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MARKOV CONVEXITY AND NONEMBEDDABILITY
OF THE HEISENBERG GROUP

by Sean LI (*)

Abstract. — We show that the continuous infinite dimensional Heisenberg
group H∞ is Markov 4-convex and that the 3-dimensional Heisenberg group H1
(and thus also H∞) cannot be Markov p-convex for any p < 4. As Markov convex-
ity is biLipschitz invariant and Hilbert spaces are Markov 2-convex, this gives a
different proof of the classical theorem of Pansu and Semmes that the Heisenberg
group does not biLipschitz embed into any Euclidean space.

The Markov convexity lower bound follows from exhibiting an explicit embed-
ding of Laakso graphs Gn into H∞ that has distortion at most Cn1/4√

log n. We
use this to derive a quantitative lower bound for the biLipschitz distortion of balls
of the discrete Heisenberg group into Markov p-convex metric spaces. Finally, we
show surprisingly that Markov 4-convexity does not give the optimal distortion for
embeddings of binary trees Bm into H∞ by showing that the distortion is on the
order of

√
log m.

Résumé. — Nous montrons que le groupe de Heisenberg H∞ de dimension
infinie est Markov 4-convexe et que le groupe de Heisenberg H1 de dimension 3 (et
donc H∞ aussi) n’est pas Markov p-convexe pour tout p < 4. Comme la convexité
de Markov est un invariant bilipschitzien et les espaces de Hilbert sont Markov
2-convexes, on retrouve le théorème classique de Pansu et Semmes sur l’absence
de plongement bilipschitzien du groupe de Heisenberg dans un espace euclidien.

La borne inférieure pour la convexité Markov suit de la construction d’un plonge-
ment de graphes de Laakso Gn dans H∞ ayant une distorsion d’au plus Cn1/4√

log n.
Nous obtenons ainsi une borne inférieure pour la distorsion bilipschitzienne des
boules du groupe de Heisenberg discrète dans des espaces métriques Markov p-
convexes. Enfin, nous montrons que, d’une manière surprenante, la 4-convexité de
Markov ne donne pas la distorsion optimale pour les plongements d’arbres binaires
Bm en H∞, en montrant que la distorsion est de l’ordre de

√
log m.
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1. Introduction

A Banach space X is said to be finitely representable in another Ba-
nach space Y if there exists K > 1 so that for every finite dimensional
subspace Z ⊂ X, there exists a finite dimensional subspace Z ′ ⊂ Y so
that dBM (Z,Z ′) 6 K, where dBM is the Banach-Mazur distance. Ribe
proved in [24] that if two Banach spaces are uniformly homeomorhic (that
is, there exists f : X → Y such that f and f−1 are uniform homeomor-
phisms), then X is finitely representable into Y and vice versa. Note that
this implies that linear properties of Banach spaces that depend only on
their finite dimensional substructure are preserved by maps that preserve
the metric structure. This motivated the “Ribe program”, a research pro-
gram that reformulates such linear properties in purely metric terms. For
a more details about the Ribe program, see the surveys [1, 21].
Recall that a biLipschitz embedding f : (X, dX) → (Y, dY ) is said to

have distortion D > 1 if there exists some s ∈ (0,∞) such that

s · dX(x, y) 6 dY (f(x), f(y)) 6 Ds · dX(x, y), ∀x, y ∈ X.

Given two metric spaces, we say X embeds into Y with distortion D if
there exists some biLipschitz embedding f : X → Y with distortion D. We
also define the following quantity:

cY (X) := inf{D > 1 : there is a biLipschitz embedding f : X → Y

of distortion D}.

In this paper, when we use a graph as a metric space, the only points in
the space are the vertices. The edges do not exist in the space; they just
define the path metric. We will require all edges of a single graph to have
constant length although the actual length itself is irrelevant as calculating
distortion allows us to rescale the metrics (by the factor s).

The first result in the Ribe program was by Bourgain in [2] where he
showed that a Banach space X is not superreflexive if and only if complete
binary trees of depth n equipped with the path metric biLipschitzly em-
bed into X with uniformly bounded distortion over n. It was later shown
in [10] that the same statement holds except with binary trees replaced
by diamond graphs and Laakso graphs. In the sequel, given metric spaces
(X, dX) and (Y, dY ), we will let cY (X) denote the infimal distortion re-
quired to biLipschitzly embed X into Y (it can be infinite).
For p ∈ [2,∞), a Banach space X is said to be p-convex if it is uni-

formly convex and the modulus of convexity can be taken to be δ(ε) = Cεp

for some C > 0. Through the deep works of James [8, 9], Enflo [7], and
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Pisier [23] it is known that all superreflexive spaces can be renormed to be
p-convex for some p > 2. A metrical characterization of p-convexity didn’t
come until 22 years after Bourgain’s result.
Given a Markov chain {Zt}t∈Z on some state space Ω and s ∈ Z, we

let {Z̃t(s)}t∈Z denote the Markov chain on Ω that equals Zt when t 6 s

and then evolves independently (with respect to the same transition prob-
abilities as Zt) for t > s. Following [14], we say a metric space (X, dX) is
Markov p-convex for some p > 0 if there exists Π > 0 so that for every
Markov chain {Zt}t∈Z on Ω and every f : Ω→ X, we have that

(1.1)
∞∑
k=0

∑
t∈Z

E
[
d(f(Zt), f(Z̃t(t− 2k)))p

]
2kp 6 Πp

∑
t∈Z

E[d(f(Zt), f(Zt−1))p].

It was proven in [19] that a Banach space is Markov p-convex if and only
if it can be renormed to be p-convex. Thus, Markov p-convexity is the
metrical characterization of p-convexity.

It was shown in [15] that for each Carnot group G, there is some p <
∞ for which G is Markov p-convex, and an explicit upper bound for the
power of convexity was computed in terms of the step of the Carnot group.
However, the bound appears to be far from optimal. For example, the upper
bound it gives for the (continuous) infinite dimensional Heisenberg group
H∞ is 8. We will improve upon this result with the following theorem.

Theorem 1.1. — H∞ is Markov 4-convex.

We will further show that 4 is the optimal power of Markov convexity for
the Heisenberg group. We will do so by showing that a sequence of Laakso-
like graphs embed into the usual three dimensional Heisenberg group H1
with small distortion.

Theorem 1.2. — Laakso graphs {Gn}∞n=1 embed into H1 with distor-
tion O((log |Gn|)1/4

√
log log |Gn|).

This good embedding of Laakso graphs will translate to a lower bound
for the power of Markov convexity for H1.

Corollary 1.3. — H1 is not Markov p-convex for any p < 4.

As H1 admits a biLipschitz embedding into H∞, we get that Theorem 1.2
and Corollary 1.3 also hold for H∞ and Theorem 1.1 holds for H1.
An immediate further corollary of this corollary is that the Heisenberg

group H1 does not biLipschitz embed into any metric space that is Markov
p-convex for any p < 4. As Hilbert spaces are metric spaces that are
uniformly 2-convex and so Markov 2-convex, we get a new proof of the

TOME 66 (2016), FASCICULE 4



1618 Sean LI

Pansu-Semmes theorem that the Heisenberg group does not embed into
any Euclidean space [22, 25].
Theorem 1.1 and Corollary 1.3 say that what 2 is for Euclidean space in

terms of the Pythagorean theorem, 4 is the natural analogue in the Heisen-
berg group. A similar phenomenon occurs in the context of the analyst’s
traveling salesman problem in the Heisenberg group where, again, the nat-
ural power to look at is 4 [16, 17] while the natural analogue in Euclidean
space is 2.

We can use this embedding of Laakso graphs to show the following lower
bound for distortion of balls of the discrete Heisenberg group into metric
spaces that are highly convex.

Corollary 1.4. — Let B(n) denote balls of radius n of the discrete
Heisenberg group H(Z) and X a metric space that is Markov p-convex.
Then there exists some C > 0 so that

(1.2) cX(B(n)) > C (logn)
1
p−

1
4

√
log logn

.

This result should be contrasted with [12] where it was shown that if X
is a p-convex Banach space, then cX(B(n)) & (logn)1/p, an asymptotically
sharp estimate. That result requires that the target space be a Banach
space but gives lower bounds for all powers of convexity, whereas Corol-
lary 1.4 holds for general metric space targets, but only gives meaningful
distortion lower bounds for p < 4, which is to be expected given Theo-
rem 1.1. Theorem 7.5 of [15] shows that the target spaces in the latter
case are not a subset of those in the former. It should be noted that the
Heisenberg group seems to be especially hard to embed into Banach spaces
as it does not even embed into L1, a Banach space that is not uniformly
convex (it doesn’t even have the Radon-Nikodym property) [3, 4, 5].
Until now, all known distortion bounds for embeddings of diamond/

Laakso graphs Gn and binary trees Bn into known non-doubling Markov p-
convex spaces—namely p-convex Banach spaces—have had the same
asymptotics, namely (log |Gn|)1/p and (log log |Bn|)1/p, respectively [18,
10]. Such bounds precisely match the bounds one would get from using
the Markov p-convexity inequality (the computation is essentially done in
the proof of Corollary 1.3). We have seen that H∞ is Markov 4-convex and
the (log |Gn|)1/4 distortion bound still holds for Laakso graph embeddings
into H∞. Thus, it seems reasonable to expect that the distortion of binary
trees would be (log log |Bn|)1/4 as suggested by 4-convexity. However, we
will show the following theorem.

ANNALES DE L’INSTITUT FOURIER
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Theorem 1.5. — There exists some absolute constant C > 0 so that
any embedding of {Bn}∞n=1 into H∞ has distortion at least C

√
log log |Bn|.

This then means that Markov convexity does not say much about quanti-
tative bounds on embedding of binary trees into Carnot groups, which can
be thought of as the nonabelian analogues of Banach spaces. This lower
bound is sharp up to constants as `2 embeds biLipschitzly into H∞ and it
is known that c`2(Bn) 6 C

√
log log |Bn| for some other C > 0 [2].

Clearly, such a bound cannot be derived from Markov 4-convexity of H∞
and so we must proceed via another route. If one looks in the literature,
one finds that [18] provides another method of computing distortion lower
bounds for embedding of binary trees into p-convex Banach spaces. It is this
approach that we will use—with some nontrivial modifications. We briefly
describe the strategy of [18]. There, it was shown by metric differentiation
that if f is a Lipschitz embedding of a large enough binary tree into a
p-convex Banach space, then there exists a subgraph of the tree on which f
sends to a δ-fork (the terminology will be reviewed in Section 3). The result
of [18] then comes from the fact that tips of δ-forks in p-convex Banach
spaces must collapse by a factor of δ1/p.
As is, this method does not work for H∞ because the analogue of the

fork collapse lemma for H∞ collapses the tips of the fork by a factor of
δ1/4, which would only give a lower bound of (log log |Bn|)1/4. However, it
turns out that the tips of a δ-fork in H∞ must be in a special configuration
in order to see the δ1/4-collapse. Otherwise, they would see a δ1/2 collapse.
One can modify the metric differentiation technique of [18] to get a large
connected collection of δ-forks (a δ-broom if you will) and then show us-
ing the pigeonhole principle that the δ-subforks associated to the δ-broom
cannot all be configured to see the δ1/4 collapse.

1.1. Preliminaries

The (continuous) 2n+ 1 Heisenberg group of dimension 2n+ 1 is the Lie
group Hn = (Rn × Rn × R, ·) with the group product

(x, y, z) · (x′, y′, z′) =
(
x+ x′, y + y′, z + z′ + 1

2(x · y′ − x′ · y)
)
.

One can also define the infinite dimensional Heisenberg group as (`2× `2×
R, ·) where `2 is usual real sequence space and the Hilbert inner product is
used to get the same group product. Note that x ·y′−x′ ·y is the canonical
symplectic form.

TOME 66 (2016), FASCICULE 4
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It can be immediately verified that the Heisenberg groups are not abelian
and the origin is the identity. We call the center, which is {(0, 0, t) : t ∈ R},
the vertical axis.

For finite n, there exists a natural path metric onHn that we will define as
such. We define ∆ to be the left invariant subbundle of the tangent bundle
by setting ∆0 to be the 1-codimensional plane spanned by Rn ×Rn × {0}-
plane and using the smoothness of the group multiplication to pushforward
∆0 to every point x ∈ Hn. Similarly, we can endow ∆ with a left-invariant
scalar product {〈·, ·〉x}x∈Hn . Then we can define the Carnot-Carathéodory
metric between two points x, y ∈ Hn as

dcc(x, y) := inf
{∫ b

a

〈γ′(t), γ′(t)〉γ(t)dt : γ ∈ C1([a, b];Hn),

γ(a) = x, γ(b) = y, γ′(t) ∈ ∆γ(t)

}
.

The continuous paths γ : I → Hn for which γ′(t) ∈ ∆γ(t) are called hori-
zontal paths. A special case of Chow’s theorem (see e.g. [20]) states that
between two points in Hn there always exists a horizontal path and so dcc is
a finite metric on Hn. Because we are taking the Riemannian length over a
subclass of curves, this geometry is sometimes also called sub-Riemannian
geometry.
It is well known that if a curve (γx, γy, γz) : I → Hn is piecewise hori-

zontal, then

(1.3) γz(b)− γz(a)− 1
2 (γx(a) · γy(b)− γx(b) · γy(a))

= 1
2

∫ b

a

γx(t) · γ′y(t)− γy(t) · γ′x(t) dt.

When n = 1, the vertical change in terms of group multiplication is equal
to the algebra area swept by (γx, γy) when viewed as a curve in R2. On the
other hand, given a curve γ0 in R2, one can use the identity (1.3) to lift γ0
to a horizontal curve γ in H1. Notice that γ is unique up to translation in
the z-coordinate.

An important feature of the Heisenberg group is that for each λ > 0,
there exists an automorphism

δλ : Hn → Hn
(x, y, z) 7→ (λx, λy, λ2z)

that scales the metric, i.e. dcc(δλ(x), δλ(y)) = λdcc(x, y). To see this fact,
one simply needs to check that the Jacobian of δλ scales 〈·, ·〉x by λ.

ANNALES DE L’INSTITUT FOURIER
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We now introduce another metric on Hn which makes sense even for
n = ∞. This metric has the advantage that distances between points can
be computed directly from coordinates. Let

N : Hn → R

(x, y, t) 7→
(
(|x|2 + |y|2)2 + t2

)1/4

denote the Koranyi norm. We can use it to define a left-invariant metric
on Hn as

d(x, y) := N(x−1y), ∀x, y ∈ Hn.

It is known that this is indeed a metric [6] (i.e. it satisfies the triangle in-
equality) and is biLipschitz equivalent to the Carnot-Carathéodory metric.
Note that δλ also scales d. As all the results of this paper are given up to
multiplicative constants, we see that proving the results for the Koranyi
metric then proves them for the Carnot-Carathéodory metric also. Thus,
we will work with the Koranyi metric from now on.
Rotations of each canonical symplectic plane are isometric automor-

phisms of Hn. This can easily be seen by remembering that such rotations
preserve the canonical symplectic form and then looking at the formulas
for the Koranyi norm and group multiplication.
Let π̃ : Hn → Hn denote the map π̃(x, y, z) = (x, y, 0). It should be noted

that this is not a homomorphism. For g ∈ Hn define

NH(g) = d(π̃(g), g).

Thus, NH quantifies how non-horizontal an element of Hn is by measuring
its distance to the horizontal element “below” it. We will also let

π : Hn → Rn × Rn

(x, y, z) 7→ (x, y)

be the homomorphism from Hn to Rn × Rn. It is easily verifiable from
looking at the Koranyi metric that this is 1-Lipschitz.
The discrete Heisenberg group H(Z) is the finitely generated discrete

group H(Z) = (Z3, ·) where the group product is

(a, b, c) · (a′, b′, c′) = (a+ a′, b+ b′, c+ c′ + ab′).

The group can be shown to be generated by the elements (±1, 0, 0) and
(0,±1, 0). The metric on H(Z) is then the word metric associated to this
finite set of generators. It is known that H1 embeds quasi-isometrically into

TOME 66 (2016), FASCICULE 4
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H(Z). That is, there exist c0, c1 > 0 and a map f : H1 → H(Z) so that

1
c0
d(x, y)− c1 6 d(f(x), f(y)) 6 c0d(x, y) + c1, ∀x, y ∈ H.(1.4)

2. Markov convexity and nonembeddability of H

2.1. Upper bound

For a, b ∈ H∞, let a+b
2 denote the midpoint of the affine line segment

between a and b when they are viewed as points in `2 × `2 × R. We can
then also define a

2 := a+0
2 . As group translations in H are affine maps of

`2× `2×R, we see that the affine midpoint between two points is preserved
by the group multiplication. It is also clearly preserved by rotations of
canonical symplectic planes. While it is true that affine midpoints are not
preserved under the dilation homomorphism δλ, we will never use dilation
in this section.
We have the following convexity inequality for the Heisenberg group.

Proposition 2.1. — For u, v, w ∈ H∞, we have

1
2
(
d(u, v)4 + d(v, w)4) > (d(u,w)

2

)4
+ d

(
u+ w

2 , v

)4
+ 2−4NH(u−1w)4

Proof. — By a translation, we may suppose u= (0, 0, 0). Let v= (x, y, z),
w = (r, s, t). We let v′ = (x, y) and w′ = (r, s) be vectors in `2 × `2. Let
τ = y·r−x·s. We have by the parallelogram identity and Jensen’s inequality
that

|v′|4 + |w′ − v′|4

2 >

(
|v′|2 + |w′ − v′|2

2

)2

=
∣∣∣∣v′ − w′

2

∣∣∣∣2 + 1
24 |w

′|2 + 1
2 |w

′|2
∣∣∣∣v′ − w′

2

∣∣∣∣2
>

∣∣∣∣v′ − w′

2

∣∣∣∣2 + 1
24 |w

′|2 + 1
2τ

2.(2.1)

In the last inequality, we used the fact that τ represents the symplectic
form applied to v′ and w′ which we can bound as

τ = ω(v′, w′) = ω(v′ − w′/2, w′) 6
∣∣∣∣v′ − w′

2

∣∣∣∣ |w′|.
ANNALES DE L’INSTITUT FOURIER
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We have the following

d(u, v)4 = |v′|4 + z2,

d(v, w)4 = |w′ − v′|4 +
(
t− z + 1

2τ
)2

,

d(u,w)4 = |w′|4 + t2,

d

(
u+ w

2 , v

)4
=
∣∣∣∣v′ − w′

2

∣∣∣∣4 +
(

1
2 t− z + 1

4τ
)2

,

NH(u−1w)4 = t2.

Using (2.1), we see that it suffices to prove the following inequality

z2 + (t− z + τ/2)2

2 + 1
2τ

2 >
t2

23 +
(

1
2 t− z + 1

4τ
)2

.

By applying the parallelogram identity in R on the left hand side, we further
reduce to proving the following inequality

1
4

(
t+ τ

2

)2
+ 1

2τ
2 >

t2

23 .

An easy application of the parallelogram identity shows that this inequality
is true. �

Lemma 2.2. — If u, v, w ∈ H∞, then

d(u, v)4 6 32
(
d

(
u+ w

2 ,
v + w

2

)4
+NH(u−1w)4 +NH(v−1w)4

)
.

Proof. — Again, by a translation, we may suppose that w = 0 and u =
(r, s, t) and v = (x, y, z). Let τ = s · x− r · y. Then

d(u, v)4 = (|r − x|2 + |s− y|2)2 +
(
z − t+ 1

2τ
)2

,

d
(u

2 ,
v

2

)4
=
(∣∣∣∣r − x2

∣∣∣∣2 +
∣∣∣∣s− y2

∣∣∣∣2
)2

+
(
z − t

2 + 1
8τ
)2

,

NH(u)4 = t2,

NH(v)4 = z2.

Note that the first term on the right hand sides of the first and second lines
are multiples of each other (by a factor of 1

16 ), so we may ignore them. We
also have that

2
(
t2 + z2) > (z − t)2.

TOME 66 (2016), FASCICULE 4



1624 Sean LI

Taking this into account, it then suffices to prove that(
z − t+ 1

2τ
)2
6 8

(
(z − t)2 +

(
z − t+ 1

4τ
)2
)
.

Letting a = z − t and b = τ , we are reduced to showing that

8
(
a2 +

(
a+ 1

4b
)2
)
−
(
a+ 1

2b
)2
> 0.(2.2)

An elementary calculus exercise shows that the left hand side of the above
inequality takes a minimum value of 6a2. �

Proposition 2.3. — For every x, y, z, w ∈ H∞,
1
2
(
2d(x, y)4 + d(y, w)4 + d(y, z)4) > d(x,w)4 + d(x, z)4

24 + d(z, w)4

512 .

Proof. — We may first suppose that x = 0. Applying Proposition 2.1 to
the pairs x, y, z and x, y, w, we get (still writing x to keep things clear)

1
2
(
d(x, y)4 + d(y, z)4) > (d(x, z)

2

)4
+ d

(z
2 , y

)4
+ 2−4NH(x−1z)4,

1
2
(
d(x, y)4 + d(y, w)4) > (d(x,w)

2

)4
+ d

(w
2 , y

)4
+ 2−4NH(x−1w)4.

Adding the inequalities together, we have that it suffices to prove that

512
(
d
(z

2 , y
)4

+ d
(w

2 , y
)4

+ 2−4(NH(x−1z)4 +NH(x−1w)4)
)

> d(z, w)4.

Note that

8
(
d
(z

2 , y
)4

+ d
(w

2 , y
)4
)
>
(
d
(z

2 , y
)

+ d
(w

2 , y
))4
> d

(w
2 ,

z

2

)4
.

Thus, we finish the proof by appealing to Lemma 2.2. �

Proof of Theorem 1.1. — The proof of Theorem 2.1 of [19] shows that
Markov 4-convexity follows directly from a four point 4-convexity inequality
of the form given by Proposition 2.3. �

2.2. Lower bound

In this section, we will let H denote the three dimensional Heisenberg
group H1.

ANNALES DE L’INSTITUT FOURIER
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G0: G1:

G2: G3:

Figure 2.1. The first four Laakso graphs

We now prove that the Markov convexity upper bound shown in the
previous subsection is tight and use it to derive Theorem 1.2. Laakso graphs
were described in [11, 13]. We will define the graphs {Gi}∞i=0 as follows. The
first stage G0 is simply an edge and G1 is pictured as in Figure 2.1. To get
Gk once Gk−1 is constructed, we replace each edge of Gk−1 with a copy of
G1. We will choose not to rescale the metric so the diameters of Gk will be
6k. By abuse of terminology, we will still call these graphs Laakso graphs.

Given Gn, we say G is an unscaled copy of Gk in Gn if it is isometric to
Gk and each edge of G has length 1. If we do not require that each edge
of G has length 1, then we say G is an isometric copy of Gk. Note that
each edge of G, while not necessarily having length 1, does have constant
length as it is isometric to Gk. We will let Gn,k denote the unique largest
isometric copy of Gk in Gn. We will call two points in Gk,1 ⊂ Gk that have
edge degree 3 fork points.

Note that each Laakso graph has only two vertices with edge degree one,
which we will denote the terminals. We will choose one arbitrarily to call
the source s and the other the sink t. This imposes a direction on each edge
and a partial ordering on the graph (and all subgraphs). We will choose a
partial ordering so that geodesics going from source to sink are increasing.
Given a Laakso subgraph G of Gn, we let s(G) and t(G) denote the source
and sink of the subgraph G, chosen so that the induced partial subordering
agrees with the partial ordering from Gn. We say two points in Gn are in
series if there exists a geodesic from s(Gn) to t(Gn) so that passes through
both points. Otherwise, we say those two points are in parallel.
For each decreasing sequence of positive numbers {θj}∞j=1, we can define

an embedding of the Laakso graphs f : Gn → H by first defining the image
of π ◦f in R2. On the subgraph Gn,1, the source-sink geodesic on the top of
Gn,1 gets mapped to one particular piecewise linear curve from π(f(s(Gn)))
to π(f(t(Gn))) as shown where all the line segments in the piecewise linear
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θ

θ

Figure 2.2. The double diamond embedding

curve are of the same length to be determined. Likewise, the source-sink
geodesic on the bottom will get mapped to the other, again all line segments
will be of the same length. We will let st(Gn) denote the line segment in
R2 connecting π(f(s(Gn))) to π(f(t(Gn))). We specify that the angle the
diamonds make with st(Gn) is θ1

2 . The picture looks like a double diamond
with two line segments jutting out. See Figure 2.2. Here, each of the marked
angles of the diamonds on the right have angle θ (the same then naturally
holds for the angle on the opposite end of the diamonds). Thus, st(Gn),
the line going through the diamonds horizontally, bisects these angles.
Now suppose we have defined how π ◦f acts on Gk,1 in an unscaled copy

of Gk ⊆ Gn. Each edge of Gk,1 are the terminals of an unscaled copy of
Gk−1 in Gk. We then define π ◦ f on Gk−1,1 using the double diamond
embedding of Figure 2.2 except using st(Gk−1) as the axis. We will also
specify that the angle the diamonds make with the axis will be 1

2θn−k+2.
Continuing this construction, we get that π ◦ f is eventually defined for all
of Gn. Then if we specify that f maps each edge of Gn to a horizontal line
segment of length 1, we get that π ◦ f uniquely determines how f embeds
all of Gn up to translation and rotation.
Given two points a, b ∈ R2, we will let ab denote the line segment con-

necting a to b. We will let G̃n denote π(f(Gn)), the projection of the image
of Gn to R2. Given a point x ∈ Gn, we will use x̃ as shorthand to denote
π(f(x)). Thus, s̃(G), t̃(G) denote the points in G̃n corresponding to the
terminal points s(G), t(G). Given Laakso subgraphs G and G′, we will say
that θ is the angle between them if the angles defined by st(G) and st(G′)
differ by θ. It follows easily from the construction of f that if G and G′

are Laakso subgraphs in series that share a terminal point, then the angle
between them is at most θ1.
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Lemma 2.4. — Let P be a source-sink geodesic path in Gn. The closed
path in R2 that goes from s̃(Gn) to t̃(Gn) via π ◦ f(P ) and then goes
straight back to s̃(Gn) encloses a region of zero signed area.

Remark 2.5. — The point of this lemma is that if we have a closed
path in R2 that travels along the image of a source-sink geodesic of some
isometric copy Gk ⊂ Gn under π ◦ f , then we can replace this portion with
just st(Gk) without changing the signed area.

Proof. — The lemma is trivial for G1. Now suppose we have proven
the lemma for Gk up to k = n − 1 and let f : Gn → H be the double
diamonds mapping. Then any source-sink geodesic can be thought of as
the concatenation of six source-sink geodesics through unscaled copies of
Gn−1, each one with terminals in Gn,1. Thus, we can use the inductive
assumption and the previous remark to get that the signed area of the
closed path needed is the same as the signed area of the the corresponding
path via straight lines through points of Gn,1. Then the statement holds
again by the case of G1. �

Lemma 2.6. — Let {θj}∞j=1 be any decreasing sequence of positive num-
bers and let

L`,m := 6n∏m
j=`(2 + 4 cos θj)

.

If f : Gn → H is a double diamond embedding with angles {θj}, then for
any unscaled copy of Gk in Gn, we have that

d(f(s(Gk)), f(t(Gk))) = 6k

Ln−k+1,n
.

Proof. — Lemma 2.4 gives that NH(f(s(Gk))−1f(t(Gk))) = 0. When
NH(x−1y) = 0, we have that d(f(x), f(y)) = |x̃ − ỹ| so it suffices then to
show that

|st(Gk)| = 6k

Ln−k+1,n
.

The case when k = 1 is straightforward trigonometry in R2. Suppose we
have shown the statement for up to k− 1 and consider an unscaled copy of
G̃k in G̃n. Then G̃k can be expressed as ten unscaled copies of G̃k−1 glued
together via using the edge structure of G̃k,1. By induction, |st(Gk−1)| =
6k−1L−1

n−k+2,n. Thus, we can use the k = 1 case except the angle is now
θn−k+1 and the edge lengths are |st(Gk−1)| to get that

|st(Gk)| = 6|st(Gk−1)|
2 + 4 cos θn−k+1

= 6k

Ln−k+1,n
. �
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Let x ∈ Gn,1 and y ∈ Gn. We will write out a specific path from x to y.
Let p1 = x. If we choose k so that 6k 6 dGn(x, y) < 6k+1 then there exists
some p2 ∈ Gn so that d(p2, x) = 6k and

d(x, y) = d(x, p2) + d(p2, y).

If there are multiple choices for p2, choose one arbitrarily. Another way to
say this is that p2 and x form the terminals of the largest unscaled copy
of Gk on the geodesic path from x to y. Now suppose pj has been defined.
If pj = y, then we stop. Otherwise, let k be so that 6k 6 d(pj , y) < 6k+1

and choose a pj+1 (breaking ties arbitrarily if there are multiple options)
so that d(pj , pj+1) = 6k and

d(pj , y) = d(pj , pj+1) + d(pj+1, y).

Note that this process will eventually stop, giving us a sequence of points
{pi}Ni=1 connecting x to y. We will call this path {pi}Ni=1 a developed path
from x to y. There is no guarantee of uniqueness for developed paths.
This can be thought of as a kind of base 6 numbering system of terminal
geodesics. Notice that if pi is a point in the developed path from p1 to pN ,
then a valid developed path of p1 to pi is exactly {p1, ..., pi} and a valid
developed path from pi to pN is exactly {pi, ..., pN}.
If we let ai = log6 d(pi, pi+1), we would get that pi and pi+1 are terminal

points for unscaled copies of Gai on the geodesic path from x to y. Notice
that ai is a nonincreasing sequence of numbers and each distinct number
in {ai}N−1

i=1 can only appear at most five times. We then let λ(y;x) denote
the number of distinct numbers in {ai}. Thus, if λ(y;x) is small, then the
developed path from x to y does not have to change scales many times
(although the changes in scales it makes can be large). We have that the
angle that the line segment p̃ip̃i+1 makes with st(Gn) is at most

λ(pi+1;p1)∑
j=1

θj 6 λ(pi+1; p1)θ1.(2.3)

It is also easy to see that

d(x, y) =
N−1∑
i=1

d(pi, pi+1) =
N−1∑
i=1

6ai 6 5 6a1

1− 1
6
6 6a1+1.

Lemma 2.7. — G̃n is contained in the closed convex hull C of G̃n,1.
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Remark 2.8. — If the diamonds of G̃k,1 have an angle of θ, then the
aperatures of the convex hull of G̃k,1 at the terminals of G̃k,1 have angles of

2 tan−1

(
sin θ

2
1 + cos θ2

)
= θ

2 .

Proof. — We will claim by induction that all unscaled copies of G̃k in G̃n
are contained in the convex hulls of G̃k,1. It is straightforward to see that
all unscaled copies of G̃1 in G̃n are contained in their closed convex hulls.
Now suppose we have proven this for up to k − 1. Consider an unscaled
copy of G̃k. It is composed of 10 copies of unscaled copies of G̃k−1, each of
which is contained in the convex hulls of their respective G̃k−1,1. We have
that the convex hulls of G̃k−1,1 make an angle 1

2θn+2−k at the terminals.
As the convex hull of G̃k,1 makes an angle of 1

2θn+1−k >
1
2θn+2−k at the

terminals of G̃k, we get by elementary planar geometry that each of the
convex hulls of G̃k−1,1 is contained in the convex hull of G̃k,1. This finishes
the proof. �

Given Laakso subgraphs G and G′ of Gn, we can define the angle the
convex hulls of G̃ and G̃′ make as just the angles G and G′ make.

Lemma 2.9. — Let z be a fork point in Gn,1. If x, y ∈ Gn are parallel
points in different unscaled copies of Gn−1 such that d(z, x) = d(z, y), then

|x̃− ỹ| 6 12θ1d(z, x).

Proof. — We may suppose without loss of generality that z is closer to
the source than the sink. As x and y are parallel points in different unscaled
copies of Gn−1 with d(x, z) = d(y, z), we get that one of x and y must be
on a Gn−1 making up the “top” of a diamond while the other is on the
Gn−1 making up the “bottom”. Note that G̃n is invariant when reflected
about st(Gn). We let x1 = x and we let x2 denote the point in Gn such
that x̃2 is the reflection of x̃1 about st(Gn). Then it follows that

|x̃2 − z̃| = |x̃1 − z̃| 6 d(z, x),

and z̃x̃2 makes an angle of no more than 1
2 (θ1 + θ2) 6 θ1 with st(Gn).

The second claim follows easily from Remark 2.8 and the fact that x2 is
contained in the convex hull C of some G̃n−1 for some unscaled copy of
Gn−1 in Gn. The same follows for z̃x̃1 and so we get that

|x̃1 − x̃2| 6 2θ1|z̃ − x̃| = 2θ1d(z, x).

If x2 = y, we stop. Otherwise, we get that x2 and y are contained in the
same unscaled copy of Gn−1 and satisfy d(z, x2) = d(z, y). Thus, x2 and y
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are contained in different unscaled copies of Gk−1 of some unscaled copy
of Gk where k < n both copies (of Gk−1) of which are contained in the
unscaled copy of Gn−1 containing x2 and y. Thus, as before, there exists
some fork point z2 in Gk,1 so that d(z2, x2) = d(z2, y) 6 5

6d(z, x). If we let
x3 denote the point in Gk such that x̃3 is the reflection of x̃2 about the
axis of st(Gk), we get as before that

|x̃3 − x̃2| 6 2θ1d(z2, x2) 6 5
62θ1d(z, x).

Continuing, we get a sequence of points {x1, ..., xN} where x1 = x and
xN = y so that

|x̃1 − x̃N | 6
N−1∑
i=1
|x̃i − x̃i+1| 6 2θ1d(z, x)

N−1∑
i=0

(
5
6

)k
6 12θ1d(z, x). �

Let

L := lim
n→∞

6n∏n
j=1(2 + 4 cos θj)

.

If θj is of the form

(2.4) θj =
(√

M + j log(M + j)
)−1

forM > 1, then we see that L is bounded. For convenience, we let log be in
base 2 unless specified otherwise. In fact, as M increases, L decreases and
so we may suppose that L is always bounded by some absolute constant. It
is not hard to see that, by specifyingM larger than some absolute constant,
we may suppose that L 6 2 always, which we will do from now on. We will
still continue using L, just to avoid magic numbers.

Proposition 2.10. — There exist absolute constants C > 0 and M0 >
1 so that if x, y ∈ Gn are in different unscaled copies of Gn−1 and θj is of
the form (2.4) for any M >M0, then

C

L
θ

1/2
1 d(x, y) 6 d(f(x), f(y)) 6 d(x, y).

Proof. — Remember that we will always be free to choose M0 large
enough so that L 6 2. The upper 1-Lipschitz inequality is trivial as f
is 1-Lipschitz on each edge of Gn and the metric on Gn is a path metric.
Thus, we only need to prove the lower bound. We let P denote a geodesic
path from x to y. There are two cases. Either x and y are in series or they
are in parallel.
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Case 1: x and y are in series.
We will actually show the stronger statement that if x and y are in series,

then

(2.5) |x̃− ỹ| > 1
12Ld(x, y).

This clearly gives the required result as d(f(x), f(y)) > |x̃− ỹ|.
Because x and y are in different unscaled copies of Gn−1, we have that

there exists some element z ∈ (P\{x, y}) ∩ Gn,1 6= ∅. We may suppose
without loss of generality that d(x, z) > d(y, z) and let k ∈ N be such that

(2.6) 6k 6 d(x, z) < 6k+1.

Let {G(i)}i denote all the unscaled copies of Gk between x and z. There is
at least 1 and at most 5 of them because of (2.6). We also let z′ denote the
terminal of G(i) that is closest to x. If we let G′ be the unscaled copy of Gk
containing x with terminal z′ and G be the unscaled copy of Gk containing
y with terminal z, then G(i) connect G and G′.

Note that the angle between each st(G(i)) is at most 2θ1 and that
|st(G(i))| > 6k

L . Let Q : R2 → R denote the orthogonal projection in R2

to the line spanned by z̃ and z̃′. As z̃′ and z̃ are opposite terminals of a
chain of at most five G̃k each of which make angles at most 2θ1 with its
neighbor, if we let θ1 be small enough, then we get that the linear ordering
(or its opposite) is preserved

Q(x̃) 6 Q(z̃′) 6 Q(z̃) 6 Q(ỹ)

and

|Q(z̃′)−Q(z̃)| > 6k

L
.

Thus, we get that

|x̃− ỹ| > |z̃′ − z̃| > 6k

L

(2.6)
>

1
6Ld(x, z) > 1

12Ld(x, y).

Case 2: x and y are in parallel.
Let z be a fork point in Gn,1 that lies in a geodesic path from x to y.

Then d(x, y) = d(x, z) + d(z, y). We will assume without loss of generality
that d(x, z) > d(y, z) and x > z, y > z. We can suppose that d(y, z) 6 1

3 6n
as otherwise we have that min{d(x, z), d(y, z)} > 1

3 6n and so z could not
be on the geodesic path between x and y.
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Let k ∈ N satisfy

(2.7) 6k 6 d(y, z) < 6k+1,

and α ∈ N be the smallest integer such that

(2.8) 6α > 68L2.

As L 6 2, one sees that α = 9, although we will still continue using α for
clarity.
Let ` and m be the number of unscaled copies of Gk−α on the geodesic

paths from z to x and y, respectively. It is easy to see from (2.7) that

(2.9) 6α 6 m < 6α+1.

Case 2a: ` 6 m+ 1. Thus, ` 6 6α+1 and d(x, y) 6 6k+2.
Note that the mapping f takes a geodesic path from x to y traveling

through z to a horizontal path P in H from f(x) to f(y) going through
f(z). Consider the developed path {pi}Ni=1 from z to x. If there exists some
i ∈ {1, ..., N −1} so that the angle of the oriented line segment from p̃ip̃i+1
makes an angle of more than π

4 with st(Gn), then we let a = pi for the
minimal such index i. Otherwise, we let a = x. We do the same thing with
y to get a point b.

We first claim that

(2.10) max{d(a, x), d(b, y)} 6 θ
1/2
1

50L 6k.

We will just prove the inequality for d(a, x) as the inequality for d(b, y) will
follow from the same reasoning. If a = x, then the statement is obviously
true. Thus, we may suppose a 6= x and so the angle between p̃ip̃i+1 and
st(Gn) is greater than π

4 . We then have that

π

4 6
λ(a;z)∑
j=1

θj + θλ(a;z) 6 2
λ(a;z)∑
j=1

1√
M + j

6 2
∫ λ(a;z)

0

dx√
M + x

= 4
(√

M + λ(a; z)−
√
M
)
.

Using concavity estimates for the square root atM , we get that this implies
that λ(a; z) > π

8
√
M . We then have that

d(a, x) =
N−1∑
j=i+1

d(pj , pj+1) 6 6k · 5
∞∑

j=λ(a;z)

6−j 6 6k−λ(a;z)+1 6 6k+1−π8
√
M .
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As θ1 = (1 + M)−1/2, if we choose M to be larger than some absolute
constant, we have that

d(a, x) 6 θ
1/2
1

50L 6k,

which finishes the proof of the claim. Here we used a very inefficient bound
that 6−cθ−1 is much less than θ1/2 for small enough θ.
We let Σ denote the signed area of the closed path in R2 that first goes

from ã to b̃ along the image of P via π ◦ f and then goes back to ã via a
straight line. By (1.3),

d(f(a), f(b)) > NH(f(a)−1f(b)) = |Σ|1/2.

We will break up Σ into the sum of the signed area of two separate closed
paths.
Let u, v ∈ Gn be points on the geodesic path from z to x and y so that

d(u, z) = d(v, z) = m6k−α, that is v is the point in the unscaled copies of
Gk−α that is closest to y. If we set M large enough, then we can ensure
that each of the m possible st(Gk−α) between z and u and v makes an
angle of no more than π/4 with st(Gn) and so z < u 6 a and z < v 6 b.
This can be done simply because (2.9) says that m is comparable to 6α,
a constant value. Thus, as successive st(Gk−α) differ by angles of no more
than θ1, we can easily bound the total accrued angle deviation.

Note that v is necessarily in the developed path from z to b as d(v, y) <
6k−α. We then let {p1, ..., pN} denote the developed path from v to b. There
are two cases for u. The first case is that it is in the developed path from
z to a, in which case we let {p′1, ..., p′N ′} denote the developed path from u

to a. Otherwise, u is not in the developed path from z to a. In this case,
it must be because 6k−α 6 d(u, a) < 6k−α+1, and so there exists a unique
point u′ for which u < u′ 6 a, d(u, u′) < 6k−α, and u′ is in the developed
path from z to a. We then let {p′1, ..., p′N ′} denote the path so that p′1 = u,
p′2 = u′, and then p′i follows the developed path from u′ to a. We then let
T denote the signed area of the closed path that goes from p̃′N ′ = ã via the
line segments p̃′i+1p̃

′
i until it reaches p̃′1 = ũ where it proceeds to go straight

to p̃1 = ṽ and then goes via the line segments p̃ip̃i+1 until it reaches p̃N = b̃

and then it goes straight back to ã.
Let z = q1 < q2 < ... < qm = u and z = q′1 < q′2 < ... < q′m = v be the

points so that d(qi, qi+1) = 6k−α and d(q′i, q′i+1) = 6k−α, that is qi and q′i
are terminal points of successive unscaled copies of Gk−α from z to u and
v, respectively. We let Σ′ denote the signed area of the path in R2 that
goes from ũ via the line segments q̃i+1q̃i until it reaches q̃1 = z̃ = q̃′1 where
it proceeds to then go via line segments q̃′iq̃′i+1 until it reaches ṽ and then
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Figure 2.3. The triangle that fits between two copies of G̃k

it goes straight back to ũ. Then Lemma 2.4 tells us that

Σ = Σ′ + T.

We first prove that the path defining Σ′ does not self-intersect. Recall
that d(y, z) 6 1

3 6n. Thus, the line segments defined by {q1, ..., qm} and
{q′1, ..., q′m} do not intersect as they lie in different unscaled copies of Gn−1
that are parallel. As m < 6α+1, all the line segments q̃iq̃i+1 makes an angle
of at most 6α+1θ1 with st(Gn). Here, we again use the fact the inefficient—
but sufficient—fact that any successive st(Gk−α) cannot have angles that
differ by more than θ1. The same holds for q̃′i+1q̃

′
i. Note that the piecewise

linear curves connecting the {q̃i} and the {q̃′i} lie in convex hulls of unscaled
copies of Gn−1 that on opposite sides of st(Gn) and so they are are disjoint.
Thus, by specifying that θ1 be small enough we get from Lemma 2.9 that
ũṽ is small enough (for example, smaller than the length of q̃iq̃i+1). Now
one can view st(Gn) as the x-axis of R2 and the curves defined by q̃iq̃i+1
and q̃′iq̃′i+1 as piecewise linear graphs starting from the origin. These curves
are on opposite sides of the x-axis and have controlled angle deviations
so that they do not self-intersect but the endpoints wind up being much
closer to each other compared to the size of the line segments from which
non-intersection follows.
As m > 6α, we also have that each subpath from z̃ to x̃ and ỹ in the

projection of P to R2 via π ◦ f contains the projection to R2 of source-sink
geodesics in unscaled copies G and G′ of Gk. We get from the fact that G̃
and G̃′ are contained within the convex hulls of G̃1 and G̃′1 and Lemma 2.6
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that there is an isosceles triangle of angle θ1− θ2
2 with side lengths at least

6k

L
cos θ1

2

[
cos
(

2θ1 − θ2

4

)]−1

that can fit between them in Σ. See Figure 2.3. We then have

(2.11) |Σ′| >
(

6k

L
cos θ1

2

)2

tan
(

2θ1 − θ2

4

)
>

1
6

(
6k

L

)2

θ1.

Here, we need to specify that θ1 is smaller than some absolute constant
and use the fact that θ2 < θ1.
We now bound |T |. As there are only at most two line segments ũṽ and

ãb̃ of ∂T , the boundary curve defining T , that can make an angle of no more
than π

4 with st(Gn), we have that the winding number of ∂T around any
point is at most 1. Thus, |T | is no more than the unsigned area enclosed
by ∂T and so it suffices to bound the unsigned area.
We have that d(v, b) 6 d(v, y) < 6k−α. Thus, by Lemma 2.7 the path

from ṽ to b̃ along the projection of P is contained in a convex hull C1 of the
image of some unscaled copy of Gk−α where ṽ is a terminal. In the same
way, we have |ã − ũ| 6 2 · 6k−α and so the path from ã to ũ is contained
in either one or two convex hulls C2 and C3 of one or two (sequential)
unscaled copies of Gk−α such that ũ is the terminal of one of them. Thus,
the region in R2 given by T is contained in the convex hull of C1, C2, C3.
We will collect some information about the relative geometry of the Ci.

As d(z, u) = d(z, v) = m6k−α < 6k+1, we have by Lemma 2.9 that |ũ− ṽ| 6
6k+3θ1. Also, we have that each Ci makes an angle of at most 2(6α+1 +2)θ1
with st(Gn). This follows from the fact that m < 6α+1. We also have that
C2 and C3 can make an angle of at most 2θ1 with each other. Finally, the
line segments connecting the endpoints of Ci each have length no more
than 6k−α.
Now consider the following domain S in R2. We start with a parallelo-

gram which has ũṽ as the left side and whose top and bottom are of length
6k−α+2 and are parallel to st(Gn). We take the top and bottom of the par-
allelogram to be the bases of isosceles triangles whose vertex angle are both
π − 8(6α+1 + 2)θ1 (thus they are congruent). We then let S be the region
that is the parallelogram along with the two triangles. See Figure 2.4 for
how S is situated relative to C1,C2, and C3 (the length ratios may not be
accurate).
Using all the information collected about the relative geometry of C1,C2,

and C3, it is elementary to see that the region given by T is contained
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ṽ

ũ

st(Gn)

S

Figure 2.4. The geometry of S relative to C1,C2, and C3.

within S. This gives us that

(2.12) |T | 6 |S| 6 62k−α+5θ1 + 1
462k−2α+4 tan(4(6α+1 + 2)θ1)

6 62k−α+5θ1 + 62k−2α+5(6α+1 + 2)θ1
(2.8)
6

1
36

(
6k

L

)2

θ1.

Thus,

d(f(x), f(y)) > d(f(a), f(b))− d(f(a), f(x))− d(f(b), f(y))
(2.10)
> |Σ|1/2 − θ

1/2
1
4L 6k > (|Σ′| − |T |)1/2 − θ

1/2
1

50L 6k
(2.11)∧(2.12)
>

θ
1/2
1
3L 6k,

and as d(x, y) 6 6k+2, we get

d(f(x), f(y))
d(x, y) >

θ
1/2
1

108L.

Case 2b: ` > m+ 1.
Let y0 denote a point in series with x so that y0 > z and d(y0, z) = d(y, z).

Then
d(y0, x) = d(x, z)− d(y0, z) >

1
1 + 61+α d(x, z),

and
|ỹ0 − ỹ| 6 12θ1d(y, z) 6 12θ1d(x, z),
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by Lemma 2.9 and the fact that we’ve assumed d(x, z) > d(y, z). Thus, we
get that

d(f(x), f(y)) > |x̃− ỹ|
> |x̃− ỹ0| − |ỹ0 − ỹ|

(2.5)
>

(
1

12(1 + 61+α)L − 72θ1

)
d(x, z)

>
1
2

(
1

(1 + 61+α)12L − 72θ1

)
d(x, y)

Remember that we may assume α and L are both bounded by some absolute
constant regardless of how small we assign θ1. Thus, if we choose θ1 to be
smaller than some absolute constant, we get that there exists some other
absolute constant C > 0 so that

d(f(x), f(y)) > Cd(x, y). �

Proof of Theorem 1.2. — Let C > 0 and M0 > 1 be as defined in
Proposition 2.10 and define

θj =
(√

M0 + j log(M0 + j)
)−1

.

Let x, y ∈ Gn. We will show that
C

L(M0 + n)1/4
√

log(M0 + n)
d(x, y) 6 d(f(x), f(y)) 6 d(x, y),

which clearly finishes the proof of the theorem.
Consider the largest unscaled copy of some Laakso subgraph Gk of Gn

for which x, y are both in Gk. Then x and y must be in different unscaled
copies of Gk−1 in Gk. Note that f restricted to Gk acts as the double
diamond embedding but where the first angle is θk. Thus, Proposition 2.10
gives that

C

L
θ

1/2
k d(x, y) 6 d(f(x), f(y)) 6 d(x, y).

Note then that

θ
1/2
k = 1

(M0 + k)1/4
√

log(M0 + k)
>

1
(M0 + n)1/4

√
log(M0 + n)

.

This finishes the proof of the theorem. �

Proof of Corollary 1.3. — This proof will resemble that of Proposition
3.1 in [19]. We define a random walk on Gm as follows. For t 6 0, we
define Zt = s(Gm). Then assuming Zt has been defined from −∞ to t ∈
{1, ..., 6m − 1} we let Zt+1 to be the one (or two) neighboring points of
Zt for which Zt+1 > Zt. If there are two choices for Zt+1, choose either
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randomly with probability 1/2. Finally, we let Zt = t(Gm) (that is, the
sink) for all t > 6m.
As d(f(x), f(y)) = 1 when x, y are neighbors of Gm, we get that

(2.13)
∑
t∈Z

E[d(f(Zt), f(Zt−1)p] = 6m.

Fix k ∈ {1, ...,m} and let h =
⌈

log 2
log 6k

⌉
. We can view Gm as being

built from A = Gm−h where each edge of Gm−h is replaced with a copy
of Gh. We claim that for every i ∈ {0, ..., 6m−h−1 − 1}, Zt at time t =
6h+1i+ 6h is located at a point in Gm which has two outgoing edges, each
one corresponding to a distinct copy of Gh. This is because we can view A

as being built from B = Gm−h−1 with each edge in B replaced by a G1.
Note that each G1 has a vertex, the lone neighbor of s(G1), of out degree
2. The claim then follows as each edge in the G1 is replaced by a copy of
Gh to form Gm.
Consider the times

Tk = {0, . . . , 6m−1}
⋂6m−h−1−1⋃

i=1
[6h+1i+6h+6h−1, 6h+1i+6h+2·6h−1]

.
By definition of h, we have that

6h−1 < 2k 6 6h.

Thus, we get that if t ∈ Tk such that t ∈ [(6i+ 1)6h + 6h−1, (6i+ 1)6h + 2 ·
6h−1] for some i ∈ {1, ..., 6m−1}, then t−2k ∈ [(6i+1)6h−6h, (6i+1)6h).
Thus, the walks {Zs}s∈Z and {Z̃s(t − 2k)}s∈Z at time t′ = (6i + 1)6h will
have already become independent of each other and so they will select to
walk down the two different Gh branches with probability 1

2 . Thus, we get
from Theorem 1.2 that there exists some C > 0 so that

E[d(f(Zt), f(Z̃t(t− 2k)))]p

2kp >
1
2

(2 · 6h−1)p

Cp2kpmp/4(logm)p/2

>
1

6pCpmp/4(logm)p/2 .
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Thus, we get that

∞∑
k=1

∑
t∈Z

E[d(f(Zt), f(Z̃t(t− 2k)))]p

2kp

>
m∑
k=1

∑
t∈Tk

E[d(f(Zt), f(Z̃t(t− 2k)))]p

2kp

>
1

6pCp
m∑
k=1

|Tk|
mp/4(logm)p/2

&
1

6pCp
m∑
k=1

6h−1 · 6m−h−1

mp/4(logm)p/2 >
1

6pCp 6mm1− p4 (logm)−p/2.

Now suppose p < 4. Comparing the above inequality with (2.13) and noting
that m1− p4 (logm)−p/2 →∞ as m→∞, we see that there cannot exist any
finite K > 0 so that

∞∑
k=1

∑
t∈Z

E[d(f(Zt), f(Z̃t(t− 2k)))]p

2kp 6 Kp
∑
t∈Z

E[d(f(Zt), f(Zt−1)p]. �

Proof of Corollary 1.4. — We will retain all the same notation as the
proof of the previous corollary. Let g : H → H(Z) be the quasi-isometry
with bounds (1.4). We will consider an embedding f : Gn → H so that

(2.14) c0(1 + c1)d(x, y) 6 dH(f(x), f(y)) 6 Cn1/4(logn)1/2d(x, y)

for some absolute constant C > 0. This is possible as H has a scaling
automorphism. As diam(Gn) = 6n, we see that g ◦ f : Gn → H(Z) maps
Gn into a ball of radius 2c0Cn

1/4(logn)1/26n when n is sufficiently large
(compared to c1). We also see that

dH(Z)(g(f(x)), g(f(y)))
(1.4)∧(2.14)
> (1 + c1)d(x, y)− c1 > d(x, y).

Let F : B(2c0C6nn1/4(logn)1/2) → X be a noncontracting map with
Lipschitz constant D. Then we get for large enough n that h = F ◦ g ◦ f :
Gn → X has the following bounds

(2.15) d(x, y) 6 dX(h(x), h(y)) 6 D
(
c0Cn

1/4(logn)1/2d(x, y) + c1

)
6 2c0CDn

1/4(logn)1/2d(x, y).
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Let {Xt}t∈Z be the same random walk on Gn as in the proof of the
previous corollary. Then using the same reasoning from before, we have∑

t∈Z
E[d(h(Xt), h(Xt−1))p]

(2.15)
6 (2c0CDn

1/4(logn)1/2)p6n,(2.16)

∞∑
k=0

∑
t∈Z

E
[
d(h(Xt), h(X̃t(t− 2k)))p

]
2kp

(2.15)
& n6n.(2.17)

As X is Markov p-convex, we can use (1.1) to derive a lower bound for D
to get

cX(B(7n)) > cX
(
B(2c0C6nn1/4(logn)1/2)

) (1.1)∧(2.16)∧(2.17)
&

n
1
p−

1
4

(logn)1/2 .

This easily implies the lower bound (1.2) that we need. �

3. Lower bounds for distortion of trees

For ease of notation, we will write H∞ more succintly in this section as
(`2 ×R, ·) where `2 is now the `2-sequence space of complex numbers. The
group product is then

(x, t) · (y, s) =
(
x+ y, t+ s+ 1

2ω(x, y)
)

where ω(z, z′) =
∑∞
i=1 =(ziz′i). As is well known, we can also express the

symplectic form as ω(z, z′) = 〈iz, z′〉 where 〈·, ·〉 is the usual inner product
on `2. In this section, we prove that the complete binary trees {Bm}∞m=1
embed into H∞ with distortion at least C

√
log log |Bm| for some absolute

constant C > 0.
We will first need the following elementary lemma, which tells us that

we can estimate ω(x, y) by the area of the triangle defined by x and y.

Lemma 3.1. — Let x, y ∈ `2 be two vectors and let θ be their exterior
angle. Then

(3.1) |ω(x, y)| 6 ‖x‖‖y‖| sin θ|.

Proof. — Let V denote the 2-dimensional subspace spanned by x and
ix, and let P : `2 → V denote the orthogonal projection onto V . Then

ω(x, y) = ω(x, P (y)).

If x and P (y) lie in a one-dimensional subspace, then ω(x, y) = 0 and there
is nothing to prove. Thus, we may suppose x and P (y) span all of V . If
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we define W as the subspace in `2 spanned by x and y, we then have that
P |W is an isomorphism. It is also 1-Lipschitz as it is the restriction of an
orthogonal projection. As ‖x‖‖y‖| sin θ| is the area of the parallelogram Q

inW with edges x and y, we see that |P (Q)| 6 |Q|. The lemma then follows
once we see that |P (Q)| = |ω(x, y)|. �

We now define the Koranyi norm on H∞ analogously as before

N(x, s) =
(
‖x‖4 + s2)1/4

,

where ‖·‖ is the standard `2 norm and define the Koranyi metric as d(x, y) =
N(x−1y).
Note that the normal 3-dimensional Heisenberg group H equipped with

its Koranyi norm embeds isometrically into H∞ by

(x, y, z) 7→ (x+ iy, 0, 0, ..., z).

Thus, the Laakso graphs embed into H∞ with power 1/4 and so H∞ is
not Markov p-convex for any p < 4. We now let π : H∞ → `2 denote the
homomorphic projection to `2.
We will follow the notation and terminology of [18] and say that Pn is the

metric space ({1, ..., n}, dZ). Recall that (X, d) is said to be D-biLipschitz
equivalent to (Y, ρ) if there exists some bijection f : X → Y and s > 0 so
that

s · dX(x, y) 6 dY (f(x), f(y)) 6 Ds · dX(x, y), ∀x, y ∈ X.

A δ-fork in H∞ is a set {z0, z1, z2, z
′
2} such that {z0, z1, z2} and {z0, z1, z

′
2}

are both (1 + δ)-biLipschitz to P3. The following lemma tells us that if we
have points in H∞ that are (1 + δ)-biLipschitz to P3, then they must be
very straight and flat.

Lemma 3.2. — Let δ ∈
(
0, 10−100) and z = (x, s), z′ = (y, t) be ele-

ments in H∞ such that {z, 0, z′} is (1 + δ)-biLipschitz to P3. Let

η := NH(z)
N(z) , ν := NH(z′)

N(z′) ,

and θ be the exterior angle between x and y in `2. Then

|θ| 6 400δ1/2, η 6 20δ1/4, ν 6 20δ1/4.
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Proof. — As all the quantities η, ν, θ do not change under dilation, we
may suppose without loss of generality that N(z) = 1 and so as δ 6 10−100,
we have that

(3.2)
N(z′) ∈ [(1− δ)2, (1 + δ)2]

d(z, z′) ∈ [2(1− δ)2, 2(1 + δ)2].

Note then that

(3.3)
‖x‖ = N(z)(1− η4)1/4 = (1− η4)1/4,

‖y‖ = N(z′)(1− ν4)1/4 6 (1 + δ)2,

as well as

(3.4)
|s| = η2N(z)2 = η2,

|t| = ν2N(z′)2 6 (1 + δ)4ν2.

Case 1: θ > π/2.
We get by the law of cosines that

d(z, z′)4
(3.1)
6 ‖x− y‖4 +

(
|s|+ |t|+ 1

2‖x‖‖y‖| sin θ|
)2

6 4(1 + δ)8 +
(
η2 + (1 + δ)4ν2 + 1

2(1 + δ)| sin θ|
)2

.

Here, we’ve used the fact that if the interior angle of x and y is less than
π
2 , then ‖x− y‖ cannot be larger than max{‖x‖, ‖y‖}

√
2 + 2 cos π2 6 (1 +

δ)2√2. Continuing, we get

d(z, z′)4 6 (1 + δ)8

[
4 +

(
η2 + ν2 + 1

2 | sin θ|
)2
]

6 (1 + δ)8

[
4 +

(
2 + 1

2 | sin θ|
)2
]

As δ 6 10−100, one sees that

d(z, z′)4 6 (1 + δ)8

[
4 +

(
2 + 1

2 | sin θ|
)2
]
< (2− 2δ)4, ∀θ ∈

(π
2 , π

]
,

a contradiction of (3.2).

Case 2: max{ν, η} >
( 15

16
)1/4.

We suppose without loss of generality that η = max{ν, η} >
( 15

16
)1/4.
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Thus, we get that

d(z, z′)4
(3.1)
6 ‖x− y‖4 +

(
|s|+ |t|+ 1

2‖x‖‖y‖ sin θ
)2

(3.4)
6 (‖x‖+ ‖y‖)4 +

(
η2 + (1 + δ)4η2 + 1

2(1 + δ)(1− η2)1/4
)2

(3.3)
6
(

(1− η4)1/4 + (1 + δ)2
)4

+ (1 + δ)8
(

2η2 + 1
2(1− η4)1/4

)2

6 (1 + δ)8

[(
(1− η4)1/4 + 1

)4
+
(

2η2 + 1
2(1− η4)1/4

)2
]
.

Note that (1−η4)1/4 6 1/2. As δ 6 10−100, one gets for all η ∈
(( 15

16
)1/4

, 1
]

that

d(z, z′)4 6 (1 + δ)8

[(
(1− η4)1/4 + 1

)4
+
(

2η2 + 1
2(1− η4)1/4

)2
]

< (2− 2δ)4,

a contradiction of (3.2).

Case 3: θ 6 π/2 and max{ν, η} 6
( 15

16
)1/4.

Note that we have proven that this is the only valid case, that is, if
{z, 0, z′} is (1 + δ)-biLipschitz to P3, then the exterior angle has to be less
than π/2 and ν and η cannot be too large.

As δ 6 10−100, we then get from the fact that x 7→ xq is concave whenever
q ∈ [0, 1] that

(3.5)

‖x‖4q = (1− s2)q 6 1− qs2,

‖y‖4q
(3.2)
6 ((1 + δ)4 − t2)q 6 (1 + 5δ − t2)q

6 (1− t2)q + q

(1− t2)1−q 10δ
(3.4)
6 1− qt2 + 1000qδ.

Here we used the fact that |t| 6 (1 + δ)2ν2. By looking at the formula for
the Koranyi norm, we have

(3.6) d(z, z′)4
(3.1)∧(3.3)
6 ‖x− y‖4 +

(
|t|+ |s|+ 1

2(1 + δ) sin θ
)2

.
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By the law of cosines, we have that

‖x− y‖4 =
(
‖x‖2 + ‖y‖2 + 2‖x‖‖y‖ cos θ

)2

= ‖x‖4 + ‖y‖4 + ‖x‖2‖y‖2(2 + 4 cos2 θ)

+ 4(‖x‖3‖y‖+ ‖x‖‖y‖3) cos θ
(3.5)
6 2 + 5δ − t2 − s2 + ‖x‖2‖y‖2(2 + 4 cos2 θ)

+ 4(‖x‖3‖y‖+ ‖x‖‖y‖3) cos θ
(3.7)

(3.5)
6 2 + 5δ − t2 − s2 + ‖x‖2‖y‖2(2 + 4 cos2 θ) + 4(2 + 2δ) cos θ(3.8)

6 10 + 13δ − t2 − s2 − 2θ2 + ‖x‖2‖y‖2(2 + 4 cos2 θ)(3.9)
(3.5)
6 10 + 13δ − t2 − s2 − 2θ2

+
(

1− s2

2

)(
1− t2

2 + 500δ
)

(2 + 4 cos2 θ)

6 10 + 13δ − t2 − s2 − 2θ2

+
(

1− s2

2 −
t2

2 + s2t2

4 + 500δ
)

(6− θ2)
(3.10)

6 16 + 4000δ − 4t2 − 4s2 −
(

3− s2 + t2

2

)
θ2 + 3

2s
2t2.

In (3.7), we used (3.5) for q = 1 to bound

‖x‖4 + ‖y‖4 6 1− s2 + (1 + δ)4 − t2 6 2 + 5δ − s2 − t2.

Similarly, in (3.8), we bounded

‖x‖3‖y‖+ ‖x‖‖y‖3 6 1 · ((1 + δ)4 − t2)1/4 + 13 · ((1 + δ)4 − t2)3/4 6 2 + 2δ.

In (3.9), we used the fact that cos θ 6 1 − θ2

4 for θ ∈ [0, π2 ]. In (3.10), we
used the fact that

2 + 4 cos2 θ 6 6− θ2, ∀θ ∈
[
−π2 ,

π

2

]
.
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Together with (3.6), we get that

d(z, z′)4 6 16 + 4000δ − 4t2 − 4s2 −
(

3− s2 + t2

2

)
θ2 + 3

2s
2t2

+
(
|t|+ |s|+ 1

2(1 + δ) sin θ
)2

6 16 + 4000δ − 4t2 − 4s2 −
(

3− s2 + t2

2

)
θ2 + 3

2s
2t2

+
(
|t|+ |s|+ 2

3 |θ|
)2

6 16 + 4000δ − 4t2 − 4s2 −
(

3− s2 + t2

2

)
θ2 + 3

2s
2t2

+ 3
(
t2 + s2 + 4

9θ
2
)

6 16 + 4000δ − t2 − s2 −
(

3− s2 + t2

2 − 4
3

)
θ2 + 3

2s
2t2

= 16 + 4000δ −
(

1− 3
4s

2
)
t2 −

(
1− 3

4 t
2
)
s2

−
(

3− s2 + t2

2 − 4
3

)
θ2.

As s2 6 η4 6 1 and t2 6 (1 + δ)8ν4 6 (1 + δ)8, and so we get that

d(z, z′) 6
(

16 + 4000δ − 1
5(t2 + s2 + θ2)

)1/4

Thus, as η = |s|1/2 and ν 6 |t|1/2

(1−δ)2 , we see that if the conclusion of the
lemma are not satisfied (that is η4, ν4, or θ2 are large compared to δ), then

d(z, z′) < 2− 2δ,

a contradiction of (3.2). �

We can then prove the following lemma, which says that if we have a
δ-fork in H∞ and the tips are not too non-horizontal, then the tips actually
collapse by a factor of δ1/2.

Lemma 3.3. — If δ ∈ (0, 10−100) and {z0, z1, z2, z
′
2} is a δ-fork in H∞

such that if NH(z−1
2 z′2) < 1

2d(z2, z
′
2), then

d(z2, z
′
2) 6 2000δ1/2 · d(z0, z1).
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Proof. — We may suppose z1 = 0 and d(z0, z1) = 1. Let z2 = (x2, t2)
and z′2 = (x′2, t′2). As(

t2 − t′2 + 1
2ω(π1(x2), π1(x′2))

)2
= NH(z−1

2 z′2)4 6
1
16d(z2, z

′
2)4

= 1
16‖x2 − x′2‖4 + 1

16

(
t2 − t′2 + 1

2ω(π1(x2), π1(x′2))
)2

.

This tells us that (with some non-optimal estimates)∣∣∣∣t2 − t′2 + 1
2ω(π1(x2), π1(x′2))

∣∣∣∣2 6 15‖x2 − x′2‖4,

and so

(3.11) d(z2, z
′
2) 6 2‖x2 − x′2‖.

From Lemma 3.2, and the fact that {z0, 0, z2} and {z0, 0, z′2} are both
(1 + δ)-biLipschitz to P3, we know that the exterior angles x2 and x′2 make
with the line spanned by 0 and x0 are less than 400δ1/2. Thus,

(3.12) ∠x20x′2 < 800δ1/2.

If we set η = NH(z2)
N(z2) and ν = NH(z′2)

N(z′2) , we also know that

|t2| = NH(z2)2 = η2N(z2)2 6 400(1 + δ)2δ1/2.

The same bound holds for |t′2|. Thus,

‖x2‖ = (N(z2)4 − t22)1/4 ∈ (1− 1010δ, 1 + 1010δ)

by a first order approximation and the fact thatN(z2) ∈ (1−δ, 1+δ). Again,
the same conditions hold for ‖x′2‖. Suppose without loss of generality that
‖x2‖ 6 ‖x′2‖. Let y = ‖x2‖ x′2

‖x′2‖
. Then

‖x2 − x′2‖ 6 ‖x2 − y‖+ ‖y − x′2‖
(3.12)
< (1 + 1010δ)800δ1/2 + 1010δ

6 1000δ1/2.

This, together with (3.11), proves the statement. �

We recall some more notation from [18]. The complete k-ary tree of
depth h is Tk,h. As shown in [18], Tk,h can be embedded into B2hdlog2 ke
with distortion at most 2. For a rooted tree T , let SP (T ) denote the set of
all unordered pairs {x, y} of vertices of T such that x lies on the path from
y to the root. The following Ramsey-type lemma is Lemma 5 from [18].
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Lemma 3.4. — Let h and r be given natural numbers, and suppose that
k > r(h+1)2 . Suppose that each of the pairs from SP (Tk,h) is colored by
one of r colors. Then there exists a biLipschitz copy T ′ of Bh in this Tk,h
such that the color of any pair {x, y} ∈ SP (T ′) only depends on the level
of x and y.

Lemma 3.5 (Modified path embedding lemma). — For any α > 0, there
exists a constant A = A(α) with the following property. Whenever k ∈ N
and f is a noncontracting mapping of the metric space Ph into some other
metric space (X, d) so that h > 2A‖f‖

α
lip+k, then there exists a subspace

Z = {x, x + `, x + 2`} ⊆ Ph such that ` > 2k and if we denote by f0 the
restriction of f on Z, then f0 is biLipschitz of distortion at most 1 + ε with

ε = 10−100
(

`

d(f(x), f(x+ `))

)α
.

Proof. — The proof is almost exactly the same as the proof of Lemma
6 of [18], which we assume the reader is familiar with. Here, we’ve fixed
β = 10−100. The fact that we start with h > 2A‖f‖

α
lip+k allows us to ensure

that the two consecutive values of K(2i) and K(2i+1) that lie in the same
interval [xj+1, xj) can be chosen so that i > k. �

The next lemma says that, given sufficiently many vectors in `2 of
bounded length, there must be two vectors with small symplectic value.

Lemma 3.6. — There exists `0 > 0 so that if ` > `0 and {zi}Ni=1 is a set
of vectors in `2 for which

N >
2`/2

16 log ` ,

‖zi‖ 6 `(log `)1/2, ∀i ∈ {1, ..., 2`}.

Then there exists i 6= j so that

|ω(zi, zj)| 6
1
4`

2.

Proof. — Suppose the claim is false. Let A1 = {zi}Ni=1. Choose some
v1 ∈ A1 and let V1 be the 2-dimensional subspace in `2 spanned by v1
and iv1. Let P1 : `2 → `2 denote the orthogonal projection onto V1. If
‖P1(u)‖ < `

5(log `)1/2 for some u ∈ A1, then

|ω(v1, u)| 6 ‖v1‖‖P1(u)‖ 6 `(log `)1/2‖P1(u)‖ < 1
5`

2,

and so we would reach a contradiction. Thus, we may assume that

‖P1(u)‖ > `

5(log `)1/2 , ∀u ∈ A1.
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We divide S1 into intervals of length (log `)−4 and group the vectors
u ∈ A1 by which interval the angle P1(u) makes with P1(v1) falls into,
breaking ties arbitrarily. One of these intervals must have at least

N − 1
(log `)4

vectors associated to it, which we will call A2. Let Q1 denote the orthogonal
projection onto V ⊥1 . Choose a vector v2 from A2, let V2 be the 2-dimensional
subspace in `2 spanned by Q1(v2) and iQ1(v2), and let P2 : `2 → `2 be the
orthogonal projection onto V2. Then V2 ⊂ V ⊥1 . Note then that for each
u, v ∈ A2, we have that

|ω(u, v)| = |ω(P1(u), P1(v)) + ω(Q1(u), Q1(v))|

6
`2

(log `)3 + |ω(Q1(u), Q1(v))|.

Note that if u ∈ A2, then

|ω(Q1(u), Q1(v2))| = |ω(Q1(u), P2(v2))| = |ω(P2(u), P2(v2))|.

This gives us that

|ω(u, v2)| 6 `2

(log `)3 + |ω(P2(u), P2(v2))| 6 `2

(log `)3 + `(log `)1/2‖P2(u)‖.

We see as before that we must have ‖P2(u)‖ > `
5(log `)1/2 for all u ∈ A2\{v2}

as otherwise we would have a contradiction if ` is large enough.
We again divide up S1 into intervals of length (log `)−4 and group the

vectors u ∈ A2 by which interval the angle P2(u) makes with P2(v2) falls
into. One of these intervals must have at least

N − 1− (log `)4

(log `)8

vectors assigned to it, which we will take to be A3.
Continuing this way, we see that up to k = 50(log `)2, we can construct

orthogonal symplectic subspaces V1, ..., Vk and a subset of vectors Ak+1 for
which

|Ak+1| >
N −

∑k−1
j=0 (log `)4j

(log `)4k >
N − k(log `)4k

(log `)4k

such that if u ∈ Ak+1, then ‖PVj (u)‖ > `
5(log `)1/2 for every j. By our

choice of N and k, if ` is larger than some absolute constant, then Ak+1 is
non-empty. But if u ∈ Ak+1, we have

‖u‖2 >
k∑
j=1
‖PVj (u)‖2 > 50(log `)2 `2

25 log ` > 2`2(log `).
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This contradicts our assumption that ‖u‖ 6 `(log `)1/2. �

Clearly, the proof of Lemma 3.6 works for more general N , such as any
exponent of `. This N will be the specific one we need.

Proof of Theorem 1.5. — In this proof, a familiarity with [18] with be
helpful (but not crucial) for the reader. Suppose there exists a noncon-
tracting map f : Bm → H∞ such that ‖f‖lip = K = 2c(logm)1/2 for
c > 0 small enough so that if we set h = 2(A(2)+1)K2 then h < m1/4. Here
we’ve applied Lemma 3.5 to get A(2). If we also set r = 10100 · 2K3, and
k = r(h+1)2

6 (10100K)4m1/2
6 exp(Cm1/2 log logm), then

2h log k < 2Cm3/4 log logm 6 m

as long asm is sufficiently large and so there exists a biLipschitz copy of Tk,h
inside Bm, and we can assume the map of Tk,h into Bm is noncontracting.
Let us restrict f to this subtree. It is clear that f is still noncontracting
and has the same Lipschitz bound. If we color each pair {x, y} ∈ SP (Tk,h)
according to the distortion of their distance by f⌊

10100K2 d(f(x), f(y))
d(x, y)

⌋
∈ {0, ..., r − 1},

then by the fact that k = r(h+1)2 , we get that there exists some subtree Bh
of Tk,h such that the colors of {x, y} ∈ SP (Bh) depend only on the levels
of x and y.
Consider a root-leaf path P in Bh. As h = 2(A(2)+1)K2 , there exists

three vertices x0, x1, x2 in P at levels j, j+ `, j+ 2`, respectively, such that
` > 2K2 and f is (1 + δ)-biLipschitz restricted on x0, x1, x2 where

(3.13) δ = 10−100
(

`

d(f(x0), f(x1))

)2
6 10−100.

The latter inequality comes from the fact that f is noncontracting. We will
suppose without loss of generality that ` is even. Note that

(3.14) log ` > K2 = 4c2 logm.

Now consider all the descendents of x1 in Bh that lie `/2 levels down.
We can write them as such {x′i}2`/2

i=1 . For each i ∈ {1, ..., 2`/2}, choose a
decendent of x′i in Bh that lies on the same level as x2. Thus, we have chosen
2`/2 points and we denote them by {yi}2`/2

i=1 . Note then that {x0, x1, yi, yj}
is a δ-fork for each i, j. Furthermore, we have that ` 6 dT (yi, yj) 6 2`.
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We will suppose without loss of generality that f(x1) = 0. Consider the
central coordinates zi of f(yi). As we have for every i ∈ {1, ..., 2`/2} that

|zi| 6 N(f(yi))2 = d(f(x1), f(yi))2 6 4c2`2(logm)
(3.14)
6 `2(log `),

we get by the pigeonhole principle that there exists a subset {y′i}Ni=1 ⊆
{yi}2`/2

i=1 where N > 2`/2

16 log ` and all central coordinates of f(y′i) differ by no
more than 1

16`
2. We also have that

‖π(y′i)‖ 6 N(f(y′i)) 6 d(f(x1), f(y′i)) 6 `(log `)1/2,

and so applying Lemma 3.6 to {y′i}Ni=1, we get that there exist two elements
(we will suppose by renaming them that they are 0 and 1) y′0 = (a0, b0)
and y′1 = (a1, b1) so that

|ω(a0, a1)| 6 1
4`

2.

Thus, we see that

NH(f(y′0)−1f(y′1))2 =
∣∣∣∣b0 − b1 −

1
2ω(a0, a1)

∣∣∣∣ 6 |b0 − b1|+
1
2 |ω(a0, a1)|

6
1
8`

2 + 1
8`

2 6
1
4`

2 6
1
4d(f(y′0), f(y′1))2.

The last inequality comes from the fact that dT (y′0, y′1) > ` and f is
noncontracting. Thus, by Lemma 3.3, we have that

`

2 6 d(f(y′0), f(y′1)) 6 2000δ1/2d(f(x0), f(x1))
(3.13)
6 2000 · 10−50` <

`

2 ,

a contradiction. �
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