For an element w ∈ W , let Nw = U ∩
wN−θ w

−1 and let Nw = w−1Nww.

Lemma 4.1. — Suppose θ, θ′ ⊂ ∆ are associate. Take w ∈ W (θ, θ′).
Then, there exists a family of subsets θ1, . . . , θn of ∆, with θ1 = θ and
θn = θ′, such that for every i, 1 6 i 6 n− 1

(i) there exists a root αi ∈ ∆− θi such that θi+1 is the conjugate of θi
in Ωi = θi ∪ {αi};

(ii) if wi = wl,Ωiwl,θi in W (θi, θi+1), then w = wn−1 · · ·w1;
(iii) if one sets w′1 = w and w′i+1 = w′iw

−1
i , then w′n = 1 and

Nw′
i

= w−1
i Nw′

i+1
wi oNwi

.

If k is a non-archimedean local field, the semi-direct product of part (iii)
of the lemma is a semi-direct product of analytic p-adic groups. With the
notation of the lemma, Haar measures are then normalized to satisfy∫

Nw′
i

f(n̄i) dn̄i =
∫
Nw′

i+1
×Nwi

f(w−1
i n̄′i+1win̄i) dn̄′i+1dn̄i.

Now, let G is a classical group, w = w0, and θ = θ′ = ∆−{α} corresponds
to the maximal Levi subgroup M. Then, the lemma allows integrals over
N to be decomposed into a product of integrals over unipotent radicals
corresponding to semisimple rank one groups. In this way, Haar measures
are normalized so that they are in accordance with the semisimple rank
one theory.
Let X(Mθ) be the set or rational characters of Mθ and let a∗θ,C =

X(Mθ) ⊗ C. Given w ∈ W (θ, θ′), fix a decomposition w = wn−1 · · ·w1
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as in the lemma. Let ν1 = ν ∈ a∗θ,C, and let σ1 = σ be an irreducible
generic representation of Mθ. For i, 1 6 i 6 n − 1, let νi = wi(νi−1),
σi = wi−1(σi−1). Then, multiplicativity for the local coefficient can be
stated as follows:

(4.1) Cψ(ν, σ, w) =
n−1∏
i=1

Cψ(νi, σi, wi).

To obtain a function of a complex variable Cψ(s, σ, w0), we identify s with
the unramified character ν that corresponds to the appropriate twist by the
determinant |det(·)|, chosen as in equations (2.1) and (2.2). Each Ωi ⊂ ∆,
corresponds to a reductive group Gi that is either GLmi+ni or a classical
group of the same type but lower rank. Furthermore, each Gi has a Levi
subgroup Mi corresponding to θi. There are two cases:

(i) if Gi = GLmi+ni
, then Mi = GLmi

×GLni
;

(ii) if Gi is a classical group, then Mi is a Siegel Levi subgroup.
Then σi is an irreducible generic representation of Mi. By going through
Lemma 4.1 in each of the cases treated in this article, with the identification
of equations (2.1) and (2.2), we have that νi is identified with either s of
2s as follows: if the adjoint action r = r1 is irreducible, then νi is always
identified with s; if r = r1 ⊕ r2 then νi is identified with 2s every time
Gi = GLni

and with s when Gi is a classical group. The Weyl group wi is
then the one associated to the pair (Mi,Gi), and is also denoted by w′0.

4.3. Principal series

For every integer m > 1, let Bm be the Borel subgroup of GLm, whose
group Bm of F -rational points consists of upper triangular matrices. Let
χi, µj , 1 6 i 6 n1, 1 6 j 6 n2, be continuous characters of F×. Let π1 be
a ψ-generic constituent of

indGLn1 (F )
Bn1

(χ1 ⊗ · · · ⊗ χn1),

and π2 a ψ-generic constituent of

indGLn2 (F )
Bn2

(µ1 ⊗ · · · ⊗ µn2).

The algorithm of the previous section gives a decomposition of the Weyl
group element w0 = wn1n2wn1n2−1 · · ·w1, where the w′is, 1 6 i 6 n1n2,
correspond to positive simple roots. Notice that if a smooth representation
τ of GLm(F ) is ψ-generic, then τ̃ is ψ-generic. The multiplicativity property
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of the local coefficient for the ψ-generic representation π = π1 ⊗ π̃2 of M
reads as follows

Cψ(s, π, w0) =
∏
i,j

Cψ(s, χi ⊗ µ−1
j , w′0).

Here Cψ(s, χi ⊗ µ−1
j , w′0) is a local coefficient of GL2 and w′0 is a Weyl

group element representative obtained via equations (3.2) and (3.3). Fur-
thermore, there is a connection to the local theory of Tate’s thesis due to
Proposition 3.2.

Proposition 4.2. — Let π1 be a ψ-generic constituent of

indGLn2 (F )
Bn1

(χ1 ⊗ · · · ⊗ χn1),

and let π2 be a ψ-generic constituent of

indGLn2 (F )
Bn2

(µ1 ⊗ · · · ⊗ µn2).

Then, π = π1 ⊗ π̃2 is a ψ-generic representation of M ⊂ GLn1+n2(F ) and
the corresponding local coefficient satisfies

Cψ(s, π1 ⊗ π̃2, w0) =
∏
i,j

γ(s, χiµj , ψ).

This product is denoted by γ(s, π1 × π2, ψ), a Rankin-Selberg γ-factor.

Similarly, the algorithm applied to local coefficients of Siegel Levi sub-
groups of the classical groups and principal series for GLn gives the fol-
lowing proposition. Notice that Proposition 4.2 can be extended to include
E = F × F , in particular, the semisimple rank one case of GL2 is needed
to prove Proposition 4.3 for unitary groups in this case.

Proposition 4.3. — When E is a non-archimedean local fied, let π be
a ψ-generic constituent of

indGLn(E)
Bn

(χ1 ⊗ · · · ⊗ χn).

In the case of the separable quadratic algebra E = F ×F , let π = π1⊗ π2,
where π1 is a ψ-generic constituent of

indGLn(F )
Bn

(χ1,1 ⊗ · · · ⊗ χ1,n),

and π2 is a ψ-generic constituent of

indGLn(F )
Bn

(χ2,1 ⊗ · · · ⊗ χ2,n).
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In the latter case, write χi = χ1,i ⊗ χ2,i, for each i, 1 6 i 6 n. Then π

is an irreducible ψM -generic representation of M and the local coefficient
satisfies

Cψ(s,π,w0) =



∏n
i=1γ(s,χ2

i ,ψ)
∏
i<jγ(s,χiχj ,ψ) if G=SO2n+1∏n

i=1γ(s,χi,ψ)
∏
i<jγ(2s,χiχj ,ψ) if G=Sp2n∏

i<jγ(s,χiχj ,ψ) if G=SO2n∏n
i=1γ(s,χi|F× ,ψ)

∏
i<jγE(s,χiχconj.

j ,ψE) if G=U2n

Let ν be a smooth representation of E1, and extend it to a continuous
character ν of E× = GL1(E) via Hilbert’s Theorem 90. If G = U2n+1,
then π ⊗ ν is a ψM -generic representation of M and the local coefficient
satisfies

Cψ(s, π ⊗ ν, w0) = λ(E/F, ψ)n
n∏
i=1

γE(s, χiν, ψE)γ(2s, ηE/Fχi|F× , ψ)

×
∏
i<j

γE(2s, χiχconj.
j , ψE).

Notation. — If H is a group defined over E, and τ is a representation
of the group of E-rational points H of H, then τ conj. denotes the represen-
tation of H defined via conjugation, i.e., τ conj.(g) = τ(ḡ).

Assume E = F × F . Notice that, if G = U2n, then

Cψ(s, π1 ⊗ π2, w0) =
∏
i,j

γ(s, χ1,iχ2,j , ψ) = γ(s, π1 × π2, ψ).

If G = U2n+1, then ν is given by ν((x, y)) = ν−1
0 (x)ν0(y), with ν0 : F× → C

continuous, and

Cψ(s, π, w0) =
n∏
i=1

γE(s, χiν, ψE)
∏
i,j

γ(2s, χ1,iχ2,j , ψ)

=
n∏
i=1

γ(s, χ1,iν
−1
0 , ψ)γ(s, χ2,iν0, ψ)

∏
i,j

γ(2s, χ1,iχ2,j , ψ)

= γ(s, π1 × ν−1
0 , ψ)γ(s, π2 × ν0, ψ)γ(2s, π1 × π2, ψ).
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5. Global functional equation of local coefficients

Let k = K be a global function field if G is split, and let K/k be a
separable quadratic extension of global function fields if G is quasi-split.
Let Ak, respectively AK , denote the ring of adèles of k, respectively K. Let
ψ = ⊗vψv be a non-trivial continuous character of k\Ak such that each
ψv is unramified. In the case of a quadratic extension K/k and a place v
that splits in K, let Kv denote the separable quadratic algebra kv × kv. If
G = Gm, m = 2n or m = 2n+1, is a unitary group and v is any place of k,
let Gv be the unitary group over Kv/kv whose group of rational points is

Gv = {g ∈ GLm(Kv)|hm(gx) = hm(x) for every x ∈ Km
v } .

Let K =
∏
v Kv be a maximal compact subgroup of G(Ak). For every v,

assume Kv is a special maximal compact subgroup of Gv, hyperspecial for
almost all v. Then G(Ak) = ⊗′Gv, where the restricted direct product is
relative to the subgroups Kv.

Proceeding as in the local theory, the character ψ is then extended to a
character ψM of UM (Ak), where UM = M ∩U, trivial on UM (k). Then
ψM , in turn, is extended to a character ψ of U(Ak), trivial on U(k). The
local coefficients satisfy a functional equation, proved using the theory of
Eisenstein series for globally generic automorphic representations. Notice
that a system of Weyl group element representatives fixed in G(k), fixes a
system of Weyl group elements at every place of k. We fix such a global
system, which is in accordance with the local theory.

Theorem 5.1 (The crude functional equation). — Let π = ⊗′ πw be
a globally ψM -generic cuspidal automorphic representation of M(Ak) ⊂
G(Ak). If G is a quasi-split unitary group and the place v in k splits, let
πv = πw1 ⊗πw2 , where w1, w2 are the places of K lying above v, otherwise
write πw = πv. Let S be a finite set of places such that πv is unramified for
v /∈ S. The local coefficients satisfy the functional equation:

mr∏
i=1

LS(is, π, ri) =
∏
v∈S

Cψv (s, πv, w0)
mr∏
i=1

LS(1− is, π̃, ri).

5.1. Partial L-functions

To explain the notation in the crude functional equation, let LG be the
L-group of G over k. Given an irreducible admissible automorphic rep-
resentation π = ⊗′πv of G(Ak), πv is unramified at almost every v. Its
contragredient representation is denoted by π̃.
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Let ρ be a representation of LG, i.e., a continuous homomorphism ρ :
LG → GLm(C) whose restriction to LG0 is a morphism of complex Lie
groups. Let S be a finite set of places of k such that πv is unramified for
v /∈ S. For each v /∈ S, the Satake isomorphism determines a semisimple
class Âv in LG. The local L-function attached to πv and ρv, v /∈ S, is
defined by

L(s, πv, ρv) = det(I − ρv(Âv)q−sv )−1.

Then, the partial L-function is defined by

LS(s, π, ρ) =
∏
v/∈S

L(s, πv, ρv).

It is absolutely convergent in some right half plane (see §13 of [1]).
Given a positive integer m, let ρm denote the standard representation

of GLm(C). Label r = r1 to be ρn1 ⊗ ρ̃n2 , Sym2ρn, or ∧2ρn depending on
wether G = GLn1+n2 , SO2n+1, or SO2n. To define the Asai representation,
we are in the case of G = U2n and that of a separable extensionK/k. Notice
that the L-group is given by LResK/kGLn = GLn(C)×GLn(C)oWk, where
the Weil group acts via the Galois group Gal(K/k) = {1, θ}. In this case,
let r = r1 = rA be the Asai representation from LResK/kGLn to GLn2(C),
given by

rA(x, y, 1) = x⊗ y, and rA(x, y, θ) = y ⊗ x.

Also, if G = Sp2 = SL2, let r = r1 = ρ1. In all of these cases r is irreducible
and mr = 1 in Theorem 5.1. Proposition 4.2, together with equation (1.7),
and the Satake parametrization applied to πv, v /∈ S, yields

Cψv
(s, πv, w0)L(s, πv, rv) = L(1− s, π̃v, rv).

In the case G = SO2n, all factors in the previous equation are interpreted
to be trivial when n = 1.
Now, if G = Sp2n with n > 2, let r1 = ρn and r2 = ∧2ρn. Then, for

v /∈ S,

Cψv
(s, πv, w0)L(s, πv, r1)L(2s, πv, r2) = L(1− s, π̃v, r1)L(1− 2s, π̃v, r2).

If G = U2n+1, let r1 = ρn ⊗ ρ̃1 and r2 = rA. Then, for v /∈ S,

λ(Kv/kv, πv)nCψ(s, πv, w0)L(s, πv⊗ν−1
v , r1,v)L(2s, πv⊗ηKv/kv

, r2,v)
= L(1− s, π̃v⊗νv, r1,v)L(1− 2s, π̃v⊗ηKv/kv

, r2,v).

In these two latter cases let r = r1 ⊕ r2 and mr = 2 in Theorem 5.1.
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5.2. Proof of the crude functional equation

We now extend the discussion of §5 of [20], which is written for split
groups, to include the cases at hand concerning the quasi-split unitary
groups. Let π be a globally ψ-generic cuspidal representation of M(Ak).
The irreducible constituents of the globally induced representation of G
given by the restricted direct product

I(s, π) = ⊗′I(s, πv),

are automorphic representations Π = ⊗′Πv of G such that the representa-
tion πv has Kv-fixed vectors for almost all v. The space of I(s, π) is denoted
by V(s, π). The restricted tensor product is taken with respect to functions
f0
v,s that are fixed under the action of Kv.
Since π is globally ψ-generic, by definition, there is a cusp form ϕ in the

space of π such that

WM,ϕ(m) =
∫

UM (K)\UM (Ak)
ϕ(um)ψ(u) du 6= 0.

It is possible to extend ϕ to a cusp form ϕ̃ defined on U(Ak)M(K)\G(Ak)
(see §I.2.17 of [22]). Define a function Φs by twisting φ̃ by a power of |det(·)|
as in equations (2.1) and (2.2). This leads us to consider the Eisenstein
series

E(s,Φs, g, P ) =
∑

γ∈P(k)\G(k)

Φs(γg)

whose Fourier coefficients satisfy

(5.1) Eψ(s,Φs, g, P ) =
∏
v

λψv
(s, πv)(I(s, πv)(gv)fs,v),

with fs ∈ V(s, π). Here Eψ(s,Φs, g) denotes the Fourier coefficient

Eψ(s,Φs, g, P ) =
∫

U(K)\U(Ak)
E(s,Φs, ug, P )ψ(u) du.

The global intertwining operator M(s, π) is defined by

M(s, π, w0)f(g) =
∫

N′(Ak)
f(w−1

0 ng) dn,

where f ∈ V(s, π) and N′ is the unipotent radical of the standard para-
bolic P′ with Levi M′ = w0Mw−1

0 . It is the product of local intertwining
operators

M(s, π) =
∏
v

A(s, πv, w0).
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It is a meromorphic operator, which is rational on q−s (Proposition IV.1.12
of [22]). Property (5.1) gives

Eψ(−s,M(s, π)Φs, g, P ′)

=
∏
v

λψv (−s, w0(πv))(I(−s, w0(πv))(gv)A(s, πv, w0)fs,v).

It is known that the above Eisenstein series, and its Fourier coefficients,
are rational functions on q−s. The argument for proving this fact is due to
Harder [8].
Fourier coefficients of Eisenstein series satisfy the functional equation:

Eψ(−s,M(s, π)Φs, g, P ′) = Eψ(s,Φs, g, P ).

And, equation (5.1) gives

Eψ(s,Φs, e, P ) =
∏
v

λψv (s, πv)fs,v

Eψ(−s,M(s, π)Φs, e, P ′) =
∏
v

λψv
(−s, w0(πv))A(s, πv, w0)fs,v.

Then, the Casselman-Shalika formula for unramified quasi-split groups,
Theorem 5.4 of [2], allows one to compute the Whittaker functional when
πv is unramified:

λψv (s, πv)f0
s,v =

mr∏
i=1

L(1 + is, πv, ri)−1f0
s,v(ev).

Also, for v /∈ S, the intertwining operator gives a function A(s, πv, w0)f0
s,v ∈

I(−s, w0(πv)) satisfying

A(s, πv, w0)f0
s,v(ev) =

mr∏
i=1

L(is, πv, ri)
L(1 + is, πv, ri)

f0
s,v(ev).

This equation is established by means of the multiplicative property of the
intertwining operator, which reduces the problem to semisimple rank one
cases.
Finally, combining the last five equations together gives

mr∏
i=1

LS(is, π, ri) =
∏
v∈S

λψv (s, πv)fs,v
λψv

(−s, w0(πv))A(s, πv, w0)fs,v

mr∏
i=1

LS(1− is, π̃, ri).

Which establishes the crude functional equation of Theorem 5.1.
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Corollary 5.2 (Rationality of partial L-functions). — For each i, 1 6
i 6 mr, LS(s, π, ri) has a meromorphic continuations to rational functions
on q−s.

Proof. — This now follows from the proof of the crude functional equa-
tion together with the result of Harder on the rationality of Eψ(s,Φs, g)
(see the paragraph preceding Theorem 1.1.6 of [8]).

6. On certain γ-factors

A refinement of the crude functional equation satisfied by local coeffi-
cients leads to a definition of γ-factors. Although the results of the previous
sections are for ψ-generic representations, it is possible to define local coef-
ficients for generic representations in general. This is useful, since it leads
to an explicit formula explaining the behavior of γ-factors as the non-trivial
character ψ varies.
Thanks to joint work with G. Henniart [9, 10], it is possible to uniquely

characterize γ-factors in terms of local properties and their connection to
the global theory via the functional equation. In positive characteristic,
γ-factors and related local factors agree, via the local Langlands corre-
spondence, with those defined by Deligne and Langlands [6, 17].

Notation. — Recall that, if G is a classical group, then M is taken to
be a Siegel Levi subgroup of G. Let L (M,G) be the class whose objects
are triples (E/F, π, ψ) consisting of:

• a non-archimedean local field F ;
• E = F if G is split, E a degree-2 finite étale algebra over F if G is
a quasi-split unitary group;

• an irreducible generic representation π of M ;
• a non-trivial continuous character ψ of F .

Let L (p,M,G) be the class consisting of (E/F, π, ψ) ∈ L (M,G) with F
of characteristic p.

When G is split, it is convenient to simply write (F, π, ψ) for an object
of L (M,G). In the case of a general linear group, M = GLn1×GLn2 . The
degree of a triple (F, π, ψ) ∈ L (GLn1 × GLn2 ,GLn1+n2) is defined to be
(n1, n2). To ease the notation in this case, write L instead of L (GLn1 ×
GLn2 ,GLn1+n2). Whenever (F, π, ψ) ∈ L is of degree (n1, n2), it is as-
sumed that the representation π of M is of the form π = π1 ⊗ π̃2, with
generic representations π1 of GLn1(F ) and π2 of GLn2(F ).
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If G is a classical group, the Siegel Levi is either GLn or GLn × U1. In
these cases, call n the degree of a triple (E/F, π, ψ) ∈ L (M,G). In the
case of a triple (E/F, π, ψ) ∈ L (M,U2n+1), the representation π is of the
form π = π′ ⊗ ν′, where ν′ is a smooth representation of U1(E).

Let (E/F, π, ψ) ∈ L (M,G), where π is a χM -generic representation of
M with Whittaker functional λM . The non-degenerate character χM of
UM is extended to a non-degenerate character χ of U so that they are
w0-compatible, i.e.,

χM (n) = χ(w0nw
−1
0 ), n ∈ UM .

Notice that ψ and ψM are w0-compatible. The local coefficient for χM -
generic representations is defined via the uniqueness property of Whittaker
functionals and the relationship

λχ(s, π) = Cχ(s, π, w0)λχ(−s, w0(π))A(s, π, w0),

where

λχ(s, π)fs =
∫
N ′
λχM

(fs(w−1
0 n))χ(n)dn, fs ∈ I(s, π).

Now, there is a t ∈ T(F ) such that χ ◦ Ad(t)(n) = χ(t−1nt) = ψ(n) ,
n ∈ N ; Ad(t) is F -rational (see the discussion in pp. 282–283 of [26]). If
f ∈ I(s, π), then ft ∈ I(s, πt), where πt(g) = π(t−1gt), ft(g) = f(t−1gt).
The representation πt is then ψ-generic and belongs to the equivalence class
of π.

Assume now that π is ψa-generic, with a ∈ F×. In all the cases at hand
it is possible to produce a t such that a−1

0 = w−1
0 t−1w0t is an element of the

center of M(F ). It is possible to obtain an explicit formula explaining the
behavior of the local coefficient when it is defined via different non-trivial
characters ψa, a ∈ F×. To see this, let at ∈ C×, be the module of the
automorphism n 7→ tnt−1. Then

(6.1) Cψ(s, πt, w0) = at ωπ(a0) |det(a0)|isF δ
1
2
P (a0)Cχ(s, π, w0),

where i = 1 or 1/2 depending on equation (2.1), and ωπ the central char-
acter of π. Define

(6.2) C ′ψ(s, πt, w0) = a−1
t λ(E/F,w0)−1Cψ(s, πt, w0),

where λ(E/F,w0) = λ(E/F, ψ)n if G = U2n+1, and it is equal to 1 other-
wise.
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6.1. Rankin-Selberg γ-factors

Let (F, π, ψ) ∈ L , where π = π1 ⊗ π̃2 is of degree (n1, n2). Take t as
above such that πt is ψ-generic. Define

γ(s, π1 ⊗ π̃2, r, ψ) = C ′ψ(s, πt, w0).

To simplify notation in this case, write γ(s, π1⊗π̃2, ψ) for γ(s, π1⊗π̃2, r, ψ).
For the smooth generic representations π1 of GLn1(F ) and π2 of GLn2(F ),
local Rankin-Selberg γ-factors are defined in [13]:

γ(s, π1 × π2, ψ) = ε(s, π1 × π2, ψ)L(1− s, π̃1 × π̃2)
L(s, π1 × π2) .

The main result of [25] establishes the equality of γ-factors

(6.3) γ(s, π1 ⊗ π̃2, ψ) = γ(s, π1 × π2, ψ)

using local methods. Notice that the choice of Weyl group elements of §4
gives

w0 = wlwl,M =
(

(−1)n2+1In2

(−1)n1+n2+1In1

)
.

It is also possible to give a different proof of (6.3) via the local-to-global
result of [9] by giving a characterization of Rankin-Selberg γ-factors. An
interesting consequence of this equality is the following stability property
of γ-factors, known for Rankin-Selberg products (see [14]):

Proposition. — Let F be a non-archimedean local field. Let π1 and π2
be irreducible generic representations of GLn1(F ) with ωπ1 = ωπ2 , and let
τ be an irreducible generic representation of GLn2(F ). There is an integer
A with the following property: If χ is a character of F× with conductor pa,
a > A, then

γ(s, (π1 ⊗ χ)⊗ τ̃ , ψ) = γ(s, (π2 ⊗ χ)⊗ τ̃ , ψ).

The Godement-Jacquet γ-factor corresponding to a principal L-function
of [12], for an irreducible generic representation π of GLn(F ), can be ob-
tained by setting

γ(s, π, ψ) = γ(s, π ⊗ 1, ψ),
where 1 is the trivial representation on GL1(F ). The above proposition
gives stability of γ-factors for representations π1 and π2 of GLn(F ) sharing
the same central character:

γ(s, π1 ⊗ χ, ψ) = γ(s, π2 ⊗ χ, ψ),

where χ is a highly ramified character.
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6.2. Definition/induction for the classical groups

Proposition 4.3, equation (1.7), and the discussion in §5.1 show that γ-
factors are compatible with the definition using L-groups via the Satake
parametrization for unramified principal series. Given an irreducible χM -
generic representation of M , take t so that χ◦Ad(t) = ψ as in section §6.1.
With the notation of §5.1, whenever r = r1 is irreducible, define

γ(s, π, r, ψ) = C ′ψ(s, πt, w0).

This is the main induction step of the Langlands-Shahidi method for the
classical groups. Since both local and global Langlands conjectures are
known in the case of GLn in positive characteristic, it is possible to obtain
an equality with the corresponding representations on the galois side.

Theorem. — Let G = SO2n+1, SO2n or U2n, and let (E/F, π, ψ) ∈
L (M,G) be of degree n, with F of positive characteristic. Let σ be the n-
dimensional Frobenius semisimple Weil-Deligne representation of the Weil
group WE corresponding to π under the local Langlands correspondence.
Then

γ(s, π, r, ψ) =


γ(s,Sym2σ, ψ) if G = SO2n+1

γ(s,∧2σ, ψ) if G = SO2n

γ(s,⊗I(σ), ψ) if G = U2n

.

The γ-factors on the right hand side are those defined by Deligne and
Langlands for Weil-Deligne representations.

This is proved in [9, 10] via a characterization of γ-factors in terms of
local properties and their appearance in the global functional equation of
partial L-functions. This is done with the help of a local-to-global result.
The necessary properties for the uniqueness argument to hold are given in
§6.3 below. The proof when G = GLn1+n2 is given in the [11]. It is also
possible to adapt the argument and include G = Sp2n and U2n+1, which
are no longer part of the main induction since r = r1 ⊕ r2. We have that
the local coefficient is a product of two γ-factors in this case:

γ(s, π, r1, ψ) γ(2s, π, r2, ψ).

More precisely, we have the following variation of the above theorem.

Theorem′. — Let (E/F, π, ψ) ∈ L (M,G) and let σ be as in the pre-
vious Theorem. If G = Sp2n, n > 1, then

C ′ψ(s, πt, w0) = γ(s, σ, ψ) γ(2s,∧2σ, ψ).
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If G = U2n+1 and π′ = π ⊗ ν, where ν is a character of E1, extend ν to a
smooth representation of GL1(E) via Hilbert’s Theorem 90. Then

C ′ψ(s, π′t, w0) = γE(s, π × ν, ψ ◦ TrE/F ) γF (2s, π ⊗ ηE/F , rA, ψ).

6.3. Properties of γ-factors

Local properties, (i) − (v), needed to uniquely characterize generic γ-
factors are now provided (see [9, 10] and the appendix). The link to the
global theory is done via the functional equation (vi).

(i) (Naturality). Let (E/F, π, ψ) ∈ L (M,G). Let η : E′ → E be an iso-
morphism such that ηF ′ maps F ′ into F . Then ψ′ = ψ◦η|F ′ is a non-trivial
character of F ′. Also, via η, π defines a smooth irreducible representation
π′ of M(F ′). Then at = at′ and

C ′ψ(s, πt, w0) = C ′ψ(s, π′t′ , w0).

(ii) (Isomorphism). Let π1 and π2 be two irreducible representations π1 and
π2 of M , generic with respect to the same non-degenerate character χM ,
and such that π1 ' π2. Then Cχ(s, π1, w0) = Cχ(s, π2, w0), see Theorem 3.1
of [24]. This gives an isomorphism property

C ′ψ(s, (π1)t1 , w0) = C ′ψ(s, (π2)t2 , w0),

for (E/F, πi, ψ) ∈ L (M,G), i = 1, 2, with π1 ' π2.

Remark. — Because of this isomorphism property, it is possible to as-
sume that, given (E/F, π, ψ) ∈ L (M,G), the representation π is ψM -
generic.

(iii) Proposition 3.1 shows that local coefficients are compatible with class
field theory.

(iv) Equation (6.1) explains the behavior of the local coefficient when the
non-trivial character varies.

(v) (Multiplicativity). First, assume that G is a classical group. Let
(E/F, π, ψ) ∈ L (M,G) be of degree n. Let n = n1 + · · ·+nd and suppose
π is the generic constituent of

indGLn(E)
P (π1 ⊗ · · · ⊗ πd),

where P = MN is a parabolic subgroup of GLn with Levi M =
∏d
k=1 GLnk

.
Then, multiplicativity gives a relationship for γ-factors involving of the
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inducing data

(6.4) γ(s, π, ri, ψ) =
∏
j

γ(s, πi,j , ri,j , ψ),

where the product ranges over a specific set of indices. For each j,
(E/F, πi,j , ψ) ∈ L (Mj ,Gj), with Gj either a group of the same type
as G or a general linear group.

Multiplicativity is stated explicitly in [20] when G = SO2n+1, Sp2n,
SO2n, and in [10] when G = U2n. An explicit relationship for each of the
remaining cases of G = GLn1+n2 and U2n+1 is now given.
Now, assume that G is a general linear group. Let (F, π, ψ) ∈ L be

of degree (n1, n2), with π = π1 ⊗ π̃2. Assume that π1 is the generic con-
stituent of

indGLn1 (F )
P1

(ξ1 ⊗ · · · ⊗ ξd),

with each ξi a representation of GLhi
(F ), n1 = h1 + · · ·+hd. Also, assume

that π2 is the generic constituent of

indGLn2 (F )
P2

(τ1 ⊗ · · · ⊗ τe),

with each τj a representation of GLmj
(F ), n2 = m1 + · · ·+me. Then

(6.5) γ(s, π, ψ) =
∏
k,l

γ(s, ξk ⊗ τ̃l, ψ),

where the product ranges over all k, 1 6 k 6 d, and all l, 1 6 l 6 e.
Equation (6.4) can now be explicitly interpreted in this case with πi,j of
the form ξk ⊗ τ̃l and ri,j the appropriate standard representation.
Next, let (E/F, π, ψ) ∈ L (M,U2n+1), and suppose π = π′ ⊗ ν′ is ψM -

generic. Extend ν′ to a character ν of GL1(E). Let n = n1 + · · ·+ nd and
suppose π′ is the ψ-generic constituent of

indGLn(E)
P (π1 ⊗ · · · ⊗ πd),

where P = MN is a parabolic subgroup of GLn with Levi M =
∏d
i=1 GLni

and, for each i, πi is a supercuspidal ψ-generic representation of GLni
(E).

Then

C ′ψ(s, π′ ⊗ ν′, w0) =
d∏
i=1

C ′ψ(s, πi ⊗ ν, wi0)
∏
i<j

Cψ(2s, πi ⊗ π̃conj.
j , wij0 ).

Here, C ′ψ(s, πi ⊗ ν, wi0) is a local coefficient of U2ni+1 and Cψ(2s, πi ⊗
π̃conj.
j , wij0 ) is a local coefficient of GLni+nj

(E) equal to γ(2s, πi×πconj.
j , ψE).
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By grouping the factors involving s and 2s together, equation (6.4) takes
the following explicit form for each of the two corresponding γ-factors:

γ(s, π, r1, ψ) = γE(s, π′ × ν, ψE) =
d∏
k=1

γE(s, πk × ν, ψE)(6.6a)

γ(s, π, r2, ψ) =
d∏
k=1

γ(s, πk ⊗ ηE/F , rA, ψ)
∏
k<l

γE(s, πk × πconj
l , ψE).(6.6b)

(vi) (Global functional equation). With the notation of §5, G is defined
over a global function field k. It is possible to embed G into a group G̃
sharing the same derived group as G, and satisfyingH1(Z

G̃
) = {1} (Propo-

sition 5.4 of [27]). Let B̃ = T̃U be a Borel subgroup of G̃ defined over k.
Then T̃(k) acts transitively on generic characters of U(k)\U(Ak). Hence,
it is possible to find a t ∈ T̃(k) such that πt is globally ψ-generic, where
πt(m) = π(t−1mt). See the appendix to [3], where the homological discus-
sion holds for a global function field. The functional equation, Theorem 5.1,
now becomes one involving γ-factors

LS(s, π, r) =
∏
v∈S

γ(s, πv, rv)LS(1− s, π̃, r),

where r = ρn1 ⊗ ρ̃n2 , Sym2ρn, ∧2ρn, or rA. If G = Sp2n (with n > 1) or
U2n+1, there are two individual functional equations:

LS(s, π, ri) =
∏
v∈S

γ(s, πv, ri,v)LS(1− s, π̃, ri),

for i = 1, 2, since r = r1 ⊕ r2 in the notation of §5.1. Notice that, if
G = Sp2 = SL2, one retrieves the theory of L-functions for an automorphic
representation of GL1, i.e., for π = χ a Größencharakter of GL1(Ak).

6.4. Additional properties of γ-factors

(vii) (Twists by unramified characters) Let (E/F, π, ψ) ∈ L (M,G). If
G = GLn1+n2 and π = π1 ⊗ π̃2, then

γ(s+ s0, π1 ⊗ π̃2, ψ) = γ(s, (|det(·)|s0
F π1)⊗ π̃2, ψ).

If G = SO2n, SO2n+1 or U2n, then

γ(s+ s0, π, r, ψ) = γ(s, |det(·)|
s0
2
F π, r, ψ).
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Notice that, when Sp2n and U2n+1, the relationship corresponding to
twists by unramified characters can be obtained from these cases for each
of the γ-factors γ(s, π, ri, ψ), i = 1 or 2.

(viii) (Local functional equation) Let (E/F, π, ψ) ∈ L (M,G), then

γ(s, π, ri, ψ) γ(1− s, π̃, ri, ψ) = 1.

7. L-functions, ε-factors, and their global functional
equation.

Local L-functions and root numbers are first defined for tempered rep-
resentations. Then in general with the aid of Langlands classification for
p-adic groups combined with multiplicativity and twists by unramified char-
acters. When G is a general linear group, the approach taken here is in ac-
cordance with the theory for principal L-functions [12] and Rankin-Selberg
convolutions [13].

7.1. L-functions and tempered representations

With the notation of §6.1, given (E/F, π, ψ) ∈ L (M,G), call it tempered
(resp. supercuspidal) if the irreducible representation π of M is tempered
(resp. supercuspidal). For tempered (E/F, π, ψ), let Pπ,i(t) be the unique
polynomial satisfying Pπ,i(0) = 1 such that Pπ,i(q−s) is the numerator of
γ(s, π, ri, ψ), 1 6 i 6 mr. Define

(7.1) L(s, π, ri) = Pπ,i(q−s)−1.

Notice that the zeros of a local coefficient are poles of the corresponding
intertwining operator A(s, π, w0). Hence, the definition of a local L-function
does not depend on the character ψ.
Proposition 7.1. — Let (E/F, π, ψ) ∈ L (M,G) be tempered. Then

L(s, π, ri), 1 6 i 6 mr, is holomorphic for <(s) > 0.
Proof. — First, consider the cases G = GLn1+n2 , SO2n+1, SO2n or U2n.

From the definitions, the zeros of Cψ(s, π, w0) are those of Pπ,1(q−s). The
proposition follows in these cases, since it is known that the intertwining
operators are holomorphic for <(s) > 0 when π is tempered (see Theo-
rem 5.3.5.4 of [28]; also, see Proposition IV.2.1 of [29]). Next, consider the
cases G = Sp2n or U2n+1. Then, L(s, π, r1) arises from a local coefficient
of GLn+1, and L(2s, π, r2) arises arises from a local coefficient of either
SO2n or U2n, each of which is holomorphic for <(s) > 0 by the previous
cases. �

ANNALES DE L’INSTITUT FOURIER



L-FUNCTIONS IN POSITIVE CHARACTERISTIC 1767

7.2. Tempered representations of GLn

Every tempered representation of GLn(F ) arises as the unique irreducible
submodule of a parabolically induced representation

indGLn(F )
P (δ1 ⊗ · · · ⊗ δr),

where each δi is a discrete series representation. This is part of Theorem 9.7
of [30], which is stated for quasi-tempered representations, i.e., tempered
representations twisted by a suitable character.

In order to be more precise, given a supercuspidal representation ρ of
GLd(F ) and a positive integer a, let δ(ρ, a) be the irreducible submodule
of

indGLd(F )
Pa

(ν
a−1

2 ρ⊗ · · · ⊗ ν−
a−1

2 ρ),
where ν = |det(·)|F and Pa = MaNa is the parabolic with Levi Ma =∏a
i=1 GLd. If ρ is unitary, then δ(ρ, a) is a unitary discrete series represen-

tation of GLad(F ). All discrete series representations of GLn(F ) are of this
form.
Notice that, if πi = δ(ρi, ai), i = 1 or 2, are discrete series representations

of GLni
(F ), then L(s, π1 × π2) is holomorphic for <(s) > 0. Similarly for

L(s, π, r), with π = δ(ρ, a) in the previous proposition.

7.3. Root numbers and tempered representations.

Let (E/F, π, ψ) ∈ L (M,G) be tempered. Then, there is a monomial
ε(s, π, ri, ψ) in the variable Z = q−s, called the local root number or ε-
factor, given by

(7.2) ε(s, π, ri, ψ) = γ(s, π, ri, ψ) L(s, π, ri)
L(1− s, π̃, ri)

.

That the root number is indeed a monomial in Z = q−s, follows from
Proposition 7.1 and the local functional equation of γ-factors 6.4(viii).
The multiplicativity property of γ-factors is inherited for local L-func-

tions and ε-factors when (E/F, π, ψ) ∈ L (M,G) is tempered. With the
notation of equation (6.4), multiplicativity of local factors reads

L(s, π, ri) =
∏
j

L(s, πi,j , ri,j)(7.3a)

ε(s, π, ri, ψ) =
∏
j

ε(s, πi,j , ri,j , ψ).(7.3b)

Here, πi,j is the generic representation of Mj given by the σj of equa-
tion (4.1) corresponding to the pair (Mj ,Gj).
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7.4. Local factors in general

It is now possible to proceed to the general case. For each i, 1 6 i 6 d,
let τi,0 be a tempered representation of GLni(F ). Take a sequence of real
numbers t1 > · · · > td and let τi = |det(·)|tiF τi,0, for each i. Let n =
n1 + · · ·+ nd and let P′ = M′N′ be the parabolic subgroup of GLn, with
Levi M′ =

∏d
i=1 GLni . Then, the unitarily induced representation

(7.4) τ = indGLn(F )
P ′ (τ1 ⊗ · · · ⊗ τd),

has a unique Langlands’ quotient representation π = J(τ). Every irre-
ducible representation π of GLn is of this form.
Now, with the notation of §6.1 when G is a general linear group, let

(F, π, ψ) ∈ L be of degree (n1, n2), with π = π1 ⊗ π̃2. It is then possible
to assume that π1 = J(ξ) and π2 = J(τ), where ξ = indGLn1 (F )

Pn1
(ξ1 ⊗

· · · ⊗ ξd) and ρ = indGLn2 (F )
Pn2

(τ1 ⊗ · · · ⊗ τe) are as in equation (7.4) with
ξk = |det(·)|uk

F ξk,0 and τl = |det(·)|vl

F τl,0. Equation (6.5) combined with
twists by unramified characters gives

(7.5) γ(s, π1 ⊗ π̃2, ψ) =
∏
k,l

γ(s+ uk + vl, ξk,0 ⊗ τ̃l,0, ψ).

Here, each γ-factor in the product corresponds to tempered representations.
This allows one to define local L-functions and root numbers in general by
setting

L(s, π) =
∏
k,l

L(s+ uk + vl, ξk,0 ⊗ τ̃l,0)(7.6a)

ε(s, π, ψ) =
∏
k,l

ε(s+ uk + vl, ξk,0 ⊗ τ̃l,0, ψ).(7.6b)

Next, when G is a classical group, let (E/F, π, ψ) ∈ L (M,G) be such
that π = J(τ) as in equation (7.4). Then local L-functions and root numbers
are defined using multiplicativity, equation (6.4), and twists by unramified
characters, property 6.4(vii). It is now possible to obtain explicit formulas
for each of the classical groups in terms of tempered inducing data. In
particular, Asai local factors are defined in general in §4.3 of [10]. It is now
an exercise to explicitly do this for exterior square and symmetric square
local factors.
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7.5. Global functional equation

With the notation of §5, let π be a cuspidal automorphic representation
of M(Ak). Local L-functions and root numbers are now defined at every
place of k. Thus, it is possible to define the completed L-functions:

L(s, π, ri) =
∏
v

L(s, πv, ri,v) and ε(s, π, ri) =
∏
v

ε(s, πv, ri,v, ψv),

for each i, 1 6 i 6 mr. The final form of the functional equation is now
obtained from Property 6.3(vi) for each i:

L(s, π, ri) = ε(s, π, ri)L(1− s, π̃, ri).

Notice that ε(s, πv, ri,v, ψv) is trivial outside a finite set S of places of k
and that the global root number does not depend on the character ψ. Fur-
thermore, rationality of completed L-functions follows from Corollary 5.2.
To summarize, we have completed a linearly ordered proof of the following
theorem.

Theorem 7.2. — Let k be a global function field with finite field of
constants Fq. If G is a split classical group or a quasi-split unitary group,
let M be a Siegel Levi subgroup; if G is a general linear group let M be
a maximal Levi subgroup. Let π be a cuspidal automorphic representation
of M(Ak). Then, the L-functions L(s, π, ri) are nice, i.e., they satisfy:

(i) (Rationality) L(s, π, ri) has a meromorphic continuation to a ratio-
nal function on q−s;

(ii) (Functional equation) L(s, π, ri) = ε(s, π, ri)L(1− s, π̃, ri).
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