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A NEW FAMILY OF ALGEBRAS WHOSE
REPRESENTATION SCHEMES ARE SMOOTH

by Alessandro ARDIZZONI,
Federica GALLUZZI & Francesco VACCARINO (*)

Abstract. — We give a necessary and sufficient smoothness condition for the
scheme parameterizing the n-dimensional representations of a finitely generated
associative algebra over an algebraically closed field. In particular, our result im-
plies that the points M ∈ Repn

A(k) satisfying Ext2
A(M, M) = 0 are regular. This

generalizes well-known results on finite-dimensional algebras to finitely generated
algebras.
Résumé. — Dans cet article, nous fournissons une condition nécéssaire et suffi-

sante pour la lissité du schéma qui paramétrise les représentations n-dimensionelles
d’une algèbre associative, engendrée par un nombre fini d’éléments sur un corps
algébriquement clos. En particulier, notre résultat implique que les points M ∈
Repn

A(k) satisfaisant Ext2
A(M, M) = 0 sont réguliers. Ceci généralise aux algèbres

engendrées par un nombre fini d’éléments des résultats connus sur les algèbres de
dimension finie.

1. Introduction

Let A be a finitely generated associative k-algebra with k an algebraically
closed field. Let Vn(A) be the commutative k-algebra representing the func-
tor from commutative algebras to sets

Ck → Set : B 7→ HomNk
(A,Mn(B))
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of the n-dimensional representations of A over B, (see Section 2.2). The
scheme RepnA of the linear representations of dimension n of A is defined
to be SpecVn(A).
Formally smooth (or quasi-free) algebras provide a generalization of the

notion of free algebra, since they behave like a free algebra with respect to
nilpotent extensions. The definition goes back to J. Cuntz and D. Quillen
and it was inspired by the Grothendieck’s definition of formal smoothness
given in the commutative setting, see [14, 19.3.1]. See also [13, 19] and [18,
4.1]. For further details, see 4.3.

It is well-known that if A is formally smooth then RepnA is smooth
(see [13, Proposition 19.1.4] and [18, Proposition 6.3]). If A is finite-dimen-
sional then it is formally smooth if and only if it is hereditary (see Theo-
rem 4.6) and, therefore RepnA is smooth for all n if and only if A is hereditary
(see [3, Proposition 1]).
For infinite-dimensional algebras the picture is more complex, e.g. there

are hereditary algebras which are not formally smooth (see Remark 4.7).
It is therefore interesting to find other sufficient (or necessary) conditions
on A which ensure RepnA to be smooth.

Let M be an A-module in RepnA(k). It is well-known that the linear
space Ext2

A(M,M) contains the obstructions in extending the infinitesimal
deformations of M to the formal ones. For this reason an algebra A such
that Ext2

A(M,M) = 0, for all M ∈ RepnA(k) and n > 1, will be called
finitely unobstructed.

It has been proved by Geiss and de la Peña (see [9, 10]) that, when A is
finite-dimensional, finitely unobstructed implies that RepnA is smooth.
We underline that any hereditary algebra is finitely unobstructed but

the converse is not true, e.g. the universal enveloping algebra of a finite-
dimensional semisimple Lie algebra is finitely unobstructed but not hered-
itary if the dimension of the underlying Lie algebra is greater than one.

The proof given in [9, 10] is based on the analysis of the local geometry
of RepnA, and it specifically relies on the upper semicontinuity of certain
dimension functions arising from the bar resolution of A. As we observe in
the last section of this paper, their approach remains valid if one assumes
that A is finitely presented or bimodule coherent.

We follow here a different path, namely, we study the smoothness prob-
lem via the adjunction

(1.1) HomCk
(Vn(A), B)

∼=−→ HomNk
(A,Mn(B))

ANNALES DE L’INSTITUT FOURIER



A NEW FAMILY OF ALGEBRAS 1263

The adjunction (1.1) allows us to use the Harrison cohomology of Vn(A)
instead of the Hochschild cohomology of A. The Harrison cohomology of a
commutative k-algebra is the symmetric part of its Hochschild cohomology,
and it has been proved by Harrison [15] that an affine ring R is regular if
and only if its second Harrison cohomology vanishes.
This is our main result.

Theorem. — Let A be a finitely generated k-algebra, let f : Vn(A)→ k

be a k-algebra map and let ρ : A → Mn(k) be the algebra map that
corresponds to f through the adjunction above. Then there is a linear
embedding of Harr2(Vn(A), fk) into H2(A, ρMn(k)ρ). As a consequence,
M ∈ RepnA is a regular point whenever Ext2

A(M,M) = 0.

We have thus extended the known results on smoothness to infinite-
dimensional finitely generated algebras.

We remark that the above embedding is not an isomorphism in general.
We give a counterexample by using 2-Calabi Yau algebras (Remark 3.5).

The paper goes as follows.
In paragraph 2.2 we recall the definition of RepnA as the scheme param-

eterizing the n-dimensional representations of A.
In Section 3 we recall the Harrison cohomology which may be seen as

the commutative version of the Hochschild cohomology. We prove that the
regularity of a point in RepnA = Spec(Vn(A)) is equivalent to the vanishing
of Harr2(Vn(A), fk), for the k-algebra map f : Vn(A) → k associated to
the point (see Theorem 3.3). Then Theorem 3.4 shows that there is a linear
embedding of Harr2(Vn(A), fk) into H2(A, ρMn(k)ρ) and as a consequence,
that M ∈ RepnA is a regular point whenever Ext2

A(M,M) = 0.
Then, as said before, by using 2-Calabi Yau algebras, we exhibit an

example which shows that the above embedding is not an isomorphism.
In Section 4 we present a list of examples and applications of the afore-

mentioned results. To this aim, we first recall the notions of formally smooth
and hereditary algebra. We mention the known result on the smoothness
of RepnA when A is formally smooth or hereditary to compare the notions
of formally smoothness, hereditary, finitely unobstructed and we stress the
difference between the finite and the infinite-dimensional case.
Afterward, we give the definition of finitely unobstructed algebra and we

prove that if A is finitely unobstructed then RepnA is smooth (see Corol-
lary 4.2).
Then we produce examples of finitely unobstructed algebras (neither

hereditary nor formally smooth) whose associate representation scheme is
smooth (see Example 4.12).
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1264 Alessandro ARDIZZONI, Federica GALLUZZI & Francesco VACCARINO

In Section 5 we study the relationships between the deformation theory
of M ∈ RepnA(k), in the sense of Gerstenhaber, Geiss and de la Peña , and
the deformation theory of Vn(A) as usually defined in algebraic geometry.
In particular, by using the adjunction (1.1), we will see that there are no

obstructions to the integrability of the infinitesimal deformations of M if
and only if Harr2(Vn(A), fk) = 0. Motivated by this fact we formulate the
following conjecture.

Conjecture. — The image of the embedding

Harr2(Vn(A), fk) ↪→ Ext2(M,M)

contains the subspace of Ext2(M,M) of the obstructions to integrate the
infinitesimal deformations of M.

As a bonus, we further show that the approach to this smoothness prob-
lem developed for A finite-dimensional in [9, 10] works as well if A is finitely
unobstructed and finitely presented or bimodule coherent.

2. Preliminaries

2.1. Notations

Unless otherwise stated we adopt the following notations:
• k is an algebraically closed field;
• F = k{x1, . . . , xm} is the associative free k-algebra on m letters;
• A ∼= F/J is a finitely generated associative k-algebra;
• N−, C− and Set denote the categories of -algebras, commutative
-algebras and sets, respectively;

• The term "A-module" indicates a left A-module. The categories of
left -modules is denoted by -Mod. The full subcategory of modules
having finite dimension over k will be denoted by -Modf ;

• We write HomA(B,C) for the morphisms from an object B to C in
a category A. If A = A-Mod, then we will write HomA(−,−);

• Aop is the opposite algebra of A and Ae := A⊗Aop is the envelope
of A. It is an A-bimodule and a k-algebra. One can identify the cat-
egory of the A-bimodules with Ae-Mod and we will do it thoroughly
this paper;

• Exti−( , ) denotes the Ext groups on the category -Mod;
• Hi(A,−) is the Hochschild cohomology with coefficients in Ae-Mod.

ANNALES DE L’INSTITUT FOURIER
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2.2. The scheme of n-dimensional representations

The study of the affine scheme RepnA of n-dimensional representations
of an algebra A goes back to the early 1970’s with work of M. Artin, P.
Gabriel, C. Procesi and D. Voigt. See for example [8] and the references
therein.
Denote by Mn(B) the full ring of n× n matrices over B, with B a ring.

If f : B → C is a ring homomorphism we denote by Mn(f) : Mn(B) →
Mn(C) the homomorphism induced on matrices.

Definition 2.1. — Let A ∈ Nk, B ∈ Ck. By an n-dimensional repre-
sentation of A over B we mean a homomorphism of k-algebras ρ : A →
Mn(B).

It is clear that this is equivalent to give an A-module structure on Bn.
The assignment B 7→ HomCk

(A,Mn(B)) defines a covariant functor

Ck −→ Set.

which is represented by a commutative k-algebra Vn(A).

Lemma 2.2 ([20, Ch.4, §1]). — For all A ∈ Nk and ρ : A → Mn(B)
a linear representation, there exist Vn(A) ∈ Ck and a representation ηA :
A→Mn(Vn(A)) such that ρ 7→Mn(ρ) ◦ ηA gives an isomorphism

(2.1) HomCk
(Vn(A), B)

∼=−→ HomNk
(A,Mn(B))

for all B ∈ Ck.

If A = F, one has that Vn(F ) := k[ξlij ], the polynomial ring in variables
{ξlij : i, j = 1, . . . , n, l = 1, . . . ,m} over k. If A = F/J finitely generated
k-algebra, one defines Vn(A) := k[ξlij ]/I where I is the ideal of Vn(F )
generated by the n× n entries of f(ξ1, ..., ξm), f runs over the elements of
J and ξl is the matrix (ξlij). Therefore Vn(A) is an affine ring (i.e. a finitely
generated algebra with identity) when A is a finitely generated k-algebra.

Definition 2.3. — We write RepnA to denote SpecVn(A). It is consid-
ered as a k-scheme. The map

ηA : A→Mn(Vn(A)), al 7−→ ξAl := (ξlij + I).

is called the universal n-dimensional representation.

Examples 2.4. — (i) By construction, if A = F, then RepnF (k) =
Mn(k)m. If A = F/J, the B-points of RepnA can be described as follows:

RepnA(B) = {(X1, . . . , Xm) ∈Mn(B)m : f(X1, . . . , Xm) = 0 for all f ∈ J};

TOME 66 (2016), FASCICULE 3



1266 Alessandro ARDIZZONI, Federica GALLUZZI & Francesco VACCARINO

(ii) If A = C[x, y], RepnA(C) = {(M1,M2) ∈ M2(C)2,M1M2 = M2M1} is
the commuting scheme, see [22].

Remark 2.5. — Note that RepnA may be quite complicated. It is not
reduced in general and it seems to be hopeless to describe the coordinate
ring of its reduced structure. The scheme RepnA is also known as the scheme
of n-dimensional A-modules.

3. The main result

We prove our main result using Harrison cohomology. Given a commu-
tative ring R and an R-module N , we denote by Harr∗(R,N) the Harri-
son cohomology group i.e. the group E∗(R,N) introduced in [15]. Harrison
cohomology can be seen as a commutative version of Hochschild cohomol-
ogy. For further details the reader is referred to [23, section 9.3], where
Harr2(R,N) is denoted by H2

s(R,N).

The following standard result establishes a link between ExtiA(M,M)
and the Hochschild cohomology of A with coefficients in Endk(M).

Theorem 3.1 ([4, Corollary 4.4]). — We have

ExtiA(M,M) ∼= Hi(A,Endk(M)).

For every algebra map f : B → A and N ∈ A-Mod, denote by fN the
corresponding left B-module structure on N . A similar notation is used on
the right. In particular, if N ∈ Ae-Mod, the notation fNf means that N is
regarded as a Be-module via f .

Proposition 3.2. — The following assertions are equivalent for A ∈ Nk
and for every M ∈ Ae-Mod:

(1) H2(A,M) = 0;
(2) Let f : A→ B be an algebra map and let p : E → B be a Hochschild

extension of B ∈ Nk with kernel N such that fNf = M (here N ,
being an ideal of square zero, is endowed with its canonical B-
bimodule structure). Then f has a lifting i.e. there is an algebra
map f : A→ E such that p ◦ f = f .

A

f��
f

yy
0 // N

i // E
p // B
σ

oo // 0

ANNALES DE L’INSTITUT FOURIER



A NEW FAMILY OF ALGEBRAS 1267

Proof. — The proof is the same of [23, Proposition 9.3.3] for our specific
M . However, we recall a different proof of (1) implies (2) that will be
needed in the proof of Theorem 3.4. Let ω : B⊗B → N be the Hochschild
2-cocycle associated to the Hochschild extension E of B by M . Then ω :=
ω ◦ (f ⊗ f) : A⊗ A → fNf = M is a Hochschild 2-cocycle so that we can
consider the Hochschild extension A⊕ω M of A by M , see [23, page 312].
Since ω is, by assumption, a 2-coboundary, then the latter extension is
trivial i.e. there is an algebra map s : A → A ⊕ω M which is a right
inverse of the canonical projection. Composing s with the algebra map
A⊕ω M → E : (a,m) 7→ σf(a) + i(m) yields the required map f . �

Let R be a commutative noetherian ring. Recall that a point p ∈ SpecR
is regular if the localization Rp of R at p is a regular local ring i.e.
dimk(m/m2) = dimRp, where m is the unique maximal ideal of Rp and
dimRp is its Krull dimension. The ring R is said to be regular if the local-
ization at every prime ideal is a regular local ring.
The following result is a variant of [15, Corollary 20].

Theorem 3.3. — Let f : Vn(A)→ k be a k-point of RepnA. Then f is a
regular point of RepnA(k) if and only if Harr2(Vn(A), fk) = 0.

Proof. — Set m := ker(f) and R := Vn(A). Note that k is a perfect field,
as it is algebraically closed. Moreover, since A is f.g., then R is an affine ring
(as observed after Lemma 2.2) and hence we can apply [15, Corollary 20]
to get that f is regular if and only if Harr2(R,R/m) = 0. We conclude by
observing that fk = imf ∼= R/ ker f = R/m as left R-modules. �

Theorem 3.4. — Let A be a f.g. k-algebra, let f : Vn(A) → k be a k-
algebra map and let ρ : A→Mn(k) be the algebra map that corresponds to
f through (2.1). Then there is a linear embedding of Harr2(Vn(A), fk) into
H2(A, ρMn(k)ρ). As a consequence,M ∈ RepnA is a regular point whenever
Ext2

A(M,M) = 0.

Proof. — Each M ∈ RepnA is of the form M ∼= ρ(kn) for some ρ :
A→Mn(k) as in the statement. By Theorem 3.1, we have Ext2

A(M,M) ∼=
H2(A,Endk(M)) ∼= H2(A, ρMn(k)ρ). Thus the last assertion of the state-
ment follows by Theorem 3.3 once proved the embedding of Harr2(Vn(A),fk)
into H2(A, ρMn(k)ρ). Let us construct it explicitly. The idea of the proof of
this fact is inspired by [13, Proposition 19.1.4] where the functor Mn(−) is
applied to a commutative extension with nilpotent kernel. Set B := Vn(A)
and let ω : B ⊗ B → fk be a Harrison 2-cocycle. Consider the Hochschild

TOME 66 (2016), FASCICULE 3



1268 Alessandro ARDIZZONI, Federica GALLUZZI & Francesco VACCARINO

extension associated to ω

(3.1) 0 //
fk

i // Bω
p // B
σ

oo // 0

where, for brevity, we set Bω := B ⊕ω k. Set S := Mn(k) and apply the
exact functor S ⊗ (−) to (3.1) to obtain the Hochschild extension

(3.2) 0 // S ⊗ fk
S⊗i // S ⊗Bω

S⊗p // S ⊗B
S⊗σ

oo // 0

Here S ⊗ fk is a bimodule over S ⊗B via (s⊗ b)(s′⊗ l)(s′′⊗ b′′) = ss′s′′⊗
blb′′ = ss′s′′ ⊗ f(b)lf(b′′), for every s, s′, s′′ ∈ S, l ∈ k, b, b′′ ∈ B. Now, let
E be either fk, Bω or B and apply the canonical isomorphism S ⊗ E →
Mn(E) : (kij)⊗ e 7→ (kije) to (3.2) to obtain the Hochschild extension

(3.3) 0 // N
in // Mn(Bω)

pn // Mn(B)
σn

oo // 0

where we set pn := Mn(p), σn = Mn(σ), in := Mn(i) and N is Mn(k) re-
garded as a bimodule overMn(B) via (bis)(ltj)=(

∑
s bislsj) and (ltj)(bis)=

(
∑
j ltjbjs) for every (bis) ∈Mn(B) and (ltj) ∈Mn(k). Thus

(bis)(ltj) = (
∑
s

bislsj) = (
∑
s

f(bis)lsj) = fn((bis)) · (ltj)

where fn := Mn(f) i.e. N = fn
(Mn(k)). Let η = ηA : A → Mn(Vn(A)) =

Mn(B) be the universal n-dimensional representation of Definition 2.3.
Hence ηN = η(fn

(Mn(k))) = (fn◦η)Mn(k) = ρMn(k), where we used that
fn ◦ η = Mn(f) ◦ η = ρ which holds by definition of ρ. A similar argument
applies to the right so that we get ηNη = ρMn(k)ρ. Let ωn : Mn(B) ⊗
Mn(B) → N be the Hochschild 2-cocycle associated to the Hochschild
extension (3.3). Then ωn := ωn ◦ (η ⊗ η) is a Hochschild 2-cocycle so that
we can consider the assignment

α : Harr2(Vn(A), fk)→ H2(A, ηNη) : [ω] 7→ [ωn].

This is a well-defined map. In fact, if [ω] = 0, then we can choose σ to be an
algebra map from the very beginning and hence σn is an algebra map so that
ωn = 0. Suppose α([ω]) = 0. Then ωn is a 2-coboundary. This condition
guarantees, by the proof of Proposition 3.2, that there is a k-algebra map
λ : A → Mn(Bω) such that pn ◦ λ = ηA. This map corresponds, via (2.1),
to an algebra map λ : B → Bω such that p ◦ λ = IdB . This means that the
Hochschild extension (3.1) is trivial whence [ω] = 0. Thus α is injective. �

Remark 3.5. — The map Harr2(Vn(A), fk) ↪→ H2(A, ρMn(k)ρ) is not
an isomorphism in general. Furthermore the condition Ext2

A(M,M) = 0

ANNALES DE L’INSTITUT FOURIER
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is not necessarily satisfied by regular points in RepnA. There is indeed the
following counterexample.
Let A be a 2-Calabi Yau algebra, see [12, Definition 3.2.3] for details. It

has been proven by Bocklandt that such an algebra has simple modules and
that these modules are regular points in RepnA (see [2, Section 7.1]). There-
fore, for a simpleM ∈ RepnA(k) one has Harr2(Vn(A), fk) = 0. On the other
hand, since A is 2-Calabi Yau, one has Ext2

A(M,M) ∼= Ext0
A(M,M) ∼=

EndA(M) ∼= k, for all M ∈ RepnA.
The referee pointed out to our attention the following example. Con-

sider the (4-dimensional) preprojective algebra Π for a quiver of type A2.
An elementary calculation shows that for the two 1-dimensional simple Π-
modules S1 and S2 one has Ext1

Π(Si, Si) = 0 but Ext2
Π(Si, Si) ∼= k. Thus

RepnΠ has two smooth points with non-trivial obstructions.

4. Examples and Applications

Next aim is to introduce and investigate the notion of finitely unob-
structed algebra. We will give several examples of such algebras. Moreover
we will analyze the relationship between finitely unobstructed, formally
smooth and hereditary algebras to better understand the influence of the
structure of A on the smoothness of RepnA.

4.1. Finitely unobstructed algebras

Definition 4.1. — Let A be a k-algebra. Given n ∈ N, we say that A
is n-finitely unobstructed, if Ext2

A(M,M) = 0, for everyM ∈ RepnA(k).We
say that A is finitely unobstructed, if it is n-finitely unobstructed for every
n ∈ N.

Corollary 4.2. — The scheme RepnA is smooth for all n-finitely un-
obstructed k-algebra A.

Proof. — It follows by Theorem 3.4. �

We recast here some basic concepts in order to list examples and appli-
cations of the results proven in Section 3.

4.2. Hereditary algebras

Recall that the projective dimension pd(M) of an M ∈ A-Mod is the
minimum length of a projective resolution of M.

TOME 66 (2016), FASCICULE 3



1270 Alessandro ARDIZZONI, Federica GALLUZZI & Francesco VACCARINO

Definition 4.3. — The global dimension of a ring A, denoted with
gd(A), is the supremum of the set of projective dimensions of all (left)
A-modules. If gd(A) 6 1, then A is called hereditary.

It holds that gd(A) 6 d if and only if Extd+1
A (M,N) = 0, for all M,N ∈

A-mod, see [4, Proposition 2.1, page 110].

4.3. Formally smooth algebras

For further readings on these topics see [13, 12].

Definition 4.4 (Definition 3.3. [7]). — An A ∈ Nk is said to be for-
mally smooth (or quasi-free), if it satisfies the equivalent conditions:

(i) any homomorphism ϕ ∈ HomNk
(A,R/N) where N is a nilpotent

(two-sided) ideal in an algebra R ∈ Nk, can be lifted to a homo-
morphism ϕ ∈ HomNk

(A,R) that commutes with the projection
R→ R/N ;

(ii) H2(A,M) = 0 for any M ∈ Ae-Mod;
(iii) the kernel Ω1

A of the multiplication A ⊗ A → A is a projective
Ae-module.

Remark 4.5. — When A is commutative Ω1
A is nothing but the module

of the Kähler differentials (see [13, Section 8]).

If we substitute A ∈ Ck and HomCk
(A,−) in Definition 4.4, we obtain the

classical definition of regularity in the commutative case (see [18, Proposi-
tion 4.1]). On the other hand, if we ask for a commutative algebra A to be
formally smooth in the category Nk we obtain regular algebras of dimen-
sion 6 1 only (see [7, Proposition 5.1]). Thus, if X = SpecA is an affine
smooth scheme, then A is not formally smooth unless dimX 6 1.

4.4. Implications and equivalences

Let us collect the following, well-known, characterizations of finite-dimen-
sional hereditary algebras.

Theorem 4.6. — Let A be a finite-dimensional algebra over k. The
following assertions are equivalent:

(1) A is formally smooth;
(2) H2(A,N) = 0 for every N ∈ Ae-Modf ;

ANNALES DE L’INSTITUT FOURIER



A NEW FAMILY OF ALGEBRAS 1271

(3) A is finitely unobstructed;
(4) RepnA is smooth for every n ∈ N;
(5) A is hereditary.

Proof. — (1) ⇒ (2) is trivial. Implication (2) ⇒ (3) follows by Theo-
rem 3.1, while (3) ⇒ (4) follows by Corollary 4.2. Finally (4) ⇒ (5) is [3,
Proposition 1] and (5)⇒ (1) follows from [5, Proposition 0.6]. �

Remark 4.7. — Let A be an infinite-dimensional finitely generated al-
gebra over k. Let us check the following chain of implications

(1)⇒ (5)⇒ (3)⇒ (4) but (1) : (5) : (3) : (4)

where the notations are the same of Theorem 4.6.
(1)⇒ (5). This is [7, Proposition 5.1].
(1) : (5). Consider A1 = C[x, δ]/ < xδ−δx = 1 > the first Weyl algebra.

It is an example of a hereditary but not formally smooth algebra, since it
can be proved that H2(A,Ae) 6= 0 (see [1, Proposition 3]). This is due to
William Crawley-Boevey (personal communication).

(5)⇒ (3). This is trivial.
(5) : (3). Let U :=U(g) be the universal enveloping algebra of a semisim-

ple Lie algebra g. Whitehead’s second lemma (see e.g. [23, Corollary 7.8.12,
page 246]) asserts that, in characteristic zero, H2

Lie (g, N) = 0 for every g-
module N of finite-dimension over k. In particular, for everyM ∈ A-Modf ,
we obtain H2

Lie (g,Endk(M)) = 0. By [23, Exercise 7.3.5, page 226], we
have that

H∗Lie (g,Endk (M)) ∼= Ext∗U (M,M) .

Therefore, Ext2
U (M,M) = 0. If g is finite-dimensional, then U is finitely

generated and, thus, U is finitely unobstructed. Now, U has global dimen-
sion dimk (g) , see [23, Exercise 7.7.2, page 241], and we are done.

(3)⇒ (4). This is Corollary 4.2.
(3) : (4). Remark 3.5 shows that there might exist regular points M in

RepnA with Ext2
A(M,M) 6= 0.

Remark 4.8. — The implication (1)⇒ (4) was already known, see [13,
Proposition 19.1.4], [18, Proposition 6.3].
Remark 4.7 and the argument on U = U(g), contained in the proof

thereby, together imply smoothness of RepnU . This result was known, see
e.g. the comment by Le Bruyn in [17].
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4.5. Unobstructed Algebras

We now list some examples and results in case A is finitely generated
but not necessarily finite-dimensional.
In the remaining part of the section k can be any field.

Example 4.9. — We have seen in the Remark 4.7 that U(g) is finitely
unobstructed for a semisimple Lie algebra g.

More generally, in [24, Theorem 0.2], there is a characterization of all
finite-dimensional Lie algebras g over a field k of characteristic zero such
that their second cohomology with coefficients in any finite-dimensional
module vanishes. Such a Lie algebra is one of the following: (i) a one-
dimensional Lie algebra; (ii) a semisimple Lie algebra; (iii) the direct sum
of a semisimple Lie algebra and a one-dimensional Lie algebra. Note that
a one-dimensional Lie algebra g is not semisimple as [g, g] = 0 6= g (cf. [16,
Corollary at page 23]). The same argument as above shows that the univer-
sal enveloping algebras of all of these Lie algebras are finitely unobstructed.

The proof of the following result is analogous to [7, Proposition 5.3(4)].

Proposition 4.10. — Let A and S be finitely unobstructed algebras
over a field k. If Ext1

S(M,M) = 0 for every M ∈ S-Modf , then S ⊗ A is
finitely unobstructed.

Remark 4.11. — Since gd k[x1, . . . , xn] = n, from Remark 4.7 it follows
that the algebra k[x1, . . . , xn] is not formally smooth for n > 1.
In general, the tensor product of two formally smooth algebras is not for-
mally smooth. Indeed, in the setting of Proposition 4.10, if both A and S
are finitely generated algebras over k, then, by [4, Proposition 7.4], we have
pd(S⊗A) = pd(S)+pd(A), where pd(Λ) denotes the projective dimension
of a k-algebra Λ regarded as a bimodule over itself. Since pd(A) 6 n if and
only if Hn+1(A,N) = 0 for every N ∈ Ae-Mod, we get that the algebra
S ⊗ A is not formally smooth unless pd(S) + pd(A) 6 1 i.e. unless S and
A are both formally smooth and at least one of them is separable.

By using Proposition 4.10, we can give new examples of algebras whose
associated representation scheme is smooth.

Examples 4.12. — 1) Let A be a finitely unobstructed algebra and let S
be a separable algebra (see [7, above Proposition 3.2]), that is Hi(S,N) = 0
for every i > 0 and for every S-bimodule N . By Theorem 3.1, we get
ExtiS(M,M) = 0 for every i > 0 and for every M ∈ S-Mod. By Proposi-
tion 4.10, we get that S ⊗A is finitely unobstructed. As a particular case,
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when char(k) = 0, we have thatMn(A) ∼= Mn(k)⊗A and the group A-ring
A[G] ∼= k[G]⊗A, for every finite group G, are finitely unobstructed as the
matrix ring Mn(k) and the group algebra k[G] are separable in character-
istic zero (see [7, Example of page 271]).
2) Let A be finitely unobstructed algebra and S a separable algebra, then

RepnA⊗S is smooth. This follows from Proposition 4.10 and example 1).
3) Let g be a semisimple Lie algebra and assume char(k) = 0. As observed

in Example 4.9, U := U(g) is finitely unobstructed. Moreover Whitehead’s
first lemma [23, Corollary 7.8.10] ensures that H1

Lie (g, N) = 0 for every g-
module N of finite dimension over k so that, by the same argument used in
Example 4.9 for the second group of cohomology, we obtain Ext1

U (M,M) =
0, for every M ∈ U -Modf . Thus, by Proposition 4.10, we get that U ⊗A is
finitely unobstructed if A is.

4) In analogy with [7, Proposition 5.3(5)], we have that the direct sum
of finitely unobstructed algebras is finitely unobstructed too.

Lemma 4.13. — Assume that H2(A,N) = 0 for some N ∈ Ae-Mod and
let Ω1

A be as in Definition 4.4. Then Ω1
A is projective with respect to any

surjective morphism of Ae-modules with kernel N .

Proof. — One gets that Ext1
Ae(Ω1

A, N) ∼= Ext2
Ae(A,N) = H2(A,N) = 0

analogously to [7, Proposition 3.3]. The conclusion follows by applying the
long exact sequence of Ext∗Ae(Ω1

A,−) to the exact sequence formed by any
surjective morphism of Ae-modules and its kernel N . �

The proof of the following result is similar to [7, Proposition 5.3(3)].

Proposition 4.14. — Let A be a finitely unobstructed algebra over a
field k. Then the tensor algebra TA(P ) is finitely unobstructed for every
P ∈ Ae-Mod which is projective with respect to any surjective morphism
in Ae-Mod with kernel Endk(M) for every M ∈ A-Modf .

Example 4.15. — Let A be a finitely unobstructed algebra over a field k.
By Theorem 3.1, Lemma 4.13 and Proposition 4.14, we have that TA(Ω1

A)
is finitely unobstructed. The latter, by [7, Proposition 2.3], identifies with
ΩA, the DG-algebra of noncommutative differential forms on A.

5. Deformations

In this section we would like to analyze the relationships between the
results of Section 3 and the theory of deformations of module structures.
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Definition 5.1. — LetM ∈ RepnA(k) and let µ : A→ Endk(M) be the
associated linear representation. For (R,m) a local commutative k-algebra,
an R-deformation ofM is an element M̃ ∈ RepnA(R) whose associate linear
representation µ̃ : A→ EndR(M̃) verifies α ◦ µ̃ = µ where α : EndR(M̃)→
Endk(M) is the morphism of k-algebras induceded by the projection R→
R/m ∼= k.
When R = k[ε] := k[t]/(t2), the ring of dual numbers or R = k[[t]], the

ring of formal power series, then an R-deformation will be called infinites-
imal or formal, respectively.

For the general theory on deformations of finite-dimensional modules
see [9] and [11].

Remark 5.2. — It is well-known that the obstructions in extending the
infinitesimal deformations ofM to formal deformations are in Ext2

A(M,M)
(see for example [9, 3.6 and 3.6.1]).

The theory of local and global deformations of algebraic schemes is an
ample and well-established domain of modern algebraic geometry. Sernesi
wrote an excellent treatise on this topic [21], and we address the interested
reader to it.

We just recall some facts we need to develop our analysis. Let X be a
scheme over k, let x ∈ X(k) be a k-point of X and let (R,m) be a local
commutative k-algebra.

Definition 5.3. — An R-deformation of X at x is an R-point xR of X
such that the restriction Spec k → SpecR maps x to xR. When R = k[ε]
or R = k[[t]], then an R-deformation will be called infinitesimal or formal,
respectively.

Lemma 5.4. — Let R ∈ Ck and let x : R → k be a rational point of
X = SpecR. Then, for all local S ∈ Ck, there is a bijection

{S − deformations of X at x} ∼= HomCk
(Rx, S)

where Rx denotes the localization of R at mx := kerx.

Proof. — Let α : R → S be such that x = πS α, where πS : S →
S/mS ∼= k is the canonical projection with mS the maximal ideal of S. Then
if a ∈ R − kerx, it follows that α(a) is invertible in S and, therefore, by
universality, there is a unique morphism αx : Rx → S such that αx jxR = α,
where jxR : R→ Rx is the canonical map, and hence x = πS αx j

x
R.

On the other hand, given a morphism β : Rx → S one has that x =
πS β j

x
R thus giving the unique S-deformation β jxR of X at x. It is, indeed,
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trivial that kerx ⊂ ker(πS β jxR). If r ∈ ker(πS β jxR) then β(jxR(a)) ∈ mS
and, therefore, jxR(a) ∈ mRx

. Thus a ∈ kerx. �

The adjunction in Lemma 2.2 gives the dictionary to describe defor-
mations of A-modules in terms of deformations at points of RepnA. The
following result complements Theorem 3.4.

Proposition 5.5. — LetA∈Nk be finitely generated. LetM∈RepnA(k)
and let f : Vn(A) → k be the associated point. Then M is regular if and
only if, for all finite-dimensional local commutative k-algebras S, T , a sur-
jective homomorphism of k-algebras S → T induces a surjection

{S − deformations of M} −→ {T − deformations of M}.

Proof. — This follows for example from [19, Proposition, page 151]. �

Remark 5.6. — Geiss and de la Peña proved that, if A is a finite-
dimensional algebra, then M ∈ RepnA(k) is regular if Ext2

A(M,M) = 0,
see [9, 10]. A careful analysis of their argument shows that it is easy to
adapt their proof if one supposes that A is bimodule coherent in the sense
of [12, 3.5.1], since in this case each finite-dimensional A-module admits a
projective resolution by finitely generated projectives. If A is finitely pre-
sented, an argument involving cones, similar to [6, Lemma 4.3], allows to
extend the above mentioned argument to this situation.
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