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66, 3 (2016) 1217-1245

ON THE `-ADIC GALOIS REPRESENTATIONS
ATTACHED TO NONSIMPLE ABELIAN VARIETIES

by Davide LOMBARDO (*)

Abstract. — We study Galois representations attached to nonsimple abelian
varieties over finitely generated fields of arbitrary characteristic. We give sufficient
conditions for such representations to decompose as a product, and apply them to
prove arithmetical analogues of results shown by Moonen and Zarhin in the context
of complex abelian varieties (of dimension at most 5).
Résumé. — Nous étudions les représentations galoisiennes associées aux va-

riétés abéliennes non simples définies sur des corps de type fini de caractéristique
quelconque. Nous donnons des conditions suffisantes pour que ces représentations se
décomposent en produit et nous les utilisons pour montrer des analogues arithmé-
tiques de certains résultats antérieurs de Moonen et Zarhin concernant les variétés
abéliennes complexes (de dimension au plus 5).

1. Introduction

Let K be a field finitely generated over its prime subfield, and let A be
an abelian variety over K. The action of the absolute Galois group of K on
the various Tate modules T`A (for ` 6= charK) gives a (compatible) family
of `-adic representations of the absolute Galois group of K, and most of
the relevant information is encoded neatly in a certain family of algebraic
groups (denoted H`(A) in what follows, cf. Definitions 2.5 and 5.5). It is
thus very natural to try and understand the Galois action on nonsimple
varieties in terms of the groupsH`; the main results of this paper are several
sufficient criteria for the equality H`(A×B) ∼= H`(A)×H`(B) to hold. We
start by discussing the case charK = 0, which is technically simpler, and

Keywords: Tate classes, Hodge group, Galois representations, abelian varieties,
Mumford-Tate conjecture.
Math. classification: 11G10, 14K15, 11F80.
(*) This work was partially supported by the FMJH through the grant no ANR-10-
CAMP-0151-02 in the “Programme des Investissements d’Avenir”.



1218 Davide LOMBARDO

prove for example the following `-adic version, and mild generalization, of
a Hodge-theoretical result of Hazama [10]:

Theorem 1.1 (Theorem 4.1). — Let K be a finitely generated field of
characteristic zero, A1 and A2 be K-abelian varieties, and ` be a prime
number. For i = 1, 2 let hi be the Lie algebra of H`(Ai). Suppose that the
following hold:

(1) for i = 1, 2, the algebra hi is semisimple, so that we can write
hi ⊗Q` ∼= hi,1 ⊕ · · · ⊕ hi,ni , where every hi,j is simple;

(2) for i = 1, 2, there exists a decomposition

V`(Ai)⊗Q` ∼= Vi,1 ⊕ · · · ⊕ Vi,ni

such that the action of hi⊗Q` ∼= hi,1⊕· · ·⊕hi,ni
on Vi,1⊕· · ·⊕Vi,ni

is componentwise and hi,j acts faithfully on Vi,j ;
(3) for all distinct pairs (i, j) and (i′, j′) for which there exists an iso-

morphism ϕ : hi,j → hi′,j′ there is an irreducible hi,j-representation
W such that all simple hi,j-submodules of Vi,j and of ϕ∗ (Vi′,j′) are
isomorphic toW , and the highest weight definingW is stable under
all automorphisms of hi,j .

Then either HomK(A1, A2) 6= 0 or H`(A1 ×A2) ∼= H`(A1)×H`(A2).

From this theorem we deduce many easily applicable criteria, including
for example the following result on low-dimensional abelian varieties.

Corollary 1.2 (Corollary 4.5). — Let K be a finitely generated sub-
field of C and A1, . . . , An be absolutely simpleK-abelian varieties of dimen-
sion at most 2, pairwise non-isogenous over K. Let k1, . . . , kn be positive
integers and A be a K-abelian variety that is K-isogenous to

∏n
i=1 A

ki
i .

Then we have H` (A) ∼=
∏n
i=1 H`(Ai), and the Mumford-Tate conjecture

holds for A.

On the other hand, as the conditions in Theorem 1.1 are often not easy
to check, it would be desirable to describe families of abelian varieties for
which they are known to hold; in this direction we prove a result inspired by
a paper of Ichikawa [11], where a sufficient criterion is given for the equality
H(A×B) ∼= H(A)×H(B) to hold for the Hodge groups of complex abelian
varieties. The criterion is expressed in terms of the relative dimensions of
the factors:

Definition 1.3. — Let K be any field and A be an absolutely simple
K-abelian variety, so that End0

K
(A) = EndK(A)⊗ZQ is a division algebra,

with center a number field E (either totally real or CM) of degree e over
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GALOIS REPRESENTATIONS OF ABELIAN VARIETIES 1219

Q. The degree of End0
K

(A) over E is a perfect square, which we write as
d2; by type of A we mean the type of End0

K
(A) in the Albert classification.

The relative dimension of A is then given by

reldim(A) =


dimA

de
, if A is of type I, II or III

2 dimA

de
, if A is of type IV

Equivalently, the relative dimension of A is given by the ratio dimA

de0
, where

e0 = [E0 : Q] is the degree over Q of the maximal totally real subfield E0
of E. Note that d = 1 if A is of type I, and d = 2 if A is of type II or III.

A Ribet-style lemma (proved in Section 3) that slightly generalizes re-
sults found in the literature, combined with techniques due to Pink [21]
and Larsen-Pink [12], allows us to prove the following `-adic analogue of
Ichikawa’s theorem, which has exactly the same form as the corresponding
Hodge-theoretical result:

Theorem 1.4 (Theorem 4.7). — Let K be a finitely generated field
of characteristic zero and A′i, A

′′
j (for i = 1, . . . , n and j = 1, . . . ,m) be

absolutely simple K-abelian varieties of odd relative dimension that are
pairwise non-isogenous over K. Suppose every A′i is of type I, II or III in
the sense of Albert, and every A′′j is of type IV. Let A be a K-abelian
variety that is K-isogenous to

∏n
i=1 A

′
i ×
∏m
j=1 A

′′
j : then

H` (A) ∼=
n∏
i=1

H` (A′i)×H`

 m∏
j=1

A′′j

 .

In Section 5 we then discuss to which extent the previous results apply
to finitely generated fields of positive characteristic. It turns out that in
this setting the most natural definition of H`(A) is different, and that
some additional technical hypotheses must be added to our main results.
Theorems 5.7 and 5.9 are positive-characteristic versions of Theorems 1.1
and 1.4 respectively; they are slightly weaker than their characteristic-zero
counterparts, but are still qualitatively very similar.
Finally, in Section 6 we apply our results to nonsimple varieties of dimen-

sion at most 5 defined over finitely generated subfields of C; by studying the
product structure of H` we prove the Mumford-Tate conjecture for most
such varieties, and in all cases we are able to reproduce in the arithmetical
setting results obtained in [17] for their Hodge group. Note that [17] makes
ample use of compactness arguments (for real semisimple groups) that are

TOME 66 (2016), FASCICULE 3



1220 Davide LOMBARDO

not available in the `-adic context and thus need to be replaced in our
setting.

Acknowledgements. — It is a pleasure to thank my advisor, N. Ratazzi,
for encouraging me to look into the matters studied in this paper, for the
many valuable discussions and for his careful reading of this document.
I also wish to thank the anonymous referee for his or her many detailed
comments and extremely valuable suggestions, that led for example to the
introduction of Section 5.

2. Preliminaries

2.1. Notation

Throughout the paper the letter A will be reserved for an abelian variety
defined over a field K, which we suppose to be finitely generated (over its
prime subfield).
A field K will be said to be a “finitely generated subfield of C” if it

is finitely generated over Q and a distinguished embedding σ : K ↪→ C
has been fixed. If A is an abelian variety defined over a finitely generated
subfield of C, we will write AC for the base-change of A to C along σ; the
symbol V (A) will then denote the first homology group H1 (AC(C),Q). We
will also denote ` a prime number, and write V`(A) for T`(A)⊗Q`, where
T`(A) is as usual the `-adic Tate module of A.
If G is an algebraic group we shall write Gder for its derived subgroup,

Z(G) for the connected component of its center, and G0 for the connected
component of the identity; when h is a reductive Lie algebra we shall write
hss for its semisimple part. Finally, if ϕ : g → h is a morphism of Lie
algebras and ρ : h → gl(V ) is a representation of h, we denote ϕ∗(V ) the
representation ρ ◦ ϕ of g.

Definition 2.1. — When h is a classical Lie algebra (i.e. of Lie type
Al, Bl, Cl, or Dl), we call standard representation of h the one coming
from the defining representation of the corresponding algebraic group. It is
in all cases the representation with highest weight $1 (in the notation of
Bourbaki [4, Planches I-IV]).

2.2. The Hodge group

We now briefly recall the notion of Hodge group of an abelian variety
(defined over an arbitrary subfield F of C), referring the reader to [15] for

ANNALES DE L’INSTITUT FOURIER
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more details. To stress that F need not be finitely generated, we depart
from our standard notation A and denote X an abelian variety defined
over F ; we denote by XC the base-change of X to C. The Q-vector space
V (X) = H1 (XC(C),Q) is naturally endowed with a Hodge structure of
type (−1, 0)⊕ (0,−1), that is, a decomposition of C-vector spaces

V (X)⊗ C ∼= V (X)−1,0 ⊕ V (X)0,−1

such that V (X)−1,0 = V (X)0,−1.
Let µ∞ : Gm,C → GL (V (X)C) be the unique cocharacter such that

z ∈ C∗ acts as multiplication by z on V (X)−1,0 and trivially on V (X)0,−1.
The Mumford-Tate group of X is the Q-Zariski closure of the image of
µ∞, that is to say the smallest Q-algebraic subgroup MT(X) of GL(V (X))
such that µ∞ factors through MT(X)C. It is not hard to show that MT(X)
contains the torus of homotheties in GL(V (X)).

Definition 2.2. — The Hodge group of X is

H(X) = (MT(X) ∩ SL(V (X)))0
.

Remark 2.3. — The group MT(X) can be recovered from the knowledge
of H(X): indeed, MT(X) is the almost-direct product of Gm and H(X)
inside GL(V (X)), where Gm is the central torus of homotheties.

It is well known that the group H(X) is connected and reductive, and
that there is an isomorphism End0

F
(X) ∼= End(V (X))H(X). Moreover, if λ

is a polarization ofXC and ϕ is the bilinear form induced on V (X) by λ, the
group H(X) is contained in Sp(V (X), ϕ). It is also easy to show that when
the F -abelian varieties X1 and X2 are isogenous over C the groups H(X1)
and H(X2) are isomorphic, and that when XC has no simple factor of type
IV the group H(X) is semisimple. Finally, we also have some information
on the behaviour of H(X) with respect to products:

Proposition 2.4. — Let F be a subfield of C and X1, X2 be two
abelian varieties defined over F . The group H(X1 × X2) is contained in
H(X1)×H(X2), and it projects surjectively on both factors.
Let X1, . . . , Xk be absolutely simple F -abelian varieties that are pairwise

non-isogenous over C, and let n1, . . . , nk be positive integers. The groups
H(Xn1

1 × · · · ×X
nk

k ) and H(X1 × · · · ×Xk) are isomorphic.

2.3. The groups H`(A)

Let now K be a finitely generated field of characteristic zero, A be an
abelian variety defined over K, and ` be a prime number; recall that we set

TOME 66 (2016), FASCICULE 3



1222 Davide LOMBARDO

V`(A) = T`(A)⊗Q`. The action of Gal
(
K/K

)
on the torsion points of A

induces a representation ρ` : Gal
(
K/K

)
→ GL(V`(A)) ∼= GL2 dimA(Q`);

the Zariski closure of the image of ρ` is called the algebraic monodromy
group at `, and is denoted G`(A). As in the Hodge-theoretical case, it is
known that G`(A) contains the homotheties (Bogomolov [3]), so that G`(A)
is determined by its intersection with SL(V`(A)). This intersection is our
main object of study.

Definition 2.5. — Let K be a finitely generated field of characteristic
zero and A be a K-abelian variety. We set H`(A) = (G`(A) ∩ SL(V`(A)))0.

Suppose now that we have fixed an embedding K ↪→ C, so that we can
speak of the Hodge group of A. The Mumford-Tate conjecture predicts
that the group H`(A) should be an `-adic analogue of H(A), and the two
groups are indeed known to share many important properties. It is clear
by definition that H`(A) is connected; furthermore, by the comparison
isomorphism of étale cohomology we can write V`(A) ∼= V (A) ⊗Q Q`, and
since V (A) is equipped with a bilinear form ϕ (induced by a polarization)
we obtain by extension of scalars a bilinear form ϕ` on V`(A). It is then
possible to show that the inclusion H`(A) ⊆ Sp(V`(A), ϕ`) holds.

Deeper properties of H`(A) are intimately related to Tate’s conjecture
for abelian varieties, and we summarize them in the following theorem:

Theorem 2.6 (Faltings [7], [8]). — LetK be a finitely generated field of
characteristic zero, ` be a prime number, and A,B be K-abelian varieties.
Then G`(A) is a reductive group, and we have

HomQ`[G`(A×B)] (V`(A), V`(B)) ∼= HomK(A,B)⊗Q`.

In particular we have End(V`(A))G`(A) ∼= EndK(A)⊗Z Q`.

Corollary 2.7. — Let K be a finitely generated field of characteristic
zero, A and B be abelian varieties defined over K, ` be a prime number,
and h` be the Lie algebra of H`(A×B). Suppose Homh`

(V`(A), V`(B)) 6= 0:
then HomK(A,B) 6= 0.

Proof. — There is a finite extensionK ′ ofK such that the Zariski closure
G` of the image of the representation Gal

(
K ′/K ′

)
→ Aut (V`(A×B))

is connected. We want to show that HomK′(A,B) 6= 0. By the previous
theorem it is enough to prove that HomQ`[G`] (V`(A), V`(B)) is nontrivial.
As G` is connected, an element of Hom (V`(A), V`(B)) is G`-equivariant if
and only if it is equivariant for the action of the Lie algebra g` of G`. On
the other hand, we know there is an isomorphism g` ∼= h` ⊕Q`, where the
factor Q` corresponds to the homotheties.

ANNALES DE L’INSTITUT FOURIER
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Since any linear map commutes with the action of the homotheties we
have HomQ`[G`] (V`(A1), V`(A2)) ∼= Homh`

(V`(A1), V`(A2)), and the lat-
ter space is nontrivial by hypothesis. Thus HomK′ (A1, A2), and a fortiori
HomK (A1, A2), are both nontrivial. �

Notice furthermore that the group H`(A) is unchanged by finite exten-
sions of the base field K, and that if A,B are K-abelian varieties that are
K-isogenous we have H`(A) ∼= H`(B).
Moreover, H`(A) is semisimple when AK does not have any simple factor

of type IV (the proof of this fact being the same as for Hodge groups, cf.
again [15], especially proposition 1.24), and it has the same behaviour as
H(A) with respect to products:

Proposition 2.8. — LetK be a finitely generated field of characteristic
zero and A1, A2 beK-abelian varieties. The group H`(A1×A2) is contained
in H`(A1)×H`(A2), and it projects surjectively on both factors.
Let A1, . . . , Ak be absolutely simple K-abelian varieties that are pairwise

non-isogenous over K, and let n1, . . . , nk be positive integers. The groups
H`(An1

1 × · · · ×A
nk

k ) and H`(A1 × · · · ×Ak) are isomorphic.

We also have some information about the structure of V`(A) as a repre-
sentation of H`(A):

Theorem 2.9 (Pink, [21, Corollary 5.11]). — Let K be a finitely gener-
ated field of characteristic zero, A be aK-abelian variety, ` be a prime num-
ber, and h`(A) be the Lie algebra of H`(A). Write h`(A)⊗Q` ∼= c⊕

⊕n
i=1 hi,

where c is abelian and each hi is simple. Let W be a simple submodule of
V`(A)⊗Q` for the action of (h`(A)⊗Q`), decomposed asW ∼= C⊗

⊗n
i=1 Wi,

where each Wi is a simple module over hi and C is a 1-dimensional repre-
sentation of c. Then:

(1) each hi is of classical type (i.e. of Lie type Al, Bl, Cl or Dl for
some l);

(2) if Wi is nontrivial, then the highest weight of hi in Wi is minuscule.

Remark 2.10. — This theorem is stated in [21] only for number fields.
The version for finitely generated fields follows easily by a specialization
argument (cf. also Proposition 2.11 below).

For the reader’s convenience and future reference, we reproduce the full
list of minuscule weights for classical Lie algebras, as given for example
in [4] (Chapter 8, Section 3 and Tables 1 and 2); the last column of this
table contains +1 if the corresponding representation is orthogonal, −1 if
it is symplectic, and 0 if it is not self-dual.

TOME 66 (2016), FASCICULE 3
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Root system Minuscule weight Dimension Duality properties

Al (l > 1) ωr, 1 6 r 6 l
(
l + 1
r

) (−1)r, if r = l + 1
2

0 , if r 6= l + 1
2

Bl (l > 2) ωl 2l +1, if l ≡ 3, 0 (mod 4)
−1, if l ≡ 1, 2 (mod 4)

Cl (l > 3) ω1 2l −1

Dl (l > 4)

ω1 2l +1

ωl−1, ωl 2l−1
+1, if l ≡ 0 (mod 4)
−1, if l ≡ 2 (mod 4)

0, if l ≡ 1 (mod 2)

Table 2.1. Minuscule weights

2.4. Known results towards the Mumford-Tate conjecture

Let K be again a field finitely generated over Q, and A be an abelian
variety over K. Fix any embedding σ : K ↪→ C, so that we can regard
K as a subfield of C, and the Mumford-Tate and Hodge groups of A are
defined. The celebrated Mumford-Tate conjecture predicts that the equality
G`(A)0 = MT(A) ⊗ Q` should hold for every prime `; equivalently, for
every A and ` we should have H`(A) ∼= H(A) ⊗ Q`. Note that both sides
of this equality are invariant under finite extensions of K and isogenies: in
particular, if A and B are K-abelian varieties that are K-isogenous, the
conjecture holds for A if and only if it holds for B.

Even though the general case of the conjecture is still wide open, many
partial results have proven, and we shall now recall a number of them that
we will need in what follows. Let us start with the following proposition,
which allows a reduction of the problem to the case of K being a number
field:

Proposition 2.11 (Serre, Noot, [20, Proposition 1.3]). — Let ` be a
prime, K be a finitely generated subfield of C and A be a K-abelian va-
riety. There exist a number field L, a specialization B of A over L, and
identifications H1(AC(C),Q) ∼= H1(BC(C),Q) and T`(A) ∼= T`(B) (com-
patible with the comparison isomorphism in étale cohomology) such that
MT(A) = MT(B) and G`(A) = G`(B) under the given identifications.

ANNALES DE L’INSTITUT FOURIER
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This proposition implies in particular that most results which are known
for number fields and depend on a single prime ` automatically propagate
to finitely generated subfields of C. This applies to all the theorems we list
in this section, some of which were originally stated only for number fields.

Theorem 2.12 (Piatetskii-Shapiro, Borovoi, Deligne [6, I, Prop. 6.2]).
Let K be a finitely generated subfield of C and A be a K-abelian variety.
For every prime ` we have the inclusion G`(A)0 ⊆ MT(A)⊗Q`.

Theorem 2.13 (Pink, [14, Theorem 4.3]). — Let K be a finitely gener-
ated subfield of C and A be a K-abelian variety. Suppose that the equality
rk(H(A)) = rk(H`(A)) holds for one prime `: then H`(A) = H(A) ⊗ Q`
holds for every prime `. In particular, if the Mumford-Tate conjecture holds
for one prime, then it holds for every prime.

Theorem 2.14 (Vasiu, [32, Theorem 1.3.1]; cf. also Ullmo-Yafaev, [31,
Corollary 2.11]). — Let K be a finitely generated subfield of C and A be a
K-abelian variety. For every prime ` we have Z(H`(A)) ∼= Z(H(A))⊗Q`. In
particular, the Mumford-Tate conjecture is true for CM abelian varieties.

Remark 2.15. — The CM case of the Mumford-Tate conjecture was first
proved by Pohlmann [23].

The following proposition follows immediately upon combining the pre-
vious three theorems:

Proposition 2.16. — Let K be a finitely generated subfield of C and
A be a K-abelian variety. Suppose that for one prime number ` we have
rk(H(A)der) 6 rk(H`(A)der): then the Mumford-Tate conjecture holds for
A. The same is true if (for some prime `) we have rkH(A) 6 rkH`(A).

In a different direction, many results are known for absolutely simple
abelian varieties of specific dimensions:

Theorem 2.17 (Serre, [28]). — The Mumford-Tate conjecture is true
for elliptic curves (over finitely generated subfields of C).

Theorem 2.18 (Tanke’ev, Ribet, [26, Theorems 1, 2 and 3]). — The
Mumford-Tate conjecture is true for absolutely simple abelian varieties of
prime dimension (over finitely generated subfields of C).

Theorem 2.19 (Moonen, Zarhin, [16]). — LetK be a finitely generated
subfield of C and A be an absolutely simple K-abelian variety of dimension
4. If EndK(A) 6= Z, then the Mumford-Tate conjecture holds for A. If
EndK(A) = Z, then either for all primes ` we have H`(A) ∼= Sp8,Q`

and

TOME 66 (2016), FASCICULE 3



1226 Davide LOMBARDO

Mumford-Tate holds for A, or else for all ` the group H`(A) is isogenous
to a Q`-form of SL3

2.
Remark 2.20. — The preprint [39] announces a proof of the Mumford-

Tate conjecture for abelian fourfolds A with EndK(A) = Z. In what follows
we shall not need this fact, whose only effect would be to slightly simplify
the statement of Theorem 6.1.
There are some common elements to the proofs of all the dimension-

specific results we just listed, and we shall try to capture them in Defi-
nition 2.22 below. We now try to motivate this definition. As the group
H`(A) is reductive and connected, most of its structure is encoded by the
Q`-Lie algebra h`(A) = Lie(H`(A)); extending scalars to Q`, this Lie alge-
bra can be written as h`(A) ⊗ Q` ∼= c ⊕

⊕n
i=1 hi, with c abelian and each

hi simple. The proofs of Theorems 2.17 and 2.18 yield information about
the structure of this Lie algebra:
Proposition 2.21. — Let K be a finitely generated subfield of C and

A/K be an absolutely simple abelian variety whose dimension is either 1 or
a prime number. Fix a prime ` and let h`(A) be the Lie algebra of H`(A).
Suppose A is not of type IV. Then the following hold:

• the Lie algebra h`(A) ⊗ Q` admits a decomposition h1 ⊕ · · · ⊕ hn,
where each simple factor hi is of Lie type spk for some k;

• for each i = 1, . . . , n there exists a hi-module Wi, not necessarily
simple, such that V`(A) ⊗ Q` is isomorphic to W1 ⊕ · · · ⊕Wn, the
action of h1 ⊕ . . .⊕ hn on W1 ⊕ · · · ⊕Wn is componentwise, and hi
acts faithfully on Wi;

• every module Wi is a direct sum of copies of the standard represen-
tation of hi (cf. Definition 2.1).

Trying to isolate the essential features of this proposition, and taking
into account Theorem 2.9, we are led to the following definition:
Definition 2.22. — LetK be a finitely generated field of characteristic

zero, A/K be an abelian variety, and h`(A) be the Lie algebra of H`(A).
We can write h`(A) ⊗ Q` ∼= c ⊕ h1 ⊕ · · · ⊕ hn, where c is abelian and each
factor hi is simple and (by Theorem 2.9) of classical type. We say that A
is of general Lefschetz type (with respect to the prime `) if it is absolutely
simple, not of type IV, and the following hold:

(1) for each i = 1, . . . , n there exists a (not necessarily simple) hi-
module Wi such that V`(A) ⊗ Q` is isomorphic to W1 ⊕ · · · ⊕Wn,
where the action of h1⊕. . .⊕hn onW1⊕· · ·⊕Wn is componentwise,
and hi acts faithfully on Wi;

ANNALES DE L’INSTITUT FOURIER
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(2) if the simple Lie algebra hi is of Lie type Al, the rank l is odd and
Wi is a direct sum of copies of

∧ l+1
2 Std, where Std is the standard

representation of hi (cf. Definition 2.1);
(3) if the simple algebra hi is of Lie type Bl, the module Wi is a direct

sum of copies of the (spinor) representation defined by the highest
weight ωl (in the notation of [4, Planches I-IV]);

(4) if the simple algebra hi is of Lie type Cl or Dl, the module Wi is a
direct sum of copies of the standard representation of hi.

We shall simply say that A is of general Lefschetz type (without further
specification) when properties (1)-(4) hold with respect to every prime `.

Remark 2.23. — As proved in [19, Lemma 2.3], when A is a complex
abelian variety of type I or II the action of the Lefschetz group of A on
V (A)⊗ C has precisely this structure.

Several instances of this situation have been studied, for example in a
series of papers by Banaszak, Gajda and Krasoń. Among various other
results, for abelian varieties of type I and II they prove:

Theorem 2.24 (Theorems 6.9 and 7.12 of [1]). — Let K be a finitely
generated subfield of C and A/K be an absolutely simple abelian variety
of type I or II. Suppose that h = reldim(A) is odd: then for every prime
` the simple factors of H`(A) ⊗ Q` are of type Sp2h. Furthermore, the
Mumford-Tate conjecture holds for A.

Remark 2.25. — It is clear from the proof of [1, Lemma 4.13] that any
abelian variety as in Theorem 2.24 is of general Lefschetz type. Moreover,
the result also holds for h = 2: this is not stated explicitly in [1], but follows
essentially from the same proof (cf. also [5, Theorem 8.5], which covers the
case of abelian fourfolds of relative dimension 2).

Another paper by the same authors, [2], deals with varieties of type III:

Proposition 2.26. — Let K be a finitely generated subfield of C and
A/K be an absolutely simple abelian variety of type III.
Suppose that h = reldim(A) is odd: then for every ` the simple factors

of (LieH`(A))⊗Q` are either of type so2h or of type sll+1, where l + 1 is
a power of 2. Furthermore, A is of general Lefschetz type.

Remark 2.27. — Note that the authors of [2] claim a stronger statement,
namely the fact that the simple factors of H`(A)⊗Q` can only be of type
SO2h and that, under the same hypotheses, Mumford-Tate holds for A. The
proof of [2, Lemma 4.13], however, fails to take into account the minuscule
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orthogonal representations whose dimension is congruent to 2 modulo 4
(those corresponding to algebras of type sll+1 acting on Λ l+1

2 Std, when
l > 3 and l+ 1 is a power of 2); as a result, the statements of [2, Theorems
4.19 and 5.11] need to be amended as we did in Proposition 2.26.

3. Preliminary lemmas

We now start proving some lemmas on algebraic groups and Lie algebras
we will repeatedly need throughout the paper.

Lemma 3.1. — Let G ↪→ G1 × G2 be an inclusion of algebraic groups
over a field of characteristic zero. Suppose that G,G1 and G2 are reductive
and connected, and that the projections of G on G1 and G2 are surjective.
If rkG equals rk(G1) + rk(G2), then the inclusion is an isomorphism.

Proof. — We show that G is open and closed in G1 × G2. It is closed
because every algebraic subgroup is, and it is open since G and G1 × G2
have the same Lie algebra by [9, Lemma 3.1]. �

Lemma 3.2. — Let G be a Q-simple algebraic group. If G is semisimple
and the number of simple factors of GQ is at most 3, then there is a set
of primes L of positive density such that for every ` in L the group GQ`

is
simple.

Proof. — Let n be the number of simple factors of GQ; if n = 1 there is
nothing to prove, so we can assume n is 2 or 3.
The permutation action of Gal

(
Q/Q

)
on the simple factors of GQ deter-

mines a map ρ : Gal
(
Q/Q

)
→ Sn, and the assumption that G is Q-simple

implies that the image of ρ is a transitive subgroup of Sn. As n 6 3,
we see that the image of ρ contains an n-cycle g. By the Chebotarev
density theorem there exists a set of primes L of positive density such
that ρ

(
Gal

(
Q`/Q`

))
contains g; in particular, for any such ` the group

Gal
(
Q`/Q`

)
acts transitively on the simple factors of GQ`

, so GQ`
is sim-

ple over Q`. �

Lemma 3.3. — Let K be a finitely generated subfield of C and A,B be
K-abelian varieties. Suppose B is CM and H(A × B) ∼= H(A) × H(B).
Then we have H`(A×B) ∼= H`(A)×H`(B) for every prime `.

Proof. — Using the hypothesis and applying Theorem 2.14 twice we find
rkZ (H` (A×B)) = rkZ (H (A×B))

= rkZ (H (A)) + rkZ (H (B))
= rkZ (H` (A)) + rkZ (H` (B)) .
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AsH`(B) is a torus, the canonical projectionH`(A×B)→ H`(A) induces
an isogeny H`(A×B)der ∼= H`(A)der, hence rkH`(A×B)der = rkH`(A)der.
Putting these facts together we get rkH`(A × B) = rkH`(A) + rkH`(B),
so the inclusion H`(A × B) ↪→ H`(A) × H`(B) is an isomorphism by
Lemma 3.1. �

The next lemma is certainly well-known to experts (a somewhat similar
statement is for example [27, Théorème 7], which deals with the case of
elliptic curves), but for lack of an accessible reference we include a short
proof:

Lemma 3.4. — Let K be a finitely generated subfield of C and A,B be
K-abelian varieties. Suppose B is of CM type and AK has no simple factor
of type IV. Then we have H(A×B) ∼= H(A)×H(B), and for every prime
` we also have H`(A×B) ∼= H`(A)×H`(B).

Proof. — The same proof works for both H(A×B) and H`(A×B), so let
us only consider the former. The canonical projections H(A×B)→ H(A)
and H(A × B) → H(B) induce isogenies H(A × B)der ∼= H(A)der and
Z(H(A×B)) ∼= Z(H(B)), so we have

rkH(A×B) = rkH(A×B)der + rkZ(H(A×B))

= rkH(A)der + rkZ(H(B))
= rkH(A) + rkH(B)

and we conclude by Lemma 3.1. �

Lemma 3.5. — Let K be a finitely generated subfield of C and A,B be
K-abelian varieties. Suppose that Mumford-Tate holds for A, and that B
is CM. Then Mumford-Tate holds for A×B.

Proof. — Let ` be a prime number. As in the previous lemma we have
rkH`(A×B)der = rkH`(A)der and rkH(A×B)der = rkH(A)der. Since the
Mumford-Tate conjecture holds for A, we deduce

rkH`(A×B)der = rkH`(A)der = rkH(A)der = rkH(A×B)der,

and the lemma follows from Proposition 2.16. �

Lemma 3.6. — Let K be a finitely generated subfield of C and let
A1, . . . , An be K-abelian varieties. Suppose that Mumford-Tate holds for
every Ai, and that the equality H` (

∏n
i=1 Ai) =

∏n
i=1 H`(Ai) holds for a

given prime `. Then the Mumford-Tate conjecture holds for
∏n
i=1 Ai.
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Proof. — The hypothesis implies

rkH`

(
n∏
i=1

Ai

)
=

n∑
i=1

rkH`(Ai) =
n∑
i=1

rkH(Ai) > rkH
(

n∏
i=1

Ai

)
,

and the lemma follows from Proposition 2.16. �

One of the most important ingredients in our proofs is the following
lemma, part of which is originally due to Ribet. The statement we give
here is close in spirit to [16, Lemma 2.14], but our version is even more
general.

Lemma 3.7. — Let C be an algebraically closed field of characteristic
zero and V1, . . . , Vn be finite-dimensional C-vector spaces. Let gl(Vi) be
the Lie algebra of endomorphisms of Vi and let g be a Lie subalgebra of
gl(V1) ⊕ · · · ⊕ gl(Vn). For each i = 1, · · · , n let πi :

⊕n
j=1 gl(Vj) → gl(Vi)

be the i-th projection and let gi = πi(g). Suppose that each gi is a simple
Lie algebra and that one of the following conditions holds:

(a) For every pair of distinct indices i, j the projection g → gi ⊕ gj is
onto.

(b) For all indices i 6= j for which there is an isomorphism ϕ : gi → gj
we have the following:
(1) there is an irreducible gi-representation W such that all sim-

ple gi-submodules of Vi and of ϕ∗ (Vj) are isomorphic to W ,
and the highest weight definingW is stable under all automor-
phisms of gi;

(2) let I =
{
k ∈ {1, . . . , n}

∣∣ gk ∼= gi
}
; the equality

Endg

(⊕
k∈I

Vk

)
∼=
∏
k∈I

Endgk
Vk

holds.

Then g =
n⊕
j=1

gj .

Remark 3.8. — As inner automorphisms preserve every highest weight,
in condition (b1) one only needs to check the action of the outer automor-
phisms (which are finite in number, up to inner automorphisms, since they
correspond to automorphisms of the Dynkin diagram). In particular, our
conditions (b) generalize those given in [16, Lemma 2.14].

Proof. — The fact that (a) implies the desired equality is classical, cf.
the Lemma on pages 790-791 of [25]. Thus it suffices to show that (b)
implies (a). Let us fix a pair (i, j) and consider the canonical projection
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πi ⊕ πj : g → gi ⊕ gj . Let h be the image of this projection and k be
ker (h→ gi). Since k can be identified to an ideal of gj (which is simple),
we either have k ∼= gj , in which case h ∼= gi ⊕ gj as required, or k = {0},
in which case h is the graph of an isomorphism gi ∼= gj ; it is this latter
possibility that we need to exclude. If gi and gj are not isomorphic there
is nothing to prove, so let us assume gi ∼= gj , and suppose by contradiction
that h is the graph of an isomorphism ϕ : gi → gj . Let ρi : gi → gl(Vi) and
ρj : gj → gl(Vj) be the tautological representations of gi, gj . By assumption
(b1), the simple gi-subrepresentations of ρi and ρj ◦ ϕ are isomorphic,
so there exists a nonzero morphism of gi-representations χij : Vi → Vj .
Equivalently, χij is h-equivariant (recall that h is the graph of ϕ). Setting
I =

{
k ∈ {1, . . . , n}

∣∣ gk ∼= gi
}
, the map

Ψ :
⊕
k∈I

Vk →
⊕
k∈I

Vk

(vi1 , · · · , vi︸︷︷︸
factor Vi

, · · · , vi|I|) 7→ (0, · · · , χij(vi)︸ ︷︷ ︸
factor Vj

, · · · , 0)

then belongs to Endg

(⊕
k∈I Vk

)
, but does not send every factor to itself,

so it is not an element of
∏
k∈I Endgk

(Vk). This contradicts condition (b2),
so g→ gi ⊕ gj must be onto, and therefore (b) implies (a) as required. �

Proposition 3.9. — Let K be a finitely generated field of character-
istic zero, A,B be K-abelian varieties and ` be a prime number. Suppose
H`(A) is semisimple and no simple factor of the (semisimple) Lie algebra
Lie(H`(A))⊗Q` is isomorphic to a simple factor of Lie(H`(B))ss⊗Q`: then
H`(A×B) ∼= H`(A)×H`(B).

Proof. — As the group H`(A) is semisimple, the projection of H`(A×B)
onto H`(B) induces an isogeny Z(H`(A×B)) ∼= Z(H`(B)), so the centers
of H`(A×B) and of H`(A)×H`(B) have the same rank.
Next consider the semisimple ranks. Let h, hA and hB be the Lie algebras

Lie(H`(A×B))ss⊗Q`, Lie(H`(A))⊗Q` and Lie(H`(B))ss⊗Q` respectively.
Write hA ∼= g1 ⊕ · · · ⊕ gn and hB ∼= gn+1 ⊕ · · · ⊕ gn+m, with every gi

simple. We can consider h as a subalgebra of
⊕n

i=1 gi ⊕
⊕m

j=1 gn+j that
projects surjectively onto

⊕n
i=1 gi and

⊕m
j=1 gn+j . In particular, h projects

surjectively onto each simple factor gi.
Let us show that all the double projections h → gi ⊕ gj are onto. If i, j

are both at most n (or i, j are both at least n+ 1) this is trivial, so we can
assume i 6 n < j. But then by assumption gi and gj are nonisomorphic,
so by the same argument as in the proof of Lemma 3.7 the projection
must be surjective. Lemma 3.7 now gives h ∼= hA ⊕ hB , thus implying
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rk h = rk hA + rk hB . In terms of groups this leads to

rkH`(A×B) = rkH`(A×B)der + rkZ(H`(A×B))

= rkH`(A)der + rkH`(B)der + rkZ(H`(B))
= rkH`(A) + rkH`(B),

and we conclude by Lemma 3.1. �

4. Sufficient conditions for H` to decompose as a product

4.1. An `-adic analogue of a theorem of Hazama

We are now ready to prove the following `-adic analogue (and mild gen-
eralization) of a Hodge-theoretical result of Hazama ([10, Proposition 1.8]):

Theorem 4.1 (Theorem 1.1). — Let K be a finitely generated field of
characteristic zero, A1 and A2 be K-abelian varieties, and ` be a prime
number. For i = 1, 2 let hi be the Lie algebra of H`(Ai). Suppose that the
following hold:

(1) for i = 1, 2, the algebra hi is semisimple, so that we can write
hi ⊗Q` ∼= hi,1 ⊕ · · · ⊕ hi,ni

, where every hi,j is simple;
(2) for i = 1, 2, there exists a decomposition

V`(Ai)⊗Q` ∼= Vi,1 ⊕ · · · ⊕ Vi,ni

such that the action of hi⊗Q` ∼= hi,1⊕· · ·⊕hi,ni
on Vi,1⊕· · ·⊕Vi,ni

is componentwise and hi,j acts faithfully on Vi,j ;
(3) for all distinct pairs (i, j) and (i′, j′) for which there exists an iso-

morphism ϕ : hi,j → hi′,j′ there is an irreducible hi,j-representation
W such that all simple hi,j-submodules of Vi,j and of ϕ∗ (Vi′,j′) are
isomorphic toW , and the highest weight definingW is stable under
all automorphisms of hi,j .

Then either HomK(A1, A2) 6= 0 or H`(A1 ×A2) ∼= H`(A1)×H`(A2).

Remark 4.2. — Condition 3 is actually independent of the choice of the
isomorphism ϕ: this follows easily from the fact that the highest weight of
W is stable under all automorphisms of hi,j .

Proof. — Let h be the Lie algebra of H`(A1×A2). We shall try to apply
Lemma 3.7 to the inclusion h⊗Q` ↪→ (h1 ⊕ h2)⊗Q`, and distinguish cases

ANNALES DE L’INSTITUT FOURIER



GALOIS REPRESENTATIONS OF ABELIAN VARIETIES 1233

according to whether hypothesis (b2) is satisfied or not. Observe that h⊗Q`
is a subalgebra of

(h1 ⊕ h2)⊗Q` ∼=
2⊕
i=1

ni⊕
j=1

hi,j ⊂
2⊕
i=1

ni⊕
j=1

gl (Vi,j)

whose projection on each factor gl (Vi,j) is isomorphic to hi,j , hence simple.
Moreover, hypothesis 3 of this theorem implies condition (b1) of Lemma 3.7.
Suppose now that (b2) holds as well: then h⊗Q` ∼= (h1 ⊕ h2)⊗Q`, hence
in particular rk h = rk h1 + rk h2, and Lemma 3.1 implies that H`(A1×A2)
and H`(A1)×H`(A2) are isomorphic. Suppose on the other hand that (b2)
fails: then there exists a nontrivial endomorphism ϕ in

Endh⊗Q`

 2⊕
i=1

ni⊕
j=1

Vi,j

 \ 2⊕
i=1

ni⊕
j=1

Endhi,j
(Vi,j) .

Since the action of hi⊗Q` on V`(Ai)⊗Q` ∼=
⊕ni

j=1 Vi,j is componentwise
for i = 1, 2, it is clear that ϕ does not belong to Endh1

(⊕n1
j=1 V1,j

)
×{0},

nor to {0} × Endh2

(⊕n2
j=1 V2,j

)
. Thus, up to exchanging the roles of A1

and A2 if necessary, the map ϕ induces an (h⊗Q`)-equivariant morphism
from

⊕n1
j=1 V1,j to

⊕n2
j=1 V2,j : this implies that the space

Homh (V`,1, V`,2)⊗Q` ∼= Homh⊗Q`

(
V`,1 ⊗Q`, V`,2 ⊗Q`

)
is nontrivial. In particular, Homh (V`(A1), V`(A2)) 6= 0, and therefore we
see that HomK(A1, A2) is nontrivial by Corollary 2.7. �

Remark 4.3. — We now check to what extent the theorem can be ap-
plied to varieties A that are of general Lefschetz type with respect to `
(Definition 2.22). It is clear that conditions 1 and 2 are satisfied, so let us
discuss condition 3. Let h be a simple constituent of LieH`(A) ⊗ Q`. By
definition, the simple h-submodules of V`(A) ⊗ Q` are all isomorphic to a
single representationW . Let us distinguish cases according to the type of h:

• if h is of Lie type Al, then W is defined by the highest weight ω l+1
2

(recall that l is odd by assumption), and is therefore stable under
the unique nontrivial automorphism of the Dynkin diagram of Al:
condition 3 is satisfied;

• if h is of Lie type Bl or Cl, the Dynkin diagram does not have any
nontrivial automorphisms, hence all automorphisms of h are inner
and fix the highest weight of W : condition 3 is again satisfied;
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• finally, if h is of Lie type Dl the moduleW is defined by the highest
weight ω1. As long as l 6= 4, the Dynkin diagram of Dl has a unique
nontrivial automorphism, and it is immediate to check that this
automorphism fixes ω1: condition 3 is satisfied once more. Note
however that for l = 4 the Dynkin diagram has additional (triality)
automorphisms, and that these do not fix ω1, so condition 3 fails in
this case.

Thus we conclude that every abelian variety A of general Lefschetz type
(at the prime `) satisfies the hypotheses of the previous theorem unless
LieH`(A)⊗Q` has a simple factor of Lie type D4.

Corollary 4.4. — Let K be a finitely generated subfield of C and
A1, . . . , An be absolutely simple abelian varieties defined over K, pairwise
non-isogenous over K. Suppose that no Ai is of type IV, and that the
dimension of each Ai is either 2 or an odd number. Let k1, . . . , kn be positive
integers and A be a K-abelian variety that is K-isogenous to

∏n
i=1 A

ki
i .

Then we have an isomorphism H` (A) ∼=
∏n
i=1 H`(Ai), and the Mumford-

Tate conjecture holds for A.

Proof. — The Albert classification implies that every Ai is of type I or
II (recall that in characteristic zero there is no absolutely simple abelian
surface of type III). As the three abelian varieties

∏n
i=1 A

ki
i ,
∏n
i=1 Ai and

A all have the same Hodge group and the same groups H`, there is no loss
of generality in assuming that k1 = · · · = kn = 1 and that A =

∏n
i=1 Ai.

The equality H`(A1 × · · · × An) ∼= H`(A1) × · · · × H`(An) then follows
by induction from Theorem 4.1, the hypotheses being satisfied thanks to
Theorem 2.24 (and the remark following it). Lemma 3.6 then implies that
Mumford-Tate holds for A1 × · · · ×An. �

Corollary 4.5 (Corollary 1.2). — Let K be a finitely generated sub-
field of C and A1, . . . , An be absolutely simpleK-abelian varieties of dimen-
sion at most 2, pairwise non-isogenous over K. Let k1, . . . , kn be positive
integers and A be a K-abelian variety that is K-isogenous to

∏n
i=1 A

ki
i .

Then we have H` (A) ∼=
∏n
i=1 H`(Ai), and the Mumford-Tate conjecture

holds for A.

Remark 4.6. — Such a result is in a sense the best possible. There is an
example — due to Shioda [30] — of an absolutely simple threefold Y of CM
type and of a CM elliptic curve E such that H(Y × E) 6= H(Y ) ×H(E).
By the Mumford-Tate conjecture in the CM case, this means that we also
have H`(Y ×E) 6= H`(Y )×H`(E) (note that Y and E, being CM, can be
defined over a number field).
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Proof. — As in the previous proof, we can assume k1 = · · · = kn = 1 and
replace A by

∏n
i=1 Ai. By Lemma 3.6, Mumford-Tate for A would follow

from the isomorphism H` (A) ∼=
∏n
i=1 H`(Ai), so let us prove the latter.

Up to renumbering, we can also assume that A1, . . . , Am are of type I or
II and Am+1, . . . , An are of type IV (since there are no absolutely simple
abelian varieties of type III of dimension at most 2). The classification
of elliptic curves and simple surfaces implies that Am+1, . . . , An are CM,
because the endomorphism algebra of an absolutely simple abelian surface
cannot be an imaginary quadratic field ([29, §4]). Let A′ = A1 × · · · ×Am
and A′′ = Am+1 × · · · × An. As A′′ is CM and A′ has no simple factor of
type IV, Lemma 3.4 gives H`(A′×A′′) ∼= H`(A′)×H`(A′′). It thus suffices
to prove the result when either A′ or A′′ is trivial.
If A′′ is trivial the claim follows from Corollary 4.4, so we can assume

A′ is trivial, in which case we have to show H` (
∏n
i=1 Ai) ∼=

∏n
i=1 H`(Ai)

under the additional assumption that every Ai is CM. Appealing to the
Mumford-Tate conjecture in the CM case, it is enough to show the corre-
sponding statement for Hodge groups, which is exactly the content of [24,
Theorem 3.15]. �

4.2. A criterion in terms of relative dimensions

As promised in the introduction, we have the following `-adic analogue
of a theorem proved by Ichikawa in [11]:

Theorem 4.7 (Theorem 1.4). — Let K be a finitely generated field
of characteristic zero and A′i, A

′′
j (for i = 1, . . . , n and j = 1, . . . ,m) be

absolutely simple K-abelian varieties of odd relative dimension that are
pairwise non-isogenous over K. Suppose every A′i is of type I, II or III in
the sense of Albert, and every A′′j is of type IV. Let A be a K-abelian
variety that is K-isogenous to

∏n
i=1 A

′
i ×
∏m
j=1 A

′′
j : then

H` (A) ∼=
n∏
i=1

H` (A′i)×H`

 m∏
j=1

A′′j

 .

For the proof of this theorem we shall need the following result:

Proposition 4.8. — LetK be a finitely generated field of characteristic
zero, A/K be an absolutely simple abelian variety of odd relative dimen-
sion and ` be a prime number. Write Lie(H`(A))⊗Q` as c⊕ h1 ⊕ · · · ⊕ hn,
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where c is abelian and every hi is simple. Then
(1) if A is of type I, II or III, then A is of general Lefschetz type, and

no simple factor hi is of Lie type D4;
(2) if A is of type IV, then the algebras hi are of type Al, where l + 1

is not a power of 2.

Proof. — Let A be of type I, II or III. Then A is of general Lefschetz
type by Theorem 2.24 and Proposition 2.26, and again by Proposition 2.26
the simple factors of Lie (H`(A)) ⊗ Q` of orthogonal type are of the form
so2h with h odd, so none of them is of Lie type D4.
Let now A be of type IV. Let E be the center of the simple algebra

End0
K

(A); set e = [E : Q] and d2 =
[
End0

K
(A) : E

]
. We are first going to

show the desired property for those primes that split in E, and then extend
the result to all primes through an interpolation argument based on the
techniques of [12]. Suppose therefore that ` is totally split in E. From the
equality E ⊗Q` ∼= Q[E:Q]

` we get

End0
K

(A)⊗Q` ∼=
⊕

σ:E↪→C
Md(Q`),

so Schur’s lemma implies

V`(A)⊗Q` ∼=
⊕

σ:E↪→C
W⊕dσ ,

where each Wσ is simple of dimension 1
de dimQ`

(V`(A)⊗Q`) = reldim(A).
The action of H`(A) on V`(A) is faithful, so for every i = 1, . . . , n there
exists a σ : E ↪→ C (depending on i) such that the action of hi is nontrivial
on Wσ. Note that dim(Wσ) is odd. Let Wσ

∼= Z1 ⊗ · · · ⊗ Zn be the de-
composition of Wσ with respect to the action of h1 ⊕ · · · ⊕ hn; the module
Zi is thus a nontrivial minuscule representation of hi of odd dimension:
since every minuscule module over an algebra of type Bl, Cl, Dl is of even
dimension (cf. table 1), we deduce that hi is of type Al for a certain l. Fur-
thermore, l+ 1 cannot be a power of 2, since in that case every irreducible
minuscule module over Al is of even dimension. This shows our claim when
` is totally split.

Let us now consider the general case. Let ` be any prime, and p be
a fixed prime that splits completely in E. Let Φ` be the root system of(
G`(A)⊗Q`

)der, and let Φ0
` be the subset of Φ` given by those roots that

are short in their respective simple factors of
(
G`(A)⊗Q`

)der. Note that
Φ0
p = Φp, since Φp only involves root systems of type Al (and such root

systems do not possess long roots).
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By a theorem of Serre we know that the formal characters of the various
G`(A), for varying `, are all equal (see [21, Corollary 3.8]), and from [12, §4]
(see also pp. 212-213 of [21]) we know that the formal character completely
determines Φ0

` . Hence we have Φ0
` = Φ0

p =
⊕k

i=1 Ani for a certain k and for
integers ni such that no ni + 1 is a power of 2; in particular, no ni equals
1. Write now Φ` =

⊕r
i=1 Ri, where each Ri is a simple root system. It is

easy to see that A0
l = Al, B

0
l = lA1, C

0
l = Dl and D0

l = Dl, so the equality
k⊕
i=1

Ani
= Φ0

p = Φ0
` =

r⊕
j=1

R0
j

implies — by uniqueness of the decomposition in simple root systems —
that every root system Rj is either of type Al or Bm (for some l,m). On
the other hand, if one Rj were of type Bm, then the right hand side of the
above equality would containB0

m = mA1, but no root system of typeA1 can
appear on the left hand side by what we have already shown. This implies
that everyRj is of typeAl (for some l), and uniqueness of the decomposition
shows that r = k and (up to renumbering the indices) Rj = Anj

. Hence the
root system of G`(A)der is the same as that of Gp(A)der, and in particular
all the simple algebras hi are of Lie type Al, where l + 1 is not a power
of 2. �

Proof of Theorem 4.7. — There is no loss of generality in assuming that
A = A′ ×A′′, where

A′ =
n∏
i=1

A′i, A′′ =
m∏
j=1

A′′j .

Repeatedly applying Theorem 4.1 shows that H`(A′) is isomorphic to the
product

∏n
i=1 H`(A′i): indeed by Proposition 4.8 we know that every A′i is

of general Lefschetz type and no algebra Lie (H`(A′i)) ⊗ Q` has a simple
factor of Lie type D4, so the hypotheses of Theorem 4.1 are satisfied thanks
to Remark 4.3. Thus it is enough to show that H`(A) ∼= H`(A′)×H`(A′′),
and this follows from Proposition 3.9: by the results of Section 2.4, the
simple factors of Lie (H`(A′))⊗Q` are either of type so, sp or sll+1 (with
l+ 1 a power of 2), whereas by the previous proposition the simple factors
of Lie

(
H`(A′′)der)⊗Q` are of type sll+1 (with l+ 1 not a power of 2). �

Remark 4.9. — Notice that, as the rank of H`(A) is independent of `,
knowing that part (2) of Proposition 4.8 holds for some prime ` would
in fact be enough to prove Theorem 4.7. Though a weaker version of the
proposition would be easier to show (since it would not require the second
part of the proof provided), we have preferred to give and employ the result
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in its stronger form (applying to all primes), which we believe has some
merit in itself.

5. Results in positive characteristic

We now discuss the situation of K being a field of positive characteristic,
finitely generated over its prime field, and we restrict ourselves to the primes
` 6= charK. If A is a K-abelian variety, we denote G`(A) the Zariski closure
of the natural Galois representation

ρ` : Gal (Ks/K)→ Aut (T`(A)) ,

where Ks is now a fixed separable closure of K.
The main difficulty in translating the results of the previous sections

to this context is that if we define H`(A) as (G`(A) ∩ SL(V`(A)))0, then
this group might not capture any information about A at all. The crucial
problem is the failure of Bogomolov’s theorem in positive characteristic: for
general abelian varieties A/K, it is not true that G`(A) contains the torus
of homotheties, and therefore the intersection G`(A)∩SL(V`(A)) may very
well be finite.

Remark 5.1. — A simple example of this phenomenon is given by an
ordinary elliptic curve E over a finite field Fq. Let Frq be the Frobenius
automorphism of Fq; the image of ρ` is generated by the image g of Frq,
and as it is well known we have det ρ`(g) = q. Looking at the Lie alge-
bra of G`(E), it follows easily that this group is 1-dimensional and that
H`(E) is the trivial group, so that no information about E can be recov-
ered from H`(E). This problem is studied in [38], where more examples of
this situation are given.

However, Zarhin has proved that a statement akin to Bogomolov’s the-
orem holds in positive characteristic if we restrict ourselves to a certain
(large) class of abelian varieties; more precisely, we have the following
result:

Theorem 5.2 ([35], Theorem 2 and Corollary 1). — Let K be a finitely
generated field of positive characteristic and A be a K-abelian variety. Let
` be a prime different from char(K). There exist a semisimple Lie algebra
h and a 1-dimensional Lie algebra c such that LieG`(A) ∼= c⊕ h.
If furthermore no simple factor of AK is of type IV in the sense of Albert,

then c ∼= Q` · Id is the Lie algebra of the torus of homotheties.
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Remark 5.3. — Zarhin’s theorem is a rather direct consequence of the
reductivity of G`(A) and of Tate’s conjecture on homomorphisms. At the
time of [35], these two facts had only been established (by Zarhin himself,
cf. [33] and [34]) under the assumption that charK is greater than 2, but
Mori [18] has subsequently lifted this restriction.

Remark 5.4. — Let K be a finitely generated field of positive charac-
teristic and E1, E2 be two elliptic curves over K. Assume EndK(E1) and
EndK(E1) are imaginary quadratic fields, and E1, E2 are not isogenous over
K. As E1 × E2 is CM, the group G`(E1 × E2) is abelian and therefore —
by Zarhin’s theorem — of dimension 1: this is in stark contrast with what
happens in characteristic zero, where H`(E1×E2) ∼= H`(E1)×H`(E2) is of
dimension 2. In particular, we cannot hope for an analogue of Corollary 4.5
to hold in positive characteristic.

In view of Zarhin’s theorem and of the previous remarks, the most natural
definition for H`(A) in positive characteristic seems to be the following:

Definition 5.5. — Let K be a finitely generated field of characteristic
p > 0. For every prime ` different from p we set H`(A) =

(
G`(A)0)der.

Remark 5.6. — When the characteristic of K is positive, Zarhin’s theo-
rem implies that G`(A)der is of codimension 1 in G`(A); this is not necessar-
ily the case in characteristic zero. On the other hand, as in characteristic
zero, it is clear from Definition 5.5 that H`(A × B) projects surjectively
onto H`(A) and H`(B).

Let us now restrict ourselves to abelian varieties A such that no simple
factor of AK is of type IV. In the proof of Corollary 2.7 we can then replace
Bogomolov’s theorem by Zarhin’s theorem, at which point the argument
used to show Theorem 4.1 goes through essentially unchanged. Thus for
this class of abelian varieties we have:

Theorem 5.7 (cf. Theorem 4.1). — Let K be a finitely generated field
of characteristic p > 0 andA1, A2 beK-abelian varieties such thatA1,K and
A2,K have no simple factors of type IV. Let ` be a prime number different
from p, and suppose hypotheses 1 through 3 of Theorem 4.1 are satisfied.
Then either HomK(A1, A2) 6= 0 or H`(A1 ×A2) ∼= H`(A1)×H`(A2).

Remark 5.8. — This theorem is strictly weaker than the corresponding
result in characteristic zero, in that there exist abelian varieties of type IV
(over number fields) that satisfy all hypotheses of Theorem 4.1. Examples
of such varieties include fourfolds of type IV(1,1) that support exceptional
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Weil classes, cf. [16]. On the other hand, the abelian varieties of Corol-
lary 4.4 satisfy the hypotheses of the present weakened version, hence the
corollary remains true when K is of positive characteristic.

Let us now consider Theorem 4.7. Its proof essentially relies on Theo-
rem 2.24 and Proposition 2.26, which in turn only depend on Tate’s con-
jecture and on the minuscule weights conjecture (Theorem 2.9). As already
remarked, the former is now known for arbitrary finitely generated fields
of positive characteristic, while the second has been shown by Zarhin ([37,
Theorem 4.2]) under an additional technical assumption, namely that the
abelian variety in question has ordinary reduction in dimension 1 at all
places of K with at most finitely many exceptions (cf. [37, Definition 4.1.0];
this is a condition weaker than being ordinary). Finally, for varieties of type
IV we have also exploited the fact that the formal character of G`(A)0 is
independent of `: this statement too is known for finitely generated fields of
positive characteristic (see [36] and [13, Proposition 6.12 and Examples 6.2,
6.3]), so Proposition 4.8 is still valid in this context. Taking all these facts
into account we obtain:

Theorem 5.9 (cf. Theorem 4.7). — Let K be a finitely generated field
of positive characteristic and A′i, A

′′
j (for i = 1, . . . , n and j = 1, . . . ,m)

be absolutely simple K-abelian varieties of odd relative dimension that are
pairwise non-isogenous overK. Suppose every A′i is of type I, II or III in the
sense of Albert, and every A′′j is of type IV. Finally, suppose that each A′i
and each A′′j has ordinary reduction in dimension 1 at all places of K with
at most finitely many exceptions, and let ` be a prime different from charK.
Let A be a K-abelian variety that is K-isogenous to

∏n
i=1 A

′
i ×

∏m
j=1 A

′′
j :

then

H` (A) ∼=
n∏
i=1

H` (A′i)×H`

 m∏
j=1

A′′j

 .

6. Nonsimple varieties of dimension at most 5

Let once more K be a finitely generated subfield of C and A/K be an
abelian variety. With the results of the previous sections at hand it is a sim-
ple matter to compute, when A/K is of dimension at most 5 and nonsimple
over K, the structure of H`(A) in terms of the H`’s of the simple factors of
AK . Given however that the analogous problem for H(A) has been given a
complete solution in [17], we limit ourselves to showing that (in most cases)
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an abelian variety A of dimension at most 5 satisfies Mumford-Tate, and
refer the reader to [17] for more details on the precise structure of H(A)
(hence of H`(A)). Note in any case that — for many varieties, including
those for which we cannot prove Mumford-Tate — our arguments yield the
structure of H`(A) directly, without appealing to the results of [17].

Theorem 6.1. — Let K be a finitely generated subfield of C and A

be a K-abelian variety of dimension at most 5. Then the Mumford-Tate
conjecture holds for A, except possibly in the following two cases:

(1) dimA = 4 and EndK(A) = Z;
(2) A is isogenous over K to a product A1 × A2, where A1 is an ab-

solutely simple abelian fourfold with EndK(A1) = Z and A2 is an
elliptic curve. In this case H`(A) is isomorphic to H`(A1)×H`(A2).

Proof. — If A is absolutely simple the result follows immediately from
Theorems 2.17, 2.18 and 2.19. Suppose therefore that A is not absolutely
simple. Since H(A) and H`(A) are invariant both under isogeny and finite
extension of the base field, we can assume without loss of generality that
A is isomorphic to a product A1×· · ·×An, where each factor is absolutely
simple. Furthermore, if all the Ai are of dimension at most 2 we can simply
apply Corollary 4.5, so (up to renumbering) we can assume dimA1 > 3.
Consider first the case dimA = 4. By what we have already proved

we can assume A ∼= A1 × A2, where A1 is an absolutely simple threefold
and A2 is an elliptic curve. In particular, A1 and A2 are of odd relative
dimension, so if A2 does not have complex multiplication (hence it is not
of type IV) we have H`(A1 × A2) ∼= H`(A1) × H`(A2) by Theorem 4.7,
and the claim follows from Lemma 3.6. On the other hand, if A2 does have
complex multiplication the claim follows immediately from Lemma 3.5.
Next consider the case dimA = 5. We can assume that in the decompo-

sition A = A1 × · · · × An no two Ai’s are isogenous over K, for otherwise
the problem is reduced to a lower-dimensional one. Furthermore, we have
already considered the case n = 1, so we can also assume n > 2. Recall
that we have renumbered the Ai in such a way that dimA1 > 3.
Suppose first that at least one of the Ai has complex multiplication.

Write A = B ×C, where C is the product of those Ai that are CM and B
is the product of the remaining factors. We have dimB 6 4. If B satisfies
Mumford-Tate, then Mumford-Tate for A follows from Lemma 3.5 and we
are done. If, on the contrary, B does not satisfy Mumford-Tate, then the
results of Section 2.4 together with the case dimA = 4 treated above imply
that B = A1 is an absolutely simple fourfold with EndK(B) = Z, and we
are in case (2); hence we just need to prove that H`(A1×A2) is isomorphic

TOME 66 (2016), FASCICULE 3



1242 Davide LOMBARDO

to H`(A1)×H`(A2), which follows at once from Lemma 3.4. From now on
we can therefore assume that no Ai is CM. Also recall that elliptic curves
and abelian surfaces without CM are of type I or II in the sense of Albert.
We now need to distinguish several sub-cases, each of which we shall treat

by proving the equality H`(A) ∼=
∏n
i=1 H`(Ai): indeed, if Mumford-Tate

holds for every Ai, this equality implies Mumford-Tate for A by Lemma 3.6,
and if Mumford-Tate fails for one of the Ai’s this equality is all we have to
show.

Suppose first that dimA1 = 3 and A2, A3 are elliptic curves (without
CM): then for all primes `, and independently of the type of A1, Theo-
rem 4.7 gives H`(A) ∼= H`(A1)×H`(A2)×H`(A3).

Next suppose dimA1 is 3 and A2 is an absolutely simple abelian surface
without CM (hence not of type IV). Let ` be any prime. If reldim(A2) = 1,
or A1 is not of type IV, then we have H`(A) ∼= H`(A1)×H`(A2) resp. by
Theorem 4.7 or Corollary 4.4. We can therefore assume that EndK(A2) is Z
and A1 is of type IV and does not have complex multiplication. It is known
that in this case Lie(H`(A2)) ∼= sp4,Q`

, and Lie
(
H`(A1)der) ⊗ Q` ∼= sl3,Q`

(cf. [26]), so it follows from Proposition 3.9 that H`(A) ∼= H`(A1)×H`(A2).

We now need to consider the case when A1 is an absolutely simple abelian
fourfold and A2 is an elliptic curve without CM; this assumption will be in
force for the remainder of the proof.
Suppose first that A1 is not of type IV and that EndK(A1) 6= Z. By the

results of [16] we know that A1 is of general Lefschetz type, so that the
equality H`(A1 × A2) ∼= H`(A1) × H`(A2) follows from Theorem 4.1 and
Remark 4.3.

Consider now the case when A1 is of type IV. It is not hard to check (from
the results in [16]) that either Lie(H`(A1))⊗Q` does not have any simple
factor isomorphic to sl2 (cases IV(1,1) and IV(4,1) in the notation of [16])
or we are in case IV(2,1). In the former case we apply Proposition 3.9 to
deduce that H`(A) ∼= H`(A1) × H`(A2) for all primes `. Suppose instead
that we are in case IV(2,1), that is to say End0

K
(A1) is a CM field E of

degree 4 over Q. Let E0 be the maximal totally real subfield of E. We read
from [16] the equality H(A1)der = ResE0/Q SU(E2, ψ), where ψ is a suitable
Hermitian form on E2. Since [E0 : Q] = 2 and SU(E2, ψ) is an E0-form of
SL2, the group H(A1)der is isogenous to a Q-form of SL2

2; moreover, it is
Q-simple by Theorem 1.10 of [22]. Finally, the Mumford-Tate conjecture
holds for A1 by Theorem 2.19, so for all primes ` we have an isomorphism
H`(A1) ∼= H(A1) ⊗ Q`. By Lemma 3.2 there is a prime p such that the
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group Hp(A1)der ∼= H(A1)der ⊗ Qp is simple over Qp. Suppose by contra-
diction rkHp(A)der < rkHp(A1)der +rkHp(A2). As rkHp(A2) = 1 we have
rkHp(A)der = rkHp(A1)der, so the natural projection Hp(A) � Hp(A1)
induces an isogeny Hp(A)der → Hp(A1)der. Since Hp(A1)der is simple, the
same is true for Hp(A)der; but this is absurd, because the canonical pro-
jection Hp(A)der � Hp(A2) then gives a surjective morphism in which the
source Hp(A)der is simple but does not have the same rank as the image
Hp(A2).

The contradiction shows that rkHp(A)der = rkHp(A1)der + rkHp(A2),
from which we deduce first that Hp(A) ∼= Hp(A1) × Hp(A2) and then
(since the ranks of H`(A1), H`(A2) and H`(A) do not depend on `) that
H`(A) ∼= H`(A1)×H`(A2) holds for all primes `.
We finally come to the case dimA1 = 4 and EndK(A1) = Z. If for

one (hence every) prime ` we have H`(A1) = Sp8,Q`
, then the abelian

variety A1 is of general Lefschetz type (cf. [16, §4.1]), so the desired equality
H`(A) ∼= H`(A1)×H`(A2) follows from Theorem 4.1.
Thus the last case we have to cover is that of H`(A1) being isogenous

to a Q`-form of SL3
2 for every prime `. By [21, Theorem 5.13], there is a

simple Q-algebraic group P (A1) such that, for a set of primes ` of Dirichlet
density 1, we have an isomorphism H`(A1) ∼= P (A1) ⊗ Q`. Furthermore,
P (A1) is isogenous to a Q-form of SL3

2, so by Lemma 3.2 we can choose a
prime p for which Hp(A1) ∼= P (A1)⊗Qp is Qp-simple.
We can now repeat the argument of case IV(2,1) above: if by contra-

diction we had rkHp(A) < rkHp(A1) + rkHp(A2) then Hp(A) would
be simple, and the canonical projection from Hp(A) to Hp(A2) would
be a surjective morphism between groups of different rank, which is ab-
surd because the source is simple. We deduce once more that the equality
rkH`(A) = rkH`(A1) + rkH`(A2) holds for ` = p (hence for every prime
`), so for every ` we have H`(A) ∼= H`(A1)×H`(A2). �
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