
AN

N
A
L
E
S
D
E

L’INSTI
T

U
T
F
O
U
R

IE
R

ANNALES
DE

L’INSTITUT FOURIER

Zoltán M. BALOGH, Urs LANG & Pierre PANSU

Lipschitz extensions of maps between Heisenberg groups
Tome 66, no 4 (2016), p. 1653-1665.

<http://aif.cedram.org/item?id=AIF_2016__66_4_1653_0>

© Association des Annales de l’institut Fourier, 2016,
Certains droits réservés.

Cet article est mis à disposition selon les termes de la licence
CREATIVE COMMONS ATTRIBUTION – PAS DE MODIFICATION 3.0 FRANCE.
http://creativecommons.org/licenses/by-nd/3.0/fr/

L’accès aux articles de la revue « Annales de l’institut Fourier »
(http://aif.cedram.org/), implique l’accord avec les conditions générales
d’utilisation (http://aif.cedram.org/legal/).

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://aif.cedram.org/item?id=AIF_2016__66_4_1653_0
http://creativecommons.org/licenses/by-nd/3.0/fr/
http://aif.cedram.org/
http://aif.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/


Ann. Inst. Fourier, Grenoble
66, 4 (2016) 1653-1665

LIPSCHITZ EXTENSIONS OF MAPS BETWEEN
HEISENBERG GROUPS

by Zoltán M. BALOGH, Urs LANG & Pierre PANSU (*)

Abstract. — Let Hn be the Heisenberg group of topological dimension 2n+1.
We prove that if n is odd, the pair of metric spaces (Hn,Hn) does not have the
Lipschitz extension property.
Résumé. — Soit Hn le groupe d’Heisenberg de dimension topologique 2n + 1.

On montre que si n est impair, le couple d’espaces métriques (Hn,Hn) ne possède
pas la propriété d’extension lipschitzienne.

1. Introduction

Since globally defined Lipschitz mappings have good Rademacher type
differentiability properties, it is a matter of general interest to provide ex-
tension theorems for partially defined Lipschitz mappings. In this context,
the following concept is useful: A pair of metric spaces (X,Y ) is said to
have the Lipschitz extension property if there exists a constant C > 1 such
that any Lipschitz mapping f : A → Y , A ⊂ X, has a Lipschitz extension
F : X → Y with the property that Lip(F ) 6 C · Lip(f). Here, we used
the notation Lip(F ) := inf{L > 0 : dY (F (x), F (y)) 6 LdX(x, y) for all
x, y ∈ X} and similarly for Lip(f).
There is a long history of results providing examples of metric pairs

(X,Y ) with or without the Lipschitz extension property. The first such
result is due to McShane [11] who proved that for an arbitrary metric
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space X, the pair (X,R) has the Lipschitz extension property, even with
constant C = 1. This result was followed by the theorem of Kirszbraun [5]
who proved the Lipschitz extension property, also with constant C = 1, for
pairs of Euclidean spaces (Rm,Rn). Kirszbraun’s theorem was generalized
by Valentine [15] to pairs of general Hilbert spaces (H1, H2).
The Lipschitz extension problem becomes more challenging if the tar-

get space Y has no linear structure. A generalization of the Kirszbraun–
Valentine theorem to metric spaces with a curvature bound in the sense of
Alexandrov was established by Lang and Schroeder [7], and the case of an
arbitrary metric space X and a Hadamard manifold Y was discussed in [6].
In the paper of Lang and Schlichenmaier [8], a general sufficient condition
for the Lipschitz extension property of a metric pair (X,Y ) is given.
The Lipschitz extension property for a pair of general Carnot groups

(G1, G2) with their canonical sub-Riemannian Carnot-Carathéodory met-
rics is studied for particular pairs of Carnot groups in [2], [14], [16]. The
situation is fully understood for the pair (Rn,Hm), where G1 = Rn is the
Euclidean space of dimension n and Hm is the Heisenberg group of topo-
logical dimension 2m+ 1. In this case, it is known that the pair (Rn,Hm)
has the Lipschitz extension property if and only if n 6 m. The “only if”
part of this equivalence is due to Balogh and Fässler [2], whereas the “if”
part is due to Wenger and Young [16].

In this note, we shall study the Lipschitz extension property for pairs of
Heisenberg groups (Hn,Hm), a question that was posed in [2]. Let us ob-
serve first that since Hn contains isometric copies of Rn, it follows from [2]
that if (Hn,Hm) has the Lipschitz extension property, then we must nec-
essarily have that n 6 m.
The reason for this restriction on dimensions is as follows: It is a well-

known fact of sub-Riemannian geometry that smooth Lipschitz mappings
between sub-Riemannian spaces must satisfy the contact condition. This
means that the horizontal distribution defining the sub-Riemannian metric
must be preserved by the tangent map. This property gives an obstruction
for the existence of smooth Lipschitz extensions. This principle can be
transferred even for possibly non-smooth Lipschitz extensions, allowing us
to prove the main result of this note:

Theorem 1.1. — For n > 2k+ 1, k > 0, the pair (Hn,H2k+1) does not
have the Lipschitz extension property.

Since H2k+1 is isometrically embedded in Hn for 2k+1 6 n it is enough to
prove the statement for n = 2k + 1. The idea of the proof is to exploit the
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consequences of the aforementioned contact condition. Indeed, this con-
dition implies that a globally defined smooth contact map F : H2k+1 →
H2k+1 is orientation preserving, which gives a major restriction on the na-
ture of globally defined Lipschitz mappings. It allows us to define a map
f : H → H2k+1 from a subset H ⊂ H2k+1 into H2k+1 that does not have a
globally defined Lipschitz extension. In order to prove the non-existence of
such an extension we use results from mapping degree theory [9], [4] and
Pansu’s result on almost everywhere differentiability [13]. This argument
does not work for the case of the pairs (H2k,H2k) as smooth contact maps
F : H2k → H2k are not necessarily orientation preserving. In this case the
Lipschitz extension property is still open.
On the positive side, it was shown in [16] that the pair (Hn,Hm) has the

Lipschitz extension property whenever m is greater than or equal to 2n+1,
the topological dimension of Hn.

The paper is organized as follows: In Section 2 we recall the metric struc-
ture of the Heisenberg group and discuss regularity results of Lipschitz
maps between Heisenberg groups. In Section 3 we prove a result on the
computation of the mapping degree of maps between Heisenberg groups
using the Pansu derivative. This result may be of independent interest. In
Section 4 we give the proof of Theorem 1.1.

Acknowledgements. — We thank Jeremy T. Tyson, Stefan Wenger,
Piotr Hajlasz and Enrico Le Donne for many stimulating conversations
on the subject of the paper.

2. The Heisenberg metric and regularity of Lipschitz maps
between Heisenberg groups

We recall background results on the geometry of the Heisenberg group
and preliminary results on the differentiability properties of Lipschitz maps
between Heisenberg groups.

The model of the Heisenberg group Hn used in this paper is described
as follows: Hn := Rn × Rn × R, endowed with the group operation

(x, y, t) ∗ (x′, y′, t′) = (x+ x′, y + y′, t+ t′ + 2(y · x′ − x · y′)),

for (x, y, t), (x′, y′, t′) ∈ Hn. Here, x · y stands for the usual scalar product
of vectors x, y ∈ Rn.
It is easy to check that the vector fieldsXi = ∂

∂xi
+2yi ∂∂t , Yi = ∂

∂yi
−2xi ∂∂t

are left invariant for i = 1, . . . , n. For p ∈ Hn the space Hp = span{Xi, Yi :

TOME 66 (2016), FASCICULE 4
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i = 1, . . . , n} is the horizontal plane at p. Varying p ∈ Hn gives rise to a
vector bundle H, the horizontal plane distribution.
Let us choose the Riemannian metric on H which makes {Xi, Yi : i =

1, . . . , n} orthonormal at each point p ∈ Hn and denote the length of hori-
zontal vectors v ∈ Hp in this metric by |v|.
A Lipschitz curve γ : [0, 1]→ Hn is said to be horizontal if γ′(t) ∈ Hγ(t)

for a.e. t ∈ [0, 1]. For p, q ∈ Hn we denote by dcc(p, q) the sub-Riemannian
Carnot-Carathéodory distance between p and q defined as

dcc(p, q) := inf
∫ 1

0
|γ′(t)| dt,

where the infimum is taken over all horizontal curves connecting p and q.
Such horizontal curves exist between any pair of points p, q ∈ Hn. This
follows from the fact that the horizontal distribution is bracket-generating.
For an explicit computation of the geodesics and the exact formulae of the
metric we refer to [12] (see also [3] or [1]).
It is easy to check that dcc is invariant under left translation. Moreover,

it is compatible with the homogeneous dilations δs : Hn → Hn defined by
δs(x, y, t) = (sx, sy, s2t), i.e. dcc(δs(p), δs(q)) = sdcc(p, q) for all s > 0 and
p, q ∈ Hn.
In this paper the metric on Hn is understood to be the above defined

Carnot-Carathéodory metric dcc. However the main result of the paper
remains valid for any metric d on Hn that is bi-Lipschitz equivalent to dcc.

It is easy to see that a smooth Lipschitz map f : Hn → Hn has the
property that its tangent map preserves the horizontal bundle H. Since the
horizontal bundle is the kernel of the one-form

θ = dt− 2
2k+1∑
i=1

(yidxi − xidyi),

we obtain that there exists a real valued smooth function λ such that
f∗θ = λ · θ.

If f is merely Lipschitz with no additional smoothness assumptions, then
λ is only an L∞ function and the equality f∗θ = λ · θ holds almost every-
where. This follows from the following differentiability result:
A Lipschitz map f : Hn → Hn is called P -differentiable at a point p ∈ Hn

if there exists a group homomorphism P (f)(p) : Hn → Hn such that

(2.1) lim
s→0

δ1/s
(
(f(p))−1 ∗ f(p ∗ δsq)

)
= P (f)(p)(q)

for all q ∈ Hn. Here ∗ stands for the group operation, δs is the homogeneous
group dilation, and p−1 is the inverse to p in Hn. Pansu proved in [13] that

ANNALES DE L’INSTITUT FOURIER



LIPSCHITZ EXTENSIONS OF MAPS BETWEEN HEISENBERG GROUPS 1657

any Lipschitz map is P -differentiable almost everywhere, moreover in a
point of P -differentiability the limit (2.1) is uniform in q if q is taking its
values in a compact set.
Let us define the singular set of a Lipschitz map f : Hn → Hn as

S = S1 ∪ S2,

S1 := {p ∈ Hn : f is not P -differentiable at p},
S2 := {p ∈ Hn : f is P -differentiable at x but P (f)(p) is not injective},

and the regular set as
R = Hn \ S.

For d > 0 we denote by Hd the d-dimensional Hausdorff measure
with respect to the Heisenberg metric. By Pansu’s theorem we have
H2n+2(S1) = 0, which implies by the Lipschitz continuity of f that also
H2n+2(f(S1)) = 0. Furthermore, we observe that if p ∈ S2, the metric
Jacobian Jf (p) of f at p vanishes, where

Jf (p) := lim inf
r→0+

H2n+2(f(B(p, r)))
H2n+2(B(p, r)) = 0

and B(p, r) is the (open) ball with center p and radius r in the Heisenberg
metric. For any measurable set A ⊂ Hn we have

H2n+2(f(A)) 6
∫
A

Jf (p) dH2n+2(p)

(see e.g. Chapter 6 of [3]), so H2n+2(f(S2)) = 0 and

H2n+2(f(S)) = 0.

3. The mapping degree of Lipschitz maps in Heisenberg
groups

In this section we will use the P -derivative in order to estimate the map-
ping degree of Lipschitz maps between Heisenberg groups. For background
results on degree theory we refer to [9], [4].

The considerations of this section are based on the fact that smooth
contact maps f : H2k+1 → H2k+1 have a positive Jacobi determinant, and
so they preserve orientation. To see this, let

θ = dt− 2
2k+1∑
i=1

(yidxi − xidyi)

TOME 66 (2016), FASCICULE 4
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be the contact form in H2k+1. Observe that if we denote by v the volume
form in H2k+1, then there exists a dimensional constant c(k) > 0 such that
v = c(k) · θ ∧ (dθ)2k+1. If f is a smooth contact mapping then f∗θ = λθ

for some real valued smooth function λ. The relation between the Jacobi
determinant of f and λ can be computed as follows:

f∗v = c(k) · f∗θ ∧ (f∗dθ)2k+1 = c(k) · λθ ∧ (d(λθ))2k+1

= c(k) · λθ ∧ (dλ ∧ θ + λ dθ)2k+1 = c(k) · λ2k+2θ ∧ (dθ)2k+1 = λ2k+2v,

which implies that detDf = λ2k+2 > 0. In particular, it follows that group
homomorphisms f : H2k+1 → H2k+1 are orientation preserving.

We want to extend this observation from the class of smooth Lipschitz
maps to possibly non-smooth Lipschitz mappings. This is possible by a
version of the Rademacher differentiability theorem due to Pansu [13] ac-
cording to which Lipschitz maps between Carnot groups are differentiable
almost everywhere; and their tangent map satisfies the contact condition in
the points of differentiability. Note that differentiability is understood here
in terms of the underlying group operation and compatible homogeneous
dilations as indicated in the previous section. The classical Rademacher
differentiability theorem that is formulated in terms of vector addition and
scalar multiplication as in the Euclidean space fails for Lipschitz maps be-
tween Carnot groups. An example showing this fact is due to Magnani [10].
Nevertheless, Pansu’s differentiability theorem can be used to estimate the
mapping degree for maps between Carnot groups. The main result of this
section is the following statement:

Proposition 3.1. — Let k > 0 be an integer, f : H2k+1 → H2k+1 a
Lipschitz map, U ⊂ H2k+1 a bounded open set, and p ∈ H2k+1 \ f(∂U). If
p /∈ f(S), then

deg(f, U, p) > 0.

Proof. — Let f , U and p be given as in the statement. There are two
cases to consider. If p /∈ f(U), then deg(f, U, p) = 0 by the definition of
the degree ([9], [4]) and we are done. Let us therefore assume that p ∈
f(U) \ [f(∂U) ∪ f(S)]. In this case we shall prove that

deg(f, U, p) > 0.

The proof is based on the fact that for group homomorphisms this property
holds true as indicated above. This fact will be combined with a localization
argument using linearization by the P -differential of f at regular points.

ANNALES DE L’INSTITUT FOURIER
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The first step is to show that if p ∈ f(U) \ [f(∂U)∪ f(S)], the pre-image

f−1(p) ⊂ R ∩ U

is a finite set.
To prove this, assume by contradiction that there exists an infinite se-

quence (pn)n of distinct points in R∩U such that f(pn) = p for each n ∈ N.
By passing to a subsequence we can assume that pn → p0 for some p0 ∈ U .
By continuity of f we obtain that f(p0) = p. Since p /∈ f(∂U) ∪ f(S),
this implies that p0 ∈ R ∩ U . We shall obtain the desired contradiction by
showing that P (f)(p0) is non-injective.
To see this, let us write pn = p0∗δtnqn for some qn ∈ ∂B(0, 1) and tn > 0,

tn → 0. By passing to a further subsequence if necessary we can assume
that qn → q for some q ∈ ∂B(0, 1). Since f(p0) = p = f(pn) = f(p0∗δtnqn),
we have

P (f)(p0)(q) = lim
n→∞

δ1/tn
(
(f(p0))−1 ∗ f(p0 ∗ δtnq)

)
= lim
n→∞

δ1/tn
(
(f(p0 ∗ δtnqn))−1 ∗ f(p0 ∗ δtnq)

)
,

but this last limit equals 0 by the Lipschitz continuity of f and the fact
that qn → q. So P (f)(p0)(q) = 0, in contradiction to p0 ∈ R.
By the first step we can assume that

f−1(p) = {p1, . . . , pn} ⊂ R ∩ U.

By general properties of the mapping degree ([9], [4]) we have that

deg(f, U, p) =
n∑
i=1

deg(f, Ui, p),

where Ui are arbitrary small, non-intersecting open sets containing pi for
i = 1, . . . , n.
In the following we shall prove that deg(f, Ui, p) = 1 for every i. The idea

is to construct a homotopy from f to its linearization P (f)(pi) in Ui with
the property that the image of ∂Ui under the homotopy does not meet the
point p.
Let us fix an index i ∈ {1, . . . , n}. To simplify the notation, we can as-

sume without loss of generality that p = pi = 0, Ui = B(0, r) for some
small r > 0 (to be chosen later), and P (f)(pi) = P (f)(0) = A, where
A : H2k+1 → H2k+1 is an injective homogeneous group homomorphism
(i.e. commuting with dilations).
The P -differentiability of f at 0 now reads as

lim
s→0

δ1/sf(δsq) = A(q),

TOME 66 (2016), FASCICULE 4
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and the convergence is uniform in q ∈ ∂B(0, 1). Equivalently, for every
ε > 0 there exists an η > 0 such that

(3.1) dcc(f(δsq), A(δsq)) < ε · s

for all q ∈ ∂B(0, 1) and s < η. Furthermore, by the injectivity and homo-
geneity of A there exists an a > 0 such that

(3.2) dcc(A(δsq), 0) > a · s

for all q ∈ ∂B(0, 1) and s > 0. Let us choose ε := a and Ui = B(0, r) for
some r < η.
Consider the homotopy H : [0, 1]×B(0, r)→ H2k+1 given by

H(s, q) = A(q) ∗ δs[(A(q))−1 ∗ f(q)].

Clearly H(0, ·) = A and H(1, ·) = f . For all s ∈ [0, 1] and q ∈ ∂B(0, r) we
have

dcc(H(s, q), 0) > dcc(A(q), 0)− dcc(H(s, q), A(q)),
where dcc(A(q), 0) > a · r by (3.2) and

dcc(H(s, q), A(q)) = s dcc(f(q), A(q)) < ε · r

by (3.1), so that dcc(H(s, q), 0) > 0. By the homotopy invariance property
of the mapping degree ([9], [4]) we obtain that

deg(f, Ui, p) = deg(f,B(0, r), 0) = deg(A,B(0, r), 0) = 1,

finishing the proof. �

Remark 3.2. — Observe that the statement of Proposition 3.1 no longer
holds for maps f : H2k → H2k. Indeed, the mapping f : H2k → H2k given
by f(x, y, t) = (−x, y,−t) is a contact map since f∗θ = −θ, and it is
orientation reversing: detDf ≡ −1. More generally, it is easy to see that
every integer is the degree of some contact map between domains in H2k.

4. A partially defined Lipschitz map in the Heisenberg
group

In this section we define a Lipschitz mapping on a subset H of Hn to
itself which does not have a Lipschitz extension to Hn in the case when
n = 2k + 1.
The setH will be a topological 2n-sphere foliated by geodesics connecting

the origin p0 to a point p1 on the vertical axis. For simplicity of notation we
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choose p1 = (0, 0, 4π) ∈ Rn×Rn×R. To define H we use a parametrization
Φ: S2n−1 × [0, 2π]→ Hn, where

S2n−1 := {(a, b) ∈ Rn × Rn : |a|2 + |b|2 = 1}

is the unit sphere in R2n. The map Φ: S2n−1 × [0, 2π]→ Hn is given by

Φ((a, b), s) :=
(
sin(s) · a+ (1− cos(s)) · b,

− (1− cos(s)) · a+ sin(s) · b,
2(s− sin(s))

)
for ((a, b), s) ∈ S2n−1 × [0, 2π]. The hypersurface H := Φ(S2n−1 × [0, 2π])
is the boundary of a bounded domain Ω ⊂ Hn and is foliated by the unit
speed geodesics s 7→ Φ((a, b), s) connecting p0 and p1. For details we refer
to the papers of Ambrosio-Rigot [1] and Monti [12].
We claim that to each point p ∈ H \ {p0, p1} there is a unique value

((a, b), s) ∈ S2n−1 × (0, 2π) such that Φ((a, b), s) = p, whereas Φ−1(p0) =
S2n−1 × {0} and Φ−1(p1) = S2n−1 × {2π}. To verify this, let (x, y, z) ∈
H \ {p0, p1}. Then z ∈ (0, 4π), and since the function φ : (0, 2π)→ (0, 4π),
φ(s) = 2(s − sin(s)) is strictly increasing and onto, we get a unique value
s ∈ (0, 2π) such that φ(s) = z. Furthermore, the system

(4.1)
{

sin(s) · a + (1− cos(s)) · b = x

−(1− cos(s)) · a + sin(s) · b = y

has a unique solution (a, b), proving the claim.
Consider now the symplectic reflection R : R2n → R2n given by R(a, b) =

(−a, b). Observe that R∗ω = −ω for the standard symplectic form ω =∑n
i=1 dxi ∧ dyi. We define the mapping f : H → H using R as follows: If

p ∈ {p0, p1}, set f(p) = p. If p ∈ H \ {p0, p1}, let ((a, b), s) = Φ−1(p) and
put

f(p) = Φ(R(a, b), s).
Observe that the mapping interchanges the geodesics according to the re-
flection (a, b) 7→ R(a, b) while it preserves the height s of points on H.

Lemma 4.1. — The mapping f : H → H defined above is Lipschitz
with respect to the restriction of the sub-Riemannian Carnot-Carathéodory
metric dcc on H in both the source and target space.

Proof. — We have to find a constant C > 0 such that

dcc(f(p), f(p′)) 6 C dcc(p, p′) for all p, p′ ∈ H.

Let p, p′ ∈ H. We can assume that p, p′ ∈ H \ {p0, p1}, so that there are
unique preimages ((a, b), s) = Φ−1(p) and ((a′, b′), s′) = Φ−1(p′). Consider

TOME 66 (2016), FASCICULE 4
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a third point q ∈ H lying on the same geodesic as p′ but having the height
of p, that is, q = Φ((a′, b′), s). By the triangle inequality we have

dcc(f(p), f(p′)) 6 dcc(f(p), f(q)) + dcc(f(q), f(p′)).

Since q and p′ are on the same geodesic, the same is true for f(q) and f(p′).
It follows that

dcc(f(q), f(p′)) = |s− s′| = |dcc(p0, p)− dcc(p0, p
′)| 6 dcc(p, p′).

Hence we obtain

(4.2) dcc(f(p), f(p′)) 6 dcc(f(p), f(q)) + dcc(p, p′).

We claim that there is a constant C ′ > 0 such that

(4.3) dcc(f(p), f(q)) 6 C ′dcc(p, q).

Here we will use in an essential way that p and q have the same heights.
In order to verify the above estimate we shall consider another metric dK
that is bi-Lipschitz equivalent to dcc and prove that

(4.4) dK(f(p), f(q)) = dK(p, q).

The estimate (4.3) follows from (4.4) and the bi-Lipschitz equivalence of
dcc and dK.

For two points (x, y, t), (x′, y′, t′) ∈ Hn the Korányi gauge metric dK is
given by the expression

dK((x, y, t), (x′, y′, t′)) =
(
(|x−x′|2+|y−y′|2)2+|t−t′+2(x·y′−y ·x′)|2

)1/4
,

where | · | and · denote the Euclidean norm and scalar product in Rn. It
can be checked that this defines a metric indeed. This metric is no longer
given as a sub-Riemannian metric but is bi-Lipschitz equivalent to dcc. We
refer to [3] for details.
To verify equality (4.4) we shall use the explicit forms of p and q:

p =
(
sin s · a+ (1− cos s) · b, −(1− cos s) · a+ sin s · b, 2(s− sin s)

)
,

q =
(
sin s · a′ + (1− cos s) · b′, −(1− cos s) · a′ + sin s · b′, 2(s− sin s)

)
,

where s ∈ (0, 2π) and (a, b), (a′, b′) ∈ S2n−1. The respective expressions for
f(p) and f(q) are obtained by replacing a by −a as well as a′ by −a′ and
leaving b and b′ unchanged. Now a direct computation gives

(4.5) dK(p, q) = (2−2 cos s)1/2((|a−a′|2 + |b− b′|2)2 +4|a · b′− b ·a′|2
)1/4

.

To calculate dK(f(p), f(q)), all we need to do is to replace on the right side
of (4.5) a by −a and a′ by −a′. After doing that, we see that its value will
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not change. This gives (4.4) and hence (4.3). Notice that in this compu-
tation it was crucial that the two points p and q have the same heights.
Otherwise, the second part of the right side of (4.5) will be different.
Combining (4.2) and (4.3) we obtain

dcc(f(p), f(p′)) 6 C ′dcc(p, q) + dcc(p, p′).

As dcc(p, q) 6 dcc(p, p′) + dcc(p′, q) 6 2dcc(p, p′), this gives

dcc(f(p), f(p′)) 6 (2C ′ + 1) dcc(p, p′),

concluding the proof of the Lemma. �

We are now ready to prove our main result about the existence of par-
tially defined Lipschitz maps on H2k+1 with no Lipschitz extension to the
whole Heisenberg group H2k+1. This follows from the following:

Theorem 4.2. — If n = 2k + 1, then the mapping f : H → H as
in Lemma 4.1 has no Lipschitz extension to the whole Heisenberg group,
i.e. there is no Lipschitz map F : Hn → Hn such that F |H = f .

Proof. — By contradiction assume that there is a Lipschitz extension
F : Hn → Hn such that F |H = f . Proposition 3.1 implies that if n = 2k+1,
then

deg(U,F, p) > 0 for any p /∈ F (∂U).
Let us choose U = Ω such that ∂U = H and let p be any point in the
interior of U , for instance, take p = (0, 0, 2π). Since F is a reflection on the
boundary we have

deg(U,F, p) = −1,
which gives a contradiction, proving the statement.
To check that deg(U,F, p) = −1 we use the fact that deg(U,F, p) =

deg(U, F̃ , p) for any continuous map F̃ : U → R2n+1 with the property
that F̃ |∂U = f .
We first use the relation (4.1) to find an explicit formula for the mapping

f : H → H in cartesian coordinates as

(4.6) f(x, y, t) =

 − cosϕ(t) · x+ sinϕ(t) · y
sinϕ(t) · x+ cosϕ(t) · y

t

 ,
where ϕ : [0, 4π] → [0, 2π] is the inverse function of φ : [0, 2π] → [0, 4π],
φ(s) = 2(s− sin s).
Observe now that ϕ : (0, 4π) → (0, 2π) is a smooth function and for-

mula (4.6) itself in fact gives a continuous extension F̃ : U → U that is
smooth in U . The above formula indicates that F̃ preserves horizontal
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planes. In horizontal planes the map looks like a reflection followed by a
rotation where the rotation angle depends on the height of the horizontal
plane.
Since deg(U,F, p) is independent of the choice of the extension we have

deg(U,F, p) = deg(U, F̃ , p). Because the mapping F̃ is smooth in U we can
calculate the degree by an explicit computation as

deg(U, F̃ , p) = sign detDF̃ (F̃−1(p)) = sign detDF̃ (0, 0, 2π) = (−1)n.

In the case when n = 2k + 1 we obtain that deg(U, F̃ , p) = −1, finishing
the proof. �

In conclusion, let us come back to the general problem of determining
exactly the pairs of Heisenberg groups (Hn,Hm) with the Lipschitz exten-
sion property. Consider the case n = 1. In [16] it is shown that the pair
(H1,Hm) does have the Lipschitz extension property for m > 3. On the
other hand, by Theorem 1.1 this is not the case for (H1,H1). Therefore it
only remains to study the extension problem for the pair (H1,H2). We be-
lieve that understanding the Lipschitz extension property in this particular
situation will shed light also on the general case of pairs (Hn,Hm).
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