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MAPPING CLASS GROUP DYNAMICS ON
Aff(C)-CHARACTERS.

by Selim GHAZOUANI

Abstract. — We prove that in genus bigger than 2, the mapping class group
action on Aff(C)-characters is ergodic. This implies that almost every representa-
tion π1S −→ Aff(C) is the holonomy of a branched affine structure on S, where S
is a closed orientable surface of genus g > 2.
Résumé. — Nous prouvons dans cet article qu’en genre plus grand que deux,

l’action du groupe modulaire sur les caractères affines est ergodique. Un corollaire
de ce résultat est que presque toute représentation du groupe fondamental de S
dans le groupe affine complexe est l’holonomie d’une structure affine branchée sur
S, où S est une surface fermée orientable de genre plus grand que deux.

Introduction

Let Γ be the fundamental group of a compact orientable surface S of
genus g > 2. If G is a finite dimensional reductive Lie group (typically
G = PSL(2,R) or SU(2)), one can look at the character variety χ(Γ, G)
which is defined to be the quotient Hom(Γ, G)//G, in the sense of geo-
metric invariant theory. The mapping class group of S acts on χ(Γ, G) by
precomposition, the study of this action was popularized by Goldman in
the early 80’. The most well-known result in the field, by Goldman, is that
the action is ergodic for G = SU(2) (see [6]). This result was extended
by Pickrell and Xia to the case where G is compact, see [12]. In this pa-
per we study the case G = Aff(C) = {z 7→ az + b | (a, b) ∈ C∗ × C}.
Since Aff(C) is solvable, the tools from symplectic geometry developed in
the reductive case do not apply in our setting. Moreover, the character

Keywords: ergodic theory, mapping class group, Torelli group, character variety, complex
affine group, complex branched affine structure.
Math. classification: 22D40, 20F39, 57M05.



730 Selim GHAZOUANI

variety is not defined, at least in the sense of geometric invariant theory.
This last difficulty can be avoided by defining χ(Γ,Aff(C)) to be the quo-
tient of Hom(Γ,Aff(C)) \ {abelian representations} by the action of G by
conjugation (see Section 1).
χ(Γ,Aff(C)) has a structure of fiber bundle. It comes from the iso-

morphism Aff(C) ' C∗ n C, a representation ρ : Γ −→ Aff(C) is the
data of a linear part α : Γ −→ C∗ and a translation part λ : Γ −→ C
(ρ = (α, λ) : Γ → C∗ n C) , where α is a group homomorphism and λ

is a cocyle relation twisted by α. A point in the quotient space will be
parametrized by an element in H1(S,C∗) ' (C∗)2g (the linear part) and an
element in the projectivized space of H1

α(Γ,C∗) ' CP2g−3 (the translation
part), and this parametrization gives the fiber bundle structure.
In the case where G = C (the simplest non reductive case), the charac-

ter variety is H1(S,C) ' C2g. The action of the mapping class group on
H1(S,C) (which happen to factor through the linear action of Sp(2g,Z) on
C2g) has an invariant non constant continuous function, ω 7−→ ω ∧ ω ∈
H2(S,R) ' R. Hence this action is not ergodic. (A careful study of this
action has been carried out by M.Kapovich in [9]). The main result of our
paper is:

Main Theorem. — The mapping class group action on χ(Γ,Aff(C)) is
ergodic.

The mapping class group action preserves this fiber bundle structure,
and to prove the theorem we first prove that the induced action on the
base is ergodic. Then we observe that the Torelli group stabilizes globally
the fibers, and we prove that its action is ergodic in almost every fiber.

— The action on H1(S,C∗) is actually the linear diagonal action of
Sp(2g,Z) on R2g × (R/Z)2g. Moore’s theorem gives the ergodicity.

— The Torelli group I(S) acts to preserve the fibers of the fibrations,
namely the projectivized spaces of the twisted cohomology group
H1
α(Γ,C). This action is in fact projective and thus one gets an inter-

esting family of representations of the Torelli group:

τα : I(S) −→ PGL(2g − 2,C)

In Section 3, we provide an explicit computation of the action of
a family of Dehn twists along separating curves on PH1

α(Γ,C). We
deduce from this computation that for almost all α, this action is
ergodic.

These two last points together imply the main theorem. A remarkable con-
sequence of the computation is that the mapping class group preserves no
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MAPPING CLASS GROUP DYNAMICS ON Aff(C)-CHARACTERS. 731

symplectic form. In fact it preserves no absolutely continuous measure rel-
atively to the Lebesgue measure, which contrasts with the case where G is
reductive, in which we have such a symplectic form at hand, by Goldman’s
work (see [5]).
Our original motivation was to study the holonomy of branched affine

structures. A direct corollary is that the set of representation arising as the
holonomy of such a structure is an open set of full measure of the character
variety.

Acknowledgements. — I would particularly like to thank Julien Marché
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out that the representations of the Torelli group I am considering were
originally brought to light by Chueshev, and Serge Cantat for asking me the
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and useful comments on the text.
I am extremely grateful to my advisor Bertrand Deroin who encouraged

me to get involved in mapping class group dynamics. His constant encour-
agements, advice and careful reading of this text made his contribution
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Proposition 8, but also for various comments on the substance and struc-
ture of this paper, which have rendered it much clearer.

Finally, I would like to thank the DMA at École Normale Supérieure
which gave me wonderful working conditions.

Notation. — We introduce notations that will be used all along the
paper:
— S is a closed oriented surface of genus g > 2.
— Γ is the fundamental group of the surface S.
— Aff(C) is the group of complex affine transformations of the complex

line.
— Mod(S) is the mapping class group of S.

1. Action of the mapping class group on the character
variety.

1.1. Structure of the character variety.

Let us recall the standard presentation for Γ:

Γ = 〈a1, b1, · · · , ag, bg |
g∏
i=1

[ai, bi] = 1〉

TOME 66 (2016), FASCICULE 2



732 Selim GHAZOUANI

Let ρ : Γ −→ Aff(C) be a group homomorphism. If we note ρ(ai) : z 7→
Aiz + Ui and ρ(bi) : z 7→ Biz + Vi, the following holds:

g∑
i=1

(Ai − 1)Vi + (1−Bi)Ui = 0.

Conversely, every set (Ai, Ui, Bi, Vi) ∈ C∗g × Cg × C∗g × Cg verifying the
equation above defines a representation of Γ in Aff(C). Thus Hom(Γ,Aff(C))
can be seen as an algebraic variety.
The quotient of Hom(Γ,Aff(C)) by the action by conjugation of Aff(C)

is not Haussdorf. Nevertheless, the orbits responsible for this are the or-
bits of representations which are abelian (i.e. whose image is an abelian
subgroup of Aff(C)). Removing these ones, one gets a nice quotient (see
Proposition 3).

Definition 1.1. — The character variety χ(Γ,Aff(C)) is defined to be
the quotient of Hom(Γ,Aff(C)) \ {abelian representations} by the action
by conjugation of Aff(C).

Let ρ ∈ Hom(Γ,Aff(C)) be a representation, one can look at its lin-
ear part (obtained from ρ just by post composing by the natural group
homomorphism C∗ nC −→ C∗). This allows us to define:

l : Hom(Γ,Aff(C)) −→ Hom(Γ,C∗) = Hom(H1(S,Z),C∗)

which factors through χ(Γ,Aff(C)), because two conjugate representations
have the same linear part.

Proposition 1.2. — The map L : χ(Γ,Aff(C)) −→ H1(S,C∗) is a
projective fibration with fiber CP2g−3.

Proof. — The map l restricted to Hom(Γ,Aff(C)) \ l−1({1}) is a vector
bundle with fiber C2g−1. Furthermore, for all α ∈ H1(S,C∗), l−1({α}) =
Z1
α(Γ,C) where

Z1
α(Γ,C) = {λ : Γ −→ C | ∀γ, γ′ ∈ Γ λ(γ · γ′) = λ(γ) + α(γ)λ(γ′)}

The vector space Z1
α(Γ,C) is the set of cochains of the cohomology of Γ

twisted by α. The action of Aff(C) by conjuguation stabilizes the fibers
l−1({α}) = Z1

α(Γ,C). Let ρ := z 7→ az + b and λ ∈ Z1
α(Γ,C). We have

ρ · λ = b(1 − α) + aλ, so the quotient of Z1
α(Γ,C) by the action of Aff(C)

is the projective space of Z1
α(Γ,C)/C · (1− α) = H1

α(Γ,C).

ANNALES DE L’INSTITUT FOURIER
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Take λ∈Z1
α(Γ,C). It is entirely determined by the data of λ(a1), λ(b1), · · ·

λ(ag), λ(bg) and those 2g complex numbers must satisfy the linear relation
g∑
i=1

λ(ai)(1− α(ai)) + λ(b1)(α(bi)− 1) = 0

Conversely, the data of 2g complex numbers satisfying the linear relation
above defines an element of Z1

α(Γ,C). Therefore Z1
α(Γ,C) has complex di-

mension 2g−1 and H1
α(Γ,C) has complex dimension 2g−2. Hence the fiber

is isomorphic to CP2g−3. �

Notation. — From now on, χ will be the variety of Aff(C)-characters.
Let H is a subgroup of C∗. We define

χH = {ρ ∈ χ | Im(L(ρ)) ⊂ H}

One will say that a representation ρ is
(1) unitary (or Euclidean) if it belongs to χU, where U is the set of

complex numbers of absolute value 1.
(2) real if it belongs to χR∗ .
(3) almost real if there exists a subgroup of finite index Γ′ in Γ such

that L(ρ)(Γ′) ⊂ R∗.
(4) abelian is the image of ρ is an abelian subgroup of Aff(C).
(5) strictly affine in any other case.

1.2. The Mod(S) action.

The mapping class group of a closed surface S is classically defined as

Mod(S) = Homeo+(S)/Homeo0(S)

Any element of Mod(S) defines an element of Out(Γ) = Aut(Γ)/Inn(Γ).
By a theorem of Dehn-Nielsen-Baer

Mod(S) ' Out+(Γ)

where Out+(Γ) is the subgroup of elements in Out(Γ) preserving the fun-
damental class in H2(Γ,Z).
Notice now that any element of Aut(Γ) acts on Hom(Γ,Aff(C)) by pre-

composition. This action induces an action of Out(Γ) on the character va-
riety. An important remark which will be detailed later is that this action
preserves the fiber bundle structure described in the previous section.

TOME 66 (2016), FASCICULE 2



734 Selim GHAZOUANI

Proposition 1.3.
(1) Let H be a subgroup of C∗. Then the Mod(S)-action preserves χH .
(2) The Mod(S)-action preserves the set of almost-real representations.
(3) The Mod(S)-action preserves the set of strictly affine representa-

tions.

Remark. — This action preserves no measure a priori. Still χ is a differ-
entiable manifold and even tough the Lebesgue measure is not canonically
defined, it makes sense to say that a subset A has measure zero (just say
that its Lebesgue measure in any chart is zero). In a more general setting,
an action by diffeomorphisms on a manifold will be said to be ergodic if
any invariant subset has zero measure or full measure in the sense defined
previously.

1.3. The symplectic representation.

The mapping class group acts naturally on H1(S,Z), preserving the sym-
plectic intersection form. Up to the choice of a symplectic basis of H1(S,Z),
one gets a linear representation of Mod(S) in Sp(2g,Z):

Ψ : Mod(S) −→ Sp(2g,Z).

Let us denote by I(S) the kernel of this representation. This group is usu-
ally called the Torelli group. It is the subgroup of Mod(S) acting trivially
on the homology of S.

Theorem 1.4. — The image of the symplectic representation is
Sp(2g,Z).

This theorem was originally proved by Poincaré. A modern proof of this
theorem can be found in [3].

This way Mod(S) acts on Hom(H1(S,Z),C∗) by precomposition by the
image of the symplectic representation. This means that for f ∈ Mod(S),
the following diagram commutes:

χ

L
��

f // χ

L
��

H1(S,C∗)
Ψ(f)

// H1(S,C∗)

ANNALES DE L’INSTITUT FOURIER
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1.4. The Torelli group action on the fibers.

Proposition 1.5. — The Torelli group I(S) preserves the fibers of L,
and acts on them by projective transformations.

Proof. — Let f be an automorphism whose class in Mod(S) belongs to
I(S). For any α ∈ H1(S,C∗), f acts linearly on Z1

α(Γ,C), preserving the
line generated by 1 − α. Thus f defines a linear automorphism H1

α(S,C),
and so a projective transformation of PH1

α(S,C). �

2. Ergodicity of the Sp(2g,Z)-action on (C∗)2g.

The choice of a symplectic basis a1, b1, . . . , ag, bg of H1(S,Z) identifies
H1(S,C∗) and (C∗)2g via the map

α −→ (α(a1), α(b1), . . . , α(ag), α(bg))

The exponential map identifies T2g ×R2g with H1(S,C∗) ' (C∗)2g in such
a way that the Sp(2g,Z)-action on H1

α(S,C) induces the diagonal action
by linear transformations on T2g × R2g. Recall the following theorem:

Proposition 2.1. — The Sp(2g,Z)-action on R2g is ergodic.

It is a corollary of Moore theorem, which states that if Γ is a lattice in
a semi-simple Lie group G and H is a closed non-compact subgroup of G,
then the Γ-action on G/H is ergodic. The original proof of this theorem
can be found in [11].

Proposition 2.2. — The Sp(2g,Z)-action on (C∗)2g is ergodic with
respect to the Lebesgue measure.

Proof. — Let B a Sp(2g,Z)-invariant measurable subset of T2g ×R2g of
positive measure and let A be p−1(B) where p : R2g × R2g −→ T2g × R2g

is the natural projection. A is left Z2g-invariant and diagonally Sp(2g,Z)-
invariant.

Sp(2g,R) acts transitively on the non-zero level sets of the canonical
symplectic form ω on R2g and the stabilizer in Sp(2g,R) of a couple (x, y) ∈
R2g × R2g is a non-compact closed subgroup of Sp(2g,R) (see [9, p.12] for
more details on the structure of the stabilizer). Moore theorem ensures that
Sp(2g,Z) acts ergodically on Sp(2g,R)/StabSp(2g,R){(x, y)} = ω−1({t}) for
all t ∈ R∗.
Since A is Sp(2g,Z)-invariant, it must be, up to a measurable sub-

set of measure zero, a union of level sets of the symplectic form. Hence

TOME 66 (2016), FASCICULE 2



736 Selim GHAZOUANI

A = ω−1(I) where I ⊂ R is a measurable subset. Since A has positive
measure, by Fubini theorem I must have positive measure. Let α be any
real number and t ∈ I a density point(which exists according to Lebesgue
regularity lemma). Then there exists a couple (x, y) in ω−1({t}) and a vec-
tor ~k ∈ Z2g such that ω(~k, y) = α. Since A is a union of level sets of the
symplectic form, (x, y) is a density point of A. Translations on the first
factor preserve the Lebesgue measure, so (x+ ~k, y) is also a density point.
By Fubini theorem, ω(x+~k, y) = t+α must be a density point of I. α has
been chosen arbitrarily so I must be equal to R. Hence A is all R2g ×R2g,
therefore the Sp(2g,Z) action on T2g × R2g is ergodic. �

3. The Torelli group action on PH1
α(Γ,C) .

Let us fix once and for all a point p ∈ S in such a way that we iden-
tify π1(S, p) and Γ. Any diffeomorphism f of S fixing the point p defines
canonically an automorphism of Γ whose class in Out(Γ) is the class of f∗
in Mod(S). In all this section, α is a non-trivial element of H1(S,C∗).

3.1. Action of a Dehn twist on H1
α(Γ,C)

Proposition 3.1. — Any Dehn twist along a separating curve belongs
to I(S).

This is a classical result, whose proof can be found in [3].
We now explain how one can make an effective computation of the action

of a Dehn twist along a separating curve.

Lemma 3.2. — Let δ be a separating curve in S such that p ∈ δ, and
let [δ] ∈ π1(S, p) be a representative of the free homotopy class of δ. Let Tδ
be the Dehn twist along δ. Then there exists µ ∈ Z1

α(π1(S, p),C) such that
for all [γ] ∈ π1(S, p) and λ ∈ Z1

α(π1(S, p),C)

λ(Tδ([γ])) = µ([γ])λ([δ]) + λ([γ])

Proof. — Let p ∈ S be the base point of π1S. We assume that all closed
curves will be based at p, unless explicitly mentioned. Let [γ] be a class in
π1S and γ ∈ [γ] such that γ intersects δ transversally. Let q1, . . . , qk be the
intersection points of γ and δ in the order along γ. Let q0 = p.

ANNALES DE L’INSTITUT FOURIER
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Let βi be the closed curve going from p to qi through γ and going
through δ (in the positive direction if (−1)i+1 = 1 or in the negative sens
if (−1)i+1 = −1) until p. Hence:

Tδ([γ]) = [γ][βk]−1[δ](−1)k+1
[βk] · · · [β2]−1[δ]−1[β2][β1]−1[δ][β1]

= [γ]
1∏
i=k

[βi]−1[δ](−1)i+1
[βi]

To see this, one just notices that the image of γ through Tδ is a closed
path obtained by following γ from p to the first intersection point q1,
then following δ in the positive direction until coming back to q1, then
following γ between q1 and q2, then following δ in the negative direction
until coming back to q2, etc. This path can be deformed into
γβ−1

k δ(−1)k+1
βk · · ·β−1

2 δ−1β2β
−1
1 δβ1, adding a path going from qi to p

through γ in the negative direction and then coming back to qi from p

in the positive direction, right after each time the path travels across δ .
We now compute λ(Tδ([γ]))

λ(Tδ([γ]) = λ([δ]
1∏
i=k

[βi]−1[δ](−1)i+1
[βi])

Since δ is separating, α([δ]) = 1. Using the fact that λ is a cocyle (i.e. for
all classes [γ1], [γ2] ∈ π1(S, p), λ([γ1] · [γ2]) = λ([γ1]) + α([γ1])λ([γ2])), one
finds

λ(Tδ([γ]) = λ([γ]) + λ([δ])α([γ]) ·
k∑
i=1

(−1)i+1α([βi])

and µ(γ) = α(γ)
∑n
i=1 (−1)i+1α−1([βi]). It remains to check that µ is an

element of Z1
α(π1(S, p),C) which can be seen by remarking that the image

under Tδ of the product of two closed curves is the product of their images
and computing using the formulas above. �

3.2. Action of a subgroup generated by two Dehn twists.

Let us consider the curves δ1 and δ2 from Figure 1. The Dehn twists
along those curves generate a subgroup G ⊂ I(S).

Let Ti be the automorphism of Γ induced by the Dehn twist along δi.
Ti acts on Z1

α(Γ,C) preserving the line generated by (1 − α). Lemma 3.2
ensures that the left action of T−1

i is T−1
i · λ = λ ◦ Ti = λ + ϕi · µi where

µi ∈ Z1
α(Γ,C) and ϕi is the linear form λ 7→ λ([δi]), verifying ϕi(µi) = 0.

a1 and a2 are the curves drawn on Figure 1.

TOME 66 (2016), FASCICULE 2



738 Selim GHAZOUANI

Figure 3.1. The curves δ1,δ2, a1 and a2.

Proposition 3.3.
(1) µ1(δ1) = (1− α(a1)−1) · (1− α(a2)−1)
(2) µ2(δ2) = (1− α(a1)) · (1− α(a2))
(3) µ1(δ1) = 0
(4) µ2(δ2) = 0

Proof. — The two last inequalities follow directly from the fact that a
simple closed curve does not self-intersect.

Write µ1(δ2) =
∑n
i=1 ε(i)α−1([βi]) according to Proposition 3.3. Let us

compute the βi using the algorithm described in the proof of Lemma 3.2.
β1 is null-homotopic since δ1 and δ2 first intersect at p.

Figure 3.2. Combinatorics of the intersections between δ1 and δ2

β2 is the curve built following δ2 from p to q2 then going to p following
δ1. This gives the following curve:

ANNALES DE L’INSTITUT FOURIER
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Figure 3.3. The curve β2

The curve β2 is homologuous to a−1
1 . Proceeding with the algorithm, one

finds:
— β1 is homologuous to 0.
— β2 is homologuous to a−1

1 .
— β3 is homologuous to a−1

1 a−1
2 .

— β4 is homologuous to a−1
2

This gives µ1(δ2) = 1− α(a1) + α(a1)α(a2)− α(a2). A likewise calculation
gives the value of µ2(δ1). �

Proposition 3.4. — [µ1] and [µ2] ∈ H1
α(Γ,C) form a basis of H1

α(Γ,C)
for all α in a dense set open set of full measure.

Proof. — Assume there exists constants a, b, c such that

aµ1 + bµ2 + c(1− α) = 0

Evaluating on δ1 and δ2 , one finds 0 = aµ1(δ2) = bµ2(δ1). For α in a dense
open set of full measure(the set of α such that (1− α(a1)−1)(1− α(a2)−1)
and (1− α(a1))(1− α(a2)) do not vanish), a = b = 0, and so c = 0. �

Matrices of T−1
1 and T−1

2 in this basis are:(
1 (1− α−1(a1))(1− α(a2)−1)
0 1

)
,

(
1 0

(1− α(a1))(1− α(a2)) 1

)

3.3. A criterion for ergodicity.

Lemma 3.5 (Jorgensen). — If two matrices A and B generate a non-
elementary discrete subgroup of PSL(2,C) then

|Tr(A)2 − 4|+ |Tr(ABA−1B−1)− 2| > 1

TOME 66 (2016), FASCICULE 2
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This lemma is proven in [8].

Let us compute the quantity of the lemma forA=
(

1 a

0 1

)
andB=

(
1 0
b 1

)
.

Tr(ABA−1B−1) = 2 + (ab)2

Tr(A) = 2
So if A and B generate a non-elementary subgroup and if |ab| < 1,

〈A,B〉 is not discrete. One the other hand, it is clear that when a and b are
nonzero, the group generated by A and B is non-elementary. In that case,
A acts by translations on CP1, the only point of finite orbit for A is the
point at infinity. But since b 6= 0, B sends the point at infinity on 0 which
has infinite orbit for the action of A.

Proposition 3.6. — If H is a non-discrete and non-elementary sub-
group of SL(2,C), then H is either all SL(2,C) or conjugate to SL(2,R), a
Z/2Z-extension of SL(2,R), SU(2) or a finite extension of SU(2).

This proposition can be found in [10](p.69).

Lemma 3.7. — Let H be a subgroup of SL(n+1,C) such that the action
of H on CPn is transitive. Then the action of H on CPn is ergodic.

Proof. — This lemma is a consequence of Lebesgue regularity lemma.
�

4. Proof of the main theorem in genus 2.

The set U of elements α ∈ H1(S,C∗) such that |(1 − α(a1))(1 − α(a2))
(1 − α(a1)−1)(1 − α(a2)−1)| < 1 and (1 − α(a1))(1 − α(a2))(1 − α(a1)−1)
(1 − α(a2)−1) /∈ R has positive measure (it contains an open set of (C∗)4

with 2 analytic submanifolds of codimension 1 removed). According to
Proposition 8, the mapping class group action on H1(S,C∗) ' (C∗)4 is
ergodic, hence V = Mod(S) · U has full measure.

Proposition 4.1. — For all α ∈ V , the Torelli group action on
PH1

α(Γ,C) is ergodic.

Proof. — Consider α ∈ V . Then there exists β ∈ U and φ ∈ Mod(S) such
that φ · β = α. Recall that G ⊂ I(S) is the group generated by the Dehn
twists along δ1 and δ2. Precomposing by φ gives a projective isomorphism:

φ∗ : PH1
β(Γ,C) −→ PH1

α(Γ,C)

ANNALES DE L’INSTITUT FOURIER
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such that the action of the groups G and φGφ−1 (on PH1
β(Γ,C) and

PH1
α(Γ,C) respectively) are conjugated by φ∗. If β ∈ U , the G-action

on PH1
β(Γ,C) ' CP1 is the action of a group with identity component

of the closure isomorphic to PSU(2) or PSL(2,C) (we have assumed that
(1 − α(a1))(1 − α(a2))(1 − α(a1)−1)(1 − α(a2)−1) /∈ R, hence the traces
of the element of G acting on CP1 do not all belong to R, according to
the computation made above. Hence one can exclude that the closure is
isomorphic to PSL(2,R) or a Z/2Z-extension of PSL(2,R)) . Lemma 3.7
ensures that this action is ergodic, so the φGφ−1 action on PH1

α(Γ,C) is
ergodic since it is conjugated to G through a projective isomporhism. �

One can take as the Lebesgue measure on χ\L−1({1}) the measure m =
µ ⊗ να where µ is the Lebesgue measure on H1(S,C∗) and (να)α∈H1(S,C∗)
is a family of measures on PH1

α(Γ,C) depending analytically on α.
We are now ready to end the proof of the main theorem in genus 2. Let A

be a Mod(S)-invariant measurable subset of χ \L−1({1}). If µ(L(A)) = 0,
thenm(A) = 0. Thus we can assume µ(L(A)) > 0. Since the Mod(S) action
on H1(S,C∗) is ergodic, L(A) has full measure. Put Aα = A ∩ PH1

α(Γ,C).
Fubini theorem implies that

m(A ∩B) =
∫
L(A∩B)

να(Aα ∩B)dµ

where B is any measurable subset of χ \ L−1({1}).
Ifm(A) > 0, there exists ε > 0 and a set with positive measureW ⊂ L(A)

for which ∀α ∈W , να(Aα) > ε. Remind that the set V has full measure so
µ(W ∩ V ) > 0. Since µ(W ∩ V ) > 0, Mod(S) · (W ∩ V ) has full measure.
But if α ∈ Mod(S) · (W ∩ V ) ⊂ V , να(Aα) > 0 because it contains the
image of a Aβ of a map φ ∈ Mod(S) sending β on α for a certain β

in W ∩ V . But since α belongs to V , να(Aα) > 0 and the Torelli group
action on PH1

α(Γ,C) is ergodic, Aα has full measure. So for almost all α,
να(Aα ∩B) = να(PH1

α(Γ,C) ∩B) and

m(A ∩B) = m(B)

So A has full measure, which proves that the action is ergodic.

5. Higher genus.

We proved in section 2 that the mapping class group action on H1(S,C∗)
is ergodic. In genus bigger than 2, the strategy is still to study the Torelli
group action in the fibers PH1

α(Γ,C). To be more precise, we prove that for
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almost all α, this action is ergodic giving explicit formulas for the action
of some specific Dehn twists. Let p ∈ S be the base point of π1S = Γ. Any
diffeomorphism f fixing p whose action on H1(S,Z) is trivial acts linearly
on H1

α(Γ,C) in such a way that the action of the class of f in Mod(S) is the
projectivized action of f on PH1

α(Γ,C). In this section we prove that we
can find a subgroup of diffeomorphisms fixing p whose action on H1

α(Γ,C)
is ergodic.
In a way similar to genus 2, one builds 2g− 2 curves (δi, ηi)16i6g−1 with

the following properties:

(1) For all i 6= j,the curve δi (respectively ηi) is disjoint from the curves
δj and ηj .

(2) For a generic α ∈ H1(S,C∗) (in an open dense subset of full
measure), the classes [µ1], [ν1], · · · , [µg−1], [νg−1] form a basis of
H1
α(Γ,C).

(3) Both the action of Tδi
and Tηi

stabilize the projective line associated
to the plane [µi], [νi].

(4) The group generated by Tδi
and Tηi

acts projectively, the action
is ergodic on the stabilized projective line for all i and for α in an
open set.

(5) The g − 1 groups Gi = 〈Tδi
, Tηi
〉 commute, this way the G =

G1 · · ·Gg−1 action is a diagonal action on C2g−2 ' H1
α(Γ,C).

Take the genus 2 surface from Figure 1 and cut it twice along simple closed
curves, in a way to get a four holed sphere with boundary:
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Take g − 1 copies of this sphere, S1, S2, . . . , Sg−1, each one carrying 2
marked simple closed curves δi and ηi. Let us glue them back along the
following pattern:

......

This way one gets a genus g surface with the announced family of curves.
For δ1, let δ̃1 be the curve built going from p to δ1 through the chosen path,
doing one turn of δ1 and coming back to p. One builds for each δi and ηi a
curve δ̃i and η̃i in a similar way. Let i 6= 1, Tδi

(δ̃1) = γδ̃1γ
−1 for some γ ∈ Γ

homologuous to δi. γ ∈ DΓ since δi is separating, so for all λ ∈ H1
α(Γ,C),

λ(Tδi
(δ̃1)) = λ(δ̃1).

The same way one can define, associated to δ̃i, η̃i the cocycles µi, νi such
that:

T−1
δi
· λ = λ+ λ(δ̃i)µi

T−1
ηi
· λ = λ+ λ(η̃i)νi

for all λ ∈ H1
α(Γ,C).

Let us assume from now on that α is generic in the following sense: the
field generated by the images of α has transcendental dimension 2g. The
set of such α has full Lebesgue measure.
Proposition 5.1.
(1) For all i, there exist two homology classes ai and bi such that

— µi(ηi) = (1− α(ai)) · (1− α(bi))
— νi(δi) = (1− α(ai)−1) · (1− α(bi)−1)
— µi(δi) = 0
— νi(ηi) = 0

(2) The classes [µ1], [ν1], · · · , [µg−1], [νg−1] span H1
α(Γ,C).

(3) For all 1 6 i 6 g − 1, the action of the group Gi spanned by Tδi

and Tηi
stabilizes the vector space spanned by [µi] and [νi].

Proof.
(1) The first point is exactly Proposition 3.3 extended to higher genus.

The proof works the same way, applying Lemma 3.2.
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(2) One writes a relation of linear dependence:∑
i

uiµi + viνi = k(1− α)

Evaluating in δ̃i and η̃i, one finds that all the coefficients ui et vi
are zero, which implies k = 0.

(3) Last point is a direct consequence of the remarks above the propo-
sition. If i 6= j, then µi(Tδi

δ̃j) = µi(δ̃j), but since δ̃j is homotopic
to a curve disjoint from δi, µi(δ̃j) = 0. It works the same with the
curves ηi, in such a way that the vector space spanned by the [µi]
and [νi] is stabilized by the action of Gi = 〈Tδi

, Tηi
〉. �

Figure 5.1. The curves δi, ηi on a genus 4 surface.

We now have everything we need to prove:

Theorem 5.2. — The action of the mapping class group on χ is ergodic
in genus g > 2.

Proof. — Let G be the group generated by the Tδi
, Tηi

. G = G1 × · · · ×
Gg−1 since the Gi commute. The Gi action on the vector subspace spanned
by [µi] and [νi] is the action of the group spanned by the matrices:(

1 (1− α(ai))(1− α(bi))
0 1

)
,

(
1 0

(1− α(ai)−1)(1− α(bi)−1) 1

)
Applying Jorgensen’s lemma, there exists an open set U of H1

α(Γ,C) for
which for all i, the action of Gi on the vector space spanned [µi] and
[νi] est ergodic (since the action of its closure is transitive). This implies
(according to Fubini’s theorem) that the action of G on H1

α(Γ,C) is ergodic,
hence the action of the Torelli group is ergodic on PH1

α(Γ,C) for α ∈ U .
Proposition 4.1 implies it is ergodic on PH1

α(Γ,C) for α in a dense subset of
full measure. Applying Fubini theorem and using the fact that the action
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of Mod(S) is ergodic on H1(S,C∗), one finds that the action of Mod(S) on
χ is ergodic. �

Corollary 5.3. — There is no measure in the class of Lebesgue mea-
sure on χ(Γ,Aff(C)) invariant by the action of the mapping class group. In
particular, there is no invariant symplectic form.

Proof. — This follows directly from the fact that for almost all α ∈
H1(S,C∗), the Torrelli group acts on PH1

α(Γ,C) through elements of
PGL(H1

α(Γ,C)) having attracting fixed points in PH1
α(Γ,C). �

6. Euclidean characters.

Let us look at the action of the mapping class group on χU.
Let ρ : Γ −→ Aff(C) be a Euclidean representation (whose linear part

ranges in the set of complex number of absolute value 1). One can naturally
associate to ρ a flat C-bundle over S the following way: let S̃ be a universal
cover of S, Γ acts on S̃ × C:

γ · (x, z) = (γ · x, ρ(γ)(z))

The bundle associated to ρ is the quotient Fρ = S̃ × C/Γ. The foliation
S̃ × C (whose leaves are the S̃ × {·}) factors through the quotient and
defines a flat connection. Note that this construction can be made for any
representation ρ : Γ −→ Homeo(C).

Whenever ρ is Euclidean, one can define a volume form µx , x ∈ S on
the fibers since the standard volume form on E = S̃ × C is preserved by
the action of Γ, since ρ is Euclidean. One can define for each x ∈ S a
volume form µx on the fiber over x, to get a 2-form ω defined on the whole
total space. Moreover the form ω is closed, since it is the form is dz in the
coordinates (x, z).

Proposition 6.1. — Let s be a section of the bundle Fρ.

v(ρ) =
∫
S

s∗ω

does not depend on the choice of the section s. It is the volume of the
representation ρ.

Proof. — E being convex, two sections s1 and s2 are homotopic through
st. Notice that

∫
S
s∗ω is the volume of the graph of ρ. The proposition is

a corollary of Stokes theorem applied to the image of the homotopy st in
[0, 1]× Fρ. �
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The volume defines a function v : Hom(Γ, Iso+(C)) −→ R. Let us study
the restriction of this function to Z1

α(Γ,C) for a given α 6= 1. The volume
of a cocycle λ ∈ Z1

α(Γ,C) is the volume of the associated representation.
This form can also be defined in a entirely homological way. If α and β

are two elements of H1(S,U), one can define an algebraic product:

∧ : H1
α(Γ,C)×H1

β(Γ,C) −→ H2
αβ(Γ,C)

where H2
αβ(Γ,C) is the second group of the cohomology of Γ twisted by

αβ. H2
α(Γ,C) = 0 as soon as α 6= 1. The bilinear form

∧α : H1
α(Γ,C)×H1

α(Γ,C) −→ C
(λ, µ) 7−→ λ ∧ µ

identifying canonically H2(Γ,C) and C. See [2] for more details (where
everything is done is the case of holed spheres, nevertheless it still holds in
our setting).

Proposition 6.2. — Take α ∈ H1(S,C∗)
(1) For λ ∈ Z1

α(Γ,C), v(λ) only depends on the class of λ in H1
α(Γ,C).

(2) The induced function v : H1
α(Γ,C) −→ R is a non-degenerate Her-

mitian form.
(3) For all α the signature of the form is (g − 1, g − 1).

Proof.
(1) Remark that if f := az + b ∈ Aff(C) , the map

Ψ : S̃ × E −→ S̃ × E
(x, z) 7−→ (x, f(z))

induces an affine isomorphism between the bundles Fρ and Ffρf−1

for any representation ρ. From the definition of the forms ω one
gets

Ψ∗ωρ = |a|2ωfρf−1

Any two representations define the same element in H1
α(Γ,C) if and

only if they are conjugated by a translation. In this case, they have
the same volume. The formula above ensures that v is a Hermitian
form.

(2) The fact that the form is non degenerate is just Poincaré duality in
twisted cohomology.

(3) Assume α is real. Then conjugation is an order 2 endomorphism of
H1
α(Γ,C) such that v(λ) = −v(λ) for every λ ∈ H1

α(Γ,C). Since v is
non-degenerate, its signature is (g− 1, g− 1). An argument of con-
nectivity extends the property to arbitrary α. To make this work
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one needs to see that the signature of the form is continuous in α.
Notice that this form can be seen as the volume form of Euclidean
surfaces with branched points. On the open set of those α who can
be realized as the linear holonomy of a flat structure with branched
points, the signature is continuous since the volume form is contin-
uous. But this set can easily be shown to be all H1(S,U) \ {1}. �

Let χ+
U (reps. χ

−
U and χ0

U) be the subset of χU defined as the set of repre-
sentations whose volume is positive (reps. negative and null). χ+

U and χ−U
are invariant subsets of χU under the action of the mapping class group,
both of positive measure for the Lebesgue measure on χU.

Proposition 6.3.

(1) The action of the mapping class group preserves χ+
U , χ

−
U and χ0

U.
(2) For all α ∈ H1(S,U) different from {1}, the Torelli group acts on

PH1
α(Γ,C) by transformations belonging to PU(∧α).

Proof. — Just let a lift of a diffeomorphism to S̃ fixing a base point act
on S̃ ×E to see that two representations differing from f∗ define the same
volume form. �

The representation of the Torelli group
in the case of punctured spheres.

We have defined a family of representation indexed by H1(S,U) of the
Torelli group in PU(∧α) ' PU(g−1, g−1). Very little is known about this
representation except for the fact that for almost all parameters, its image
is not discrete. This family was originally discovered by Chueshev in the
early 90’s, see [1]. Now assume that S has a finite number of punctures.
One can still build a Hermitian form on H1

α(Γ,C): Veech shows in [13] that
the signature of the ∧α depends on α. Moreover, one can pick α in order
that ∧α has signature (1, n). The Torelli group still defines a representation
in PU(1, n).

It is an important question in complex hyperbolic geometry to build
lattices in the isometry group of complex hyperbolic space. It is natural
here to ask if these representations might lead to new constructions of
lattices in PU(1, n).
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7. Link with branched affine structures and open
problems.

The original framework of this work was the study of affine branched
structures, especially their holonomy representations. A complex projective
structure on a surface S is an atlas of charts in CP1 where the transition
maps are the restriction of elements in PSL(2,C) = Aut(CP1). One can
also think of a projective structure as a (CP1,PSL(2,C))-structure in the
sense of (X,G)-structures defined by Thurston. If S is a surface endowed
with a projective structure, one can pull this structure back to its universal
cover S̃, in such a way this structure factors through the quotient S = S̃/Γ
(meaning that Γ acts on S̃ by automorphisms of the projective structure).
Since S̃ is simply connected, any projective chart can be fully extended to
S̃. This defines a local diffeomorphsim

dev : S̃ −→ CP1

which is unique up to postcomposition by an element of PSL(2,C). Since
the structure factors trough, there exists a morphism hol : Γ −→ PSL(2,C)
called the holonomy such that for every γ ∈ Γ and x ∈ S̃ we have

dev(γ · x) = hol(γ)(dev(x))

Given (X,G), one might ask what are the group homomorphisms which
can arise as the holonomy map of a (X,G)-structure.

Translations surfaces and periods of abelian differentials.

A translation surface is an atlas of charts in C with transition maps being
translations. Since such structures can only arise when S is a torus, one has
to allow singularities: a finite set of points can carry a conical structure with
angle being a integer multiple of 2π. See [14] for a survey on the subject.
The holonomy map of such a structure is a morphism ω : Γ −→ C which
factors through ω : H1(S,Z) −→ C since C is abelian. In this case, the
holonomy problem is totally solved since the 20’s (see [7]) by the following
theorem:

Theorem 7.1 (Haupt, 1920). — An element ω ∈ Hom(H1(S,Z),C) =
H1(S,C) is the holonomy map of a translation surface (or equivalently is
the periods of an abelian differential over a Riemann surface) if and only
if the two following conditions hold:
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(1) I(ω) · R(ω) > 0, where I(ω) and R(ω) are respectively the imagi-
nary and real part of ω.

(2) If the image of ω in C is a lattice Λ, then

I(ω) · R(ω) > vol(C/Λ)

A proof of this theorem using mapping class group dynamics has been
given in [9].

Holonomy of complex projective structures.

The holonomy problem is also solved in the case of complex projective
structures. Let us recall the theorem due to Gallo, Kapovich and Marden
(see [4]):

Theorem 7.2. — A group homomorphism ρ : Γ −→ PSL(2,C) is the
holonomy of a complex projective structure if and only if the two following
conditions hold:

(1) ρ lifts to SL(2,C).
(2) The image of ρ is a non-elementary subgroup of PSL(2,C).

We also can also allow the projective structure to carry singular points
which are locally branched projective coverings. Translation surfaces are
particular cases of branched projective structures, whose holonomy lives in
the subgroup of translations. In this case the holonomy problem is answered
by Haupt’s theorem. Now one can look at complex affine structures, which
are (C,Aff(C))-structures with branched points.

Complex (branched) affine structures, holonomy and open
problems.

A complex affine structure is defined to be a Riemann surface S with an
non constant holomorphic function

dev : S̃ ' H −→ C

equivariant with respect to a representation ρ : Γ −→ Aff(C). One can
check that this definition is equivalent to the usual definition with charts
and transition maps living in Aff(C). We ask the following question: which
representation ρ : Γ −→ Aff(C) can be realized as the holonomy map of a
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branched complex affine structure ? A nice argument of Ehresmann popu-
larized by Thurston ensures that the set of geometric holonomies (which are
realized by a branched affine structure) is an open subset of the character
variety. Another remark is that whenever a representation can be realized
as a holonomy map, its entire orbit under the mapping class group action
can also be realized as holonomy maps. Hence we have a nice corollary of
Theorem 5.2:

Corollary 7.3. — The subset of χ(Γ,Aff(C)) consisting of represen-
tations which can be realized by a branched complex affine structure is an
open set of full measure.

We give here a list of questions arising from the study of these affine
structures which seem interesting to the author:

(1) Characterize the representations which are the holonomy of a
branched affine structure.

(2) Build explicit models realizing a given holonomy.
(3) Describe more precisely the action of the mapping class group on

χ and χ+
U . Does there exists an analogous theorem to Ratner’s, or

is it possible to find an orbit whose closure is not homogeneous ?
(4) Study the dynamics of the directional foliation in the case where

the holonomy lies in R∗ n C. Can phenomena different from those
known in the case of translation surfaces happen ?

(5) Study the family of representations of the Torelli group τα : I(S)−→
PGL(2g−2,C). For which parameter α is the image of the represen-
tation discrete ? When α is unitary, can one build this way lattices
in PU(g − 1, g − 1) ?

(6) Explore the case where the singularities are arbitrary.
(7) Study the dynamics of the isoholonomic foliation of the moduli

space of branched affine complex structures. Is it ergodic ?
Recall that a strictly affine representation is a nonabelian representation

which is not unitary and whose angles of linear parts generate an infinite
subgroup of R/Z. About the holonomy problem, the following conjecture
seems reasonable:

Conjecture 7.4. — Every strictly affine representation is the holo-
nomy of a branched affine structure.
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