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SINGULARITIES OF NARASIMHAN-SIMHA TYPE
METRICS ON DIRECT IMAGES OF RELATIVE

PLURICANONICAL BUNDLES

by Shigeharu TAKAYAMA

Abstract. — We study singularities of the Narasimhan-Simha Hermitian met-
ric on the direct image of a relative pluricanonical bundle. The upper bound relates
to log-canonical thresholds.
Résumé. — Nous étudions les singularités des métriques hermitiennes de Narasimhan-

Simha sur les images directes des fibrés pluricanoniques relatifs. La majoration est
liée aux seuils log-canoniques.

1. Introduction

We continue the study of Narasimhan-Simha type Hermitian metrics on
direct image sheaves of relative pluricanonical bundles. For a projective
surjective holomorphic map f : X → Y of complex manifolds with con-
nected fibers, a direct image sheaf f∗(mKX/Y ) admits a natural, possibly
singular, Hermitian metric gm, called the m-th Narasimhan-Simha Her-
mitian metric. In our work with M. Păun, we established the definition
of gm, even when the map f has singularities and even when f∗(mKX/Y )
is merely torsion free (it is a sort of an extension from the set of regular
values of f to the whole Y ), and proved the curvature semi-positivity in
the sense of Griffiths of gm (see [26, 1,1, 5.1.2]). Here we are interested in
the asymptotic behavior of the metric gm around the set of critical values
of the fibration. Our main result is as follows.

Keywords: singularities of Narasimhan-Simha metric, relative pluricanonical bundle,
Bergman kernel metric, nef vector bundle.
Math. classification: 14D06, 32J25.



754 Shigeharu TAKAYAMA

Theorem 1.1. — Let X be a normal complex space with only canon-
ical singularities at worst, Y a complex manifold, and let f : X → Y be
a projective surjective holomorphic map with connected fibers and with
dimX − dimY = n. Let m be a positive integer such that f∗(mKX/Y ) is
non-zero. We endow f∗(mKX/Y ) with the m-th Narasimhan-Simha Her-
mitian metric gm, via a resolution of singularities α : X ′ → X and an iso-
morphism f∗(mKX/Y ) ∼= f ′∗(mKX′/Y ) with the m-th Narasimhan-Simha
Hermitian metric on f ′∗(mKX′/Y ) obtained in [26, 1.1], where f ′ = f ◦ α :
X ′ → Y is the composition. Let 0 ∈ Y be a point, and let X0 be the scheme
theoretic fiber of it.
(1) Suppose dimY = 1 and Y = {t ∈ C; |t| < 1} is a disc with our

special point 0 as the origin. Let r0 be the log-canonical threshold of the
pair (X,X0), namely

r0 = sup{r > 0; the pair (X, rX0) is log-canonical }.

Then, for every u ∈ H0(Y, f∗(mKX/Y )), there exists a constant Au > 0
such that

gm(u, u)(t) 6
(

1
|t|2(1−r0) (− log |t|)nAu

)m
holds for any t ∈ Y ′ \0, where Y ′ ⊂ Y is a smaller disc independent of u. In
particular if the pair (X,X0) is log-canonical, i.e., r0 = 1, then gm(u, u)(t)
is at most (− log |t|)nm growth as t→ 0.
(2) Suppose dimY > 1, and suppose that
(2.i) there exists a general (germ of) smooth curve C ⊂ Y passing

through 0 such that XC := X ×Y C is normal and canonical
singularities at worst, and that

(2.ii) F := f∗(mKX/Y ) is locally free on an open neighborhood U of 0
in Y .

Let h be the induced singular Hermitian metric on OP(F |U )(1) of P(F |U )
from gm via the quotient π∗(F |U )→ OP(F |U )(1), where π : P(F |U )→ U is
the projection. Its local weight ϕ, i.e., h = e−ϕ locally, is plurisubharmonic
by the Griffiths semi-positivity of gm. Let r0C be the log-canonical threshold
of (XC , X0) along X0. Then the Lelong number of ϕ is at most 2(1−r0C)m
at every point P ∈ π−1(0) ⊂ P(F |U ), i.e., ν(ϕ, P ) 6 2(1− r0C)m.

Here are additional explanations on the statement. We actually meant
that the direct image sheaf of the relative m-canonical sheaf mKX/Y :=
j∗(K⊗mXreg

) ⊗ f∗K
⊗(−m)
Y , where j : Xreg → X is the open immersion of

the smooth locus. (We are sorry to mix additive and multiplicative nota-
tions, caused by the presence of singularities and by the non-algebraicity
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SINGULARITIES OF NARASIMHAN-SIMHA METRICS 755

of varieties.) As we shall see (in 3.2 and 4.1), the Narasimhan-Simha Her-
mitian metric gm is independent of the choice of α : X ′ → X. In 1.1(1),
we know that 0 < r0 6 1, r0 ∈ Q and “sup” is in fact “max”. For example,
if X is smooth and SuppX0 is normal crossing with its prime decompo-
sition X0 =

∑
biX0i, then the log-canonical threshold of the pair (X,X0)

is r0 = (maxi bi)−1 (refer to [21, 9.3.12] for log-canonical thresholds, for
example). Here in 1.1(2.i), a curve C ⊂ Y is general, if there exists a point
t ∈ C such that the fiber Xt of f has canonical singularities at worst and
the fiber X ′t of f ′ : X ′ → Y is smooth. Note that in the case dimY = 1, i.e.,
in (1), these conditions (2.i) and (2.ii) are automatically satisfied. In the
case of dimY > 1, the simplest setting will be as follows. We suppose that
X is smooth and the set of critical values of f is a non-zero divisor DY , and
let f∗DY =

∑
biBi be the prime decomposition. Suppose further that the

divisor
∑
Bi is f -relative normal crossing over a general point ofDY . Then,

for every general point 0 ∈ D, we can see (2.i) and (2.ii) are satisfied, and
then we can conclude ν(ϕ, P ) 6 2(1 − r0)m with r0 = (maxi bi)−1, where
the maximum is taken among all components Bi for which f(Bi) contains
0. Another possible setting for 1.1(2) is the case of weakly semi-stable re-
duction f : X → Y ([1]). This setting is seemingly quite technical, but it
is natural and useful. We will discuss a bit around 1.2, 1.3 and the proof
of 1.3 in §5.
We recall briefly how gm is obtained on f∗(mKX/Y ) being X itself is

smooth. Let Y0 ⊂ Y be the open subset over which f is smooth. For
every t ∈ Y0, the sheaf f∗(mKX/Y ) is locally free around t by Siu’s in-
variance of plurigenera [30] (see also [25]), and its fiber is f∗(mKX/Y )t =
H0(Xt,mKXt), where Xt = f−1(t) is the fiber. On each Xt, we construct a
Bergman kernel type singular Hermitian metric Bm,t on −mKXt as a nat-
ural generalization of the usual Bergman kernel metric, and then with re-
spect to a singular Hermitian metric hm−1,t = (B−1

m,t)(m−1)/m on Lm−1,t =
(m − 1)KXt , the vector space H0(Xt,mKXt) admits a natural Hermitian
form gm,t given by gm,t(ut, vt) =

∫
X

(−1)n2/2ut ∧ vt hm−1,t, where ut, vt ∈
H0(Xt,mKXt) = H0(Xt,KXt + Lm−1,t) are regarded as Lm−1,t-valued
holomorphic n-forms. In this way, we obtain a metric gom on f∗(mKX/Y )|Y0 .
When KXt is ample, this construction is due to Narasimhan-Simha [23].
In [26], we showed this metric extends as a singular Hermitian metric on
f∗(mKX/Y ) with Griffiths semi-positive curvature. (See [28], [26, §2] for a
general discussion on singular Hermitian metrics on vector bundles or on
torsion free sheaves.) To obtain such an extension, we needed to show that
gom is bounded from below by a positive constant, like gom(u, u)(t) > c0 > 0
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756 Shigeharu TAKAYAMA

([26, 3.3.11]), which is an estimate from the opposite side in 1.1(1). Though
it plays no roles in this paper, an extension of the relative Bergman kernel
type metric Bm,X/Y on −mKX/Y from f−1(Y0) to X was a crucial step,
for this the L2/m-version of Ohsawa-Takegoshi’s theorem was proved and
applied (this part is due to [3]). In a classical term of complex analysis, the
weight function ϕ (= ϕu) := − 1

m log gm(u, u), so that gm(u, u) = e−mϕ,
might be discussed. An upper bound ϕ 6 c′0 on Y0 is given in [26, 3.3.11].
While 1.1(1) gives a lower bound ϕ(t) & 2(1− r0) log |t| − n log(− log |t|).
When m = 1, the metric g1 is the so-called canonical L2-metric on

f∗(KX/Y ) given by
∫
Xt

(−1)n2/2ut ∧ vt on each smooth fiber. In the sit-
uation of 1.1(1), if X is smooth, SuppX0 is normal crossing and m = 1,
it has a Hodge theoretic interpretation or foundation, and hence there are
more precise and informative results. Motivated by the classification the-
ory and the moduli theory of varieties, there are many former researches in
this direction, including the case m > 1 ([12], [11], [14], [15], [19], [2], [22],
[32], [34], ... for the metric aspect, and more and more for the algebraic
aspect, especially by Viehweg [33]), however not so many for the upper
bounds as in 1.1 (see [34, §7] for an adjoint type bundle case). Among
them, we are influenced by Kawamata [16], [17], who first focused a role of
the log-canonical threshold in the asymptotic of fiberwise integrals.
Theorem 1.1 is also motivated by the following recent work by Fujino.

Theorem 1.2 ([10, 1.6]). — Let f : X → Y be a surjective morphism
between smooth projective varieties with connected fibers. Assume that
the geometric generic fiber Xη of f : X → Y has a good minimal model.
Then there exists a generically finite morphism τ : Y ′ → Y from a smooth
projective variety Y ′ with the following property. Let X ′ be any resolution
of the main component of X ×Y Y ′ sitting in the following commutative
diagram:

X ′ −−−−→ X

f ′
y yf
Y ′

τ−−−−→ Y
Then f ′∗(mKX′/Y ′) is a nef locally free sheaf for every positive integer m.

Recall that a locally free sheaf E (of finite rank) on a smooth projective
variety is called nef, if OP(E)(1) is nef on P(E). (Fujino uses a terminology
“semi-positive” instead of nef.) We note that, if a line bundle L on a smooth
projective algebraic variety admits a singular Hermitian metric h with semi-
positive curvature and its local weight ϕ (i.e., h = e−ϕ locally, and ϕ can
be taken to be plurisubharmonic, psh for short) has zero Lelong numbers
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everywhere, then L is nef ([6, 6.4]). However the converse does not hold in
general ([8, 1.7]). (The Lelong numbers are measuring the “big” algebraic
singularities of a psh function, so it extracts an algebraic object from an
analytic one, refer [7, Ch. 2].) We shall strengthen 1.2 by applying 1.1 in
the following form. These type of results 1.1, 1.2, 1.3 must be fundamental
in further studies of analytic theory and differential geometry of moduli.

Corollary 1.3. — In 1.2, them-th Narasimhan-Simha Hermitian met-
ric gm on the locally free sheaf F ′ := f ′∗(mKX′/Y ′) has Griffiths semi-
positive curvature, the induced singular Hermitian metric h = e−ϕ on
OP(F ′)(1) of P(F ′) has semi-positive curvature, and the Lelong number of
the local weight ϕ is zero everywhere on P(F ′). In particular OP(F ′)(1)
is nef.

Let us explain what is improved. As we already explained, the property of
the metric h = e−ϕ in 1.3 is strictly stronger than the nefness of OP(F ′)(1)
in general. Furthermore we stress the following point of view, which is
our standing position from [26]. A Hermitian metric on OP(E)(1) is (by
definition) a Finsler metric on a locally free sheaf E. A Hermitian metric on
E defines a Finsler metric on E. A long standing conjecture by Griffiths asks
that ifOP(E)(1) is ample, i.e., E is ample, then E admits a Hermitian metric
with Griffiths positive curvature. We note that the nefness of OP(F ′)(1)
in 1.3 is derived from a singular Hermitian metric on F ′, not only by a
singular Hermitian metric on OP(F ′)(1).
In the course of the proof of 1.2, Fujino applies a weak semi-stable re-

duction theorem [1], which gives a nice intermediate fibration (other than
f ′ : X ′ → Y ′ in 1.2), and then obtains the local freeness of the direct image
by passing further to a good relative minimal model. To prove the nefness,
he uses a covering trick and a result of Popa and Schnell [27] which is coho-
mological and based on vanishing theorems. We note that the total space of
the weak semi-stable reduction is not smooth in general, but only canonical
Gorenstein singularities. The behavior of the Narasimhan-Simha Hermit-
ian metric gm around the critical set of a fibration is not well-understood
in general, which will be likely the singularities of the fibration. A weak
semi-stable reduction has only mild singularities, called toroidal singulari-
ties, and hence we can expect the Narasimhan-Simha Hermitian metric gm
for such fibrations admits only mild singularities as well. This observation
leads 1.3 as a corollary of 1.1.
The organization of this paper is as follows. In §2, we discuss the Bergman

kernel type metrics and Narasimhan-Simha Hermitian forms on normal va-
rieties. We especially discuss them on varieties with canonical singularities
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758 Shigeharu TAKAYAMA

in §3. These parts are aiming to give a foundation, and hence they are
more than enough to obtain the results stated in the introduction. We
prove 1.1(1) in §4. Our method of proof is very direct, namely we com-
pute the fiberwise integral by hand following the definition of the Bergman
kernel and Narasimhan-Simha type metrics. Then in §5, we prove 1.1(2)
which is deduced from 1.1(1) and a simple reduction argument to a general
curve section, and prove 1.3 along the line explained in the last paragraph.

Acknowledgements. — It is our pleasure to acknowledge our gratitudes
to Mihai Păun and Osamu Fujino for valuable discussions. We also thank
the referee for their comments to improve the presentations of the pa-
per. This research is supported by Grant-in-Aid for Scientific Research
(B)23340013.

2. Construction of Bergman and Narasimhan-Simha type
metrics

We recall basic constructions of Bergman kernel type metrics and
Narasimhan-Simha Hermitian forms on complex manifolds, and extend
them for normal varieties. These materials are first introduced in geomet-
ric setting by Kobayashi [18] and developed further in [23], [29], [2] and so
on. We update them with some attentions on singularities of varieties and
metrics.

Let us first mention a general remark to construct a singular Hermitian
metric. If L is a line bundle on a complex manifold X with a non-zero
section s ∈ H0(X,L). Then, by taking a C∞ Hermitian metric h on L, h

|s|2
h

defines a singular Hermitian metric on L. It is independent of a reference
metric h and hence often written as 1

|s|2 . Moreover it has semi-positive
curvature, namely

√
−1 ∂∂ log 1

|s|2 is a closed semi-positive (1, 1)-current
([7, (3.13)]). We refer to say that |s|2 is log-psh. As this example already
shows, a singular Hermitian metric is defined on stalks not on fibers of the
line bundle.

Definition-Notation 2.1. — Let X be a complex manifold of dimX = n,
which may be non-compact.
(1) We take a reference C∞ volume form dV on X (which can be seen as

a C∞ Hermitian metric on ∧nTX), and regard the inverse h := dV −1 as a
C∞ Hermitian metric on KX . On a local coordinate (U, z = (z1, . . . , zn)),
the correspondence of local frames is given by identifying cndz ∧ dz and

ANNALES DE L’INSTITUT FOURIER



SINGULARITIES OF NARASIMHAN-SIMHA METRICS 759

dz⊗dz, where dz = dz1∧ . . .∧dzn, dz = dz1∧ . . .∧dzn and cn = (−1)n2/2.
Let m be a positive integer. Then for every u ∈ H0(X,mKX), the squared
pointwise length function |u|2hm is a semi-positive C∞-function on X, and

|u|2 := |u|2hmh−m
(
or |u|2hm =

∣∣∣∣u ∧ udV m

∣∣∣∣)
is a C∞, but possibly degenerate, Hermitian metric on −mKX . As we ex-
plained above, if u is non-zero, 1

|u|2 defines a singular Hermitian metric with
semi-positive curvature on mKX . We then also obtain |u|2/m = |u|2/mhm dV ,
which is a continuous semi-positive (n, n)-form on X. On every local coor-
dinate (U, z = (z1, . . . , zn)), we write u = ũ · (dz)⊗m with ũ ∈ H0(U,OX).
Then |ũ|2/mcndz ∧ dz glue together and in fact define the continuous semi-
positive (n, n)-form |u|2/m on X.
(2) We set

‖u‖m =
(∫

X

|u|2/m
)m/2

for every u ∈ H0(X,mKX), and set

Vm = {u ∈ H0(X,mKX); ‖u‖m <∞}.

This ‖u‖m is called an L2/m-pseudo-norm on Vm ⊂ H0(X,mKX). We see
‖tu‖m = |t|‖u‖m for every u ∈ Vm and every constant t ∈ C.
(3) We shall suppose Vm 6= 0 after this. For every x ∈ X, we set

Bhm(x) = sup
{
|u(x)|2hm ; u ∈ H0(X,mKX), ‖u‖m 6 1

}
.

We then obtain a function Bhm on X (which is continuous in fact, see 2.2),
and set

Bm = Bhmh
−m = Bhm(dV )m.

Here Bhm depends on h, but Bm does not. For this reason, we may denote
as

Bm(x) = sup
{
|u(x)|2; u ∈ H0(X,mKX), ‖u‖m 6 1

}
for every x ∈ X. This Bm defines a singular Hermitian metric on −mKX ,
and is called the canonical L2/m-metric, or m-th Bergman kernel metric. If
we write as Bm = eϕm on every local chart, then ϕm is psh as a sup-limit
of psh functions log |u|2 (ϕm is in fact upper-semi-continuous by 2.2). Thus
the singular Hermitian metric Bm has semi-negative curvature. We would
refer to say that Bm is log-psh.

(4) We also obtain a natural a singular Hermitian metric

hm−1 = (B−1
m )(m−1)/m

TOME 66 (2016), FASCICULE 2



760 Shigeharu TAKAYAMA

on Lm−1 := (m−1)KX . Using hm−1, we can put a natural Hermitian form
on Vm ⊂ H0(X,mKX), called them-th Narasimhan-Simha Hermitian form
gmNS (we may say the mNS Hermitian form gm for short), by

gm(u, v) = gmNS(u, v) =
∫
X

cnu ∧ v hm−1,

which is nothing but the canonical L2-metric on H0(X,KX + Lm−1) with
respect to hm−1, where we regard u, v as Lm−1-valued holomorphic n-forms.
We shall see in 2.2 that gm is defined on Vm.

The next lemma is well-known classically, and may be needless to say.
The last assertion shows that we can endow a natural pseudo-norm ‖u‖m
and a norm gm(u, u)1/2 on Vm ⊂ H0(X,mKX), and they satisfy a simple
relation by definition.

Lemma 2.2. — In 2.1, suppose that Vm 6= 0.
(1) Let x0 ∈ X. Then there exists u0 ∈ H0(X,mKX) with ‖u0‖m = 1

and |u0(x0)|2 = Bm(x0).
(2) The metric Bhm is continuous on X, in particular logBhm is upper-

semi-continuous on X. We will say Bm is continuous, and logBm
is upper-semi-continuous respectively.

(3) For every u, v ∈ Vm, an (n, n)-form cnu∧v hm−1 is continuous onX.
(4) For every u ∈ Vm, an inequality ‖u‖gm := gm(u, u)1/2 6 ‖u‖m

holds.

Proof. — (0) We denote by Fm = {u ∈ H0(X,mKX); ‖u‖m 6 1}. Let
x0 ∈ X be a point, and take a local coordinate (U, z = (z1, . . . , zn)) contain-
ing a polydisc P centered at x0 as a relatively compact set. We take u ∈ Fm,
and write u = ũ ·(dz)⊗m with ũ ∈ H0(U,OX) and |u|2/m = |ũ|2/mcndz∧dz
on U . By the mean value inequality for a phs function |ũ|2/m, we obtain a
local uniform bound

|ũ(x0)|2/m 6 1
volP

∫
P

|ũ|2/m cn2n dz ∧ dz 6
1

2nvolP

∫
X

|u|2/m 6 1
2nvolP ,

where cn
2n dz∧dz is the real Euclidean volume form and the volP is the real

Euclidean volume of P . We note that the bound 1
2nvolP is uniform in u ∈ Fm

and also in m > 0. The Cauchy’s estimate also implies that all uλ ∈ Fm are
equi-continuous on every compact set in U . As a consequence, Fm forms a
normal family on U . (We note that this equi-continuity depends on m, not
uniform in m.) Thus, on every compact subset in X, Fm forms a normal
family. In particular, any sequence {uj} in Fm contains a subsequence
{uj′}, which converges uniformly on every compact set in X. We then
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obtain a limit u0 = lim uj′ ∈ H0(X,mKX) with ‖u0‖m,X 6 1. We also
note that all uλ ∈ Fm are equi-continuous on every compact set in X.

(1) By definition of Bm, there exists a sequence {uj} in Fm such that
limj→∞ |uj(x0)|2 = Bm(x0). By the argument in (0), we can find a limit
u0 ∈ Fm of a subsequence of {uj} such that |u0(x0)|2 = Bm(x0). We can
choose u0 so that ‖u0‖m = 1.

(2) We take a point x0 ∈ X and a coordinate neighborhood (U, z) of
x0. By the equi-continuity, for any ε > 0, there exists a neighborhood
V ⊂ U of x0 such that for any u ∈ Fm and any z ∈ V , −ε < |u(z)|2 −
|u(x0)|2 < ε holds. We take u0 ∈ Fm such that |u0(x0)|2 = Bm(x0). Then
from the left hand side inequality, we have, for any z ∈ V,Bm(x0) − ε <
|u0(z)|2 6 Bm(z). On the other hand, we take z ∈ V and take uz ∈ Fm
such that |uz(z)|2 = Bm(z). Then from the right hand side inequality, we
have |uz(z)|2 < |uz(x0)|2 + ε 6 |u0(x0)|2 + ε, i.e., Bm(z) < Bm(x0) + ε.
These show the continuity of Bm at x0.

(3) Let Xm = {x ∈ X; Bhm(x) 6= 0}, which is a non-empty Zariski open
subset of X. It is clear by (2) that cnu ∧ v hm−1 is continuous on Xm. We
define temporary cnu∧v hm−1(x) = 0 for every x 6∈ Xm (for any u, v ∈ Vm),
and show that cnu ∧ v hm−1 is continuous on X. If we could prove that
cnu ∧ uhm−1 is continuous for any u ∈ Vm, we can conclude cnu ∧ v hm−1
is continuous for any u, v ∈ Vm, by considering cn(u + v) ∧ (u+ v)hm−1,
cn(u + iv) ∧ (u+ iv)hm−1 and so on. We then consider cnu ∧ uhm−1 for
u ∈ Vm with ‖u‖m = 1 without loss of generalities. We regard u ⊗ u and
Bm as sections of a complex (not holomorphic) line bundle (KX ⊗KX)⊗m,
and then we can regard (u⊗ u)/Bm as a C-valued function on X. We see
that

cnu ∧ uhm−1 =
∣∣∣∣u⊗ uBm

∣∣∣∣(m−1)/m
|u|2/m

as semi-positive (n, n)-forms on X. We note that |(u ⊗ u)/Bm| 6 1 by
definition of Bm (strictly speaking this holds on Xm). At each x 6∈ Xm, it
has to be u(x) = 0 by definition of Bm. Thus we obtain the continuity of
cnu ∧ uhm−1 at x 6∈ Xm by the continuity of |u|2/m.

(4) We obtained in (3) that cnu ∧ uhm−1 6 |u|2/m on X. Then by
integration, we have ‖u‖2gm =

∫
X
cnu ∧ uhm−1 6 ‖u‖2m. �

TOME 66 (2016), FASCICULE 2
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Remarks 2.3. — We still keep the notations in 2.1, and denote by Fm =
{u ∈ H0(X,mKX); ‖u‖m 6 1}.

(1) By the Hölder inequality, we have u⊗v ∈ Fm+` if u ∈ Fm and v ∈ F`,
where m, ` are positive integers. In particular by 2.2(1), Bm · B` 6 Bm+`
(resp. B`m 6 Bm`) as a singular Hermitian metric on −(m + `)KX (resp.
−(m`KX)). However we note that each Fm is not a vector space.

(2) For every x ∈ X, we set

BX,h(x) = sup ∗{|u(x)|2/mhm ; m ∈ Z>0, u ∈ H0(X,mKX), ‖u‖m 6 1},

where sup ∗ is the upper-semi-continuous envelope of the pointwise sup-
limit. We then obtain a bounded function BX,h on X, which is a conse-
quence of the mean value property in the argument (0) of 2.2 (however the
Cauchy’s estimate depends on m, and hence we do not see the extremal
property and the continuity of BX,h as in 2.2), and set

BX = BX,hh
−1.

This is a singular Hermitian metric on−KX and is log-psh (unless BX ≡ 0).
Moreover BmX is less singular than Bm for any m > 0. If X is smooth
projective for example, then the canonical ring is finitely generated by [4],
and hence the roles of BX may be replaced by one B1/m

m for a sufficiently
large m > 0.

We shall extend the construction above to normal spaces. In the rest of
this section, we use the following notations.

Notation 2.4. — Let X be a normal complex space of dimX = n,
and let j : Xreg → X be the open immersion of the smooth locus. We
define the canonical sheaf as ωX = j∗KXreg , and the m-canonical sheaf by
ωmX = j∗(K⊗mXreg

) for every integer m > 0. This is a reflexive sheaf of rank
one on X, and satisfies ωmX = (ω⊗mX )∗∗, where ( )∗∗ means the double dual.
In particular, for any Zariski open subset W ⊂ X with codim (X \W ) > 2
(W = Xreg for example), the restriction map H0(X,ωmX )→ H0(W,ωmX ) is
bijective ([24, Ch. 2, 1.1.12]). Thus for every u ∈ H0(X,ωmX ) and an integer
` > 0, a power (u|Xreg)` ∈ H0(Xreg, ω

m`
X ) extends uniquely as an element

of H0(X,ωm`X ). We denote this extension by u(`) ∈ H0(X,ωm`X ).

We first explain an observation and a few conventions from [26, §2.4] on
a notion of singular Hermitian metrics on torsion free or reflexive sheaves
of rank one. When a variety is smooth, these are standard conventions in
the theory of singular Hermitian metrics.

ANNALES DE L’INSTITUT FOURIER



SINGULARITIES OF NARASIMHAN-SIMHA METRICS 763

Remarks 2.5. — A singular Hermitian metric h = e−ϕ on a holomorphic
line bundle onX has semi-positive curvature if its local weight ϕ is psh, and
has semi-negative curvature if −ϕ is psh respectively. A function ϕ : X →
R ∪ {−∞} is psh, if it is upper-semi-continuous and ϕ ◦ f is subharmonic
(or ϕ ◦ f ≡ −∞) for any holomorphic map f : ∆ → X from the unit disc
in C (refer [9, §5], especially [9, 5.3.1]).
(1) Let D be a Q-Cartier divisor on X. Suppose there exist an integer

m > 0 such that mD is Cartier and a singular Hermitian metric h on a line
bundle OX(mD). We then say that a symbol h1/m is a singular Hermitian
metric on D. We can pull back h1/m by a dominant morphism α : X ′ → X,
as a singular Hermitian metric on α∗D.
(2) [26, 2.4.1, 2.4.2]. Let L be a torsion free sheaf of rank one on X. Let

X0 ⊂ Xreg be a Zariski open subset of codim (X \X0) > 2 such that L|X0 is
locally free ([24, Ch. 2, Corollary to 1.1.8]). Let h0 be a singular Hermitian
metric on a line bundle L|X0 , and suppose that the curvature current is
semi-definite, let us say semi-negative. For every integer m > 0, hm0 is
a singular Hermitian metric on a line bundle (L⊗m)∗∗|X0 . If (L⊗m)∗∗ is
locally free, then hm0 extends (uniquely) as a singular Hermitian metric on
(L⊗m)∗∗ with semi-negative curvature by virtue of Hartogs’ type extension
of psh functions. Even if (L⊗m)∗∗ is not locally free, for any section u ∈
H0(U, (L⊗m)∗∗) on an open subset U ⊂ X, log |u|U∩X0 |2hm0 is psh on U∩X0,
and hence it extends (uniquely) as a psh function on U by virtue of Hartogs’
type extension again. From this point of view, we say hm0 defines (or extends
as) a singular Hermitian metric on a reflexive sheaf (L⊗m)∗∗ on X.
(3) As one can see, there are some overlaps in (1) and (2) above. If D

is a Weil divisor on X, which is also Q-Cartier, we can use both (1) and
(2) above, namely (1) as a Q-Cartier divisor, and (2) by considering the
corresponding reflexive sheaf L = j∗OXreg(D|Xreg).
(4) Let L be a Cartier divisor on X, which is also regarded as a line

bundle on X, and let h be a C∞ Hermitian metric on L. Suppose that
there is a non-zero section s ∈ H0(X,L). Then for every rational number
q, 1
|s|2q = ( h

|s|2
h

)q defines a singular Hermitian metric on qL.

Lemma 2.6. — Let α : X ′ → X be a resolution of singularities. Let
L′ be a line bundle on X ′ and let h′ be a singular Hermitian metric with
semi-positive (resp. semi-negative) curvature. Then the torsion free sheaf
L = α∗L

′ admits a singular Hermitian metric α∗h′ with semi-positive (resp.
semi-negative) curvature. The metric α∗h′ will be called the push-forward
of h′.
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Proof. — A precise definition of α∗h′ will give a proof. Let W ⊂ X be
the maximum Zariski open subset where α is isomorphic on it. We note
codim (X \W ) > 2. We denote by W ′ = α−1(W ). Via the isomorphism
L′|W ′ ∼= L|W by α, h′|W ′ can be regarded as a singular Hermitian metric on
a line bundle L|W , say α∗(h′|W ′). It is clear α∗(h′|W ′) has semi-positive cur-
vature. Since codim (X \W ) > 2, α∗(h′|W ′) extends uniquely to a singular
Hermitian metric on the torsion free sheaf L with semi-positive curvature
in the sense of [26, §2.4], by [26, 2.4.1, 2.4.2] (or 2.5(2)). This is what we
call α∗h. �

We now extend 2.1 on our normal complex space X.

Definition-Notation 2.7. — Let m > 0 be an integer.
(1) For u ∈ H0(X,ωmX ), we set

‖u‖m := ‖u|Xreg‖m,Xreg =
(∫

Xreg

|u|Xreg |
2/m
)m/2

,

and set
Vm = {u ∈ H0(X,ωmX ); ‖u‖m <∞}.

Here the last integral is the L2/m-pseudo-norm on Xreg in 2.1. We see
‖u(`)‖m` = ‖u‖`m for u ∈ Vm and an integer ` > 0. We will see Vm =
H0(X,ωmX ) if X is compact and canonical singularities at worst.

(2) We have defined the m-th Bergman kernel metric Bm,Xreg and so on,
provided Vm 6= 0. Since the singular Hermitian metric B−1

m,Xreg
on ωmX |Xreg

has semi-positive curvature, it extends as a singular Hermitian metric B−1
m,X

on a reflexive sheaf ωmX with semi-positive curvature (see 2.5, and 2.8 be-
low). This Bm = Bm,X is also called the canonical L2/m metric, or m-th
Bergman kernel metric on (ωmX )∗. (We can also obtain a singular Hermitian
metric BX on ω∗X as an extension of BXreg in 2.3(2).)

(3) We also have a singular Hermitian metric hm−1 on a reflexive sheaf
ωm−1
X with semi-positive curvature, which is obtained as the extension of

(B−1
m,Xreg

)(m−1)/m (which is defined on K⊗(m−1)
Xreg

). We then can define the
mNS Hermitian form

gm(u, v) =
∫
Xreg

cnu|Xreg ∧ v|Xreg hm−1|Xreg

for u, v ∈ Vm. In the last integral, u|Xreg and v|Xreg are regarded as line
bundle ωm−1

X |Xreg-valued holomorphic n-forms on Xreg.

Remark 2.8. — This is a remark on 2.7(2). Here we suppose that there
exists an integer ` > 0 such that ω`X is a locally free. In view of 2.5(3),
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there is another way to think B−1
m,X as a singular Hermitian metric of ωmX .

By 2.1, we have a singular Hermitian metric B−`m,Xreg
on (ω`X)⊗m|Xreg with

semi-positive curvature. On every open subset U ⊂ X such that (ω`X)⊗m is
trivialized, i.e., (ω`X)⊗m|U ∼= U × C, we can write as B−`m,Xreg

|Ureg = e−ϕ`0

with a psh function ϕ`0 on Ureg. We can extend ϕ`0 as a psh function ϕ`
on U by Hartogs type extension. Thus we obtain an extension of B−`m,Xreg

as a singular Hermitian metric, say B̃−`m,Xreg
on a line bundle (ω`X)⊗m with

semi-positive curvature, which is e−ϕ` on U . Then the symbol (B̃−`m,Xreg
)1/`

is a singular Hermitian metric B−1
m,X on ωmX .

Caution: We should not write as B−1
m,X = e−

1
`ϕ` on U , because if ωmX

itself is not locally free on U , B−1
m,X can not be expressed by a scaler valued

function. While (B−1
m,X)` = e−ϕ` on U makes sense.

As an example of 2.6, we consider mKX′ with the metric B−1
m,X′ in the

notation of 2.6. By 2.6, we have α∗(mKX′) with a singular Hermitian metric
α∗B

−1
m,X′ . In general we only have an injection α∗(mKX′)→ ωmX , which is

isomorphic on a Zariski open W ⊂ X with codim (X \W ) > 2. Thus the
metric α∗B−1

m,X′ on α∗(mKX′) can be regarded as a singular Hermitian
metric on ωmX . We will see, if X has canonical singularities at worst, that
B−1
m,X and α∗B−1

m,X′ on ωmX ∼= α∗(mKX′) coincide.

3. Bergman and Narasimhan-Simha type metrics on
varieties with canonical singularities

We note that Bergman kernel type metrics and mNS Hermitian forms are
birational invariant in an appropriate sense of compact complex manifolds
(cf. [29]). The main point of the notion of canonical singularities is that we
can obtain the same informations on pluricanonical forms from the regular
part of the variety and from a smooth model of the variety. We confirm it
is also the case of our Bergman kernel type metrics and mNS Hermitian
forms. The aim of this section is to present the proof once for sure, although
the results and the proofs are within expectations. For example, Bm,X′ =
(α∗Bm,X)|s`E |2m/` in 3.2(2) would not be trivial without proof. Our set
up in this section is as follows.

Set up 3.1. — LetX be a normal complex space with canonical singular-
ities at worst. A normal complex space X has canonical singularities, if the
canonical divisor KX is Q-Cartier and if for a (any) resolution of singular-
ities α : X ′ → X, one has KX′ ∼Q α

∗KX +E with an α-exceptional effec-
tive Q-divisor E (this is equivalent to saying that there is an α-exceptional
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effective divisor E′ such that `KX′ ∼ α∗(`KX) + E′, where ` > 0 is the
minimum integer such that `KX is Cartier, and then E = 1

`E
′ ([20, 2.22])).

We allow in 3.1, X to be smooth and α : X ′ → X to be non-isomorphic.
We should say that, a normal complex space X has canonical singularities,
if there exist a positive integer ` > 0 such that ω`X is locally free and a
resolution of singularities α : X ′ → X such that ω⊗`X′ ∼= α∗(ω`X)⊗OX′(E′)
for an α-exceptional effective divisor E′ on X ′.

We have defined in 2.7 the pseudo-norm, the Bergman kernel type metric
and the mNS Hermitian forms on a normal variety. We compare them with
those on a resolution X ′. We will denote these objects by ‖u‖m,X and
‖u′‖m,X′ , Vm,X ⊂ H0(X,ωmX ) and Vm,X′ ⊂ H0(X ′,mKX′), Bm,X and
Bm,X′ , hm−1,X and hm−1,X′ , gm,X(u, v) and gm,X′(u′, v′), on X as in 2.7
and on X ′ as in 2.1 respectively. The main conclusion in this section is

Proposition 3.2. — Let X be a normal complex space with canonical
singularities at worst, and let α : X ′ → X and `KX′ ∼ α∗(`KX)+`E be as
in 3.1. Then for every integer m > 0, a natural pull-back homomorphism

α∗ : H0(X,ωmX )→ H0(X ′,mKX′)

is defined and an isomorphism of C-vector spaces, moreover it is compatible
with the natural L2/m-pseudo-norms and the mNS Hermitian forms. More
precisely;
(1) For every u ∈ H0(X,ωmX ), one has u ∈ Vm,X if and only if α∗u ∈

Vm,X′ and
‖u‖m,X = ‖α∗u‖m,X′ .

In particular if X is compact, one has ‖u‖m,X = ‖α∗u‖m,X′ < ∞, i.e.,
Vm = H0(X,ωmX ).
(2) As a singular Hermitian metric on −mKX′ ∼Q α∗(−mKX) −mE,

one has
Bm,X′ = (α∗Bm,X)|s`E |2m/`

for an appropriate choice of a non-zero section s`E ∈ H0(X ′, `E) (which
is independent of m), where the pull back α∗Bm,X is in the sense of a
singular Hermitian metric for a Q-Cartier divisor −mKX , and where we
used a convention at the beginning of §2 for |s`E |2m/`.

(2’) One has α∗B
−1
m,X′ = B−1

m,X as a singular Hermitian metric on
α∗(mKX′) ∼= ωmX in the sense of 2.6, and α∗hm−1,X′ = hm−1,X as a singular
Hermitian metric on ωm−1

X
∼= α∗((m− 1)KX′) as a result.
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(3) One has

hm−1,X′ = (α∗hm−1,X) 1
|s`E |2(m−1)/`

on X ′ as a singular Hermitian metric on (m− 1)KX′ ∼Q α
∗(m− 1)KX +

(m− 1)E, and
gm,X(u, v) = gm,X′(α∗u, α∗v)

for every u, v ∈ Vm,X ⊂ H0(X,ωmX ).

It is known that there is an isomorphism α∗(mKX′) ∼= ωmX , and hence
H0(X,ωmX ) ∼= H0(X ′,mKX′) for every integer m > 0. Because we would
like to obtain exact values of integrations, we first recall this isomorphism
in the level of differential forms as follows.

Preliminary 3.3. — (0) For the resolution of singularities α : X ′ → X

in 3.1, we let W be the Zariski open subset W ⊂ Xreg on which α is
biholomorphic, and set W ′ = α−1(W ). We do not suppose W = Xreg. In
particular codim (X\W ) > 2 and α(E)∩W = ∅. We suppose `KX is Cartier
and regard it as a line bundle. We take a non-zero section s`E ∈ H0(X ′, `E),
whose zero divisor is an integral effective divisor `E.
Let U ⊂ X be a small open subset with a nowhere vanishing section

κ(`) ∈ H0(U, `KX). Let U ′ = α−1(U). We will consider a frame α∗Bκ(`) ∈
H0(U ′, α∗`KX), where we use a different notation α∗B for the pull-back as
a general bundle valued object to avoid risk of confusions. The pull-back
of functions and forms will be denoted by α∗ as usual. We may also denote
by α∗F for the pull back of (pluricanonical-)forms if necessary.
(1) We regard κ(`)|Ureg as an `-canonical form on Ureg, and pull it back

α∗F (κ(`)|Ureg), which is an `-canonical form on α−1(Ureg). Since both
α∗F (κ(`)|Ureg) and α∗Bκ(`)⊗s`E are elements of H0(α−1(Ureg), `KX′), the ra-
tio α∗F (κ(`)|Ureg)/(α∗Bκ(`) ⊗ s`E) defines a meromorphic function on
α−1(Ureg), which turns out to be a nowhere vanishing holomorphic func-
tion on α−1(Ureg) ∩ W ′ (as no zeros and no poles on α−1(Ureg) ∩ W ′).
As H0(α−1(Ureg) ∩ W ′,OX′) = H0(Ureg ∩ W,OX) = H0(U,OX) and
H0(U,OX) = H0(U ′,OX′) in a natural way, we can conclude that there
exists a nowhere vanishing holomorphic function f (`) on U ′ such that

α∗F (κ(`)|Ureg) = f (`) · α∗Bκ(`) ⊗ s`E |α−1(Ureg).

We note that once s`E ∈ H0(X ′, `E) is given, f (`) is independent of a
local frame κ(`) ∈ H0(U, `KX). As a conclusion, the pull back as an `-
canonical form α∗(κ(`)|Ureg) ∈ H0(α−1(Ureg), `KX′) extends (uniquely) to
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an `-canonical form f (`) ·α∗Bκ(`)⊗s`E on U ′ vanishing along `E. We denote
this map by

α∗(= α∗F ) : H0(U, `KX)→ H0(U ′, `KX′).

This is actually bijective. The inverse, say α∗ is given by

H0(U,α∗(`KX′)) = H0(U ∩W,α∗(`KX′)) = H0(U ′ ∩W ′, `KX′)
∼= H0(U ′ ∩W ′, α∗(`KX))

= H0(U ∩W, `KX) = H0(U, `KX).

Here the middle isomorphism is given by dividing by f (`)s`E (which has no
zeros on U ′ ∩W ′). (As long as X is normal, but not necessarily canonical,
we have a (natural) map H0(U,α∗(`KX′))→ H0(U, `KX), which is merely
injective.)
In the argument above, we remarked the independence of f (`) from a

local frame κ(`) ∈ H0(U, `KX). In particular, if we take another small
open set V ⊂ X with U ∩ V 6= ∅ and obtain α∗F (κ(`)

V |Vreg) = f
(`)
V ′ · α∗Bκ

(`)
V ⊗

s`E |α−1(Vreg), then f (`) = f
(`)
V ′ on α−1(Ureg∩Vreg) with some nowhere vanish-

ing holomorphic function f (`)
V ′ on V ′ = α−1(V ), where κ(`)

V ∈ H0(V, `KX) is
a local frame. Thus if we vary U so that a collection {U} forms an open cov-
ering of X, then these {fU ′} glue together and define a nowhere vanishing
holomorphic function on X ′. Hence by considering f (`)s`E ∈ H0(X ′, `E)
in stead of s`E from the beginning, we may suppose that f (`) ≡ 1 (if we
prefer). Thus we obtain a natural global bijection

α∗(= α∗F ) : H0(X, `KX)→ H0(X ′, `KX′).

satisfying α∗F (u|Xreg) = α∗Bu⊗ s`E |α−1(Xreg). By a similar argument above,
we can check that this α∗ is well-defined (namely, glue together) when we
vary open subsets U .
(2) We also obtain a natural bijection

α∗(= α∗F ) : H0(X,m`KX)→ H0(X ′,m`KX′)

for every integerm > 0 satisfying α∗F (u|Xreg) = (f (`))m ·α∗Bu⊗sm`E |α−1(Xreg)
for u ∈ H0(X,m`KX), where we regard u|Xreg as an m`-canonical form on
Xreg, and where f (`) ∈ H0(U ′,OX′) is the same as in the case of m = 1 (it
can be f (`) ≡ 1 if we prefer). In fact, the first point is that on every small
open set U with a frame κ(`) ∈ H0(U, `KX),

α∗F ((κ(`))m|Ureg) = (f (`))m · α∗B(κ(`))m ⊗ sm`E |α−1(Ureg)
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holds, where we regard (κ(`))m|Ureg as an m`-canonical form on Ureg. Then
α∗F ((κ(`))m|Ureg) extends holomorphically toX ′, which vanishes alongm`E.
We then proceed as in (1) to obtain the global isomorphism α∗F .

(2’) For general integer m > 0, we argue as follows. We take u ∈
H0(X,ωmX ), where ωmX is merely reflexive. We consider a power u(`) ∈
H0(X,m`KX) as in 2.4. Then by using (2), we have

α∗F (u|Xreg)` = α∗F (u(`)|Xreg) = (f (`))m · α∗Bu(`) ⊗ sm`E |α−1(Xreg)

and α∗F (u(`)|Xreg) extends on X ′ holomorphically and vanishing along m`E
at least. In particular, as α∗F (u|Xreg)` extends to X ′ holomorphically,
α∗F (u|Xreg) itself extends to an element of H0(X ′,mKX′) by Riemann type
extension (note that mKX′ is a line bundle). Thus we obtain a homomor-
phism α∗ : H0(X,ωmX )→ H0(X ′,mKX′), which is clearly injective. To see
α∗ is surjective, we take an isomorphism KW ′

∼= α∗KW on W ′, induced
by the isomorphism α : W ′ → W . Let β∗ : H0(X ′,mKX′) → H0(X,ωmX )
be the composition: H0(X ′,mKX′)→ H0(W ′,mKW ′) ∼= H0(W,mKW ) ∼=
H0(X,ωmX ), where the middle isomorphism is induced by KW ′

∼= α∗KW ,
and other two morphisms are the natural one (induced from the restric-
tion maps). Let u′ ∈ H0(X ′,mKX′). Then α∗

(
β∗(u′)

)
∈ H0(X ′,mKX′),

and moreover (α∗
(
β∗(u′)

)
/u′)|W ′ is a nowhere vanishing holomorphic func-

tion, say τ , on W ′. Since H0(W ′,OW ′) = H0(W,OW ) = H0(X,OX) =
H0(X ′,OX′) in a natural manner, we have a nowhere vanishing holomor-
phic function τ ′ ∈ H0(X ′,OX′) such that τ ′|W ′ = τ . Then for u′/τ ′ ∈
H0(X ′,mKX′), we have β∗(u′/τ ′) ∈ H0(X,ωmX ) and α∗

(
β∗(u′/τ ′)

)
= u′,

which implies α∗ is surjective. As we see, this isomorphism α∗ is not so
clear at all, though it is clear if we take its `-th power.
(3) We take u ∈ H0(X,m`KX). We here regard u|Xreg as an L(m−1)` :=

(m−1)`KX -valued `-canonical form on Xreg and pull it back, we denote it
by α∗A(u|Xreg), which is an α∗L(m−1)`-valued `-canonical from on α−1(Xreg)
(“A” stands for “adjoint”). Let U be a small open subset with a frame κ(`) ∈
H0(U, `KX) as before. We regard as (κ(`))m|Ureg = (κ(`)|Ureg) · (κ(`))m−1,
where κ(`)|Ureg is an `-canonical form on Ureg and (κ(`))m−1 ∈ H0(U, (m−
1)`KX) is a local frame of a bundle (m− 1)`KX . Then

α∗A((κ(`))m|Ureg) = α∗F (κ(`)|Ureg) · α∗B(κ(`))m−1

= f (`) · α∗Bκ(`) ⊗ s`E |α−1(Ureg) ⊗ α∗B(κ(`))m−1

= f (`) · α∗B(κ(`))m ⊗ s`E |α−1(Ureg),

where f (`) ∈ H0(U ′,OX′) is the same as in the case of m = 1 (it can
be f (`) ≡ 1 if we prefer). Here we used the relation α∗F (κ(`)|Ureg) = f (`) ·
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α∗Bκ
(`)⊗s`E |α−1(Ureg) in (1). We note as a consequence that α∗F ((κ(`))m|Ureg)

= α∗A((κ(`))m|Ureg) ⊗ sm−1
`E |α−1(Ureg). Then we proceed as before, and we

obtain a natural bijection

α∗A : H0(X,m`KX)→ H0(X ′, `KX′ + (m− 1)α∗(`KX))

for every integer m > 0 satisfying α∗F (u|Xreg) = α∗A(u|Xreg)⊗sm−1
`E |α−1(Xreg)

for u ∈ H0(X,m`KX).

Proof of Proposition 3.2. — We give a proof of 3.2 under the set-up
and the notations in 3.3. We normalize f (`) ≡ 1 in 3.3. We take an integer
m > 0 with Vm 6= 0. We have already proved in 3.3(0)–(2’) that there is a
natural pull-back isomorphism α∗ : H0(X,ωmX )→ H0(X ′,mKX′).

(1) Let u ∈ H0(X,ωmX ). By a formula of change of variables, we can see∫
Xreg

|u|Xreg |
2/m =

∫
α−1(Xreg)

|α∗F (u|Xreg)|2/m

holds, and thus we have ‖u‖m,X = ‖α∗Fu‖m,X′ . If X is compact, the last
integral converges, as (thanks to 3.3(2’)) the integrand extends continuously
to X ′ which is compact.
(2) As we noticed in 2.8, it is safe to show B`m,X′ = (α∗B`m,X)|s`E |2m as a

singular Hermitian metric on a line bundle −m`KX′ ∼ α∗(−m`KX)−m`E.
Every u′ ∈ H0(X ′,mKX′) can be written as u′ = α∗Fu for a unique u ∈

H0(X,ωmX ) with ‖u‖m,X = ‖u′‖m,X′ by (1). Moreover by 3.3, α∗F (u(`)|Xreg)
= (α∗Bu(`))⊗ sm`E |α−1(Xreg). Then we have

|(u′)`|2 = (α∗|u(`)|2) · |s`E |2m

as a singular Hermitian metric on −m`KX′ ∼ α∗(−m`KX)−m`E. We can
check this by taking reference C∞-Hermitian metrics; h`K on a line bundle
`KX , h`E on a line bundle `E, and then h`K′ = α∗h`K · h`E on `KX′ .
We take an arbitrary point x′ ∈ W ′ ⊂ X ′ \ E and set x := α(x′) ∈ W .

Noting ‖u‖m,X = ‖u′‖m,X′ , we take sup‖u′‖m,X′61 and sup‖u‖m,X61 in
the equality above, we obtain B`m,X′(x′) = α∗B`m,X(x) · |s`E(x′)|2m. (We
are not sure Bm,X(x) = sup‖u‖m,X61 |u(x)|2 at x 6∈ Xreg.) Thus we have
B`m,X′ = (α∗B`m,X)|s`E |2m onW ′. OnW ′, log |s`E |2m is pluriharmonic and
hence B`m,X′/|s`E |2m is log-psh on W ′ and uniformly bounded from above
on W ′ (as α∗B`m,X is). Thus B`m,X′/|s`E |2m = α∗B`m,X holds on X ′ by the
Riemann type extension for their local weights (being B`m,X = eϕ` as in 2.8
for example).
(2’) It is enough to see α∗(B−`m,X′) = B−`m,X on W . On W ′ = α−1(W ) ∼=

W , we have an isomorphism m`KX′
∼= α∗(m`KX) via the map dividing
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by sm`E . Let U ⊂ W be an open subset. Every u′ ∈ H0(α−1(U),m`KX′) is
written as u′ = α∗Fu = α∗Bu ⊗ sm`E for a unique u ∈ H0(U,m`KX). Thus
(B−`m,X′)(u′, v′) = (α∗B−`m,X) 1

|s`E |2m (α∗Bu⊗ sm`E , α∗Bv ⊗ sm`E) = B−`m,X(u, v).

(3) We denote by hm−1 = (B−1
m,X)(m−1)/m, respectively h′m−1 =

(B−1
m,X′)(m−1)/m, the singular Hermitian metric on a Q-Cartier divisor

Lm−1 = (m−1)KX , respectively on L′m−1 = (m−1)KX′ ∼Q α
∗Lm−1+(m−

1)E. By (2) above, we have h′m−1 = (α∗hm−1) 1
|s`E |2(m−1)/` on X ′. Let us see

gm(u, v) = gm,X′(u′, v′) for u, v ∈ Vm,X and u′ = α∗Fu, v
′ = α∗F v ∈ Vm,X′ .

We note by 3.3(3), on α−1(Xreg) that

cnu
′ ∧ v′ h′m−1

=
(
(cnu′ ∧ v′ h′m−1)`

)1/`
=
(
cnα

∗
Au

(`) ⊗ sm−1
`E ∧ α∗Av(`) ⊗ sm−1

`E (α∗h`m−1) 1
|s`E |2(m−1)

)1/`

=
(
cnα

∗
Au

(`) ∧ α∗Av(`) α∗h`m−1
)1/`

= cnα
∗
Au ∧ α∗Av α

∗hm−1 = α∗F (cnu ∧ v hm−1).

These equalities make sense on α−1(Xreg). In particular α∗Au in the
last two term means α∗A(u|Xreg) in which we regard u|Xreg as a bundle
Lm−1|Xreg -valued holomorphic n-form on Xreg and pull it back. Then by
integration, we have

∫
Xreg

cnu∧v hm−1 =
∫
α−1(Xreg) cnu

′∧v′ h′m−1 and also
gm,X′(u′, v′) = gm(u, v). �

4. Singularities of Narasimhan-Simha metrics

We shall study Narasimhan-Simha Hermitian forms in a family of vari-
eties, especially the upper bounds when the fibers approach to a degenerate
fiber. We shall prove 1.1(1) in this section. Before doing so, we would like to
make a remark on the definition of the m-th Narasimhan-Simha Hermitian
metric gm for a family of varieties with only canonical singularities.

Definition 4.1. — Let f :X → Y be as in 1.1. We denote bymKX/Y :=
ωmX ⊗ f∗K

⊗(−m)
Y , mKX := ωmX and so on for integers m > 0 by an

abuse of notations. Let Y0 := {t ∈ Y ; the fiber Xt has canonical singu-
larities at worst}. For every t ∈ Y0, we let ϕt : H0(Y, f∗(mKX/Y )) →
H0(Xy, (mKX/Y )|Xt) ∼= H0(Xt,mKXt) be the natural homomorphism,
where the last isomorphism is given by the adjunction formula ([20, 5.73]).
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The invariance of plurigenera including the case with canonical singulari-
ties ([30], [31]) shows that ϕt is surjective. We denote by ut = u(t) = ϕt(u)
for u ∈ H0(Y, f∗(mKX/Y )) and t ∈ Y0. We can define (by 2.7 and 3.2) the
L2/m-pseudo-norm

‖u‖m(t) := ‖ut‖m,t,
where ‖ · ‖m,t is the L2/m-pseudo-norm on H0(Xt,mKXt), and the mNS
Hermitian form

gm(u, v)(t) := gm,t(ut, vt),
where gm,t is the mNS Hermitian form on H0(Xt,mKXt).
We take a resolution of singularities α : X ′ → X and let f ′ = f ◦ α :

X ′ → Y be the composition. Let Y ′0 := {t ∈ Y ; the fiber X ′t of f ′ is
smooth}. By 3.2, for every t ∈ Y0 ∩ Y ′0 , we have the same L2/m-pseudo-
norm ‖u‖m,t and the mNS Hermitian form gm,t(u, v) on H0(Xt,mKXt) ∼=
H0(X ′t,mKX′t

). Thus we first obtain the same (namely natural) m-th
Narasimhan-Simha Hermitian metric on f ′∗(mKX′/Y ) = f∗(mKX/Y ) over
Y0∩Y ′0 . Then by [26, 5.1.2], we have a unique extension as a singular Hermit-
ian metric on f ′∗(mKX′/Y ). As a result, we obtain our gm on f∗(mKX/Y )
in 1.1. Another smooth model ofX will give another metric on f∗(mKX/Y ).
However they coincide on a non-empty Zariski open subset of Y by the dis-
cussion above. Thus their extensions must coincide too. (The uniqueness
of the extension is a consequence of the uniqueness of the Riemann type
and the Hartogs type extension for psh functions.)

In the rest of this section, we devote ourself to the proof of 1.1(1).
Yoshikawa [34, §7] treats some special cases with m = 1 and with condi-
tions on singularities on X and (X,X0). Our method here is similar to [34],
however more involved because of the generality of our setting.

Preliminary 4.2. — As a preliminary for the proof of 1.1(1), we here
consider a fiberwise integral near a possible degenerate fiber of f . We will
use the notations in 1.1(1) and 3.1.
(1) We take a log-resolution of singularities α : X ′ → X of the pair

(X,X0). We denote by f ′ = f ◦ α : X ′ → Y , X ′0 = f ′
∗(0) =

∑
b̃jB̃j (all b̃j

are positive integers) and SuppX ′0 =
∑
B̃j . We let

b̃ = max
j
b̃j .

As in 3.1, we let ` > 0 be the smallest integer such that `KX is Cartier
and `KX′ ∼ α∗(`KX) + `E for an α-exceptional effective integral divisor
`E on X ′. We write E =

∑
k̃jB̃j + ∆ with rational numbers k̃j > 0

and an effective Q-divisor ∆ on X ′ without common components with
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X ′0. Recall that r0 is the log-canonical threshold of the pair (X,X0). As
KX′ ∼Q α

∗(KX + rX0) +
∑

(k̃j − rb̃j)B̃j + ∆, we see

r0 = min
j

(k̃j + 1)/b̃j .

Since (X,X0) is canonical outside X0, no components of ∆ provide a log-
canonical singularity of (X,X0). (The number r0 satisfies k̃j − r0b̃j > −1
for all j and k̃j − r0b̃j = −1 for some j. This is almost the definition of r0
in our setting.) By shrinking Y , we may suppose f ′ is smooth over Y \ 0.

(2) We take a point x′0 ∈ X ′0, and put x0 = α(x′0) ∈ X0. We take an open
neighborhood W of x0 in X with a local frame κ(`) ∈ H0(W, `KX). We
take a local coordinate z = (z1, . . . , zn, zn+1) of X ′ centered at x′0, which
is defined on an open subset containing a polydisc U = {z ∈ Cn+1; |zi| 6
1 for any 1 6 i 6 n+ 1} and α(U) ⊂W . We may assume that

t = f ′(z) = c(x′0)zb1
1 z

b2
2 · · · z

bn+1
n+1 ,

α∗κ(`) = δ(z)z`k1
1 · · · z`kn+1

n+1 (dz1 ∧ . . . ∧ dzn+1)⊗`

on U , where bj are non-negative integers, c(x′0) > 0 is a constant, kj are
non-negative rational numbers such that all `kj are integers, and δ(z) ∈
H0(U,OU ) is a holomorphic function whose zero divisor is `∆|U (cf. 3.3(1)).
Moreover we may assume that

b1/(k1 + 1) 6 b2/(k2 + 1) 6 . . . 6 bn+1/(kn+1 + 1)

holds. Note that maxj bj 6 b̃ and

0 < bn+1/(kn+1 + 1) 6 max
j

(̃bj/(k̃j + 1)) = 1/r0.

As in a calculus Lemma 4.3 below, we find non-negative integers J0 and
J1 (lengths of indexes) with J0 + J1 6 n so that bj = 0 for every j 6 J0,
bj/(kj + 1) = bn+1/(kn+1 + 1) for every j > n− J1 + 1, and 0 < bj/(kj +
1) < bn+1/(kn+1 + 1) for other J0 < j < n − J1 + 1 (if it exists). Since
c(x′0) = f ′(1, . . . , 1) ∈ Y = {|t| < 1}, we have c(x′0) < 1.

(3) We take an arbitrary point t ∈ f ′(U) \ 0 and |t| < min{c(x′0), e−1} in
this paragraph. Here we note that f ′(U) contains an open neighborhood of
0 ∈ Y as f ′ is an open mapping (as f ′ is flat). Let pr : (Cn+1 ⊃) U 3 z 7→
(z1, . . . , zn) be a projection. We set Ut = pr (X ′t ∩ U) and

U∗t =
{

(z1, . . . , zn) ∈ Cn; |zj | 6 1 for every j 6 J0,

|t/c(x′0)|1/bj 6 |zj | 6 1 for every J0 < j 6 n

}
.
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We see Ut ⊂ U∗t . We can regard X ′t ∩ U ⊂ Cn+1 as the graph of (or the
domain of uniformizing) the multi-valued holomorphic function

zn+1 =
(

t

c(x′0)zb1
1 · · · z

bn
n

)1/bn+1

defined on Ut ⊂ Cn. Since t 6= 0, the projection X ′t ∩ U → Ut is an un-
ramified covering, and hence X ′t ∩U is a union of bn+1-branches: X ′t ∩U =⋃bn+1
i=1 Uti, where each pair Uti and Ut(i+1) (and also Utbn+1 and Ut1) inter-

sect along their collars (Uti∩Ut(i+1) is a real 2n−1 dimensional manifold).
By an appropriate (somewhat standard) choice of Uti; distinguished by a
bn+1-th root of unity multiplications, we can take (Ut, (z1, . . . , zn)) as a
local coordinate of Uti via the projection pr : Uti → Ut on each branch Uti.
By 4.3, we have

It :=
∫
U∗t

(|z1|k1−b1(kn+1+1)/bn+1 · · · |zn|kn−bn(kn+1+1)/bn+1)2dVn

= 2J1πn
∏

J0<j<n−J1+1

1− |t/c(x′0)|2((kj+1)/bj−(kn+1+1)/bn+1)

kj + 1− bj(kn+1 + 1)/bn+1

×
∏

n−J1+16j6n
(− log |t/c(x′0)|1/bj ).

Here the first product is less than (`bn+1)n 6 (`̃b)n, since each factor is
estimated as

1− |t/c(x′0)|2((kj+1)/bj−(kn+1+1)/bn+1)

kj + 1− bj(kn+1 + 1)/bn+1
<

1
kj + 1− bj(kn+1 + 1)/bn+1

= `bn+1

`(bn+1(kj + 1)− bj(kn+1 + 1))

6 `bn+1 ,

where we note that |t/c(x′0)| < 1 and `(bn+1(kj + 1)− bj(kn+1 + 1)) ∈ Z>0
(it is positive and an integer). The second product is less than (− log |t|)J1 ,
since each factor is estimated as

− log |t/c(x′0)|1/bj = 1
bj

(− log |t|+ log c(x′0)) < − log |t|,

where we note that bj ∈ Z>0, log c(x′0) < 0 and − log |t| > 1. Hence we
have for example

It < (2π)n(`̃b)n(− log |t|)n.
(4) Since f ′ is proper, we can cover a neighborhood f ′−1(Y ′) of X ′0 for

a smaller disc Y ′ ⊂ Y by a finite number of coordinate neighborhoods Uλ
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as above, namely we choose a disc Y ′ so that

Y ′ ⊂ {t ∈ Y ; t ∈ f ′(Uλ), |t| < min{c(x′λ), e−1}}

for every Uλ with center xλ as above. We will indicate this open covering
of f ′−1(Y ′) as {Uλ}λ if we need.

We now prove Theorem 1.1(1).
Proof of Theorem 1.1(1). — We still keep the notations in 4.2. For ex-

ample, a resolution α : X ′ → X, f ′ : X ′ → Y , and `KX′ ∼ α∗(`KX) + `E.
We also take a finite open covering {Uλ}λ of f ′−1(Y ′) in 4.2(4) such that
each U = Uλ enjoying properties in 4.2(2). We also take a small open
subset W (= Wλ) ⊂ X such that α(U) ⊂ W and with a local frame
κ(`) ∈ H0(W, `KX) of a line bundle `KX .

(1) We first consider the pseudo-norm in the following special situation.
Let m > 0 be an integer. Let u ∈ H0(Y, f∗(m`KX/Y )) and suppose u
vanishes along m`X0 (regarded as an element of H0(X,m`KX/Y )), i.e. u
is divided by f∗tm`. Then we shall show that there exists a constant A

ũ
> 0

depending on u/(f∗tm`) such that

‖u(t)‖2/(m`)m` 6 |t|2r0(− log |t|)nA
ũ

holds for any t ∈ Y ′ \ 0.
(1.1) In view of H0(Y, f∗(m`KX/Y )) = HomOY (m`KY , f∗(m`KX)), our

u gives u(dt⊗m`) ∈ H0(Y, f∗(m`KX)) = H0(X,m`KX). As we suppose u
vanishes along m`X0, we have u(dt⊗m`)|W = f∗tm` · ũ · (κ(`))m with some
ũ ∈ H0(W,OX). Let us denote by u′ = α∗

(
u(dt⊗m`)

)
∈ H0(X ′,m`KX′),

which is an m`-canonical form on X ′ vanishing along m`E (see 3.2). We
denote by ũ′ = (α|U )∗ũ ∈ H0(U,OX′). We note f ′(z) = f ′

∗
t, and recall

α∗κ(`) = δ(z)z`k1
1 · · · z`kn+1

n+1 (dz1 ∧ . . . ∧ dzn+1)⊗`. Then

u′|U = f ′
∗
tm` · ũ′ · (α∗κ(`))m

= ũ′
(
δ(z)z`k1

1 · · · z`kn+1
n+1 (f ′(z)dz1 ∧ . . . ∧ dzn+1)⊗`

)⊗m
Noting a relation f ′∗dt = f ′(z)

∑n+1
i=1 bi

dzi
zi

, we can write as

f ′(z)dz1 ∧ . . . ∧ dzn+1 = (b−1
n+1zn+1dz1 ∧ . . . ∧ dzn) ∧ (f ′(z)bn+1

dzn+1

zn+1
)

= (b−1
n+1zn+1dz1 ∧ . . . ∧ dzn) ∧ f ′∗dt .

We let

σ = ũ′(z)
(
b−`n+1δ(z)z

`k1
1 . . . z`knn z

`(kn+1+1)
n+1

)m(
dz1 ∧ . . . ∧ dzn

)⊗m`
,
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which is an element of H0(U, (ΩnX′)⊗m`). Then u′|U is the image of
σ ⊗ (f ′∗dt⊗m`) under the naturally induced homomorphism (ΩnX′)⊗m` ⊗
f∗K⊗m`Y → K⊗m`X′ restricted to U . We note that for any t ∈ Y ′ \ 0,
the restriction σ|X′t∩U ∈ H0(X ′t ∩ U,m`KX′t

) for t ∈ f ′(U) \ 0 is well-
defined for u′ and u (independent of dt), and a collection {σ|X′t∩Uλ}λ, for
the open covering {Uλ}λ of f ′−1(Y ′), glues together and simply recovers
u′t = α∗ut ∈ H0(X ′t,m`KX′t

).
This is a side remark. Since we supposed that u vanishes along m`X0

(regarded as an element of H0(X,m`KX/Y )), i.e. u is divided by f∗tm`,
σ can be taken from H0(U, (ΩnX′)⊗m`). However in general it is merely
σ ∈ H0(U \ X ′0, (ΩnX′)⊗m`). As we will see in (2) below, the assumption
that u is divided by f∗tm` is not essential, just for convenience of compu-
tation.
(1.2) We set A

ũ
:= supW |ũ|2/m`. We can suppose that A

ũ
< +∞ be-

ing everything is defined on a larger open subset containing W . We have
supU |ũ′|2/m` 6 Aũ. We also set A∆ = supU |δ(z)|2(< +∞). Then for every
t ∈ Y ′ \ 0, we have∫
X′t∩U

|u′t|
2
m` =

bn+1∑
i=1

∫
Uti

|σ|X′t |
2
m`

=
bn+1∑
i=1

∫
Uti

b−2
n+1|ũ′|

2
m` |δ(z)| 2

`

∣∣z`k1
1 · · · z`knn z

`(kn+1+1)
n+1

∣∣ 2
`

n∧
j=1

√
−1dzj ∧ dzj

= 1
bn+1

∫
Ut

∣∣zk1
1 · · · zknn

∣∣2 ∣∣∣∣∣ t

c(x′0)zb1
1 · · · z

bn
n

∣∣∣∣∣
2(kn+1+1)/bn+1

|ũ′|2|δ(z)| 2
` 2ndVn

6 |t|2(kn+1+1)/bn+1 ItAũA∆2n/c(x′0)2(kn+1+1)/bn+1 .

Here It is the integral in 4.2(3) (recall Ut ⊂ U∗t ). As |t| < 1 and r0 =
minj(k̃j+1)/b̃j , we have |t|2(kn+1+1)/bn+1 6 |t|2r0 . If we set r1 = maxj(k̃j+
1)/b̃j , we have c(x′0)−2(kn+1+1)/bn+1 6 c(x′0)−2r1 as 0 < c(x′0) < 1. Hence
by 4.2(3), we have∫

X′t∩U
|u′t|2/(m`) 6 |t|2r0(− log |t|)nA

ũ
A∆(4π`̃b)nc(x′0)−2r1 .

The latter part A∆(4π`̃b)nc(x′0)−2r1 is determined by X, f and may be by
α : X ′ → X. We then have our assertion in (1) by combining the last
estimate on each U = Uλ of the finite open covering of f ′−1(Y ′) and

‖u‖2/(m`)m` (t) = ‖u′t‖
2/(m`)
m` =

∫
X′t

|σ|X′t |
2/(m`) 6

∑
Uλ

∫
X′t∩Uλ

|σ|X′t |
2/(m`)

ANNALES DE L’INSTITUT FOURIER



SINGULARITIES OF NARASIMHAN-SIMHA METRICS 777

for any t ∈ Y ′ \ 0.
(2) We consider the general case. We take u ∈ H0(Y, f∗(mKX/Y )) =

H0(X,mKX/Y ). We consider a power u(`) ∈ H0(X,m`KX/Y ) = H0(Y,
f∗(m`KX/Y )) (explained in 2.7). We can apply (1) for (f∗tm`)u(`) to obtain

‖u(`)‖2/(m`)m` (t) = 1
|t|2
‖(f∗tm`)u(`)‖2/(m`)m` (t) 6 1

|t|2
|t|2r0(− log |t|)nAu(`)

for any t ∈ Y ′ \ 0. As ` is given by X, we may say Au(`) is given by u,
and hence denote it by Au. Noting ‖u(`)‖m`(t) = ‖u‖`m(t) (2.7(1)), we
have ‖u‖2/mm (t) 6 1

|t|2 |t|
2r0(− log |t|)nAu. Combining with an inequality

gm(u, u)(t) 6 ‖u‖2m(t) for any t 6= 0 (which follows from a fiberwise esti-
mate 2.2(4) with 3.2), we have our assertion. �

Lemma 4.3. — Let aj (j = 1, 2, . . . , n) be real numbers, and J0, J1 be
non-negative integers such that J0 + J1 6 n. Assume aj = 0 for every
j 6 J0, aj = −1 for every j > n − J1 + 1, and −1 < aj < 0 for other
J0 < j < n − J1 + 1 (if it exists). In particular J0 = ]{j; aj = 0},
J1 = ]{j; aj = −1}, possibly J0 = 0 or J1 = 0. Let 0 < εj < 1 be a real
number for each j = J0 + 1, J0 + 2, . . . , n, and let U∗ ⊂ Cn be the set of
points z = (z1, . . . , zn) ∈ Cn such that

U∗ = {|zj | 6 1 for every j 6 J0, εj 6 |zj | 6 1 for every J0 < j 6 n}.

Then∫
U∗

n∏
j=1
|zj |2ajdVn = 2J1πn

∏
J0<j<n−J1+1

1− ε2(1+aj)
j

1 + aj

∏
n−J1+16j6n

(− log εj)

holds, where dVn =
∧n
j=1(
√
−1/2)dzj ∧ dzj is the standard real Euclidean

volume form in Cn.

Proof. — Straight forward from Fubini’s theorem. �

Remark 4.4. — The computation, we have done in the proof of 1.1(1)
above, is itself elementary. It will be adapted to any proper holomorphic
mapping between complex manifolds with connected fibers.

5. In the case of higher dimensional base

We shall prove 1.1(2) and 1.3 in this section. We first state a general
result which is valid for singular Hermitian vector bundles (and we refer
to [28], [26, §2.2, §2.3] for a general discussion about it). Let X ⊂ Cn be a
domain containing the origin, and let E = X×Cr be a trivial vector bundle
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of rank r > 1. Let π : P(E)(= X × Pr−1) → X be the projective space
bundle and let L = OP(E)(1) be the tautological bundle (i.e., the universal
quotient line bundle π∗E → L). Let h be a singular Hermitian metric on
E with Griffiths semi-positive curvature. Let eϕ be the induced singular
Hermitian metric on the dual L∗ as the sub-bundle L∗ → π∗(E∗, h∗). By a
general theory ([26, 2.3.4]), eϕ has a semi-negative curvature current, i.e.,
the local weight ϕ is psh.

Lemma 5.1. — Suppose that (i) there exists a smooth curve (C, t) ⊂ X
passing through 0 ∈ X with a coordinate t and t = 0 corresponding to
0 ∈ X, and 0 < deth < +∞ on C \ 0 (in particular the restriction h|C
is well-defined as a singular Hermitian metric on E|C), and that (ii) there
exist real numbers ` > 0 and k > 0, such that, for every u ∈ H0(C,E|C),
there exists a constant Au > 0 such that |u|2h(t) < 1

|t|2` (− log |t|)kAu holds
for any t 6= 0. Then the Lelong number of ϕ is bounded by ν(ϕ, P ) 6 2` at
any point P ∈ π−1(0) ⊂ P(E).

Proof. — We shall show two inequalities ν(ϕ, P ) 6 ν(ϕ|π−1(C), P ) and
ν(ϕ|π−1(C), P ) 6 2`.
(1) It is well-known that the Lelong numbers only increase by a slice, as

long as its restriction is well-defined. For example, if ψ is a psh function
on a neighborhood of the origin O in Cn with coordinate z = (z1, . . . , zn),
then the Lelong number of ψ at O is characterized by ν(ψ,O) = sup{γ >
0; ψ(z) 6 γ log |z| + O(1) around the origin}, where |z| = (

∑n
i=1 |zi|2)1/2

and O(1) is a bounded term ([7, (2.8)]). This property deduces ν(ϕ, P ) 6
ν(ϕ|π−1(C), P ).
(2) To prove ν(ϕ|π−1(C), P ) 6 2`, we can suppose dimX = 1 and C is X

itself. We take a standard basis {ei}ri=1, where ei = (. . . , 0, 1, 0, . . .) (the i-th
entry is 1 and others are 0), of the vector space Cr, and regard also {ei}ri=1
as the global basis of E (so that E = ⊕ri=1OXei). With respect to this basis,
we write h = (hij)16i,j6r as a matrix valued measurable function on X,
where hij = h(ei, ej). By our assumption, for every i = 1, . . . , r, there exists
a constant Ai > 0 such that hii(t) = |ei|2h(t) < 1

|t|2` (− log |t|)kAi holds for
any t 6= 0. We set Ah = maxi=1,...,r Ai and α(t) := 1

|t|2` (− log |t|)kAh as
a function on t. We also have |hij(t)| 6 (hii(t)hjj(t))1/2 < α(t) for any
i, j. Let λr(t) > 0 be the largest eigen-value of the matrix h(t). Then we
see λr(t) 6 rmaxi,j |hij(t)| < rα(t), and then the smallest eigen-value of
h∗(t) = th(t)−1 is λr(t)−1 > 1/(rα(t)). (We supposed t 6= 0.)

We take a point P ∈ P(E) such that π(P ) = 0 ∈ X, and take a local
coordinate (U, (t, w)) of P(E) = X × Pr−1 centered at P . We regard ϕ ∈
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L1
loc(U,R) as a psh function (not as a collection of functions satisfying a

gluing condition). Let ν0 = ν(ϕ, P ) be the Lelong number of ϕ at P . We
suppose ν0 > 2`. We take a constant ε > 0 such that ν0− ε > 2`+ ε. Then
there exist a small neighborhood U ′ ⊂ U of P and a constant M1 > 0 such
that ϕ(t, w) < (ν0 − ε) log(|t|2 + |w|2)1/2 + M1 holds on U ′ ([7, (2.8)]), in
particular

eϕ(t,w) < eM1(|t|2 + |w|2)(ν0−ε)/2 < eM1(|t|2 + |w|2)(2`+ε)/2

on U ′, where |w| = (
∑r−1
i=1 |wi|2)1/2. On the other hand, there exists a

constant M2 > 0 depending on a choice of a local trivialization of L (which
is irrelevant to compare asymptotic as (t, w)→ P or t→ 0) such that, for
any t 6= 0 and any (t, w) ∈ π−1(t) ∩ U , we have

eϕ(t,w) >M2λr(t)−1 >
|t|2`

(− log |t|)k
M2

rAh
.

In particular, if |t| is small but t 6= 0 and if w = 0, we have
|t|2`

(− log |t|)k
M2

rAh
< eϕ(t,w) < eM1 |t|2`+ε.

This is impossible. �

Remark 5.2. — Under the same assumption in 5.1, we take a non-zero
section ξ ∈ H0(X,E∗) of the dual. By definition of the Griffiths semi-
negativity of the curvature of the dual metric h∗, ψ := log |ξ|2h∗ is psh on
X ([26, 2.2.2]). If ξ is non-zero at 0 (for example ξ = e∗i a part of the dual
local frame), then the Lelong number of ψ at 0 is bounded by ν(ψ, 0) 6 2`.
In fact, by the proof above, we see |ξ|2h∗(t) > cξλr(t)−1 > cξ/(rα(t)) =
(cξ/r)|t|2`(− log |t|)−kA−1

h holds around 0 on the curve C, where cξ > 0 is
a constant depending on ξ. Then log |ξ|2h∗(z) can not be smaller (i.e., neg-
ative) than log |z|2`+ε around 0 for any given ε > 0, where z = (z, . . . , zn)
is a local coordinate of X centered at 0. That means ν(ψ, 0) 6 2`. (If we
allow ξ vanishes at 0, the Lelong number can be arbitrary large. It does
not make sense.)

We are ready to prove Theorem 1.1(2) and Corollary 1.3.
Proof of Theorem 1.1(2). — Since our assertion is local, we can suppose

that Y ⊂ Cm is a ball centered at 0 with a coordinate z = (z1, . . . , zm),
and C = {z2 = . . . = zm = 0} in Y and t = z1|C is a coordinate of C.
We let Y1 = {y ∈ Y ; the fiber Xy of f has canonical singularities at worst,
and the fiber X ′y of f ′ is smooth}. Since C is general, by shrinking Y if
necessary, we can suppose that C \ 0 ⊂ Y1. In particular, any fiber Xt of
fC , but the central fiber X0, has canonical singularities at worst.
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We take u ∈ H0(C,F |C), which can be seen as an element of H0(C,
fC∗(mKXC/C)) by the base change morphism. In fact, as we are working
locally around 0 ∈ Y (Y is Stein and F is locally free), we have a natu-
ral exact sequence 0 → H0(Y, F ⊗ IC) → H0(Y, F ) → H0(C,F |C) → 0,
where IC ⊂ OY is the defining ideal sheaf of C. If we let bC : H0(Y, F ) =
H0(Y, f∗(mKX/Y )) → H0(C, fC∗(mKX/Y |XC )) be the base change mor-
phism, then H0(C,F |C) → H0(C, fC∗(mKX/Y |XC )), given by u 7→ bC(ũ)
for any choice of ũ ∈ H0(Y, F ) mapped to u (i.e., ũ|C = u) is well-defined.
Moreover as long as t 6= 0, the mNS Hermitian metric gm for F at

t ∈ (C ⊂)Y and the mNS Hermitian metric, say gm,C , for fC∗(mKXC/C)
at t ∈ C is the same, which is nothing but the mNS Hermitian form on
H0(Xt,mKXt) = H0(X ′t,mKX′t

), where X ′t = f ′
−1(t) is a smooth model of

Xt (this is what we call “the base change property” of the mNS Hermitian
metric [26, 5.1.2]). By 1.1(1) for fC : XC → C, we have

‖u‖2gm(t) = gm,C(u, u)(t) 6
(

1
|t|2(1−r0C) (− log |t|)nAu

)m

for any t 6= 0 sufficiently small. Thus the assumptions in 5.1 are satisfied
with ` = (1− r0C)m and k = nm, and 1.1(2) is proved. �

Proof of Corollary 1.3. — We first review a brief outline of Fujino’s
argument in the proof of [10, 1.6], which is needed to our proof. We use the
notations in 1.2, namely the one in [10, 1.6].

Step 1. By [1, Theorem 0.3], there exist a generically finite morphism
τ : Y ′ → Y from a smooth projective variety Y ′, a normal projective
rational Gorenstein (i.e., Gorenstein canonical, see [20, 5.24]) variety X ′,
which is birational to the main component of X ×Y Y ′, and a morphism
f† : X† → Y ′ a so-called weak semi-stable reduction of f : X → Y ([1,
Definition 0.1]). For our purpose, we may suppose our resolution X ′ →
X ×Y Y ′ is also a resolution of X†. Since X† has canonical singularities at
worst, we have

f ′∗(mKX′/Y ′) ∼= f†∗(mKX†/Y ′).

Step 2. By the assumption of 1.2, the geometric generic fiber of f† : X† →
Y ′ has a good minimal model. Therefore, it has a relative good minimal
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model f̃ : X̃ → Y ′ by applying [13, 2.12]. Thus we obtain a diagram:

X̃
birat’l←−−−− X† ←−−−− X ′ −−−−→ X ×Y Y ′ −−−−→ X

f̃

y f†
y f ′

y y yf
Y ′ Y ′ Y ′ Y ′ −−−−→

τ
Y

Here the map X† 99K X̃ is merely birational, not necessarily regular. Since
X̃ has canonical singularities at worst, we have

f†∗(mKX†/Y ′) ∼= f̃∗(mKX̃/Y ′
).

Step 3. Fujino shows that f̃∗(mKX̃/Y ′
) is locally free.

We note that these three direct images f ′∗(mKX′/Y ′), f†∗(mKX†/Y ′) and
f̃∗(mKX̃/Y ′

) admit the same mNS Hermitian metric gm by 4.1. We shall
apply 1.1(2) to f† : X† → Y ′. We check the conditions (2.i) and (2.ii) at
every point 0 ∈ Y ′. The condition (2.ii); the local freeness of f†∗(mKX†/Y ′)
is already obtained above. The condition (2.i) for any given point 0 ∈
Y ′ follows from the mildness of the weak semi-stable reduction. In fact,
if we take general very ample Cartier divisors H1, H2, . . . ,Hk−1, where
k = dimY , such that C = H1 ∩ H2 ∩ . . . ∩ Hk−1 is a smooth projective
curve passing through 0, then by [1, Lemma 6.2], the induced morphism
f†C : X†C = X† ×Y ′ C → C is a weak semi-stable reduction. In particular,
X†C has only rational Gorenstein (i.e., Gorenstein canonical) singularities
(see [1, Lemma 6.1]). Moreover as the morphism f†C is toroidal by definition
of the weak semi-stability, it is a log-canonical morphism ([5, 11.4.24]), in
particular the log-canonical threshold of the pair (X†C , (f

†
C)∗(0)) is zero.

Thus we can conclude 1.3 via 1.1(2). �
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