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LATTICE POLARIZED IRREDUCIBLE HOLOMORPHIC
SYMPLECTIC MANIFOLDS

by Chiara CAMERE (*)

Abstract. — We generalize lattice-theoretical mirror symmetry for K3 sur-
faces to lattice polarized higher dimensional irreducible holomorphic symplectic
manifolds. In the case of fourfolds of K3[2]-type we then describe mirror families of
polarized fourfolds and we give an example with mirror non-symplectic involutions.
Résumé. — On généralise la construction de la symétrie miroir des surfaces K3

aux variétés irréductibles holomorphes symplectiques X polarisées par un réseau.
Dans le cas des variétés de type K3[2] on étudie la famille miroir des variétés pola-
risées et on généralise la notion de couple d’involutions non-symplectiques miroirs.

1. Introduction

One striking prediction about geometrical objects coming from physics is
the mirror conjecture. Mirror symmetry for holomorphic symplectic man-
ifolds has already been studied by Verbitsky in [24], where he shows that
general non-projective holomorphic symplectic manifolds are mirror self-
dual; nothing is known about projective holomorphic symplectic manifolds
apart for the two-dimensional case of K3 surfaces.

In [7] Dolgachev, based on former work by Pinkham [22] and Nikulin [19],
develops a mirror construction for lattice polarized projective K3 surfaces.
First of all, he defines a moduli space MM parametrizing M -polarized
K3 surfaces, i.e. those S for which M is primitively embedded in Pic(S).

Keywords: lattice polarized irreducible holomorphic symplectic manifold, mirror sym-
metry, lattice polarized hyperkähler manifold, mirror involution.
Math. classification: 14J15, 32G13, 14J33, 14J35.
(*) This work was developed while the author was a member of the DFG Research
Training Group “Analysis, Geometry and String Theory” and of the Institute of Alge-
braic Geometry at Leibniz University Hannover, whose support the author gratefully
acknowledges.
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Then he shows that, whenever there is a decomposition M⊥ ∩H2(S,Z) =
U(m)⊕M̌ , where U is the standard hyperbolic lattice and m is an integer,
then MM̌ is a mirror moduli space: its dimension equals the Picard number
of the very general member of MM and vice versa. Moreover, the Griffiths–
Yukawa coupling Y : S2(H1(S, TS)) → H0,2(S)⊗2 is a symmetric pairing
and for some open subset U of a compactification of MM near a boundary
point, it can be identified with the quadratic form on M̌ ⊗ C. Finally, the
period map of K3 surfaces induces a holomorphic multivalued map, the
mirror map, from the open set U above to the tube domain Pic(X ′)R+iKX′ ,
where X ′ ∈MM̌ and KX′ is its Kähler cone.
Interesting examples of such a duality are given by Dolgachev, e.g. mir-

ror partners of polarized K3s and Arnold’s Strange Duality, and also by
Borcea [5] and Voisin [26], who introduced the notion of mirror non-
symplectic involutions. Later Gross and Wilson, in [12], related mirror sym-
metry for K3 surfaces to Strominger–Yau–Zaslow’s conjectural construction
of T -duality for Calabi–Yau threefolds.

In this paper we generalize the definition of this lattice-theoretical mir-
ror construction to higher dimensional irreducible holomorphic symplectic
manifolds. After reviewing the basic notions of lattice theory and of the
theory of hyperkähler manifolds, in Section 3 we construct moduli spaces
of marked lattice polarized irreducible holomorphic symplectic manifolds
and study their period domains. Given a hyperkähler manifold X of type
L, i.e. H2(X,Z) = L, and a primitive embedding j : M ⊂ L with M of
signature (1, t), we define a coarse moduli spaceMM,j of irreducible holo-
morphic symplectic (M, j)-polarized manifolds of type L; the main result
of the paper is the following

Theorem 1.1. — Let M+
M,j be a connected component of MM,j ; the

period map restricts surjectively to PM,j : M+
M,j → D+

M where D+
M is a

symmetric homogenous domain of type IV.

Then in Section 4 we show how the theory in [7] carries through to higher
dimensions: we define mirror moduli spaces so that they share the same
properties mentioned above; roughly speaking, this duality exchanges the
complex and the Kähler structure of the manifolds. In the case of fourfolds
of K3[2]-type we then describe mirror families of polarized fourfolds and we
generalize also the notion of mirror non-symplectic involutions in Section 5.

Acknowledgements. — The author wants to thank Klaus Hulek for sug-
gesting this problem and for many enlightening discussions. She is also
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grateful to Samuel Boissière and Alessandra Sarti for their precious com-
ments and to Igor Dolgachev for his kind interest and for his remarks. She
also wants to express her gratitude to the referee for the careful reading
and the suggestions.

2. Preliminary notions

2.1. Lattices

A lattice L is a free Z-module equipped with a nondegenerate symmetric
bilinear form (·, ·) with integer values. Its dual lattice is L∗ := HomZ(L,Z)
and can also be described as L∗ ∼= {x ∈ L ⊗ Q | (x, v) ∈ Z ∀v ∈ L}.
Since L is a sublattice of L∗ of the same rank, the quotient AL := L∗/L is
a finite abelian group, so-called discriminant group, of order discr(L), the
discriminant of L. We denote by `(AL) the minimal number of generators
of AL (i.e. the length of AL). In a basis {ei}i of L, if M := ((ei, ej))i,j is a
Gram matrix, one has discr(L) = |det(M)|.
A lattice L is called even if (x, x) ∈ 2Z for all x ∈ L. In this case, the bi-

linear form induces a finite quadratic form qL : AL −→ Q/2Z. If (t(+), t(−))
is the signature of L⊗R, the triple of invariants (t(+), t(−), qL) characterizes
the genus of the even lattice L (see [6, §7, Ch. 15], [20, Corollary 1.9.4]).
A lattice L is called unimodular if AL = {0}. An embedding of a sub-

lattice i : M ⊂ L is called primitive if L/i(M) is a free Z-module. If L is
unimodular and M ⊂ L is a primitive sublattice, then M and its orthogo-
nal M⊥ in L have isomorphic discriminant groups and qM = −qM⊥ . When
L is no longer unimodular, the picture becomes more complicated, and the
following result helps with finding all non-isomorphic primitive embeddings
of M .

Theorem 2.1 ([20, Proposition 1.15.1]). — The primitive embeddings
ofM with invariants (m(+),m(−), qM ) into an even lattice L with invariants
(t(+), t(−), qL) are determined by the sets (HM , HL, γ;K, γK) satisfying the
following conditions:

• HM is a subgroup of AM ,HL is a subgroup of AL and γ : HM → HL

is an isomorphism of groups such that for any x ∈ HM , qL(γ(x)) =
qM (x).

• K is a lattice of invariants (t(+)−m(+), t(−)−m(−), qK) with qK =
((−qM )⊕ qL)|Γ⊥/Γ, where Γ is the graph of γ in AM ⊕ AL, Γ⊥ is
the orthogonal complement of Γ in AM ⊕ AL with respect to the

TOME 66 (2016), FASCICULE 2



690 Chiara CAMERE

bilinear form induced on AM ⊕AL and with values in Q/Z; finally
γK is an automorphism of AK that preserves qK . Moreover K is
the orthogonal complement of M in L.

Two such sets, (HM , HL, γ;K, γK) and (H ′M , H ′L, γ′;K ′, γK′), determine
isomorphic primitive embeddings if and only if

(1) HM = H ′M ;
(2) there exist ξ ∈ O(qL) and ψ : K → K ′ isomorphism for which

γ′ = ξ ◦ γ and ψ̄ ◦ γK = γK′ ◦ ψ̄, where ψ̄ is the isomorphism of the
discriminant forms qK and qK′ induced by ψ.

In this paper U will be the unique even unimodular hyperbolic lattice
of rank two and Ak, Dh, El will be the even, negative definite lattices as-
sociated to the Dynkin diagrams of the corresponding type (k > 1, h > 4,
l = 6, 7, 8). For d ≡ −1 (4), the following negative definite lattice will be
used in the sequel

Kd :=
(
−(d+ 1)/2 1

1 −2

)
Moreover, L(t) denotes the lattice whose bilinear form is the one on L

multiplied by t ∈ N∗.
We recall the following result by Nikulin on splitting of lattices.

Theorem 2.2 ([20, Theorem 1.13.5]). — Let L be an even indefinite
lattice of signature (t(+), t(−)) and assume that t(+) > 0 and t(−) > 0.
Then:

(1) If t(+) + t(−) > 3 + `(AL), then L ∼= U ⊕ W for a certain even
lattice W .

(2) If t(−) > 8 and t(+) + t(−) > 9 + `(AL), then L ∼= E8 ⊕W ′ for a
certain even lattice W ′.

Finally, recall that the divisor div f of a primitive element f ∈ L is the
generator of the ideal (f, L) in Z.

Theorem 2.3 ([23, Prop. 3.7.3, Eichler’s criterion]). — If L contains
U ⊕ U , then, given two primitive elements f, f ′ ∈ L such that f2 = (f ′)2

and div f = div f ′, there is an isometry σ ∈ O(L) such that σ(f) = f ′.

2.2. Irreducible holomorphic symplectic manifolds

Irreducible holomorphic symplectic manifolds, also called hyperkähler
manifolds, have received a growing interest since it is known that if X is a

ANNALES DE L’INSTITUT FOURIER
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compact simply connected Kähler manifold with c1(X)R = 0, then there is a
finite étale cover of X that is a product of manifolds of three different types,
namely complex tori, Calabi–Yau’s and irreducible holomorphic symplectic
ones (see [3]).
A compact Kähler manifold X is irreducible holomorphic symplectic if

it is simply connected and admits a symplectic two-form ωX ∈ H2,0(X),
unique up to multiplication by a nonzero scalar. The existence of such a
symplectic form ωX immediately implies that dimX is an even integer.
Moreover, KX is trivial, in particular c1(X) = 0, and TX ∼= Ω1

X . For a
complete survey of this topic we refer the reader to the nice book [11] and
references therein.
The group H2(X,Z) carries a natural structure of lattice; the quadratic

form on it is the so-called Beauville–Bogomolov quadratic form q, which is
even in all known examples. We briefly recall here the deformation types
of irreducible holomorphic symplectic manifolds that will appear in the
sequel.

• K3 surfaces These are compact complex connected surfaces S with
b1(S) = 0 and trivial canonical bundle. There is a lattice isomor-
phism between H2(S,Z) endowed with the cup-product and the
lattice U⊕3 ⊕ E⊕2

8 .
• The Hilbert scheme of a K3 surface Let S be a smooth K3
surface and letX = S[2] be the Hilbert scheme of S of 0-dimensional
subschemes of length 2; X can be constructed also as the blow-
up along the image of the diagonal ∆ of the symmetric product
S(2). In particular, b2(X) = 23 and h1,1(X) = 21. The Beauville–
Bogomolov lattice (H2(X,Z), q) is L = U⊕3 ⊕ E⊕2

8 ⊕ 〈−2〉. Often,
irreducible holomorphic symplectic manifolds that are deformation
equivalent to X are said to be of K3[2]- type.
If S is projective, then so is X, and Pic(X) ∼= Pic(S)⊕Ze, where

2e is the class of the exceptional divisor and e2 = −2.
The construction can be generalized in dimension 2n, taking

the Hilbert scheme of S of 0-dimensional subschemes of length n

(see [3]).

The only other known deformation types are generalized Kummer man-
ifolds and O’Grady’s examples in dimension 6 and 10.
A marking of an irreducible holomorphic symplectic manifold is an isom-

etry φ : H2(X,Z) → L, where L is a fixed even non-degenerate lattice of
signature (3, b2(X)− 3); a pair (X,φ) is then said to be marked. Similarly
to what happens for K3 surfaces, there exists a moduli spaceML of marked

TOME 66 (2016), FASCICULE 2
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irreducible holomorphic symplectic manifolds of type L, and one can define
a period map P0 : ML → DL such that P0(X,φ) =

[
φ(H2,0(X))

]
in the

period domain DL := {[ω] ∈ P(LC) | (ω, ω) = 0, (ω, ω̄) > 0}.
Already in [3] it was shown that the period map is a local isomorphism;

later Huybrechts in [14] showed that P0 is surjective, even when restricted
to a connected component. Finally, Verbitsky in [25] proved the global
Torelli theorem, which we recall here, following Markman (see also Huy-
brechts’s Bourbaki talk [15]).

Theorem 2.4 ([17, Theorem 1.3]). — Let X and Y be two irreducible
holomorphic symplectic manifolds, which are deformation equivalent to
each other. Then:

(1) X and Y are bimeromorphic if and only if there exists a parallel
transport operator f : H2(X,Z) → H2(Y,Z) that is an isomor-
phism of integral Hodge structures;

(2) if this is the case, there exists an isomorphism f̃ : X → Y inducing
f if and only if f sends some Kähler class on X to a Kähler class
on Y .

For the definition of a parallel transport operator we refer to [17, Defi-
nition 1.1], where also monodromy operators are defined.

Definition 2.5. — Given a marked pair (X,φ) of type L, we define
the monodromy group as Mo2(L) := φ ◦Mo2(X) ◦ φ−1, where Mo2(X) ⊂
GL(H2(X,Z)) is the group of monodromy operators of X restricted to the
second cohomology group.

It was proven by Verbitsky in [25] that Mo2(L) is an arithmetic subgroup
of O(L); on the other hand we do not have an explicit description of this
group in all known examples.

Moduli spaces of marked irreducible holomorphic symplectic manifolds
are not Hausdorff, but we know exactly how to describe non-separated
points.

Theorem 2.6 ([17, Theorem 2.2]). — Let M0
L be a fixed connected

component ofML.
(1) The period map P0 restricted toM0

L is surjective.
(2) For any p ∈ DL, the fibre P−1

0 (p) consists of pairwise non-separated
points.

(3) The marked pair (X,φ) is a Hausdorff point of ML if and only if
the positive cone and the Kähler cone coincide.

ANNALES DE L’INSTITUT FOURIER
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Things behave better when one restricts oneself to moduli of polarized
marked irreducible holomorphic symplectic manifolds, which have been
studied in [9] (see in particular Theorem 1.5). We denote with AX the am-
ple cone of X. Furthermore, given a primitive element h ∈ L, let Mo2(h) :={
g ∈ Mo2(L) | g(h) = h

}
be the subgroup of h-polarized monodromy oper-

ators and let Γh be the image of Mo2(h) via the restriction map α : O(L)→
O(h⊥).

Theorem 2.7 ([17, Theorem 8.4]). — Let h ∈ L be a primitive element
and let D+

h be one of the two connected components of DL ∩ P(h⊥). Let
M+

h be a connected component of the moduli space of polarized marked
pairs

{
(X,φ) ∈ P−1

0 (D+
h ) | φ−1(h) ∈ AX

}
. Then the period map restricts

to an open embedding with dense image

Ph :M+
h /Mo2(h)→ D+

h /Γh

3. Moduli spaces of lattice polarized irreducible
holomorphic symplectic manifolds

This construction aims to generalize the one by Gritsenko, Hulek and
Sankaran in [9] for polarized irreducible holomorphic symplectic manifolds.
Here we treat the subject in full generality, and we will then specialize it
to the case of fourfolds of K3[2]-type in Section 5.
Let X be an irreducible holomorphic symplectic manifold of type L and

let j : M ⊂ L be a fixed primitive embedding of a sublattice M of signa-
ture (1, t); we will freely identify M with j(M) whenever confusion is not
possible.

Definition 3.1. — An M -polarization of an irreducible holomorphic
symplectic manifold X is a lattice embedding i : M → Pic(X).

A j-marking of anM -polarized manifold X is a marking φ : H2(X,Z)→
L such that φ ◦ i = j; a pair (X,φ) with X an M -polarized irreducible
holomorphic symplectic manifold of given deformation type and φ a j-
marking is said to be (M, j)-polarized.
If Pic(X) = i(M), we say that (X,φ) is strictly (M, j)-polarized.

Since i(MC) ⊂ H1,1(X), we have P0(X,φ) ∈ P(M⊥C ); hence, we can
consider a restricted period domain

DM = {[ω] ∈ P(NC) | (ω, ω) = 0, (ω, ω̄) > 0}

where N = j(M)⊥. This has two connected components and each one is a
symmetric homogeneous domain of type IV (see [10]). Since NC depends

TOME 66 (2016), FASCICULE 2



694 Chiara CAMERE

only on the signature of N , the period domain DM depends only on M

and not on j.
We need a notion of an ample polarization, and to introduce it, we make

the following assumption:

Assumption. — There exists a set ∆(L) ⊂ L such that the Kähler cone
KX of a marked (X,φ) can be described as

KX =
{
h ∈ H1,1(X,R) | (h, h) > 0, (h, δ) > 0 ∀δ ∈ ∆(X)+}

where ∆(X)+ :=
{
δ ∈ φ−1(∆(L)) ∩ Pic(X) | (δ, κ) > 0

}
for κ ∈ KX a fixed

Kähler class.

As we will see more in detail in Section 5, Assumption 3 is satisfied in
the case of fourfolds of K3[2]-type. Given such an embedding j : M ⊂ L,
define the positive cone C(M) = {x ∈MR | (x, x) > 0} and pick one of
the two connected components C+(M). Given ∆(M) := ∆(L) ∩M and
Hδ = {x ∈MR | (x, δ) = 0}, we fix a connected component of C+(M) \
(∪δ∈∆(M)Hδ) and call it K(M). This choice induces the choice of a set
∆(M)+ = {δ ∈ ∆(M) | (x, δ) > 0 ∀x ∈ K(M)} such that

∆(M) = ∆(M)+ q (−∆(M)+) .

Definition 3.2. — We say that (X,φ) as above is ample (strictly)
(M, j)-polarized if i(K(M)) contains a Kähler class.

Lemma 3.3. — If (X,φ) is ample strictly (M, j)-polarized, then:
(1) i(∆(M)+) = ∆(X)+;
(2) i(K(M)) = KX .

Proof. — (1) Take κ ∈ i(K(M)) ∩ KX ; given δ ∈ i(∆(M)+), we have
(δ, κ) = (δ̃, k̃) > 0 for δ̃ = φ(δ) ∈ ∆(M)+ and k̃ = φ(κ) ∈ K(M). On
the other hand, suppose that there exists δ ∈ ∆(X)+ \ i(∆(M)+); we have
δ ∈ i(∆(M)−) and hence (δ, κ) = (δ̃, k̃) < 0, in contradiction with our
assumption.
(2) This follows immediately from (1) and the definitions. �

Given a smooth family f : X → U of irreducible holomorphic symplectic
manifolds of given deformation type, anM -polarization of f is an injection
iU : MU → P icX/S ⊂ R2f∗Z, from the constant sheaf MU to the relative
Picard sheaf P icX/S , such that for every t ∈ U the map it defines an M -
polarization of Xt. A j-marking of the family is then defined (see [7]) as
an isomorphism of local systems φU : R2f∗Z → LU such that φt ◦ it =
j for all t ∈ U . Such a marking allows us to define the period map of
f as Pf : t ∈ U 7→ [φt(ωXt

)] ∈ DM , that is holomorphic by the local
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Torelli Theorem [3, Théorème 5]. Local moduli spaces and period maps
are then glued together and give a coarse moduli space MM,j of (M, j)-
polarized irreducible holomorphic symplectic manifolds of fixed type and a
holomorphic map PM,j :MM,j → DM that is the restriction of the period
map P0.
The group O(L,M) = {g ∈ O(L) | g(m) = m ∀m ∈ M} acts properly

and discontinuously on DM ; choose a connected componentD+
M of DM and

a connected componentM+
M,j of P−1

M,j(D
+
M ); it is a connected component

of MM,j , and the period map restricts to a surjective holomorphic map
P+
M,j :M+

M,j → D+
M , which is a local isomorphism.

As defined in Markman [17], consider Mo2(L) := φ◦Mo2(X)◦φ−1 where
(X,φ) ∈M+

L . We define (M, j)-polarized monodromy operators

Mo2(M, j) := {g ∈ Mo2(L) | g(m) = m ∀m ∈M} = Mo2(L) ∩O(L,M)

In other words, an element g ∈ Mo2(M, j) satisfies g ◦ j = j. This group
acts onM+

M,j via (X,φ) 7→ (X, g ◦ φ) for g ∈ Mo2(M, j).
The restriction map induces an injective map α : g ∈ O(L,M) 7→ g|N ∈

O(N); we define the subgroup ΓM,j := α(Mo2(M, j)) in O(N).

Proposition 3.4. — The set M+
M,j is invariant under the action of

Mo2(M, j) and the restriction of the period map is Mo2(M, j)-equivariant,
so that we get a surjective map

M+
M,j/Mo2(M, j)

P+
M,j // D+

M/ΓM,j

Proof. — Given (X,φ) ∈ M+
M,j and g ∈ Mo2(M, j), there is an embed-

ding i : M ⊂ Pic(X) such that φ ◦ i = j; then g ◦ φ is again a j-marking
since g ◦ φ ◦ i = g ◦ j = j.

The equivariance of the restricted period map is trivial. �

To obtain a quasi-projective variety we need to show that ΓM,j is of finite
index inside O(N). By a result of Markman combined with work of Kneser
(see also [10]), it follows that if X is of K3[2]-type, then Mo2(L) is related
to the so-called stable orthogonal group,

Õ+(L) =
{
g ∈ O(L) | g|AL

= id, snLR(g) = 1
}

where the real spinor norm snLR : O(LR)→ R∗/(R∗)2 ∼= {±1} is defined as

snLR(g) =
(
−v

2
1
2

)
· · ·
(
−v

2
m

2

)
(R∗)2

for g ∈ O(LR) factored as a product of reflections g = ρv1 ◦ · · · ◦ ρvm
with

vi ∈ LR.

TOME 66 (2016), FASCICULE 2
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Proposition 3.5. — If Mo2(L) ⊃ Õ+(L), the group ΓM,j is an arith-
metic subgroup of O(N).

Proof. — As Aut(AN ) is finite, Õ+(N) is of finite index in O(N). Hence
to see that ΓM,j is also of finite index in O(N), it suffices to show that
Õ+(N) ⊂ ΓM,j .
Given g ∈ Õ+(N) we want to prove that there exists f ∈ Mo2(M) such

that α(f) = g. Take f ∈ O(L) to be the map induced on L by idM ⊕g;
then by definition f ∈ O(L,M). Moreover, f|(AM⊕AN ) = idAM⊕AN

, since
g ∈ Õ(N), and AL ⊂ AM ⊕ AN (from M ⊕ N ⊂ L ⊂ L∗ ⊂ M∗ ⊕ N∗),
hence f|AL

= idAL
and f ∈ Õ(L).

Next, consider the extension of g by linearity to NR; we know that there
are v1, . . . , vm ∈ NR such that g = ρv1 ◦ · · · ◦ρvm

in O(NR) and snNR (g) = 1.
We will still denote by ρvi

the reflection of LR with respect to vi ∈ NR ⊂ LR;
for all vi with i = 1, . . . ,m we have (ρvi

)|MR = idMR since (vi,m) = 0 for all
m ∈MR, hence also f = ρv1 ◦ · · · ◦ρvm

in O(LR) and snLR(f) = snNR (g) = 1,
i.e. f ∈ O+(L).
So indeed, f ∈ Mo2(M, j) and, by construction, α(f) = g. �

Corollary 3.6. — If Mo2(L) ⊃ Õ+(L), the quotient D+
M,j/ΓM,j is a

quasi-projective variety of dimension rkL− 2− rkM .

Proof. — This follows from Proposition 3.5 and from Baily–Borel’s
theorem [1]. �

Next we restrict to a connected componentMa
M,j ⊂M

+
M,j of the moduli

space of ample (M, j)-polarized irreducible holomorphic symplectic mani-
folds and we denote byMsa

M,j the subset of ample strictly (M, j)-polarized
ones.

Lemma 3.7. — The setMa
M,j is open in the analytic topology ofM+

M,j .

Proof. — We have Ma
M,j = ∪(Ma

M,j ∩ Mh), and once a polarization
h is fixed, ampleness is an open condition due to the stability of Kähler
manifolds (see [27, §9.3.3]). �

Remark 3.8. — A priori Ma
M,j is not algebraic: a necessary condition

for this is the injectivity of the restriction of the period map toMa
M,j , since

otherwise this moduli space would be non-separated, and this is not always
the case.

Theorem 3.9. — The subset Msa
M,j is Hausdorff in M+

M,j and is in-
variant under the action of Mo2(M, j). Moreover, its image via the period
map is connected and dense.
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Proof. — First we show that

P+
M,j(M

sa
M,j) = D◦M := D+

M \

 ⋃
ν∈N\{0}

Hν

 ,

where Hν = {λ ∈ NC | (λ, ν) = 0}.
Indeed, given (X,φ) ∈ Msa

M,j and π = P+
M,j(X,φ) ∈ DM , we see that

π /∈ Hν for any ν ∈ N \{0}: otherwise, ν ∈ π⊥ and φ−1(ν) ∈ Pic(X)\i(M),
contradicting our assumption.
Given π ∈ D◦M and (X,φ) ∈ P−1

M,j(π), the pair (X,φ) is strictly (M, j)-
polarized; moreover, there is a bijection ρ : P−1

M,j(π)→ KT (X) via ρ(Y, η) =
η−1(φ(KX)) by [17, Proposition 5.14], where KT (X) is the set of Kähler-
type chambers of X. If i(K(M)) ∩ KX 6= ∅, there is nothing to prove;
otherwise, i(K(M)) meets a different Kähler-type chamber since ∆(X) =
i(∆(M)). Hence, there exists (Y, η) ∈ Msa

M,j ∩ P
−1
M,j(π); in fact, it follows

easily from Theorem 2.6 and Lemma 3.3 that there exists a unique such
(Y, η), so thatMsa

M,j is Hausdorff.
Finally remark that D◦M is connected and dense by Baire’s category

theorem. �

Corollary 3.10. — The period map induces a bijection

PsaM,j :Msa
M,j/Mo2(M, j) −→ D◦M/ΓM,j

Proof. — It follows from Proposition 3.4 and Theorem 3.9 that the pe-
riod map restricts to a bijection PsaM,j :Msa

M,j → D◦M and that the restric-
tion is equivariant with respect to the action of Mo2(M, j). �

Remark 3.11. — If the primitive embedding j : M ⊂ L is unique up to
isometry of L, thenMM can be seen as the moduli space of M -polarized
irreducible holomorphic symplectic manifolds, getting rid of markings as
done by Dolgachev in [7]. On the other hand, since L is no longer uni-
modular, this is a stronger condition to require with respect to the case of
K3 surfaces as it is not always satisfied even in the case of polarizations
(see [9]). Proposition 5.2 describes some cases in which this happens.

4. Mirror symmetry

4.1. Griffiths–Yukawa coupling

In this section we limit ourselves to recalling some notations and facts
from §4 in [7] and we focus our attention on the few modifications needed
in higher dimensions.
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From now on suppose that rkM 6 20, so that its orthogonal N in L

(which is unique up to isometry once we fix the embedding j : M ↪→ L

by Theorem 2.1) is indefinite. Fix an isotropic vector f ∈ NR, so that
(f, f) = 0, and set

Nf = {x ∈ NR | (x, f) = 1} , Vf = {x ∈ NR | (x, f) = 0} /Rf ;

let C+
f be a connected component of the cone

Cf = {x ∈ Vf | (x, x) > 0}

The corresponding tube domain, which is the complexification of C+
f , is

Hf = Nf + iC+
f

Proposition 4.1 ([7, Corollary 4.3]). — The choice of an isotropic f ∈
NR determines an isomorphism D+

M
∼= Hf .

The tube domain realization explained above allows us to relate the
Griffiths–Yukawa coupling on (X,φ) ∈ M+

M,j to the intersection product
on (Vf )C, which is induced by the quadratic form on N . The period domain
D+
M parametrizes weight-two Hodge structures, hence we are interested in

looking at the Griffiths–Yukawa quadratic form

Y : S2H1(X,TX)φ −→ H0,2(X)⊗2

(θ1, θ2) 7→ ϕ1,1(θ1) ◦ ϕ2,0(θ2)

whereH1(X,TX)φ is the tangent space ofM+
M,j at the point (X,φ), defined

as the orthogonal in H1(X,TX) of i(M) with respect to the pairing

H1(X,TX)⊗H1,1(X) −→ H0,2(X),

and ϕi,j : H1(X,TX) → Hom(Hi,j(X), Hi−1,j+1(X)), for 1 6 i 6 2n and
0 6 j 6 2n − 1, is given by the interior product with a tangent vector
(see [8]).

Proposition 4.2 ([7, Corollary 4.4]). — For any µ ∈ D+
M the choice

of a representative l ∈ L of µ such that (l, f) = 1 defines a canonical
isomorphism

αµ : TµD+
M → (Vf )C

Moreover, given (X,φ) ∈ M+
M,j , the quadratic form on (Vf )C coin-

cides with the Griffiths–Yukawa pairing with respect to the normalization
H0,2(X) ∼= C defined by φ−1(l) ∈ H2,0(X).
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4.2. The mirror map

Again the theoretical construction contained in §5 and §6 of [7] carries
over to higher dimensions with very little modification. First of all, let us
recall some definitions.

Definition 4.3. — Let S be an even indefinite lattice and m a positive
integer; an isotropic vector f ∈ S is m-admissible if div f = m and there
exists another isotropic vector g ∈ S such that (f, g) = m, div g = m.

Due to [7, Lemma 5.4], this is equivalent to the existence of a primitive
embedding U(m)→ S such that f ∈ U(m).
Suppose that there exists an m-admissible f ∈ N ; then N = U(m)⊕ M̌ ,

with M̌ a primitive sublattice of signature (1, h1,1 − rkM − 1), and we
have M̌ ∼= (Zf)⊥N/Zf . The definition of M̌ depends only on the choice
of f if U(m) admits a unique primitive embedding in N : this happens
in particular if (m,detN) = 1, M̌ is unique in its genus and there is a
surjection O(M̌) → O(qM̌ ). Once this holds, we can define ̌ to be the
composition of the embedding M̌ ⊂ N and of the embedding j⊥ : N ⊂ L,
and this depends only on f and j.

Definition 4.4. — The moduli spaceM+
M̌,̌

is the mirror moduli space
ofM+

M,j .

Proposition 4.5. — We have dimM+
M̌,̌

= rkM and dimM+
M̌,̌

+
dimM+

M,j = h1,1.

We now introduce the Baily–Borel compactification of the period domain,
defined as its closure in the Harish–Chandra embedding (see [10] for a nice
survey of the topic), contained in the obvious compactification given by the
closure D∗M of D+

M inside the quadric

QM = {[ω] ∈ P(NC) | (ω, ω) = 0}.

A boundary component is a subset of the form P(IC)∩D∗M for some isotropic
subspace I ⊂ NR of dimension 1 or 2; such a component is called rational if
the corresponding I can be defined over Q. In particular, 0-dimensional ra-
tional boundary components of D+

M are in bijection with primitive isotropic
elements of N .

When ΓM,j is an arithmetic subgroup of O(NQ), it acts on the set of ra-
tional boundary components of D+

M , which we denote RB, and for each ra-
tional boundary component F its stabilizer N(F ) = {g ∈ ΓM,j | g(F ) = F}
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acts discretely on F . Then the Baily–Borel compactification is the union

D+
M/ΓM,j = D+

M/ΓM,j

∐ ∐
F∈RB/ΓM,j

F/N(F )


endowed with a structure of a normal projective algebraic variety.
Now we choose an m-admissible primitive isotropic f ∈ N , and con-

sequently we fix a splitting N = U(m) ⊕ M̌ and an isotropic g ∈ U(m)
such that (f, g) = m. For a rational boundary component F , we define
ZM,j(f) = {h ∈ N(F ) | h(f) = f} and ZM,j(f)+ as the subgroup of
elements preserving K(M̌); thus we have an action of ZM,j(f) on Hf =
Vf + iC+

f , and we can identify ZM,j(f)+ with the subgroup preserving
H+
f = Vf + iK(M̌).
Let F be the 0-dimensional rational boundary component correspond-

ing to f . The theory in [7] holds also in our situation, hence there exist
open neighborhoods Ũ∗ and U respectively of F in D∗M and of F/N(F )
in D+

M/ΓM,j , and an analytic isomorphism α : Ũ∗/ZM,j(f)+ → U , which
restricts to an isomorphism α : Ũ/ZM,j(f)+ → UF for Ũ = Ũ∗ ∩H+

f .

Theorem 4.6. — The period map induces the mirror map α−1 : UF →
Ũ ⊂ H+

f , which is multi-valued with monodromy group ZM,j(f)+, sending
a neighborhood of F to the tube domainH+

f
∼= Pic(X ′)+iKX′ for (X ′, φ′) ∈

Msa
M̌,̌

.

Remark 4.7. — By the construction, we have (Vf )C ∼= M̌C, and conse-
quently (Vf )C ∼= Pic(X ′)⊗C for the very general member (X ′, φ′) ∈M+

M̌,̌
.

By Theorem 4.6 and Proposition 4.2, it then follows that in an open neigh-
borhood of a point at the boundary, after the choice of a normalization,
the Griffiths–Yukawa coupling on the tangent space of D+

M coincides with
the intersection form on the H1,1(X ′). This is analogous to what happens
in the case of Calabi–Yau threefolds, where the Yukawa coupling coincides
with the quantum intersection product on the mirror.

5. The K3[2]-type case

From now on let X be a fourfold of K3[2]-type, so that b2(X) = 23 and
L = U⊕3⊕E⊕2

8 ⊕〈−2〉. In this case, by works of Hassett and Tschinkel [13]
and of Mongardi [18] (see also [2]), Assumption 3 is satisfied with

∆(L) =
{
δ ∈ L | δ2 = −2

}
∪
{
δ ∈ L | δ2 = −10,div(δ) = 2

}
.
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By a result of Markman combined with work of Kneser (see also [10]), it
follows that

Mo2(L) = Ref(L) = Õ+(L) =
{
g ∈ O(L) | g|AL

= id, snLR(g) = 1
}

Hence the hypothesis of Proposition 3.5 is satisfied, and ΓM,j is an arith-
metic subgroup of O(N).

Theorem 5.1. — For L = U⊕3 ⊕E⊕2
8 ⊕ 〈−2〉 we have ΓM,j = Õ+(N).

Proof. — Proposition 3.5 tells us that ΓM,j ⊃ Õ+(N). Vice versa, in
this case Mo2(M, j) = Õ+(L) ∩ O(L,M). Given f ∈ Mo2(M, j), then
f|AM⊕AL

= id and hence f|AN
= id, since by Nikulin’s Theorem 2.1 Γ,Γ⊥ ⊂

AM ⊕ AL. On the other hand, ΓM,j ⊂ O+(N) because it preserves the
connected component D+

M , hence we have equality. �

In this case we can find some criteria for the unicity of the embedding j.

Proposition 5.2. — If there is no subgroup H ⊂ AM such that H ∼=
Z/2Z, the orthogonal N is unique in its genus (2, 20− t, qN ), where qN =
(−qM )⊕ qL on AM ⊕AL, and the projection O(N)→ O(qN ) is surjective,
then M admits a unique primitive embedding j : M ↪→ L up to isometry.

Proof. — The proof is exactly the same of the proof of [4, Proposi-
tion 2.7]; we briefly sketch it here. The primitive embeddings M ⊂ L, up
to isometry, are in one-to-one correspondence with the sets of quintuples
(HM , HL, γ;N, γN ) as in Nikulin’s Theorem 2.1. Under the hypotheses, the
only possibility is HM

∼= HL
∼= {0} and γ = id. Moreover, the orthogonal

N is in the genus (2, 20− t, qN ) for qN = (−qM )⊕ qL on AM ⊕AL, hence it
is isomorphic to N by assumption, and the surjectivity of O(N)→ O(qN )
implies that different choices of γN induce isometric embeddings in L. �

In particular this is true if M is unimodular of rank rkM 6 20 or if
AM =

⊕
pi>2prime(Z/piZ)⊕ai and rkM 6 21 − max(ai). It is important

to stress though that the orthogonal N will not in general have a unique
embedding, so that ̌ will not be the only possible embedding of M̌ .

Remark 5.3. — Consider now a primitive embedding jK3 : M ⊂ LK3
and take j = jK3 ⊕ id〈−2〉 to be the induced primitive embedding M ⊂
L. We can then find a mirror lattice either in LK3 or in L, obtaining
respectively M̌K3 and M̌ = M̌K3 ⊕ 〈−2〉. Take an M -polarized K3 surface
S and an M̌K3-polarized K3 surface S′ in the mirror family; then S[2] and
(S′)[2] will be respectively M -polarized and M̌ -polarized mirror partners.
On the other hand, since for any M -polarized K3 surface S, S[2] is also
(M ⊕ 〈−2〉)-polarized, the family of Hilbert schemes of M -polarized K3
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surfaces has codimension 1 insideM+
M,j , whereas the mirror moduli space

has the same dimension as in the K3 case.

5.1. The polarized case

Let M ⊂ L be the rank 1 sublattice 〈2d〉 for a positive integer d. In the
K3[2]-type case, the following result is known:

Theorem 5.4 ([9, Prop. 3.6 and 3.12]). — The sublattice M = 〈2d〉
admits up to two non-isometric primitive embeddings in L. Let h be a
generator of M ; then the following holds:

(1) there is always a split embedding js, corresponding to div h = 1,
such that Ns = U⊕2 ⊕ E⊕2

8 ⊕ 〈−2〉 ⊕ 〈−2d〉, detNs = 4d and
ANs

= Z/2Z⊕ Z/2dZ;
(2) if d ≡ 3 modulo 4, then M admits a second embedding jns, called

non-split, corresponding to div h = 2, such that Nns = U⊕2⊕E⊕2
8 ⊕

Kd, detNns = d and ANns = Z/dZ.
In both cases, ΓM,j

∼= Õ(N)+.

Fix j : M ⊂ L as above and let M+
2d be the subset of M+

M,j , where
h corresponds to an ample class; as already shown in [9], we get an open
algebraic embedding ofM+

2d/Mo2(M, j) into D+
M/Õ(N)+.

Proposition 5.5. — The period map P+
M,j restricts to an isomorphism

M+
2d/Mo2(M, j)→

D+
M \

∐
δ∈∆(N)

(Hδ ∩D+
M )

 /Õ(N)+

Proof. — This is a straightforward consequence of [17, Theorem 8.4] and
of [18, Proposition 2.12]. �

Now we want to compute Õ(N)-orbits of m-admissible isotropic vec-
tors f in N for an integer m|detN . In both cases we can apply Eichler’s
criterion 2.3: orbits are classified by div f |detN . By Scattone’s work[23,
Proposition 4.1.3], there is a bijection between Õ(N)-orbits of isotropic
vectors in N and the set of isotropic elements in AN modulo multiplication
by ±1, induced by the map f ∈ N 7→ f/div f +N ∈ AN .

The split case. Let e and t denote respectively the generators of 〈−2〉
and 〈−2d〉 in Ns. Then the discriminant group ANs

is generated by e/2
and t/2d and the discriminant quadratic form qs is given by

qs(α
t

2d + β
e

2) = −α
2 + β2d

2d ∈ Q/2Z
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for α = 0, . . . , 2d− 1 and β = 0, 1. Let u and v denote a standard basis of
one of the two orthogonal summands U inside Ns, and write d = d′k2 with
d′ square-free.

Lemma 5.6. — The m-admissible isotropic vectors f in Ns, up to the
action of Õ(Ns), are of the form

(5.1) f =

t+m(u+ d
m2 v) if m|k

t+m2e+m(u+ d+m2

m2 v) if m - k, m
2 |k and d′ ≡ 3(4)

Proof. — Let I(qs) be the set of isotropic elements in ANs ; it is clear that
it is the union of isotropic elements of Z/2dZ with respect to the restricted
form qs(α t

2d ) = −α
2

2d and of isotropic elements y = α t
2d + e

2 , since e is not
isotropic. Moreover, it is easy to remark that ord(f/div f) = div f and,
since we are interested in classification up to the action of Õ(Ns), we need
to find only one isotropic element for each possible order m.
The computation of isotropic elements of Z/2dZ has been done by Scat-

tone [23, Theorem 4.0.1] in the K3 case; they are in bijection with elements
in the cyclic subgroup of order k. Hence m has to divide k, and an isotropic
element x ∈ Z/2dZ of order m is xm = t

m .
Now take y = α t

2d + e
2 ; then qs(y) = −α

2+d
2d ∈ 2Z if and only if α2 + d =

4dl for an integer l. By reducing this equality modulo 4 we see that the
only possible case is d′ ≡ 3 (4) and α = d′kh with h = 1, . . . , k − 1 odd. In
this case we observe that m = ord(y)|2k, and we are interested in finding
elements of order not dividing k; in particular, new possible orders m are
those such that m

2 |k and m - k. For example, an isotropic element x ∈ ANs

of order m is xm = t
m + e

2 .
Up to isometry, the corresponding isotropic vectors in Ns are precisely

of the forms given in (5.1). Indeed, given such an f ∈ Ns, we have f2 = 0,
(f, v) = m,

(f, u) =


d
m ∈ mZ if m|k
d+m2

m ∈ mZ if m - k, m
2 |k and d′ ≡ 3(4)

(f, e) =

0 if m|k

−2m2 ∈ mZ if m - k, m
2 |k and d′ ≡ 3(4)

Hence div f = m. �

Now we restrict to the case m = 1 and consider the isotropic primitive
vector f = t+ u+ dv. Since it is unimodular, U admits a unique primitive
embedding in N up to isometry; hence its orthogonal is M̌ = U ⊕ E⊕2

8 ⊕
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〈−2〉 ⊕ 〈−2d〉 and we can assume that U = Zf + Zv. The sublattice M̌
admits two non-isometric primitive embeddings in L; it follows from the
definition that ̌ satisfies ̌(M̌)⊥ = U ⊕ 〈2d〉. Hence the period domain
D+
M̌

is exactly the one described by Dolgachev in [7], with tube domain
realization isomorphic to the upper half-plane H.
By [7, Theorem 7.1] and Theorem 5.1, the global monodromy group ΓM̌,̌

is conjugate in PSL(2,R) to the subgroup Γ0(d)+ generated by

Γ0(d) = {(aij) ∈ SL(2,Z) | d|a21}

and by the Fricke involution

F =
(

0 − 1√
d√

d 0

)
∈ PSL(2,R)

The main difference with what happens in the case of polarized K3 sur-
faces is that here we only get a local isomorphism from our moduli space
to the modular curve

M+
M̌,̌

/Mo2(M̌, ̌) P // H/Γ0(d)+

The non-split case. In this case d ≡ 3 (4). Let e and w1, w2 denote
respectively the generators of 〈−2〉 and of a copy of U in L, so that M =
〈h〉 ⊂ U ⊕〈−2〉 with h = 2w1 + d+1

2 w2 +e. The orthogonal Kd is generated
by b1 = w1 − d+1

4 w2 and b2 = w2 + e. The discriminant group ANns is
generated by t = 1

dh−w2, and the discriminant quadratic form qns is given
by

qns(αt) = −2α2

d
∈ Q/2Z

for α = 0, . . . , d− 1. Let u and v denote a standard basis of one of the two
orthogonal summands U inside Nns, and write d = d′k2 with d′ ≡ 3 (4)
square-free.

Lemma 5.7. — The m-admissible isotropic vectors f in Nns, up to the
action of Õ(Nns), are of the form

(5.2) f = 2b1 + b2 +m(u+ d

m2 v) if m|k

Proof. — Computations similar to the ones in the proof of Lemma 5.6
show that the order m of an isotropic element αt ∈ Z/dZ has to divide
k. Given f as in (5.2), we have f2 = 0, (f, b1) = −d ∈ mZ, (f, b2) = 0,
(f, u) = d

m ∈ mZ and (f, v) = m. Hence div f = m. �
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Now we restrict to the case m = 1 and consider the hyperbolic lattice
U = Zf ⊕ Zv. Since it is unimodular, U admits a primitive embedding
into N , unique up to isometry, and its orthogonal is M̌ = U ⊕ E⊕2

8 ⊕
Kd. The sublattice M̌ admits a unique primitive embedding into L and
̌(M̌)⊥ = U ⊕ 〈2d〉; the period domain D+

M̌
is exactly as in the split case

and everything remarked above holds again.

5.2. Non-symplectic involutions

In the recent paper [4] (see also [16]), the authors classify primitive em-
beddings of invariant sublattices T of non-symplectic involutions i of four-
folds X of K3[2]-type, i.e. involutions such that i∗ωX = −ωX . The invari-
ant sublattice T is known to be hyperbolic and two-elementary with a two-
elementary orthogonal S. By the work of Nikulin [21], a two-elementary hy-
perbolic lattice T is completely determined by the triple (r, aT , δT ), where
r is its rank, aT = l(AT ) is the length of its discriminant group and δT is
the parity of the discriminant quadratic form qT : δT = 0 if qT (x) ∈ Z/2Z
for all x ∈ AT , 1 otherwise.
By [4, Proposition 6.1], the primitive embeddings j into L of a two-

elementary hyperbolic sublattice T with invariants (r, aT , δT ) are in bijec-
tion with the couples (a± 1, δS), where S is the orthogonal complement of
j(T ) in L, two-elementary with aS = l(AS) = a± 1 and parity δS .

Consider nowM+
T,j and look for the mirror family corresponding to the

choice of a 1-admissible isotropic vector f ∈ S.

Lemma 5.8. — There is a 1-admissible isotropic f ∈ S and S ⊃ U if
and only if rk T 6 21− l(AT ) or rk T = 22− l(AT ) and l(AS) = l(AT ) + 1
except when (rk T, l(AT ), δT , l(AS), δS) = (15, 7, 1, 6, 0).

Proof. — If rk T 6 20− l(AS), then this follows by Theorem 2.2. Other-
wise, one of the following holds:

(1) rk T = 24 − l(AT ) and l(AS) = l(AT ) − 1 = rkS: we have S =
〈2〉⊕2 ⊕ 〈−2〉⊕l(AT )−3 if δS = 1, and if δS = 0, then S is U(2)⊕2.
None contains a copy of U .

(2) rk T = 22 − l(AT ) and l(AS) = l(AT ) − 1 = rkS − 2: we have
S = U ⊕ 〈2〉 ⊕ 〈−2〉⊕l(AT )−2 if δS = 1, and if δS = 0, then S is
either U ⊕ U(2), U(2)⊕2 ⊕D4 or U ⊕ U(2) ⊕ E8(2). All contain a
copy of U except U(2)⊕2 ⊕D4.

(3) rk T = 22 − l(AT ) and l(AS) = l(AT ) + 1 = rkS: we have S =
〈2〉⊕2 ⊕ 〈−2〉⊕l(AT )−1 with δS = 1. None contains a copy of U .
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(4) rk T = 20 − l(AT ) and l(AS) = l(AT ) + 1 = rkS − 2: we have
S = U ⊕ 〈2〉 ⊕ 〈−2〉⊕l(AT ) with δS = 1, and this contains a copy
of U . �

Once fixed such an f ∈ S and a splitting S = U ⊕ Ť , we get that Ť is hy-
perbolic, two-elementary with invariants (21−r, aS , δS) and the embedding
̌ is the one corresponding to (aT , δT ). Moreover, by cancelling the points
corresponding to non-admissible values of (r, aT , δT , aS , δS), Figure 1 and
Figure 2 in [4] can be combined in Figure 5.1, where every point denoted
with • is mirror dual with the symmetric • with respect to the line G and
symmetric ∗ and ◦ are mirrors, with the only exception of (14, 6, 0, 7, 1).

Remark 5.9. — Since the generic member of each family carries a non-
symplectic involution with prescribed invariant lattice, we thus get a notion
of mirror involution. On the other hand, this does not agree with the notion
of mirror involutions defined by the analogous construction on K3 surfaces,
as described in [26], in the sense that pairs of natural involutions induced
by mirror involutions on a K3 surface S are not mirror pairs on S[2].
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• δT = δS = 1
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Figure 5.1. Mirror pairs of non-symplectic involutions
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