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NEW EXAMPLES OF NEUWIRTH–STALLINGS PAIRS
AND NON-TRIVIAL REAL MILNOR FIBRATIONS

by Raimundo ARAÚJO DOS SANTOS, Maria A.B.
HOHLENWERGER, Osamu SAEKI & Taciana O. SOUZA

Abstract. — We use the topology of configuration spaces to give a charac-
terization of Neuwirth–Stallings pairs (S5, K) with dim K = 2. As a consequence,
we construct polynomial map germs (R6, 0) → (R3, 0) with an isolated singularity
at the origin such that their Milnor fibers are not diffeomorphic to a disk, thus
putting an end to Milnor’s non-triviality question. Furthermore, for a polynomial
map germ (R2n, 0) → (Rn, 0) or (R2n+1, 0) → (Rn, 0), n > 3, with an isolated
singularity at the origin, we study the conditions under which the associated Mil-
nor fiber has the homotopy type of a bouquet of spheres. We then construct, for
every pair (n, p) with n/2 > p > 2, a new example of a polynomial map germ
(Rn, 0) → (Rp, 0) with an isolated singularity at the origin such that its Milnor
fiber has the homotopy type of a bouquet of a positive number of spheres.
Résumé. — Nous utilisons la topologie des espaces de configuration pour carac-

tériser les paires de Neuwirth–Stallings (S5, K), où K est de dimension 2. En consé-
quence, nous construisons des germes d’applications polynomiales (R6, 0) → (R3, 0)
ayant une singularité isolée à l’origine tels que leurs fibres de Milnor ne soient pas
difféomorphes au disque, mettant ainsi un terme à la question de non-trivialité due
à Milnor. En outre, pour un germe d’application polynomiale (R2p, 0) → (Rp, 0)
ou (R2p+1, 0) → (Rp, 0) ayant une singularité isolée à l’origine, nous étudions
les conditions dans lesquelles la fibre de Milnor associée ait le type d’homotopie
d’un bouquet de sphères. De plus, nous construisons pour chaque paire (n, p),
où n/2 > p > 2, un nouveau exemple d’un germe d’application polynomiale
(Rn, 0) → (Rp, 0) ayant une singularité isolée à l’origine tel que la fibre de Milnor
associée ait le type d’homotopie d’un bouquet de sphères non triviales.

1. Introduction

In the book “Singular points of complex hypersurfaces” [12], John Milnor
studied the topology of complex polynomial function germs in terms of the

Keywords: Neuwirth–Stallings pair, higher open book structure, configuration space,
real Milnor fiber, real polynomial map germ.
Math. classification: 32S55, 57R45, 58K05.



84 R. A. DOS SANTOS, M. HOHLENWERGER, O. SAEKI & T. SOUZA

associated locally trivial fiber bundles. He also showed the existence of such
structures for real polynomial map germs with an isolated singularity as
follows.

Theorem 1.1 ([12, Theorem 11.2]). — Let f : (Rn, 0) → (Rp, 0), n >
p > 2, be a polynomial map germ with an isolated singularity at the origin.
Then, there exists an ε0 > 0 such that for all 0 < ε 6 ε0, the complement
of an open tubular neighborhood of the link K = f−1(0) ∩ Sn−1

ε in Sn−1
ε

is the total space of a smooth fiber bundle over the sphere Sp−1, with each
fiber Ff being a smooth compact (n−p)–dimensional manifold bounded by
a copy of K, where Sn−1

ε denotes the sphere in Rn with radius ε centered
at the origin.

Motivated by the above theorem, Looijenga formulated the following
notion.

Definition 1.2 (Looijenga [11]). — Let K = Kn−p−1 be an oriented
submanifold of dimension n−p−1 of the oriented sphere Sn−1 with trivial
normal bundle, or let K = ∅. Suppose that for some trivialization c :
N(K)→ K ×Dp of a tubular neighborhood N(K) of K, the fiber bundle
defined by the composition

N(K) \K c→ K × (Dp \ {0}) π→ Sp−1,

with the last projection being given by π(x, y) = y/‖y‖, extends to a
smooth fiber bundle Sn−1 \ K → Sp−1. Then, the pair (Sn−1,Kn−p−1)
is called a Neuwirth–Stallings pair, or an NS–pair for short.

In fact, Milnor [12] proved that, under the hypothesis of Theorem 1.1,
(Sn−1
ε , f−1(0) ∩ Sn−1

ε ) is an NS–pair. In this case Looijenga called it the
NS–pair associated to the singularity.
More recently, several generalizations of such a structure have been ob-

tained. For instance, see [16, 17, 18].
As pointed out by Milnor in [12, p. 100], the hypothesis of Theorem 1.1

is so strong that examples are difficult to find, and he posed the following
question.

Problem 1.3. — For which dimensions n > p > 2 do non-trivial exam-
ples exist ?

Milnor did not exactly specify what “trivial” means here: however, he
proposed to say that a real polynomial map germ f : (Rn, 0) → (Rp, 0) is
trivial if the fiber Ff of the bundle given in Theorem 1.1 is diffeomorphic
to a closed disk Dn−p. In particular, this implies that the fibers of the
associated NS–pair are diffeomorphic to the (n−p)–dimensional open disk.
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NEW EXAMPLES OF NEUWIRTH–STALLINGS PAIRS 85

Remark 1.4. — For a holomorphic function germ f : (Cn+1, 0)→ (C, 0)
with an isolated singularity at the origin, it follows from [12, Appendix
B] that the fibers of the associated Milnor fibration are diffeomorphic to
a 2n–dimensional disk if and only if 0 is a non-singular point of f ; in
fact, the function germ f is trivial if and only if the Milnor number µf =
deg0(∇f(z)) is equal to zero, where deg0(∇f(z)) stands for the topological
degree of the map

ε
∇f
‖∇f‖

: S2n+1
ε → S2n+1

ε

for all ε > 0 small enough, and

∇f =
(
∂f

∂z1
,
∂f

∂z2
, . . . ,

∂f

∂zn+1

)
.

In [3] Church and Lamotke used results of Looijenga [11] and answered
the above question in the following way.

Theorem 1.5.
(a) For 0 6 n − p 6 2, non-trivial examples occur precisely for the

dimensions (n, p) ∈ {(2, 2), (4, 3), (4, 2)}.
(b) For n− p > 4, non-trivial examples occur for all (n, p).
(c) For n−p = 3, non-trivial examples occur for (5, 2) and (8, 5). More-

over, if the 3–dimensional Poincaré Conjecture is false, then there
are non-trivial examples for all (n, p). If the Poincaré Conjecture is
true, then all examples are trivial except (5, 2), (8, 5) and possibly
(6, 3).

Since the Poincaré Conjecture has been proved to be true, we have that
for n− p = 3 the map f can be non-trivial only if

(n, p) ∈ {(6, 3), (8, 5), (5, 2)}.

Therefore, Problem 1.3 has been open uniquely for the dimension pair (6, 3).
In [20] the authors used an extension of Milnor-Khimshiashvili’s formula

proved in [15] (see Theorem 5.3 of the present paper) for real isolated
singularity map germs to show a manageable characterization of triviality
in Church-Lamotke’s results when the Milnor fiber is 3–dimensional. For
example, for the dimension pair (6, 3), such a map germ is trivial if and
only if the link K is connected, which is characterized by the vanishing of
the degree of a certain associated mapping between (n − 1)–dimensional
spheres.
In this paper we aim to give a characterization of NS–pairs (S5,K) with

dimK = 2, and use it to prove the existence of non-trivial real polynomial
map germs (R6, 0) → (R3, 0) with an isolated singularity at the origin,

TOME 66 (2016), FASCICULE 1



86 R. A. DOS SANTOS, M. HOHLENWERGER, O. SAEKI & T. SOUZA

putting an end to Problem 1.3 posed by Milnor. For this, we will use tools
from configuration spaces and a construction by Funar in [6, Section 2.7].
More precisely, we first classify fiber bundles E5 → S2 with fiber the 3–
sphere with the interiors of a disjoint union of 3–disks removed, such that
the boundary fibrations are trivial and are trivialized. We will show that
the isomorphism classes of such bundles are in one-to-one correspondence
with the second homotopy group of a certain configuration space, and that
its elements correspond to a skew-symmetric integer matrix. Then, we show
that a given fiber bundle E5 → S2 is associated with an NS–pair (S5,K) if
and only if the skew-symmetric matrix is unimodular. As a consequence, we
see that the number of boundary components of a fiber is always odd. Fur-
thermore, this allows us to construct a lot of non-trivial NS–pairs (S5,K),
and then the Looijenga construction [11] leads to non-trivial polynomial
map germs with an isolated singularity.
Our second aim in this paper is to introduce necessary and sufficient

conditions under which the Milnor fiber in the pairs of dimensions (2n, n)
and (2n+1, n), n > 3, is, up to homotopy, a bouquet (or a wedge) of spheres.
As applications, we give examples of polynomial map germs (Rn, 0) →
(Rp, 0), n/2 > p > 2, such that the associated Milnor fiber is a bouquet of
a positive number of spheres.
Throughout the paper, the (co)homology groups are with integer coef-

ficients unless otherwise specified. The symbol “∼=” denotes a diffeomor-
phism between smooth manifolds or an appropriate isomorphism between
algebraic objects.

2. Classification of bundles

Let (S5,K2) be an NS–pair, where K2 is a closed 2–dimensional man-
ifold embedded in the 5–dimensional sphere S5. We have the associated
fibration π : S5 \ IntN(K2)→ S2, where N(K2) denotes a closed tubular
neighborhood of K2 in S5, and we denote by F its fiber, which is a com-
pact 3–dimensional manifold bounded by a copy of K2. Since S5 does not
fiber over S2, we have K2 6= ∅. Furthermore, we have the homotopy exact
sequence

π2(S5 \ IntN(K2))→ π2(S2)→ π1(F )→ π1(S5 \ IntN(K2)).

Since π is trivial on the boundary, it has a section, so that the homo-
morphism π2(S5 \ IntN(K2)) → π2(S2) is surjective. Furthermore, S5 \

ANNALES DE L’INSTITUT FOURIER



NEW EXAMPLES OF NEUWIRTH–STALLINGS PAIRS 87

IntN(K2) is simply connected. Therefore, the compact 3–dimensional man-
ifold F is also simply connected.
Then, since H1(F ) = 0, we see that K2 ∼= ∂F consists of some copies

of S2 (for example, see [20, Lemma 2.2]). By pasting 3–disks to F along
the boundary 2–spheres, we get a closed connected 3–dimensional mani-
fold F̂ which is simply connected. Then, by the solution to the Poincaré
Conjecture, we see that F̂ is diffeomorphic to the 3–sphere (for example,
see [13]), and hence F is diffeomorphic to S3

(k+1) for some non-negative
integer k, where S3

(k+1) denotes the 3–sphere with the interiors of k + 1
disjoint 3–balls removed. Therefore, π is a smooth fiber bundle with fiber
S3

(k+1) such that it is trivial on the boundary. In this section, we classify
such fiber bundles.
Let Diff(S3) be the topological group of diffeomorphisms of S3. By the

solution to the Smale Conjecture by Hatcher [8], we have that Diff(S3) is
homotopy equivalent to the orthogonal group O(4).

Let us denote by B3 the 3–dimensional closed ball and for a non-negative
integer k, we denote by ∪k+1B3 the disjoint union of k + 1 copies of B3.
We sometimes regard ∪k+1B3 to be “standardly” embedded in S3, and we
denote by jk+1 : ∪k+1B3 → S3 the inclusion map.
We denote by Emb(∪k+1B3, S3) the space of all smooth embeddings of

∪k+1B3 into S3, not necessarily the standard one, and by Diff(S3,∪k+1B3)
the subspace of Diff(S3) consisting of those diffeomorphisms which re-
strict to the inclusion map jk+1 on ∪k+1B3. Furthermore, we denote by
Diff(S3

(k+1), ∂S
3
(k+1)) the topological group of diffeomorphisms of S3

(k+1)
which restrict to the identity on the boundary. Note that S3

(k+1) =
S3 \ ∪k+1 IntB3.
The lemma below follows from [2, Proposition 1, p. 120].

Lemma 2.1. — The canonical map

Diff(S3,∪k+1B3)→ Diff(S3
(k+1), ∂S

3
(k+1))

induces isomorphisms

πi(Diff(S3,∪k+1B3))→ πi(Diff(S3
(k+1), ∂S

3
(k+1)))

for all i.

Now consider the natural map

ϕ : Diff(S3)→ Emb(∪k+1B3, S3)

TOME 66 (2016), FASCICULE 1



88 R. A. DOS SANTOS, M. HOHLENWERGER, O. SAEKI & T. SOUZA

that sends each diffeomorphism of S3 to its restriction to ∪k+1B3. The
following is a consequence of the Cerf–Palais fibration theorem (see [2,
Appendice], [14]).

Lemma 2.2. — The natural map ϕ as above is the projection of a locally
trivial fiber bundle with fiber Diff(S3,∪k+1B3).

Therefore, we have the homotopy exact sequence:

(2.1)

π2(Diff(S3), id)→ π2(Emb(∪k+1B3, S3), jk+1)

→ π1(Diff(S3,∪k+1B3), id)→ π1(Diff(S3), id)

→ π1(Emb(∪k+1B3, S3), jk+1)→ · · · .

Let Fk+1(S3) be the configuration space of k+1 points in S3. This space
can be naturally identified with Emb({0, 1, . . . , k}, S3).

Lemma 2.3. — The space Emb(∪k+1B3, S3) is homotopy equivalent to
Fk+1(S3)×O(3)k+1.

Proof. — For a given embedding η : ∪k+1B3 → S3, we associate the
element of Fk+1(S3) which sends the i–th point to the η–image of the center
of the i–th 3–ball. Furthermore, by associating the normalized differential
of η at each center, we get an element of O(3)k+1. (Note that the tangent
bundle TS3 of S3 is trivial, and we fix its trivialization here.) Then, we
can show that the map Emb(∪k+1B3, S3) → Fk+1(S3) × O(3)k+1 thus
obtained gives a homotopy equivalence. (For example, see [2, Appendice,
§5, Proposition 3].) �

Recall that Diff(S3) ' O(4). Furthermore, Fk+1(S3) is 1–connected
(see [5], [6, Proof of Proposition 2.30]) and π2(O(3)) = 0. Thus, the ex-
act sequence (2.1) turns into

0→ π2(Fk+1(S3))→ π1(Diff(S3,∪k+1B3), id)

→ π1(O(4), id)→ π1(O(3)k+1, id)→ · · · .

Note that π1(O(4), id) ∼= Z2 and π1(O(3)k+1, id) ∼= (Z2)k+1. By choos-
ing the standard embedding jk+1 so that it is equivariant with respect to
the natural SO(2)–actions, we see that the homomorphism π1(O(4), id)→
π1(O(3)k+1, id) sends the generator 1 ∈ Z2 to (1, 1, . . . , 1) ∈ (Z2)k+1. In
particular, it is injective. Thus, we have that the boundary homomorphism

(2.2) π2(Fk+1(S3))→ π1(Diff(S3,∪k+1B3), id)

is an isomorphism.

ANNALES DE L’INSTITUT FOURIER



NEW EXAMPLES OF NEUWIRTH–STALLINGS PAIRS 89

By [5] and [6, Proof of Proposition 2.30], we have the following important
result.

Lemma 2.4. — The homotopy group π2(Fk+1(S3)) is isomorphic to
Zk(k−1)/2.

Note that, for a smooth fiber bundle S3
(k+1) ↪→ E5 → S2 with structure

group Diff(S3
(k+1), ∂S

3
(k+1)), its characteristic map is an element of

π1(Diff(S3
(k+1), ∂S

3
(k+1)), id),

which is isomorphic to π1(Diff(S3,∪k+1B3), id) ∼= Zk(k−1)/2 by Lemma 2.1,
(2.2) and Lemma 2.4.
In fact, given such a smooth fiber bundle π : E5 → S2, one can consider

S2 = D2
1 ∪ D2

2, where D2
i , i = 1, 2, denote the 2–dimensional closed disk.

Since each D2
i is contractible, the restriction π : π−1(D2

i )→ D2
i is a trivial

fiber bundle with fiber S3
(k+1), and we have π−1(D2

i ) ∼= S3
(k+1)×D

2
i . Hence,

we can recover the total space

E5 = (S3
(k+1) ×D

2
1) ∪h (S3

(k+1) ×D
2
2)

for some diffeomorphism h : S3
(k+1) × ∂D2

2 → S3
(k+1) × ∂D2

1 defined by
h(x, t) = (α(t)(x), t), where α : S1 = ∂D2 → Diff(S3

(k+1), ∂S
3
(k+1)) cor-

responds to the characteristic map. Therefore, the structure of the fiber
bundle is completely determined by the homotopy class

[α] ∈ π1(Diff(S3
(k+1), ∂S

3
(k+1)), id) .

3. Characterization of NS–pairs

For a non-negative integer k, let

(3.1) S3
(k+1) ↪→ E5 π→ S2

be a smooth fiber bundle such that its restriction to the boundary

∂S3
(k+1) ↪→ ∂E5 → S2

is a trivial bundle whose trivialization is fixed. Note that the structure
group of the bundle (3.1) is considered to be Diff(S3

(k+1), ∂S
3
(k+1)), which

acts on S3
(k+1) by the identity on its boundary, since the trivialization of

the boundary fibration is fixed. In this section, we characterize such fiber
bundles that arise from an NS–pair (S5,K) with K ∼= ∪k+1S2.

TOME 66 (2016), FASCICULE 1



90 R. A. DOS SANTOS, M. HOHLENWERGER, O. SAEKI & T. SOUZA

We start by gluing the trivial bundle ∪k(B3 × S2) → S2 along the k
boundary components to the fibration (3.1) to get the B3–fibration

(3.2) π̃ : Y = E5 ∪ (∪k(B3 × S2))→ S2.

Note that when we glue the trivial bundle ∪k(B3 × S2)→ S2 to the fibra-
tion (3.1) along the boundary fibration, we use the natural identification of
∂B3 and each component of ∂S3

(k+1) together with the fixed trivialization
of the boundary fibration. The resulting fibration (3.2) is trivial, since the
structure group Diff(B3, ∂B3) is contractible by Hatcher’s solution to the
Smale Conjecture [8, Appendix], where Diff(B3, ∂B3) denotes the space of
those diffeomorphisms of B3 which fix ∂B3 pointwise. Therefore, the total
space Y of the fibration (3.2) is diffeomorphic to B3×S2. Then, by gluing
B3

0 × S2 to Y = B3 × S2 by the map ∂B3
0 × S2 → ∂B3 × S2 given by

(x, y) 7→ (y, x), we get the sphere S5, where B3
0 is a copy of the closed

3–dimensional ball. Set S2
0 = x0 × S2, where x0 is the center of B3

0 , and
we write N(S2

0) = B3
0 × S2, which is identified with the closed tubular

neighborhood of S2
0 in S5.

To fix the notation we write ∪k+1B3 = ∪ki=0B
3
i , and denote by xi the

center of B3
i , where we consider ∪kB3 = ∪ki=1B

3
i . We also write S2

i =
xi × S2, i = 1, 2, . . . , k. Note that the 2–spheres S2

i , i = 0, 1, . . . , k, are all
embedded in S5 in a standard way. Furthermore, each of S2

i , i = 1, 2, . . . , k,
has linking number ±1 with S2

0 . In the following discussions, we orient S2
i ,

i = 0, 1, 2, . . . , k, in such a way that the linking number of S2
i with S2

0 is
equal to +1, i = 1, 2, . . . , k.
For y ∈ S2, we have ∪ki=1(B3

i × y) ⊂ π̃−1(y) ∼= B3. Therefore, to each
y ∈ S2 we can naturally associate an element of the k–point configuration
space Fk(IntB3) ∼= Fk(R3). This defines a classifying map c : S2 → Fk(R3).

Then, we have the following.

Lemma 3.1. — The isomorphism classes of the fibrations as in (3.1)
are in one-to-one correspondence with π2(Fk(R3)) ∼= Zk(k−1)/2. The cor-
respondence is given by associating the homotopy class of the classifying
map c.

Recall that according to [6, Lemma 2.31], a fiber bundle (3.1) corresponds
to the element (lk(S2

i , S
2
j ))16i<j6k ∈ Zk(k−1)/2 in the above correspon-

dence, where lk denotes the linking number in S5, and we fix orientations
of S2

i , i = 1, 2, . . . , k, and S5.
Proof of Lemma 3.1. — As has been seen in Section 2, the isomorphism

classes of the bundles in question are in one-to-one correspondence with

ANNALES DE L’INSTITUT FOURIER



NEW EXAMPLES OF NEUWIRTH–STALLINGS PAIRS 91

π2(Fk+1(S3)) ∼= π1(Diff(S3,∪k+1B3), id). On the other hand, it is known
that π2(Fk(R3)) is naturally isomorphic to π2(Fk+1(S3)) (see [5, p. 38]).
Recall the locally trivial fiber bundle

Diff(S3,∪k+1B3) ι−→ Diff(S3) ϕ−→ Emb(∪k+1B3, S3)

of Lemma 2.2, where ι is the natural inclusion map. For the homotopy
class [α] ∈ π1(Diff(S3

(k+1), ∂S
3
(k+1))) ∼= π1(Diff(S3,∪k+1B3)) of the char-

acteristic map, its ι∗–image vanishes in π1(Diff(S3)), so that there ex-
ists a continuous map α̃ : D2 → Diff(S3) which extends ι ◦ α : S1 →
Diff(S3). Then, the homotopy class of ϕ ◦ α̃ : D2 → Emb(∪k+1B3, S3)
in π2(Emb(∪k+1B3, S3)) ∼= π2(Fk+1(S3)) ∼= π2(Fk(R3)) is the class cor-
responding to [α] by the isomorphism (2.2). By construction, this coin-
cides with the homotopy class of the classifying map c. This completes the
proof. �

Now, we have the following natural question.

Problem 3.2. — Which elements of π2(Fk(R3)) ∼= Zk(k−1)/2 corre-
spond to an NS–pair?

We answer this question in our main result in this section, as follows.

Theorem 3.3. — The fiber bundle S3
(k+1) ↪→ E5 π→ S2 as in (3.1)

arises from an NS–pair if and only if det
(
lk(S2

i , S
2
j )
)

16i,j6k = ±1, where
lk(S2

i , S
2
i ) = 0 for all 1 6 i 6 k by convention.

Note that
(
lk(S2

i , S
2
j )
)

16i,j6k is a k × k skew-symmetric integer matrix.
The rest of this section is devoted to the proof of the above theorem.
For a fiber bundle (3.1), let F be its fiber. Recall that the trivialization of

the boundary fibration is fixed, and we write ∂E5 = ∪ki=0(Ki × S2), where
Ki
∼= S2 are the boundary components of F ∼= S3

(k+1) and are oriented in
such a way that the cycle represented byK0 is homologous to the sum of the
cycles represented by Ki, i = 1, 2, . . . , k. Let X5 = E5∪(∪ki=0(Ki×B3)) be
the closed 5–dimensional manifold obtained by gluing E5 and ∪ki=0(Ki×B3)
along their boundaries in such a way that the natural projection

∪ki=0(Ki × (B3 \ {0}))→ S2

extends to a smooth fibration X5 \K → S2, where K = ∪ki=0(Ki × {0}).
Note that in this notation, Ki is identified with ∂B3

i , i = 1, 2, . . . , k, and
K0 is identified with ∗ × S2 ⊂ ∂B3

0 × S2. We warn the reader that the
way that Ki × B3 are attached to E5 is very different from that for the
construction of Y ⊂ S5 in (3.2).

The theorem is a consequence of Lemmas 3.4 and 3.5 below.

TOME 66 (2016), FASCICULE 1
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S2
0

S2
1

S2
2

S2
k

K0
K1

K2

Kk

μ0

μ1

μ2

μk

Figure 3.1. Situation in S5

Lemma 3.4. — The fiber bundle π (3.1) arises from an NS–pair if and
only if X5 is homotopy equivalent to S5.

The above lemma is a consequence of the well-known fact that every
homotopy 5–sphere is standard [19].

Since we see easily that X5 is simply connected, it suffices to study the
homology group H2(X5). Now consider the following piece of the Mayer–
Vietoris exact sequence:

H2(∪ki=0(Ki × ∂B3)) ρ→ H2(E5)⊕H2(∪ki=0(Ki ×B3))→ H2(X5)→ 0,

where the homomorphism ρ = (i1∗,−i2∗) is induced by the inclusions i1 :
∪ki=0(Ki × ∂B3)→ E5 and i2 : ∪ki=0(Ki × ∂B3)→ ∪ki=0(Ki ×B3).
Figure 3.1 helps to understand the images of the elements of

H2(∪ki=0(Ki × ∂B3)) by the homomorphism ρ. Note that this depicts the
situation in S5 and not in X5.
In order to describe the homomorphism ρ, let us fix bases of the homology

groups. In the following, for a cycle z, we denote by [z] the homology class
represented by z. First, we have

H2(∪ki=0(Ki × ∂B3)) ∼= ⊕ki=0H2(Ki × ∂B3)
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and each H2(Ki × ∂B3) ∼= Z⊕ Z is generated by [Ki × ∗] and [yi × ∂B3],
where yi ∈ Ki, i = 0, 1, . . . , k. Furthermore, we have

H2(∪ki=0(Ki ×B3)) ∼= ⊕ki=0H2(Ki ×B3)

and each H2(Ki × B3) ∼= Z is generated by δi = [Ki × ∗], ∗ ∈ B3, i =
0, 1, . . . , k. On the other hand, we have

E5 = S5 \ (∪ki=0 IntN(S2
i )),

where N(S2
i ) = B3

i × S2 is the closed tubular neighborhood of S2
i in S5,

and S2
i = xi × S2, i = 1, 2, . . . , k, are so-called “Hopf duals” to S2

0 .
Therefore, by Alexander duality we have

H2(E5) ∼= H2(∪ki=0 IntN(S2
i )).

Since N(S2
i ) = B3

i × S2, we can take the generators µi = [∂B3
i × ∗] ∈

H2(E5), ∗ ∈ S2, and H2(E5) is freely generated by µi, i = 0, 1, . . . , k.
Here, we orient µi in such a way that the linking number of µi with S2

i

is equal to +1. Observe that µi = i1∗([Ki × ∗]) for i = 1, 2, . . . , k, and
δi = i2∗([Ki×∗]) for i = 0, 1, . . . , k. Therefore, the images of the generators
by the homomorphism ρ can be written as follows.

ρ([K0 × ∗]) = µ1 + µ2 + · · ·+ µk − δ0,

ρ([Ki × ∗]) = µi − δi (1 6 i 6 k),
ρ([y0 × ∂B3]) = µ0 + 0,

ρ([yi × ∂B3]) =
∑

06j6k,j 6=i
lk(S2

i , S
2
j )µj + 0 (1 6 i 6 k).

Therefore, with respect to the above bases, the homomorphism ρ is rep-
resented by the following matrix:

R =



0 0 · · · 0 1 1 · · · 1
1 1 · · · 0 0 a11 · · · a1k
...

...
. . .

...
...

...
. . .

...
1 0 · · · 1 0 ak1 · · · akk

−1 0 · · · 0 0 0 · · · 0
0 −1 · · · 0 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · −1 0 0 · · · 0


,

where aij = lk(S2
j , S

2
i ), i 6= j, 1 6 i, j 6 k and aii = 0. Observe that

aij = −aji.
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Lemma 3.5. — The 5–dimensional manifold X5 is homotopy equivalent
to S5 if and only if detR = ±1.

Proof. — If X5 is homotopy equivalent to S5, then its second homol-
ogy group must vanish and therefore the homomorphism ρ must be an
epimorphism, which implies that detR = ±1.
Conversely, if ρ is an isomorphism, by the above Mayer-Vietoris exact

sequence, we have H2(X5) = 0. Then by Poincaré duality, we see that X5

has the homology of S5. Since X5 is simply connected, we have π5(X5) ∼=
H5(X5) ∼= Z by the Hurewicz theorem. Let g : S5 → X5 be a continuous
map that represents a generator of π5(X5). Then, the Whitehead theorem
implies that g gives a homotopy equivalence.
This completes the proof of Lemma 3.5, and hence Theorem 3.3 has been

proved. �

Since a skew-symmetric integer matrix has determinant ±1 only if its
size is even, we have the following.

Corollary 3.6. — If the fiber bundle S3
(k+1) ↪→ E5 → S2 as in (3.1)

arises from an NS–pair, then k must be even.

Remark 3.7. — In [11] Looijenga showed how to use the connected
sum of NS–pairs to construct new ones. In fact, he proved that given an
NS–pair (Sn,Kn−p−1) with fiber F , there exists a polynomial map germ
f : (Rn+1, 0) → (Rp+1, 0) with an isolated singularity at the origin such
that the associated NS–pair is isomorphic to the connected sum

(Sn,Kn−p−1)]((−1)n−1Sn, (−1)n−pKn−p−1)

with fiber being diffeomorphic to the interior of F\(−1)n−pF , where “\”
means the connected sum along the boundary. For further details the reader
is referred to [11, p. 421].

The following proposition follows from the remark above and the previous
result.

Proposition 3.8. — For every even integer k > 0, there exists an NS–
pair (S5, Lk+1) with Lk+1 being diffeomorphic to the disjoint union of k+1
copies of S2, and there exists a polynomial map germ f : (R6, 0)→ (R3, 0)
with an isolated critical point at 0 such that the associated NS–pair is
isomorphic to (S5, Lk+1](−Lk+1)). In particular, Lk+1](−Lk+1) consists
of 2k + 1 connected components.

Proof. — First note that for each positive even integer k, there exists a
skew-symmetric integer matrix of determinant ±1. (For example, consider
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the direct sum of the matrix (
0 1
−1 0

)
and its copies.) Then, by the above argument, there exists an NS–pair
(S5, Lk+1) corresponding to that matrix. Now, one can just apply Looi-
jenga’s construction explained above in Remark 3.7. �

Corollary 3.9. — Given a real polynomial map germ as in Propo-
sition 3.8 with k > 0, the fiber of the associated Milnor fibration is not
diffeomorphic to a disk.

This answers to Milnor’s non-triviality question, Problem 1.3, for the
dimension pair (6, 3).

4. A generalization to higher dimensions

We can generalize the construction of Section 3 in higher dimensions as
follows, in order to obtain new non-trivial examples of real polynomial map
germs with an isolated singularity.

Let n > 3 be an integer. For a non-negative integer k, let Sn(k+1) denote
the n–dimensional sphere Sn with the interior of the disjoint union of k+1
copies of the n–dimensional disks removed. In this section, we will construct
a smooth fiber bundle

Sn(k+1) ↪→ E2n−1 π→ Sn−1

such that the restriction to the boundary

∂Sn(k+1) ↪→ ∂E2n−1 π→ Sn−1

is a trivial bundle whose trivialization is fixed, and that it arises from an
NS–pair (S2n−1,Kn−1).
Let A = (aij) be a k × k integer matrix which is (−1)n–symmetric

such that the diagonal entries all vanish. Let S0 ∼= Sn−1 be a trivially
embedded oriented (n − 1)–sphere in S2n−1. Then, there exist mutually
disjoint smoothly embedded oriented (n − 1)–spheres Si in S2n−1, i =
1, 2, . . . , k, such that

(1) Si do not intersect S0,
(2) Si have linking number +1 with S0,
(3) the linking number lk(Si, Sj) = aij , i 6= j.
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Such embeddings do exist (for example, see [7]). Note that then

E2n−1 = S2n−1 \ ∪ki=0 IntN(Si)

naturally fibers over Sn−1 in such a way that the restriction to the
boundary is trivial. (More precisely, consider the associated sub-fibration
of the trivial fiber bundle S2n−1 \ IntN(S0) ∼= Bn × Sn−1 → Sn−1).
Then, by the same construction as in Section 3, we obtain an object
(X2n−1,Kn−1), whereX2n−1 is a (2n−1)–dimensional smooth closed man-
ifold, X2n−1 \ IntN(Kn−1) is diffeomorphic to E2n−1, and it fibers over
Sn−1 with fiber Sn(k+1) in such a way that the projection map is compatible
with a trivialization of the closed tubular neighborhood N(Kn−1). Then,
we have the following.

Lemma 4.1. — The manifold X2n−1 is a homotopy (2n − 1)–sphere if
and only if detA = ±1.

Proof. — We see easily that E2n−1 is (n − 2)–connected, and hence
so is X2n−1. Thus, X2n−1 is a homotopy (2n − 1)–sphere if and only if
Hn−1(X2n−1) vanishes. Then, an argument using a Mayer-Vietoris exact
sequence as in the previous section leads to the desired result. �

Combining this with the Looijenga construction (Remark 3.7), we have
the following.

Corollary 4.2. — Let n > 3 be an integer. For every positive integer
k with k ≡ 1 (mod 4), there exists an NS–pair (S2n−1, Lk) with Lk being
diffeomorphic to the disjoint union of k copies of Sn−1, and there exists a
polynomial map germ f : (R2n, 0)→ (Rn, 0) with an isolated singularity at
0 such that the associated NS–pair is isomorphic to (S2n−1, Lk](−1)nLk).
In particular, Lk](−1)nLk consists of 2k − 1 connected components.

Note that the associated Milnor fiber is diffeomorphic to Sn(2k−1) and is
homotopy equivalent to the bouquet of 2k− 2 copies of the (n− 1)–sphere.
Proof of Corollary 4.2. — Set ` = (k − 1)/2, which is a nonnegative

even integer. There exists an `× ` (−1)n–symmetric integer matrix A with
vanishing diagonal entries and determinant ±1. By Haefliger [7], there ex-
ists an embedding of ∪ki=0S

n−1
i into S2n−1 such that each component is

embedded trivially, that Sn−1
i links with S0 once for all i > 0, and that the

linking matrix for ∪`i=1S
n−1
i coincides with A, where each Sn−1

i is a copy
of Sn−1 and the linking number lk(Sn−1

i , Sn−1
i ) = 0, i = 1, 2, . . . , `, by

convention. Then by the above construction, we get the homotopy sphere
X2n−1 in which the disjoint union of `+ 1 copies of the (n− 1)–spheres is
embedded. Then, the connected sum X2n−1](−X2n−1) is diffeomorphic to
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S2n−1 by [9], since n > 3. Therefore, by the connected sum construction,
we get an NS–pair (S2n−1, Lk), where Lk is diffeomorphic to the disjoint
union of 2`+1 = k copies of Sn−1. Then, applying Looijenga’s construction,
we get the desired conclusion. �

5. Bouquet theorems for real isolated singularities

It is known that for a holomorphic function germ f : (Cn+1, 0)→ (C, 0)
with an isolated singularity at the origin, the Milnor fiber Ff has the ho-
motopy type of a bouquet (or a wedge) of n–dimensional spheres. For real
polynomial map germs with an isolated singularity, we cannot expect, in
general, such a bouquet theorem, which can be seen as follows.
By Zeeman’s twist spinning construction [21], one can construct an NS–

pair (S4,K2) such that the fundamental group of the fiber is not a free
group. Then Looijenga’s construction leads to a non-trivial polynomial map
germ (R5, 0)→ (R2, 0) with an isolated singularity at the origin such that
the Milnor fiber does not have a free fundamental group. Consequently, the
Milnor fiber is not homotopy equivalent to a bouquet of spheres.

Remark 5.1. — In the following, in order to get examples in higher
dimensions, we use the spinning construction due to Artin [1]. For com-
pleteness, let us recall the construction. Let (Sm,Kk) be an NS–pair with
Kk 6= ∅ and π : Sm\Kk → Sm−k−1 the associated fibration. We denote the
fiber of the fibration Sm \ IntN(Kk) → Sm−k−1 by F k+1, where N(Kk)
is the closed tubular neighborhood of Kk in Sm. We take a point q ∈ Kk

and a small m–disk neighborhood D in Sm such that (D,D ∩Kk) is dif-
feomorphic to the standard disk pair (Dm, Dk) and that π restricted to
D \ (D ∩Kk) is equivalent to the standard fibration Dm \Dk → Sm−k−1.
Then, we consider the quotient space of (Sm\IntD,Kk\(IntD∩Kk))×S1,
where for each x ∈ ∂D, the points of the form (x, t) are identified to a point
for all t. This kind of a construction is called the spinning. The resulting
pair gives (Sm+1, K̃k+1), where K̃k+1 is a smoothly embedded submani-
fold of Sm+1 of dimension k + 1. By construction, there exists a fibration
π̃ : Sm+1\K̃k+1 → Sm−k−1 which restricts to π on (Sm\(IntD∪Kk))×{t}
for each t ∈ S1. It is straightforward to see that (Sm+1, K̃k+1) is an NS–
pair. We call it the spun of the NS–pair (Sm,Kk). Note that the fiber
F̃ k+2 of the fibration Sm+1 \ IntN(K̃k+1) → Sm−k−1 is diffeomorphic to
the (k+ 2)–dimensional manifold obtained from F k+1 × S1 by identifying,
for each x ∈ ∆k, the points of the form (x, t) to a point for all t, where
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∆k is a k–dimensional disk embedded in ∂F k+1 (near q). Note that the
fundamental groups of Sm \Kk and Sm+1 \ K̃k+1 are isomorphic, and that
F k+1 and F̃ k+2 also have isomorphic fundamental groups.

Let (S4,K2) be an NS–pair such that the fiber has non-free fundamental
group. Then, applying once the spinning construction explained above to
(S4,K2), one gets a non-trivial example in dimension (6, 2) such that the
Milnor fiber is not homotopy equivalent to a bouquet of spheres. Perform-
ing such procedures inductively one can construct examples in all pairs
of dimensions (n, 2), n > 5, such that the Milnor fiber is not homotopy
equivalent to a bouquet of spheres.
In this section we give sufficient conditions to guarantee that the real

Milnor fiber is homotopy equivalent to a bouquet of spheres of the same
dimension, or of different dimensions.

Throughout this section we consider f : (Rn, 0) → (Rp, 0), n > p > 2,
a polynomial map germ with an isolated singularity at the origin and the
Milnor fibration (the “Milnor tube”),

f : f−1(Sp−1
δ ) ∩Dn

ε → Sp−1
δ ,

where 0 < δ � ε� 1. We denote by Ff its fiber and by βj = rankHj(Ff )
its j–th Betti number.
Consider π : (Rp, 0) → (Rp−1, 0), p > 3, the germ of the canonical

projection. Clearly, the composition map germ G = π ◦ f : (Rn, 0) →
(Rp−1, 0) also has an isolated singularity at the origin and thus we have
two fibrations:

f : f−1(Sp−1
δ ) ∩Dn

ε → Sp−1
δ ,

and
G : G−1(Sp−2

δ ) ∩Dn
ε → Sp−2

δ .

In [4] it was shown the relationship between the Milnor fibers Ff and
FG. It is worth pointing out that the results in [4] hold in a more general
setting which includes the case of non-isolated singularities. Nevertheless,
in the special case of an isolated singularity, it provides a positive answer
to a conjecture stated by Milnor in [12, p. 100] as follows:

Theorem 5.2 ([4]). — Let f : (Rn, 0) → (Rp, 0), n > p > 2, be a
polynomial map germ with an isolated singularity at the origin and set G =
π◦f : (Rn, 0)→ (Rp−1, 0). Then, the Milnor fiber FG of G is homeomorphic
to Ff × [0, 1], where for p = 2 the Milnor fiber of G is, by definition, the
intersection of a sufficiently small closed ball centered at the origin and the
inverse image of a regular value sufficiently close to the origin. In particular,
the Milnor fibers Ff and FG have the same homotopy type.
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In [12, Chapter 11], Milnor provided information concerning the topology
of the fiber Ff . It was proved in Lemma 11.4 that if n < 2(p − 1), then
the Milnor fiber is necessarily contractible. It also follows from the first
paragraph of the proof that for n > p > 2 in general, if the link is not empty,
then the fiber Ff is (p− 2)–connected, i.e., πi(Ff ) = 0, i = 0, 1, . . . , p− 2.

In [15] the authors proved formulae relating the Euler characteristic of
the Milnor fiber and the topological degree of the gradient mapping of the
coordinate functions, which extends Milnor’s formula for complex function
germs with an isolated singularity (see [12, p. 64]) and Khimshiashvili’s
formula [10] for isolated singularity real analytic function germs, as follows.

Theorem 5.3 ([15]). — Let f : (Rn, 0) → (Rp, 0), n > p > 2, be
a polynomial map germ with an isolated singularity at the origin, and
consider

f(x) = (f1(x), f2(x), . . . , fp(x)),
an arbitrary representative of the germ. Denote by deg0(∇fi(x)), for
i = 1, 2, . . . , p, the topological degree of the map ε ∇fi

‖∇fi‖
: Sn−1

ε → Sn−1
ε ,

for ε > 0 small enough.
(i) If n is even, then χ(Ff ) = 1− deg0∇f1. Moreover, we have

deg0∇f1 = deg0∇f2 = · · · = deg0∇fp.

(ii) If n is odd, then χ(Ff ) = 1. Moreover, we have deg0∇fi = 0 for
i = 1, 2, . . . , p.

In particular, from item (ii) above it follows that if the source space is
odd-dimensional, then the fiber can never be homotopy equivalent to a
bouquet of a positive number of spheres of the same dimension.

In the following subsections, we consider the dimension pairs (2n, n) and
(2n+ 1, n), and study conditions for a Milnor fiber to have the homotopy
type of a bouquet of spheres. We also study the dimension pairs (2n, p) and
(2n+ 1, p) with 2 6 p 6 n using the composition with a projection.

5.1. The case of (R2n, 0)→ (Rn, 0)

Consider f : (R2n, 0)→ (Rn, 0), n > 2, a polynomial map germ with an
isolated singularity at the origin. Note that S2n−1 does not smoothly fiber
over Sn−1. Hence, in this case Ff is an n–dimensional compact orientable
manifold with non-empty boundary and πi(Ff ) = 0 for i = 0, 1, . . . , n− 2.
Since ∂Ff 6= ∅, we have Hn(Ff ) = 0. Moreover, since Ff is orientable, the
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homology Hn−1(Ff ) is torsion free. Then, by Theorem 5.3, item (i), we
have βn−1 = (−1)ndeg0(∇f1). (Recall that, as mentioned earlier in this
section, βj denotes the Betti number rankHj(Ff ) for each j.)

Furthermore, in the special case n = 2, the fibers are compact connected
surfaces with non-empty boundary, so that they have the homotopy type
of a bouquet of 1–dimensional spheres (circles). Furthermore, for n = 3,
we have seen in Section 2 that the fibers are diffeomorphic to S3

(k+1) for
some non-negative integer k, and hence they are homotopy equivalent to a
bouquet of 2–spheres. Therefore, we may assume that n > 4. Note that if
deg0(∇f1) = 0, then the Milnor fiber is contractible.
It follows from the Hurewicz theorem that the Hurewicz homomorphism

ρn−1 : πn−1(Ff )→ Hn−1(Ff ) ∼= Zβn−1

is an isomorphism. Then, for each generator γi ∈ Hn−1(Ff ) ∼= Zβn−1 there
exists a continuous map ϕi : Sn−1 → Ff , i = 1, 2, . . . , βn−1, such that
γi = ρn−1([ϕi]) = (ϕi)∗([Sn−1]), where [Sn−1] ∈ Hn−1(Sn−1) ∼= Z is the
fundamental class (given by the natural orientation of Sn−1). Therefore,
we have the continuous map

ϕ :
βn−1∨

Sn−1 → Ff

obtained by the wedge of the maps ϕi : Sn−1 → Ff , for i = 1, 2, . . . , βn−1,
which is a homotopy equivalence by the Whitehead theorem.
Thus we have proved the following:

Proposition 5.4. — Let f : (R2n, 0) → (Rn, 0) be a polynomial map
germ with an isolated singularity at the origin, n > 2. Given f(x) =
(f1(x), f2(x), . . . , fn(x)), a representative of the germ f , we have the fol-
lowing.

(i) βn−1 = (−1)ndeg0(∇f1).
(ii) The Milnor fiber Ff has the homotopy type of a bouquet of (n−1)–

dimensional spheres
βn−1∨

Sn−1,

where it means a point when βn−1 = 0.

For n > 4, it follows from Theorem 1.5, item (c), that in all pairs of
dimensions (2n, n) there exist non-trivial examples. However, these non-
trivial examples due to Church–Lamotke [3] have contractible Milnor fibers
(with non-simply connected links). On the other hand, according to our
construction in Section 4 together with Theorem 5.2, we get the following.
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Corollary 5.5. — For each pair of dimensions (2n, p), 2 6 p 6 n,
there exists a real isolated singularity polynomial map germ (R2n, 0) →
(Rp, 0) such that the Milnor fiber is, up to homotopy, a bouquet of (n−1)–
dimensional spheres with the number of spheres equal to |deg0(∇f1)| > 0,
where f(x) = (f1(x), f2(x), . . . , fp(x)).

5.2. The case of (R2n+1, 0)→ (Rn, 0)

Consider now f : (R2n+1, 0) → (Rn, 0), n > 3, a polynomial map germ
with an isolated singularity at the origin. In this case, the Milnor fiber
Ff is an (n+ 1)–dimensional compact orientable manifold with non-empty
boundary and is (n−2)–connected. Then, Hn+1(Ff ) = 0, Hn(Ff ) is torsion
free and, by Theorem 5.3, βn = βn−1. Suppose that Hn−1(Ff ) is torsion
free. Then, we have Hn−1(Ff ) ∼= Zβn−1 ∼= Hn(Ff ). By Hurewicz theorem,
the Hurewicz homomorphisms

ρn−1 : πn−1(Ff )→ Hn−1(Ff ) ∼= Zβn−1

and
ρn : πn(Ff )→ Hn(Ff ) ∼= Zβn−1

are surjective. Then, by an argument similar to that used in the case (2n, n),
we can construct a homotopy equivalence

ϕ :

βn−1∨
Sn−1

 ∨
 βn∨

Sn

→ Ff .

Thus, we have proved the following result.

Proposition 5.6. — Let f : (R2n+1, 0) → (Rn, 0), n > 3, be a real
isolated singularity polynomial map germ. Then, the (n − 1)–th homol-
ogy Hn−1(Ff ) of the Milnor fiber is torsion free if and only if Ff has the
homotopy type of a bouquet of spheres of the formβn−1∨

Sn−1

 ∨
βn−1∨

Sn

 =
βn−1∨

(Sn−1 ∨ Sn),

where it means a point when βn−1 = 0.

According to our construction in Section 4 together with Theorem 5.2
again, we get the following.
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Corollary 5.7. — For each pair of dimensions (2n+ 1, p), 2 6 p 6 n,
there exists a real isolated singularity polynomial map germ (R2n+1, 0)→
(Rp, 0) such that the Milnor fiber is, up to homotopy, a bouquet of ` copies
of the n–dimensional sphere and ` copies of the (n−1)–dimensional sphere
with ` > 0.

Proof. — For n > 3, this is a consequence of Proposition 5.6. For n = 2,
we start with a non-trivial fibered knot (S3,K). Then, its spun (S4, K̃) is
a non-trivial fibered 2–knot, and its fiber is obtained by spinning a posi-
tive genus surface with boundary. Therefore, the fiber of (S4, K̃) has the
homotopy type of a bouquet of a positive number of circles and 2–spheres.
This completes the proof. �

5.3. Application to k–stairs maps

Given a polynomial map germ f : (Rn, 0)→ (Rq, 0), n > q > 1, with an
isolated singularity at the origin, we say that a map germ F : (Rn, 0) →
(Rp, 0), 1 6 q 6 p, is a (p − q)–stairs map for f if there exist germs of
polynomial functions gj : (Rn, 0) → (R, 0), q + 1 6 j 6 p, such that
F (x) = (f(x), gq+1(x), gq+2(x), . . . , gp(x)) has an isolated singularity at
the origin. If p = q, then by definition, we have F (x) = f(x) and f is its
own 0–stairs map.

Corollary 5.8. — Let f : (Rn, 0) → (Rp, 0), n/2 > p > 2, be a
polynomial map germ with an isolated singularity at the origin. Then we
have the following.

(i) If n is even and f admits a (n/2− p)–stairs map, then the Milnor
fiber is homotopy equivalent to a bouquet of (n/2−1)–dimensional
spheres.

(ii) Suppose n is odd and Hk(Ff ) is torsion free for k = (n− 1)/2− 1,
where Ff denotes the Milnor fiber. If f admits a ((n−1)/2−p)–stairs
map, then the Milnor fiber is homotopy equivalent to a bouquet of
k– and (k + 1)–dimensional spheres, where the numbers of spheres
are the same.

Proof. — Just apply Propositions 5.4, 5.6, and Theorem 5.2. �

We do not know whether or not the bouquet structure in the fiber char-
acterizes the existence of such k–stairs maps for k > 1.

ANNALES DE L’INSTITUT FOURIER



NEW EXAMPLES OF NEUWIRTH–STALLINGS PAIRS 103

Acknowledgements

The authors would like to express their sincere gratitude to Edivaldo
Lopes dos Santos and Denise de Mattos for stimulating discussions and
invaluable comments. They would also like to thank Louis Funar for his
important comments and discussions.

The first author would like to thank very much the Fapesp grant
2013/23443-5 and CNPq/PQ-2 309819/2012-1. The second author would
like to thank very much all Fapesp support given during the development
of the PhD project, grant number 2012/12972-4. The third author has been
supported in part by JSPS KAKENHI Grant Number 23244008, 23654028.
The fourth author would like to thank CNPq/PDJ grant 502638/2012-5
during the post-doc in ICMC/USP.

BIBLIOGRAPHY

[1] E. Artin, “Zur Isotopie zweidimensionaler Flächen im R4”, Abh. Math. Sem. Univ.
Hamburg 4 (1925), no. 1, p. 174-177.

[2] J. Cerf, Sur les difféomorphismes de la sphère de dimension trois (Γ4 = 0),
Lecture Notes in Mathematics, No. 53, Springer-Verlag, Berlin-New York, 1968,
xii+133 pages.

[3] P. T. Church & K. Lamotke, “Non-trivial polynomial isolated singularities”, Ned-
erl. Akad. Wetensch. Proc. Ser. A 78=Indag. Math. 37 (1975), p. 149-154.

[4] N. Dutertre & R. N. Araújo dos Santos, “Topology of real Milnor fibration for
non-isolated singularities”, http://arxiv.org/abs/1211.6233, 2012.

[5] E. R. Fadell & S. Y. Husseini, Geometry and topology of configuration
spaces, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2001,
xvi+313 pages.

[6] L. Funar, “Global classification of isolated singularities in dimensions (4, 3) and
(8, 5)”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 10 (2011), no. 4, p. 819-861.

[7] A. Haefliger, “Differentiable links”, Topology 1 (1962), no. 3, p. 241-244.
[8] A. E. Hatcher, “A proof of the Smale conjecture, Diff(S3) ' O(4)”, Ann. of Math.

(2) 117 (1983), no. 3, p. 553-607.
[9] M. A. Kervaire & J. W. Milnor, “Groups of homotopy spheres. I”, Ann. of Math.

(2) 77 (1963), no. 3, p. 504-537.
[10] G. N. Khimshiashvili, “The local degree of a smooth mapping”, Sakharth. SSR

Mecn. Akad. Moambe 85 (1977), no. 2, p. 309-312.
[11] E. Looijenga, “A note on polynomial isolated singularities”, Nederl. Akad. Weten-

sch. Proc. Ser. A 74=Indag. Math. 33 (1971), p. 418-421.
[12] J. Milnor, Singular points of complex hypersurfaces, Annals of Mathematics Stud-

ies, No. 61, Princeton University Press, Princeton, N.J., 1968, iii+122 pages.
[13] ———, “Differential topology forty-six years later”, Notices Amer. Math. Soc. 58

(2011), p. 804-809.
[14] R. S. Palais, “Local triviality of the restriction map for embeddings”, Comment.

Math. Helv. 34 (1960), no. 1, p. 305-312.

TOME 66 (2016), FASCICULE 1

http://arxiv.org/abs/1211.6233


104 R. A. DOS SANTOS, M. HOHLENWERGER, O. SAEKI & T. SOUZA

[15] R. Araújo dos Santos, D. Dreibelbis & N. Dutertre, “Topology of the real
Milnor fiber for isolated singularities”, in Real and complex singularities, Contemp.
Math., vol. 569, Amer. Math. Soc., Providence, RI, 2012, p. 67-75.

[16] R. Araújo dos Santos & M. Tibăr, “Real map germs and higher open book
structures”, Geom. Dedicata 147 (2010), p. 177-185.

[17] R. N. Araújo dos Santos, Y. Chen & M. Tibăr, “Singular open book structures
from real mappings”, Cent. Eur. J. Math. 11 (2013), no. 5, p. 817-828.

[18] ———, “Real polynomial maps and singular open books at infinity”, http:
//arxiv.org/abs/1401.8286, 2014.

[19] S. Smale, “Generalized Poincaré’s conjecture in dimensions greater than four”,
Ann. of Math. (2) 74 (1961), no. 2, p. 391-406.

[20] T. O. Souza, M. A. B. Hohlenwerger, D. De Mattos & R. Araújo Dos San-
tos, “New characterization of trivial maps in 3-dimensional real Milnor fibers”, JP
J. Geom. Topol. 12 (2012), no. 2, p. 207-217.

[21] E. C. Zeeman, “Twisting spun knots”, Trans. Amer. Math. Soc. 115 (1965), p. 471-
495.

Manuscrit reçu le 26 août 2014,
révisé le 11 mars 2015,
accepté le 26 mars 2015.

Raimundo ARAÚJO DOS SANTOS
Universidade de São Paulo
Instituto de Ciências Matemáticas e de Computação
Av. Trabalhador São Carlense, 400, Centro, Postal
Box 668, 13560-970
São Carlos, SP (Brazil)
rnonato@icmc.usp.br
Maria A.B. HOHLENWERGER
Universidade de São Paulo
Instituto de Ciências Matemáticas e de Computação
Av. Trabalhador São Carlense, 400, Centro Postal
Box 668, 13560-970, São Carlos, SP (Brazil)
and
Universidade Federal do Recôncavo da Bahia
Centro de Ciências Exatas e Tecnológicas
Rua Rui Barbosa, 710, Centro, 44380-000
Cruz das Almas, BA (Brazil)
amelia@ufrb.edu.br
Osamu SAEKI
Kyushu University
Institute of Mathematics for Industry
Motooka 744, Nishi-ku
Fukuoka 819-0395 (Japan)
saeki@imi.kyushu-u.ac.jp
Taciana O. SOUZA
Universidade Federal de Uberlândia
Faculdade de Matemática
Campus Santa Mônica - Bloco 1F - Sala 1F120
Av. João Naves de Avila, 2121, 38408-100
Uberlândia, MG (Brazil)
taciana@famat.ufu.br

ANNALES DE L’INSTITUT FOURIER

http://arxiv.org/abs/1401.8286
http://arxiv.org/abs/1401.8286
mailto:rnonato@icmc.usp.br
mailto:amelia@ufrb.edu.br
mailto:saeki@imi.kyushu-u.ac.jp
mailto:taciana@famat.ufu.br

	1. Introduction
	2. Classification of bundles
	3. Characterization of NS–pairs
	4. A generalization to higher dimensions
	5. Bouquet theorems for real isolated singularities
	5.1. The case of (R2n, 0) (Rn, 0)
	5.2. The case of (R2n+1, 0) (Rn, 0)
	5.3. Application to k–stairs maps

	Acknowledgements
	Bibliography

