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CODIMENSION TWO INDEX OBSTRUCTIONS TO
POSITIVE SCALAR CURVATURE

by Bernhard HANKE, Daniel PAPE & Thomas SCHICK (*)

Abstract. — We derive a general obstruction to the existence of Riemannian
metrics of positive scalar curvature on closed spin manifolds in terms of hyper-
surfaces of codimension two. The proof is based on coarse index theory for Dirac
operators that are twisted with Hilbert C∗-module bundles.

Along the way we give a complete and self-contained proof that the minimal
closure of a Dirac type operator twisted with a Hilbert C∗-module bundle on a
complete Riemannian manifold is a regular and self-adjoint operator on the Hilbert
C∗-module of L2-sections of this bundle.

Moreover, we give a new proof of Roe’s vanishing theorem for the coarse index of
the Dirac operator on a complete non-compact Riemannian manifold whose scalar
curvature is uniformly positive outside of a compact subset. This proof immediately
generalizes to Dirac operators twisted with flat Hilbert C∗-module bundles.
Résumé. — Nous dérivons une obstruction générale à l’existence d’une mé-

trique à courbure scalaire positive sur une variété compacte spin, qui est basée sur
des sous-variétés de codimension deux. La preuve utilise la théorie d’indice grossier
(synonymement “indice a grande échelle”) pour l’opérateur de Dirac tordu par un
fibré de C∗-modules Hilbertiens.

En cours de route nous donnons une preuve complète et indépendant du fait
que la clôture minimale d’un opérateur de type Dirac sur une variété complète,
tordu par un fibré de C∗-modules Hilbertiens, est régulière et auto-adjointe comme
operateur non-borné sur le C∗-module Hilbertien des sections L2-intégrables de ce
fibré.

En outre, nous donnons une preuve nouvelle du théorème de Roe affirmant que
l’indice grossier de l’opérateur de Dirac est nul pour une variété Riemannienne com-
plète non-compacte avec courbure scalaire uniformement positive en dehors d’un
sous-ensemble compact. Notre preuve se généralise immédiatement aux operateurs
de Dirac tordu par un fibré plat de C∗-modules Hilbertiens.
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1. Introduction

A central theme of geometric topology in recent decades asks whether
a given smooth manifold admits a Riemannian metric with positive scalar
curvature. On spin manifolds the most powerful obstructions to existence
of such metrics are based on index theory for the Dirac operator. Indeed
the Schrödinger-Lichnerowicz formula [30] implies that on a spin manifold
with uniformly positive scalar curvature the Dirac operator is invertible
and hence its index, suitably defined if the manifold is not compact, has to
vanish.

Rosenberg [23, 22, 24] used Dirac operators twisted with flat Hilbert
C∗-module bundles whose indices lie in the K-theory of C∗-algebras in
order to obtain particularly strong obstructions to the existence of positive
scalar curvature metrics. In particular, using the Mishchenko bundle, the
canonical flat C∗π1(M)-bundle on M , one obtains the Rosenberg index
obstruction α(M) ∈ K∗(C∗π1(M))).

Roe [20] developed coarse index theory to define meaningful indices of
Dirac operators on non-compact complete manifolds. This can also be used
to gain interesting information for compact manifolds by passing to non-
compact covering spaces.

Gromov and Lawson [4, Theorem 7.5] found an intriguing obstruction to
positive scalar curvature based on submanifolds of codimension two: if M
is a closed aspherical spin manifold with a hypersurface N of codimension
two with trivial normal bundle such that N is enlargeable and π1(N) injects
into π1(M), thenM does not admit a Riemannian metric of positive scalar
curvature.
The main purpose of this paper is to illuminate this result from an index

theoretic perspective. Our proof is based on coarse index theory for Dirac
operators twisted with Hilbert C∗-module bundles. This allows us to prove
the following statement, where in particular the asphericity of M in [4] is
weakened to the vanishing of the second homotopy group.

Theorem 1.1. — Let M be a closed connected spin manifold with
π2(M) = 0. Assume that N ⊂ M is a codimension two submanifold with
trivial normal bundle and that the induced map π1(N)→ π1(M) is injec-
tive. Assume that the Rosenberg index of N does not vanish: 0 6= α(N) ∈
K∗(C∗π1(N)).

ThenM does not admit a Riemannian metric of positive scalar curvature.
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Remark 1.2. — Here and above one can use either the reduced or the
maximal group C∗-algebra. The first one is closely connected to the Baum-
Connes and the strong Novikov conjecture, but a priori the latter one might
lead to stronger obstructions. The material in the paper at hand is inde-
pendent of which group C∗-algebra is used so that we will not distinguish
them in our notation.
Remark 1.3. — In [36, Theorem 3.4] a result close to our Theorem 1.1

is stated without any assumption on π2(M). Unfortunately, the statement
of [36, Theorem 3.4] is wrong, the manifolds N = Tn and M = (Tn ×
S2)#(Tn×S2), n > 2, providing counterexamples. Our correct formulation
of Theorem 1.1 had been established long before [36] appeared, and the
authors of the present paper reported on it at several occasions in seminars
and at conferences.
Remark 1.4. — The concept of enlargeability is not used in our paper; it

is entirely based on properties of the Rosenberg index. Because enlargeable
spin manifolds have non-vanishing Rosenberg index [7, Theorem 1.2], [5],
[6, Theorem 1.5], this is no loss of generality.
Coarse index theory as developed by Roe is based on functional calculus

for the (unbounded) Dirac operator. In our context we are dealing with
Dirac operators twisted by Hilbert C∗-module bundles so that, in order to
apply the functional calculus in [12], it is required to establish regularity
and self-adjointness of their closures. In our opinion this fact is not well-
documented in the literature and hence we decided to give a self-contained
and complete proof of the following theorem, which might be of independent
interest. Throughout our paper, A denotes a complex unital C∗-algebra.
Theorem 1.5. — Let M be a complete Riemannian manifold, and let

E → M be a smooth Hilbert A-module bundle with finitely generated
projective fibers, which is equipped with a connection ∇, compatible with
the inner product.
Let D be any Dirac type operator on a complex Dirac bundle S → M

and DE its twist with (E,∇). Then the closure of DE is a densely defined,
regular and self-adjoint operator on the Hilbert A-module L2(M,S⊗E) of
L2-sections of S ⊗ E.
We follow the program of Vassout [33] who proves a corresponding state-

ment for foliations, based on the existence of a suitable pseudodifferential
calculus.

Remark 1.6. — We could locate a couple of accounts of the result for
compact manifolds, which however, for our taste, were quite sketchy and did
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not cover the case of non-compact manifolds. Zadeh [35, Lemma 2.1] offers
an alternative proof that also includes the case of non-compact manifolds.
However, it is based on properties of the wave operators eitDE , whose ex-
istence is assumed in [35] without further reference. We believe that a con-
struction of these operators is possible, independent of a general functional
calculus for DE (which would depend on normality and self-adjointness
of this operator and therefore would render the argument circular). But
we could not find a detailed construction in the literature. Therefore we
decided to give a full and independent proof of Theorem 1.5 in Section 2
below.

A final crucial ingredient of our proof of the codimension two obstruction
in Theorem 1.1 is a generalized vanishing theorem for the coarse index on
non-compact manifolds.

Theorem 1.7 (Partial vanishing theorem). — Let (M, g) be a complete
connected non-compact Riemannian spin manifold such that, outside of a
compact subset, the scalar curvature is uniformly positive. Let E →M be
a Hilbert A-module bundle as in Theorem 1.5 above and assume that this
bundle is flat. Then the coarse index ind(DE) ∈ K∗(C∗(M ;A)) vanishes.

Remark 1.8. — The special case of this result with A = C and trivial
E has been stated in [20, Proposition 3.11 and following remark] without
proof. Only recently, Roe [18] published a full proof of this special case, us-
ing the theory of Friedrichs extensions of unbounded operators. Zadeh [36,
Theorem 3.1] offers a proof of Theorem 1.7, again based on Friedrichs ex-
tensions. We feel that this is not completely satisfactory. Although the
concept of Friedrichs extensions for unbounded operators on Hilbert A-
modules should exist, it has not been developed yet, to the best of our
knowledge. In particular the regularity of the resulting operator must be
taken care of.

We present a proof in the spirit of Roe’s coarse index theory, based on
functional calculus and unit propagation of the wave operator. This proof
first appeared in the second author’s doctoral thesis [16, Theorem 0.2.1].
We expect that it can be generalized to other interesting situations, notably
to perturbations of the signature operator, as they show up in proofs of the
homotopy invariance of higher signatures, compare [11].

Remark 1.9. — The codimension two obstruction in 1.1 has a slight
strengthening: even stably M does not admit a metric of positive scalar
curvature. Here, “stably” means that for every simply connected closed 8-
dimensional spin manifold B with Â(B) = 1, i.e. for any so-called Bott
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manifold, and for every l > 0 the manifold M × Bl does not admit a
metric of positive scalar curvature. This simply follows by applying the
codimension two obstruction theorem to N ×Bl ⊂M ×Bl.

The stable Gromov-Lawson-Rosenberg conjecture [25, Conjecture 4.17]
states that a closed spin manifold M stably admits a metric with positive
scalar curvature if and only if its Rosenberg index α(M) ∈ KO∗(C∗Rπ1(M))
vanishes.
Stolz [31, 32] proved that the stable Gromov-Lawson-Rosenberg conjec-

ture holds for all manifolds whose fundamental groups satisfy the strong
Novikov conjecture. Recall that the unstable version of [25, Conjecture 4.8]
is not true [27]. The construction of a corresponding example uses the codi-
mension one obstruction of Schoen and Yau [29], which is based on minimal
hypersurfaces and is independent from index theory.

Arguing in a rather indirect manner using Stolz’s theorem it follows that
under the assumptions of 1.1 not only α(N), but also the Rosenberg index
α(M) ∈ K∗(C∗π1(M)) is non-zero, if π1(M) satisfies the strong Novikov
conjecture,
However, we have not been able to prove non-vanishing of the Rosenberg

index α(M) in complete generality in the situation of Theorem 1.1. We
leave this as an open question. In view of the possibility that α(M) could
be zero, one might speculate whether Theorem 1.1 can be used in the end
to establish counterexamples to the strong Novikov conjecture.

Remark 1.10. — We formulate and prove our theorem in the context of
complex C∗-algebras and the complex Dirac operator. Firstly, this is most
suited to the approach to coarse index theory as developed by Roe, and
secondly the literature on self adjoint regular operators and their functional
calculus is much more complete in this case. Nonetheless, we expect that
all of our results can be generalized to real C∗-algebras and the real Dirac
operator, which indeed furnish the most efficient context for geometric ap-
plications of the index theory of Dirac operators.

2. Regularity and self-adjointness of Dirac operators
twisted with Hilbert-module bundles

In this section we prove in detail that twisted Dirac type operators on
complete Riemannian manifolds have regular and self-adjoint closures. As
a preparation, we recall some basics about Hilbert C∗-modules and regular,
self-adjoint operators on them.

TOME 65 (2015), FASCICULE 6
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Let A be a (complex) C∗-algebra, which in our paper is assumed to be
unital throughout. Recall that a Hilbert A-module is a right A-module with
an A-valued inner product satisfying a number of axioms, see page 4 in [13],
that serves as our main reference for the theory of Hilbert C∗-modules
and unbounded operators. We emphasize that, in contrast to usual Hilbert
spaces, a closed submoduleH0 ⊂ H and the orthogonal submoduleH⊥0 ⊂ H
do not complement each other in general, i.e. usually H0⊕H⊥0  H. If the
opposite inclusion holds one says that H0 has an orthogonal complement.
Let H1 as well as H2 be Hilbert A-modules. An operator from H1 to H2

is an A-linear map T : dom(T ) −→ H2 on a submodule dom(T ) of H1. The
latter is called the domain of T . One calls T densely defined if dom(T ) =
H1. An operator S from H1 to H2 is called an extension of T , written
T ⊂ S, if dom(T ) ⊂ dom(S) and Tx = Sx holds for each x ∈ dom(T ). The
graph of T is denoted by G(T ):

G(T ) := {(x, y) ∈ H1 ⊕H2 ; x ∈ dom(T ) and y = Tx} .

One calls T closed if G(T ) is closed in H1 ⊕H2. The operator T is called
closable if it admits a closed extension. This is equivalent to the existence
of an operator S with G(S) = G(T ). In this case S is the smallest closed
extension of T , called the closure and usually denoted T or Tmin. Its domain
is

dom(Tmin) =
{x ∈ H1 | ∃ (xn)n∈N ⊂ dom(T ) with xn −→ x and Txn −→ Tminx} .

For a densely defined operator T : dom(T ) −→ H2 we set

dom(T ∗) := {y ∈ H2 | ∃z ∈ H1 with 〈Tx, y〉 = 〈x, z〉 ∀x ∈ dom(T )} .

The element z appearing on the right is unique and we can define the adjoint
operator of T as the operator T ∗ : dom(T ∗) −→ H1 given by T ∗y = z. Note
that T ∗ is a closed operator and that for a closable operator T , we have
T ∗ = T

∗.
The operator T is called adjointable, if dom(T ) = H1 and dom(T ∗) =

H2. Adjointable operators are automatically bounded, but bounded opera-
tors are not necessarily adjointable, see [13, p. 8]. Because every densely de-
fined operator has an adjoint by definition, we will prefer the term bounded
adjointable instead of adjointable in order to avoid any confusion. The space
of bounded adjointable operators is denoted LA(H1,H2), or briefly LA(H1)
if H1 = H2.

The subspace of A-compact operators is the closure of the A-linear span
of operators of the form x 7→ 〈x, a〉 b where a ∈ H1, b ∈ H2.
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Definition 2.1. — Let T : dom(T )−→H2 be an operator with dom(T )⊂
H1. One calls T regular if

(1) T is densely defined and closed,
(2) T ∗ is densely defined,
(3) the graph of T (a closed subset of H1 ⊕ H2) has an orthogonal

complement.

We now come to a useful criterion for regularity and self-adjointness.
Recall that a densely defined operator T is called symmetric, if T ⊂ T ∗

and self-adjoint, if T = T ∗. Because T ∗ is a closed operator by [13, p. 95],
symmetric operators are closable and self-adjoint operators are closed.

Theorem 2.2 (Characterization of self-adjoint, regular operators). —
Let T be a closed, densely defined and symmetric operator on the Hilbert
A-module H. Then the following are equivalent:

(1) T is self-adjoint and regular,
(2) T + i, T − i both have dense range.

Proof. — By [13, Lemma 9.8], if T is self-adjoint and regular then T ± i
both have dense range.
Conversely, assume T ± i both have dense range. By [13, Lemma 9.7],

the assumptions imply that T + i and T − i are injective and have closed
range. Therefore T ± i both are bijective (and in particular both operators
have range H).
As T is symmetric, T ∗ is an extension of T , and therefore T ∗ ± i are

extensions of T ± i. As already T ± i is surjective, T ∗ is a proper extension
of T if and only if both operators T ∗ ± i have non-trivial kernel. But for
x ∈ ker(T ∗ + i) and y ∈ dom(T ) we have

0 = 〈(T ∗ + i)x, y〉 = 〈x, (T − i)y〉,

and since T − i is surjective, x = 0. Therefore T ∗ = T , i.e. the assumption
implies that T is self-adjoint. Finally [13, Lemma 9.8] implies that T is also
regular. �

2.1. Regularity and self-adjointness of twisted Dirac operators

Let (M, g) be a complete Riemannian manifold, let S →M be a complex
Dirac bundle on M and let D : Γ∞(M,S) −→ Γ∞(M,S) be the correspond-
ing Dirac type operator acting on the sections of S, see [21, Definition
3.4] or [14, Definition II.5.2]. The main examples we have in mind are the

TOME 65 (2015), FASCICULE 6
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Dirac operator of a Riemannian spin manifold, the de Rham operator of
a general Riemannian manifold, the signature operator of an oriented Rie-
mannian manifold, or the Dolbeault operator of a Kähler manifold.
In addition, let A be a unital complex C∗-algebra and E a smooth Hilbert

A-module bundle whose fibers are finitely generated projective Hilbert A-
modules, equipped with a metric connection ∇E . We obtain the twisted
Dirac operator DE acting on smooth sections Γ∞(M,S ⊗ E). Note that
the bundle S ⊗ E →M inherits the structure of a Hilbert A-module bun-
dle so that the Riemannian metric on M allows us to define an A-valued
inner product on the space Γ∞cpt(M,S⊗E) of compactly supported smooth
sections of this bundle. This inner product is given by the formula

〈s1, s2〉 :=
∫
M

〈s1(x), s2(x)〉Sx⊗Ex
dλg(x),

where λg is the measure associated with g. The corresponding completion
is the Hilbert A-module L2(M,S ⊗ E), by definition.

Theorem 2.3. — Let (M, g) be a complete Riemannian manifold and
let (E,∇E) be a smooth finitely generated projective Hilbert A-module
bundle with metric connection, then

DE : Γ∞cpt(M,S ⊗ E) −→ Γ∞cpt(M,S ⊗ E)

is closable in L2(M,S ⊗ E) and the minimal closure is regular and self-
adjoint as unbounded Hilbert A-module operator. It is the unique self-
adjoint extension of DE .

Proof. — Recall from the proof of [21, Proposition 3.11] that DE with
domain equal to Γ∞cpt(M,S ⊗ E) is symmetric and hence closable.
We first deal with the case whenM is compact. In this context, Mishchen-

ko and Fomenko [15] developed a pseudodifferential calculus for operators
on smooth sections of S⊗E which the following properties, among others:

(1) The identity is an operator of order 0 in the pseudodifferential cal-
culus.

(2) The operator DE is an operator of order 1 in the pseudodifferential
calculus.

(3) The operator DE is has a parametrix, i.e. there are operators Q of
order −1 and R, T of order −∞ in the calculus such that DEQ =
1−R and QDE = 1− T .

(4) Each operator P of order 6 0 in the pseudodifferential calculus
extends (uniquely) to a bounded adjointable operator P on
L2(M,S ⊗ E).
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(5) If P is an operator of order < 0 in the calculus then its bounded
adjointable extension is an A-compact operator.

(6) Each operator in the calculus has a formal adjoint of the same order,
for DE the formal adjoint is DE .

(7) If P is an operator of order 6 0 in the calculus, then its adjoint,
which is necessarily equal to the adjoint of its closure, is the closure
of its formal adjoint.

Now it turns out that these are exactly the properties needed for a proof
of regularity and self-adjointness of the closure of DE , first given, to our
knowledge, in [33, Proposition 3.4.9]. Alternatively, in [26, Section 1] an
argument due to Skandalis for the statement is sketched which even works
in the case of Lipschitz manifolds. As the thesis [33] is only available on a
university homepage without permanent link, we repeat this proof here for
the reader’s convenience.
It is based on the following three properties:
(1) DE ◦ Q = DE ◦Q and DE ◦ T = DE ◦ T , and these operators are

bounded (hence everywhere defined),
(2) dom(DE) = im(Q) + im(T ),
(3) DE = (DE)∗, in particular DE is self-adjoint.
To establishDEQ ⊂ DE◦Q let x be in the domain ofDEQ. By definition,

this means there are smooth sections xn converging to x such thatDEQ(xn)
converges to y := DEQ(x). Now, Q has negative order and therefore a
bounded closure Q and hence limn→∞Qxn = z = Q(x). By definition of
DE , z is in the domain of DE and DE(z) = y. So, indeed DEQ ⊂ DE ◦Q.
Now DEQ has order zero and therefore its closure is bounded, in particular
everywhere defined, so that DEQ has no proper extension and therefore we
have the required equality.
This argument also shows that DET = DE ◦ T . This finishes the proof

of (1).
For (2), if x is in the domain of DE then by definition there are smooth

sections xn such that limn→∞ xn = x and limn→∞DExn = y = DE(x).
Then QDExn = xn − Txn where Q and T have continuous closures, and
hence, passing to the limits

Q(DE(x)) = x− T (x)

or in other words x = Q(y) + T (x) ∈ im(Q) + im(T ).
Conversely, (1) implies that im(Q) ⊂ dom(DE) and im(T ) ⊂ dom(DE).
To prove (3), the self-adjointness of the operator DE , recall that by

symmetryDE ⊂ (DE)∗. For the converse inclusion, recall thatDEQ = 1−R

TOME 65 (2015), FASCICULE 6



2690 Bernhard HANKE, Daniel PAPE & Thomas SCHICK

and therefore (DEQ)∗ = 1 − R∗. For adjoints of compositions one always
has Q∗D∗E ⊂ (DEQ)∗. Because Q∗ is the closure of the formal adjoint of
Q, which is bounded as it is of negative order, dom(D∗E) = dom(Q∗D∗E)
and for x ∈ dom(D∗E) we have (using Q∗D∗E ⊂ (DEQ)∗ = 1−R∗)

Q∗(D∗E(x)) +R∗x = x,

so dom(D∗E) ⊂ im(Q∗) + im(R∗).
Taking the formal adjoint of the parametrix equations DEQ = 1 − R,

QDE = 1 − T , we see that also the formal adjoint of Q is a parametrix
of DE , with error terms the formal adjoints of R, T , but with the roles of
R and T exchanged in the parametrix equations. Because the closures of
the formal adjoints of Q and R are equal to Q∗ and R∗ by property (vii)
of the functional calculus, an argument analogous to the one employed
for (1) shows that im(Q∗)+ im(R∗) ⊂ dom(DE). Hence we altogether have
dom(D∗E) ⊂ dom(DE).
It remains to prove the regularity of DE , i.e. we have to show that its

graph is complemented. Write H for the Hilbert module of L2-sections of
S ⊗ E. By (1) and (2),

G(DE) = {(Qx+ Ty,DEQx+DETy) | (x, y) ∈ H ×H} = U(H⊕H)

where U : H ⊕ H → H ⊕ H is the bounded adjointable operator with
U(x, y) = (Qx + Ty,DEQx + DETy), using that Q,T,DEQ,DET are all
operators of non-positive order. As a graph of a closure, U(H⊕H) is closed.
By [13, Theorem 3.2], the image of U and hence the graph of DE has an
orthogonal complement.
Now we treat the general case where M is complete, but not compact.

We will reduce this case to the compact one. For this we use Theorem 2.2
to show that DE is self-adjoint and regular. The argument is inspired by
the proof of essential self-adjointness of the untwisted Dirac operator on
complete manifolds in [3, Proposition 1.3.5] and by the treatment of [35,
Lemma 2.1]. We will use three basic and well-known features:

(1) Given a compact submanifoldK ⊂M with boundary, there exists a
closed Riemannian manifold (M ′, g′) equipped with a finitely gen-
erated projective Hilbert A-module bundle (E′,∇E′) with metric
connection, a Dirac bundle (S′,∇S′), a submanifold K ′ ⊂ M ′ and
a diffeomorphism ψ : K → K ′ such that ψ preserves all the structure
(restricted to K and K ′, respectively). Specifically, ψ∗g′|K′ = g|K
and (ψ∗E′, ψ∗∇E′) ∼= (E,∇E)|K as bundles with connections and
(ψ∗S′, ψ∗∇S′) ∼= (S,∇S)|K as Dirac bundles.
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(2) Because M is complete, for each compact subset K ⊂M and each
ε > 0 there is a smooth function φ : M → [0, 1] with compact
support such that φ|K = 1 and such that ‖grad(φ)‖∞ 6 ε.

(3) For each smooth function φ : M → R with compact support, the
commutator of multiplication by φ and DE extends to a bounded
operator on L2(M,S⊗E) with norm bounded by ‖grad(φ)‖∞. More
precisely, the commutator is given by Clifford multiplication with
grad(φ).

Let s ∈ Γ∞cpt(M,S⊗E). For given ε > 0 choose a function φ : M → [0, 1]
with compact support which is identically equal to 1 on the support of
s and with ‖grad(φ)‖∞ 6 ε. Then choose a compact Riemannian mani-
fold (M ′, g′) and bundles (E′,∇E′) as well as (S′,∇S′) with an isometry
ψ : K −→ K ′ where K is a compact manifold with boundary containing the
1-neighborhood of the support of φ.
In the sequel functions and sections with support in K ⊂ M or the

corresponding set K ′ in M ′ will be transported back and forth using this
isometry without further comment. For example, we interchangeably think
of φ as a function on M ′ and s as a section of S′ ⊗ E′|M ′ .
Because M ′ is compact the closure of the twisted Dirac operator DE′

on M ′ acting on sections of S′ ⊗ E′ is already shown to be regular and
self-adjoint. Hence by Theorem 2.2 we can find an element x ∈ dom(DE′)
such that (DE′ + i)x = s. We obtain

〈s, s〉 = 〈(DE + i)x, (DE + i)x〉 = 〈DEx,DEx〉+ 〈x, x〉 > 〈x, x〉 ∈ A+.

Now φx is defined on M and belongs to dom(DE) by (3). Moreover,

(DE + i)(φx) = (DE′ + i)(φx) = [DE′ , φ]x+ φ (DE′ + i)x .

Here, now φ (DE′ + i)x = φ s = s. On the other hand, ‖[DE′ , φ]‖ 6
‖grad(φ)‖∞ 6 ε so that ‖[DE′ , φ]x‖ 6 ε‖x‖ 6 ε‖s‖.
It follows that s lies in the closure of the image of DE + i and therefore

that DE + i has dense range as Γ∞cpt(M,S ⊗ E) is dense in L2(M,S ⊗ E).
In the same way it is shown that DE − i has dense range. This implies the
theorem by Theorem 2.2. �

3. Positive scalar curvature, partial vanishing, and coarse
index

We now introduce the coarse index of the Dirac operator DE on a com-
plete spin manifold (M, g), twisted by a smooth Hilbert A-module bundle
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E, and prove the vanishing result Theorem 1.7. For simplicity we will use
the notation DE for the densely defined, self-adjoint and regular closure
DE of DE , see Theorem 2.3.

3.1. The coarse index

The construction of the index is based on the functional calculus for
regular and self-adjoint operators on Hilbert A-modules from [13, Chapter 9
and 10] and [12, Section 3]. We will first recall this functional calculus in a
form needed for our purpose.

Theorem 3.1 (Continuous functional calculus). — Let C(R) be the
∗-algebra of continuous complex valued functions on R. Let T be a (possibly
unbounded) regular, self adjoint operator on the Hilbert A-moduleH. Then
there is a ∗-preserving linear map

πT : C(R) −→ RA(H) , f 7→ f(T )

with values in the set of regular operators on H, which has the following
properties.

− πT restricts to a C∗-algebra homomorphism πT : Cb(R) −→ LA(H)
on the set Cb(R) of bounded complex valued functions on R.

− If |f | 6 |g|, then dom(g(T )) ⊂ dom(f(T )).
− (Strong continuity) If (fn)n∈N is a sequence in C(R) which is dom-

inated by F ∈ C(R), i.e. |fn| 6 |F | for all n, and if fn −→ f uni-
formly on compact subsets of R, then πT (fn)x −→ πT (f)x for each
x ∈ dom(F (T )).

− πT (Id) = T .
− If f ∈ Cb(R) and F ∈ C(R) is defined by F (t) = t · f(t), then

dom(T ) ⊂ dom(F (T )) and for all x ∈ dom(T ) we have F (T )x =
Tf(T )x = f(T )Tx. If F is bounded, then im(f(T )) ⊂ dom(T ), and
we have F (T ) = Tf(T ) as bounded operators on H.

Let (M, g) be a complete Riemannian spin manifold and (E,∇) a smooth
Hilbert A-module bundle on M with metric connection and with finitely
generated projective fibers. We will now define the coarse index ind(DE),
following [20]. It is an element ofK∗(C∗(M ;A)), theK-theory of the coarse
C∗-algebra C∗(M ;A) of M with coefficients in A. This C∗-algebra was
introduced in [8] and its definition will be recalled shortly. The definition
of ind(DE) uses the functional calculus for self-adjoint (unbounded) Hilbert
A-module operators in Theorem 3.1.

ANNALES DE L’INSTITUT FOURIER



CODIMENSION 2 OBSTRUCTION TO POSITIVE SCALAR CURVATURE 2693

We will work with the Hilbert A-module H := L2(M,S ⊗ E), on which
C0(M), the C∗-algebra of all complex valued continuous functions on M

vanishing at infinity, acts by pointwise multiplication. The corresponding
representation is denoted ρ : C0(M) → LA(H). The following definition
generalizes the corresponding notions from [20, Chapter 3] to the Hilbert
A-module H.

Definition 3.2. — Let T ∈ LA(H).
− T is locally compact if T ◦ρ(f) and ρ(f)◦T are A-compact operators

for all f ∈ C0(M).
− T is called pseudolocal if the commutator [T, ρ(f)] is A-compact for

any f ∈ C0(M).
− T has finite propagation if there exists R > 0 such that ρ(f)◦T ◦ρ(g)

vanishes for all f, g ∈ C0(M) with d(supp(f), supp(g)) > R. In this
case we say that T has propagation bounded by R.

− The Roe C∗-algebra associated with ρ is the sub-C∗-algebra of
L∗A(H) generated by all locally compact operators with finite prop-
agation. It will be denoted by C∗(M ;A).

− If X ⊂ M is closed, we define C∗(X ⊂ M ;A) as the closed ideal
of C∗(M ;A) generated by locally compact operators T of finite
propagation which are supported near X, i.e. such that there is
R > 0 with Tρ(f) = 0 and ρ(f)T = 0 for all f ∈ C0(M) with
d(supp(f), X) > R.

Remark 3.3. — We suppress the dependence on the bundle S⊗E in the
notation C∗(M ;A). This is justified by the following functoriality results [8,
Lemma 5.4, Proposition 5.5].
For any Lipschitz map f : M → N and Hilbert A-module bundles E →

M , F → N so that the fibers of F → N are large enough - adding a trivial
bundle will always suffice if M has positive dimension - there are canon-
ical C∗-algebra homomorphisms f∗ : C∗(M ;A) → C∗(N ;A), obtained by
conjugation with an isometry between the Hilbert A-modules of sections
of these bundles. The induced map on K-theory is functorial in f . For
f = idM : M →M we can arrange that f∗ is an isomorphism, if the fibers
of E →M and F → N are large enough.

Proposition 3.4. — Using the functional calculus of Subsection 3.1 we
define the wave operator group {exp(isDE)}s∈R which consists of unitary
operators. It satisfies the wave equation: for u ∈ dom(DE),

d

ds
exp(isDE)u = iDE exp(isDE)u.
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Moreover, each exp(isDE) is a finite propagation operator with propaga-
tion |s|.

Proof. — Because the function t −→ exp(ist) is bounded on R, the oper-
ators exp(isDE) are bounded adjointable and unitary by the properties of
the functional calculus Theorem 3.1.
For fixed s ∈ R,

(
exp(i(s + h)t) − exp(ist)

)
/h converges to it exp(ist)

uniformly for t ∈ [−R,R] for each R and with a uniform bound of the
difference quotients by |1 + t|. The claim about the wave equation then
follows from the strong continuity property in Theorem 3.1.
The unit propagation property is a standard fact which follows from

a priori energy estimates. The proof given in [9, Proposition 10.3.1] only
uses properties of the wave equation, some elementary properties of the
functional calculus and the fact that, for a smooth function g : M → R, the
commutator [DE , ρ(g)] is equal to Clifford multiplication with the gradient
of g. It therefore generalizes immediately from the case of operators on
Hilbert spaces treated in [9, Proposition 10.3.1] to the unbounded operator
DE on the Hilbert A-module H. �

Definition 3.5. — An odd function χ ∈ C(R) is called normalizing
function if χ(t) −→ ± 1 as t −→ ±∞.

Lemma 3.6. — For the functional calculus of the regular self-adjoint
operator DE the following assertions hold.

a) For any ϕ ∈ C∞(R) ∩ L1(R) with ϕ̂ ∈ C∞cpt(R), one has

ϕ(DE)u = 1
2π

∫
R
ϕ̂(s) exp(isDE)u ds

for all compactly supported smooth sections u ∈ Γ∞cpt(M,S ⊗ E).
Further, the operator ϕ(DE) is locally compact and of finite prop-
agation.

b) For arbitrary ϕ ∈ C0(M) we have ϕ(DE) ∈ C∗(M ;A).
c) If χ ∈ Cb(R) is a normalizing function then χ(DE) is a norm limit

of bounded, self-adjoint finite propagation operators.

Proof. — For a) we first assume that supp(ϕ̂) ⊂ [−R,R] for R > 0.
By Theorem 3.1 the compactly supported integrand is continuous and the
integral is defined as a limit of Riemann sums. Moreover we have ϕ(t) =
1

2π
∫
R ϕ̂(s) exp(ist) ds, again as a limit of Riemann sums (and uniformly for

t in compact subsets of R), by the Fourier inversion theorem. The equation
in a) now follows from the continuity statement in Theorem 3.1.
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That ϕ(D) has finite propagation is an immediate consequence of the
integral representation of this operator, since the wave operators exp(isDE)
have finite propagation |s|.
To prove local compactness of ϕ(DE), let f be a compactly supported

smooth function on M . Note that the propagation of ϕ(DE) is bounded
by R. Let g be a compactly supported smooth function which is identically
equal to 1 on the R-neighborhood of the support of f . Then ϕ(DE)ρ(f) =
ρ(g)ϕ(DE)ρ(f) and ρ(f)ϕ(DE) = ρ(f)ϕ(DE)ρ(g).
Next, as in Subsection 2.1, when reducing from complete to compact

manifolds, we can find an isometry of a suitable neighborhood of supp(g)
with target a suitable subset of a compact manifold M1, covered by an
isometry of E to a Hilbert A-module bundle E1 onM1, when both bundles
are restricted to the respective subsets of M and M1.
This induces an isometry which conjugates ρ(g)ϕ(DE)ϕ(f) to the cor-

responding operator ρ(g1)ϕ(DE1)ρ(f1) on M1. This assertion uses the in-
tegral representation and the fact that the family exp(isDE)u on M is
conjugated to the corresponding family exp(isDE1)u1 on M1 as long as
supp(u) ⊂ supp(f) and |s| 6 R. Here we observe that the latter is the
unique solution of the wave equation for a given initial function u, which
follows immediately from the a priori energy estimates for the wave oper-
ator mentioned in the proof of Proposition 3.4.
Now we use the parametrix Q1 for DE1 of order −1 with remainder R1

of order −∞ such that DE1Q1 = 1 − R1. Composing with the bounded
operator ϕ(DE) from the left leads to the equation

ϕ(DE1) = (ϕ(DE1)DE1) ◦Q1 + ϕ(DE1) ◦R1.

Here ϕ(DE1)DE1 which is defined a priori only on dom(DE1), can be
extended to a bounded operator on H, as t 7→ tϕ(t) is bounded, and
Q1, R1 are A-compact because they are of negative order in the pseudo-
differential calculus on M1. Consequently, since the A-compact operators
are an ideal in the bounded operators also ρ(g1)ϕ(DE1)ρ(f1) and its con-
jugate ρ(g)ϕ(DE)ρ(f) are A-compact. The same argument implies that
ρ(f)ϕ(DE)ρ(g) is A-compact.

The claim about arbitrary ϕ ∈ C0(M) follows from the usual density
argument.
We now prove c). The function f(x) = x√

1+x2 is a normalizing function,
any other such function χ satisfies χ− f ∈ C0(R). Because of b) it suffices
to prove the statement for f . Now, f(x) = xg(x) with g(x) = (1 +x2)−1/2.
We construct a sequence of bounded continuous functions gn such that the
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functions x 7→ xgn(x) are also bounded and
(1) limn→∞‖xgn(x)− xg(x)‖∞ = 0.
(2) gn has a smooth Fourier transform with compact support.
Then the sequence of bounded operators DEgn(DE) converges by the

functional calculus in norm to DEg(DE) = f(DE). Moreover, gn(DE) has
finite propagation exactly by the same Fourier inversion argument which
showed that ϕ(DE) has finite propagation. As DE itself has propagation 0,
the composition DEgn(DE) also has finite propagation. Hence assertion c)
holds with χ replaced by f .

To construct gn, consider first the Fourier transform ĝ(ξ). This is, up
to a constant, the modified Bessel function K0(|ξ|) of the second kind [1,
p. 376]. The following Lemma 3.7 shows that this function is square in-
tegrable, smooth outside 0 and of Schwartz type as ξ → ±∞, meaning
that lim|ξ|→∞|ξk d

lĝ
dξl (ξ)| = 0 for all k, l. Choose smooth cutoff functions

φn : R → [0, 1] with ‖φ(k)
n ‖∞ 6 1 for k = 0, 1 and such that φn(ξ) = 1 for

|ξ| 6 n. Set ĝn = φnĝ and let gn be the Fourier transform of ĝn. Being
equal to the convolution of the L2-function g and the Schwartz function φ̂n
the function gn is bounded and continuous. We obtain

|x(g(x)− gn(x))| 6
∫
R
|(ĝ− ĝn)′(ξ)| dξ 6

∫
|ξ|>n

|(ĝ(1− φn))′(ξ)| dξ n→∞−−−−→ 0

as ĝ(ξ) is rapidly decreasing for |ξ| → ∞. Furthermore, the last inequality
also shows that x 7→ xgn is bounded for all n. �

Lemma 3.7. — Set g(x) = 1√
1+x2 . Then g ∈ L2(R) and its Fourier

transform ĝ has the following properties:
(1) For each k > 0 and each 0 6 l < k the function dl

dξl (ξkĝ(ξ)) belongs
to L2(R).

(2) The restriction of ĝ to R \ {0} is smooth
(3) The restriction of ξk dl

dξl ĝ to R\ (−1, 1) is bounded for each k, l ∈ N.

Proof. — An explicit calculation shows that xl d
k

dxk g(x) belongs to L2(R)
for l < k and to L1(R) for l < k + 1.

For the Fourier transforms, we therefore get that dl

dξl

(
ξkĝ
)
belongs to

L2(R) for l < k and to L∞(R) for l < k + 1. The Sobolev embedding
theorem then implies that ξkĝ(ξ) belongs to Ck−1(R). As ξk is smooth
and invertible outside the origin, this implies that ĝ is smooth on R \ {0}.
Calculating dl

dξl (ξkĝ) with the product rule, by induction on l we establish
that the restriction of ξk dl

dξl ĝ to R \ (−1, 1) is bounded for each k, l. �
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LetM be the sub-C∗-algebra of LA(H) generated by all operators with fi-
nite propagation. Then C∗(M ;A) ⊂M is a C∗-ideal (for the ideal property
use an argument similar to the third paragraph in the proof of Lemma 3.6).
Consider the associated six-term exact sequence

(3.1)

K0(C∗(M ;A)) −−−−→ K0(M) −−−−→ K0(M/C∗(M ;A))

∂1

x y∂0

K1(M/C∗(M ;A)) ←−−−− K1(M) ←−−−− K1(C∗(M ;A))

.

Definition 3.8. — If dim(M) is odd, 1+χ(DE)
2 belongs toM and is a

projection modulo C∗(M ;A), as χ(DE)2−I ∈ C∗(M ;A). The coarse index
ind(DE) is then defined as

ind(DE) := ∂0[ 12(1 + χ(DE))] ∈ K1(C∗(M ;A)).

If dim(M) is even, the decomposition of the spinor bundle S → M in
even and odd parts induces a decomposition L2(M,S ⊗E) = H0 ⊕H1 for
which

DE =
[

0 D1
D0 0

]
.

Then U∗χ(DE)0 belongs toM, where U : H0 −→ H1 is a unitary embed-
ding(1) . idM , and U∗χ(DE)0 is unitary modulo C∗(M ;A) as χ2(DE)− I ∈
C∗(M ;A), i.e. U∗χ(DE)0 represents an element in K1(M/C∗(M ;A)).
Then the coarse index ind(DE) is defined as

ind(DE) := ∂1[U∗χ(DE)0] ∈ K0(C∗(M ;A)).

3.2. The vanishing theorem

The following vanishing theorem generalizes an analogous result from [20,
Proposition 3.11 and the following Remark], [19] and [34, Proposition 4]
for the spin Dirac operator to the case of the spin Dirac operator twisted
with a flat Hilbert A-module bundle.

Definition 3.9. — Let M be a complete Riemannian manifold and A
a unital C∗-algebra. A closed subset X ⊂M is called coarsely A-negligible
if the inclusion induces the zero homomorphism 0 = i∗ : K∗(C∗(X ⊂
M ;A))→ K∗(C∗(M ;A)).

(1)See [10, p. 91 f] for the definition and a proof for the existence of such an isometry.
This notion is used for the functoriality of Remark 3.3
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Note that, by functoriality, every closed subset of a coarsely A-negligible
set is itself coarsely A-negligible. Secondly, note that, by definition,
C∗(UR(X) ⊂ M ;A) = C∗(X ⊂ M ;A) for any closed R-neighborhood
UR(X) of X.

Proposition 3.10. — If M is a complete connected non-compact Rie-
mannian manifold then every compact subset K ⊂ M is coarsely A-
negligible for any A.

Proof. — Choose an isometric embedding γ : R+ −→ M . This is possible
because M is complete, connected and non-compact, see [2, p. 92]. Then,
because a compact set has finite diameter, K ⊂ UR(γ(R+)) for R suffi-
ciently large.
It remains to show that K∗(C∗(γ(R+) ⊂M ;A)) = 0, so that γ(R+) is A-

negligible. This follows from K∗(C∗(γ(R+) ⊂M ;A)) ∼= K∗(R+;A) by [28,
Proposition 2.9] and K∗(R+;A) = 0 by an Eilenberg swindle argument as
carried out in [20, Proposition 9.4]. Compare [28, Proposition 2.6] for the
generalization to Hilbert A-module coefficients. �

Theorem 3.11. — Let (M, g) be a complete Riemannian spin man-
ifold with uniformly positive scalar curvature outside of an A-negligible
set X. Let E → M be a smooth finitely generated projective Hilbert A-
module bundle equipped with a flat metric connection. Then the coarse
index ind(DE) ∈ K∗(C∗(M ;A)) of the twisted Dirac operator of (M, g)
vanishes.
In particular, if M is non-compact connected and has uniformly positive

scalar curvature outside a compact set, then ind(DE) = 0 for any flat
Hilbert A-module bundle E as above.

Proof. — We use the notation from diagram (3.1) and consider the fol-
lowing commutative diagram:

(3.2)

0 −−→ C∗(M ;A) −−→ M −−→ M/C∗(M ;A) −−→ 0

i∗

x ∥∥∥ x
0 −−→ C∗(X ⊂M ;A) −−→ M −−→ M/C∗(X ⊂M ;A) −−→ 0

In Proposition 3.15 below we will construct a normalizing function χ

for which χ(DE)2 equals I modulo C∗(X ⊂ M ;A). This implies that
[ 1

2 (1+χ(DE))] lifts toK0(C∗(X⊂M ;A)) (if dimM is odd) and [U∗χ(DE)0]
lifts to K1(C∗(X ⊂M ;A)) (if dimM is even).
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Using the commutativity of

K∗+1(M/C∗(X ⊂M ;A)) ∂∗+1−−−−→ K∗(C∗(X ⊂M ;A))yi∗ yi∗=0

K∗+1(M/C∗(M ;A)) ∂∗+1−−−−→ K∗(C∗(M ;A))
in the six-term exact sequence, we obtain the desired result by the A-
negligibility of X. �

To prove that I − χ(DE)2 ∈ C∗(X ⊂M ;A) for a suitable χ, we use the
following criterion.

Lemma 3.12. — An operator T ∈ C∗(M ;A) belongs to C∗(X ⊂M ;A)
for a closed subset X if and only if for each ε > 0 there is R > 0 such
that for each u ∈ L2(M,S ⊗ E) with support outside the R-neighborhood
UR(X) we have

(3.3) ‖Tu‖ 6 ε ‖u‖.

Proof. — If T is a norm limit of operators which are supported in R-
neighborhoods of X, the inequality (3.3) obviously holds.
Conversely, write T = limTn with operators Tn which are locally com-

pact and of finite propagation. Using the estimate, we have to modify the
the operators Tn such that they are in addition supported in a bounded
neighborhood of X. For this we choose cutoff functions φn : M → [0, 1]
which are supported in U2n(X) and which are identically equal to 1 in
Un(X). Then Tnρ(φn) are still locally compact, of some finite propagation
Pn, and, in addition, supported in U2n+Pn

(X), i.e. (Tnρ(φn))ρ(f) = 0, if
supp(f) ∩ U2n+Pn(X) = ∅.

We only have to show that Tn and Tnρ(φn) are close in operator norm if
n is sufficiently large. For ε > 0 choose R as in the assumption and n > R.
Then

‖(Tn − Tnρ(φn))u‖ = ‖Tn(1− ρ(φn))u‖ 6 ε‖(1− ρ(φn))u‖ 6 ε‖u‖,

for each u ∈ L2(M,S ⊗ E), as (1 − ρ(φn))u has support outside the R-
neighborhood of X. Therefore ‖Tn − Tnρ(φn)‖ 6 ε. �

Before we can prove the required Proposition 3.15, we need two further
preparatory lemmas. The first is a standard property of the Fourier trans-
form, its proof is left to the reader.

Lemma 3.13. — Let f ∈ C∞cpt(R). Then for each δ > 0 there exists a
smooth L1-function fδ with compactly supported Fourier transform and
such that for all x ∈ R and for j = 0, 1, 2 we have |xj (f(x)− fδ(x))| 6 δ.
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Lemma 3.14. — Let f ∈ C∞cpt(R) with f > 0. Then for each ε > 0
there exists a decomposition f = fε + gε and S(ε) > 0 with the following
properties:

(1) fε =F 2
ε with Fε a smooth L1-function and supp(F̂ε)⊂ [−S(ε), S(ε)].

(2) sup{|xj gε(x)| ; x ∈ R} 6 ε for each j = 0, 1, 2.

Proof. — Set F := f1/2, choose A > 0 with supp(F ) ⊂ [−A,A]. Let
ε > 0. Approximate F by H ∈ C∞(R) with ‖F − H‖ 6 ε

(A+1)2·4(‖F‖+1) ,
supp(H) ⊂ [−A− 1, A+ 1] and ‖H‖ 6 ‖F‖+ 1. Here and in the remainder
of the proof we use the maximum norm on C∞cpt(R).

Choose δ 6 ε
4(‖F‖+1) , δ 6 1. By Lemma 3.13, H admits a decomposition

H = Hδ + Rδ where Hδ is a smooth L1-function with compactly sup-
ported Fourier transform, such that sup|xjRδ(x)| 6 δ for j = 0, 1, 2, and
‖Hδ‖ 6 ‖H‖ and with supp(Ĥδ) ⊂ [−R(δ), R(δ)] for suitable R(δ) > 0.
The estimate on Rδ implies ‖Hδ‖ 6 ‖H‖+ δ.

Set fε := H2
δ and Fε := Hδ. Then (i) holds with S(ε) := R(δ). Finally,

we obtain (ii) from the following estimate for j = 0, 1, 2

|xj(f(x)−fε(x))| = |xj(F (x)− Fε(x)) (F (x) + Fε(x))|

6 |xj(F (x)−Hδ(x))| ‖F +Hδ‖

6
(
|xj(F (x)−H(x))|+ |xj(H(x)−Hδ(x))|

)
‖F +Hδ‖

6
(
|xj(F (x)−H(x))|+ |xjRδ(x)|

)
(‖F‖+ ‖Hδ‖)

6
(
(A+ 1)j‖F −H‖+ δ

)
(‖F‖+ ‖H‖+ δ)

6

(
ε

4(‖F‖+1) + ε

4(‖F‖+1)

)
(‖F‖+‖F‖+1+1) = ε .

�

Proposition 3.15. — In the situation of Theorem 3.11, there is a nor-
malizing function χ such that χ(DE)2 − I ∈ C∗(X ⊂M ;A).

Proof. — Let s0 > 0 be such that s := scal > s0 outside of X, choose
0 < R < (s0/4)1/2 and let χ be such that ϕ := 1 − χ2 is compactly
supported in [−R,R].
Let ε > 0. We will derive the inequality

(3.4) ‖ϕ(DE)u‖2 6
(s0

4 −R
2
)−1 (s0

4 + 1
)
ε ‖u‖2

for each u ∈ Γ∞cpt(M,S) with supp(u) outside of B(K; 3S(ε)) for an
S(ε) > 0. Using Lemma 3.12 this implies that ϕ(DE) ∈ C∗(X ⊂M ;A), as
required.
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In order to obtain (3.4) we use Lemma 3.14 and write f = ϕ2 = fε + gε
with

(1) fε = F 2
ε with Fε ∈ C∞(R) ∩ L1(R) and supp(F̂ε) ⊂ [−S(ε), S(ε)],

(2) sup{|xj gε(x)| ; x ∈ R} 6 ε for each j = 0, 1, 2.
From the functional calculus of Theorem 3.1 and the self-adjointness of DE

we obtain the following estimates for each u ∈ Γ∞cpt(M,S ⊗ E):

〈D2
Ef(DE)u, u〉 = 〈D2

Eϕ(DE)2u, u〉 6 R2 〈ϕ(DE)u, ϕ(DE)u〉(3.5)

〈D2
Egε(DE)u, u〉 6 ε ‖u‖2 · 1A(3.6)

〈gε(DE)u, u〉 6 ε ‖u‖2 · 1A(3.7)

The first inequality uses DEϕ(DE) = m(DE)ϕ(DE) for a suitable function
m : R→ R with ‖m‖∞ 6 R as supp(ϕ) ⊂ [−R,R] and the second inequality
is based on the estimate

〈D2
Egε(DE)u, u〉 6 ‖〈D2

Egε(DE)u, u〉‖ · 1A 6 ‖D2
Egε(DE)‖ · ‖u‖2 · 1A

which follows from the inequality 0 6 a 6 ‖a‖A · 1A for a ∈ A+ and
the Cauchy-Schwarz inequality for Hilbert A-modules. The third inequality
above is derived in the same manner.
Using that DE has unit propagation speed one sees that the inclusion

supp(F̂ε) ⊂ [−S(ε), S(ε)] from (i) implies

supp(Fε(DE)u) ⊂ B(supp(u), S(ε)).

In particular, supp(Fε(DE)u) is outside of B(X,S(ε)) if supp(u) is outside
of B(X; 3S(ε)).
From the Schrödinger-Lichnerowicz formula

D2
E = ∆ + s/4 ,

where ∆ is a positive operator and s denotes multiplication with the scalar
curvature function, we obtain for such u:

(3.8)

〈D2
Efε(DE)u, u〉

= 〈F 2
ε (DE)D2

Eu, u〉

= 〈
{

∆ + s

4

}
Fε(DE)u, Fε(DE)u〉

= 〈
{

∆ +
(
s− s0

4

)}
Fε(DE)u, Fε(DE)u〉+ s0

4 〈fε(DE)u, u〉

>
s0

4 〈fε(DE)u, u〉 .

Here we have used that supp(Fε(DE)u) is outside of X and hence that
s > s0 holds there, hence ∆ + (s − s0)/4 acts as a positive operator on
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Fε(DE)u. Using (3.5)–(3.8) one finally obtains (3.4) from the following
inequality in A(s0

4 −R
2
)
〈ϕ(DE)u, ϕ(DE)u〉

6
s0

4 〈f(DE)u, u〉 − 〈D2
Ef(DE)u, u〉

6
s0

4 〈f(DE)u, u〉 − 〈D2
Efε(DE)u, u〉 − 〈D2

Egε(DE)u, u〉

6
s0

4 〈f(DE)u, u〉 − 〈D2
Efε(DE)u, u〉+ ε ‖u‖2 · 1A

6
s0

4 〈f(DE)u, u〉 − s0

4 〈fε(DE)u, u〉+ ε‖u‖2 · 1A

= s0

4 〈gε(DE)u, u〉+ ε ‖u‖2 · 1A

6 ε
(s0

4 + 1
)
‖u‖2 · 1A ,

which implies the required inequality in R+ after applying the norm
of A. �

4. Codimension two index obstruction to positive scalar
curvature

In [35, Theorem 2.6] Roe’s partitioned manifold index theorem [20, Theo-
rem 4.4] was generalized to Dirac operators twisted with Hilbert A-module
bundles. Since this version will be used in the proof of our main result, we
will briefly restate it here.

Theorem 4.1. — LetM be an odd-dimensional complete spin manifold
with dim(M) > 3 and let N ⊂M be a closed submanifold of codimension
one with trivial normal bundle, which divides M into two parts M0 and
M1 with common boundary N . Denote with DE the spin Dirac operator
twisted by the Hilbert A-module bundle E →M .

Let ϕN : K1(C∗(M ;A)) −→ K0(A) be the generalization to Hilbert A-
module bundles of the homomorphism defined by the partitioning hyper-
surface as in [20, Section 4]. Then

ϕN (ind(DM,E)) = ind(DN,E|N )

where ind(DN,E|N ) ∈ K0(A) is the classical Mishchenko-Fomenko index of
the Dirac operator on the compact manifold N twisted by E|N .

Recall that on an arbitrary connected manifold M with fundamental
group π, we have the canonical flat Mishchenko line bundle V(M) :=
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M̃ ×π C∗π →M , a Hilbert C∗π-bundle, where C∗π is the reduced or max-
imal group C∗-algebra for π, respectively. If M is a closed connected spin
manifold, the Mishchenko-Fomenko index of the Dirac operator twisted by
V(M), denoted ind(DV(M)) ∈ Kn(C∗π), is called the Rosenberg index and
often written α(M) := ind(DV(M)). Here n = dim(M). If M is compact,
standard arguments (see e.g. [17, Section 2.1]) show that this can also be
viewed as the coarse index ind(DV(M)) applied to the compact manifold
M in which case C∗(M ;C∗π) is canonically Morita equivalent to C∗π and
therefore has the same K-theory.
By one of the many possible definitions of the Baum-Connes assembly

map this is the image of the K-homology class of Bπ represented by [M ]
in the Baum-Douglas picture of K-homology under the Baum-Connes as-
sembly map.
The following suspension result is well known and essentially contained

in [23], compare in particular Proposition 2.9 and its proof (and the refer-
ences therein) and the proof of Theorems 2.11 and 3.1 in [23].

Proposition 4.2. — We have C∗(π×Z) = C∗π⊗C∗Z and K1(C∗Z) ∼=
Z. The last isomorphism is induced by the generator e = ind(DV(S1)) ∈
K1(C∗Z), the Rosenberg index of the Dirac operator on S1, where S1 car-
ries the canonical orientation and any one of the two possible spin struc-
tures.
For an arbitrary closed spin manifold M we have the product formula

ind(DV(M×S1)) = ind(DV(M))⊗ e

∈ Kn(C∗π1(M))⊗K1(C∗Z) ⊂ Kn+1(C∗π1(M × S1))

relating the Rosenberg indices ofM×S1 andM , where we use the inclusion
Kn(A)⊗K1(C∗Z) ↪→ Kn+1(A⊗C∗Z) coming from the Künneth theorem.

We can now state and prove the following result, which implies Theo-
rem 1.1.

Theorem 4.3. — LetM be a connected closed manifold with dim(M)>
3 andW ⊂M a connected submanifold of codimension zero with boundary
∂W . Additionally, assume that the following holds:

(1) The boundary ∂W is connected.
(2) The second homotopy group of M vanishes: π2(M) = 0.
(3) The Hurewicz map hur1 : π1(∂W ) −→ H1(∂W ) is injective when

restricted to the kernel ker(i∗) ⊂ π1(∂W ) of the map induced by
the inclusion map i : ∂W −→W .
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(4) The inclusion map j : W −→M induces a monomorphism

j∗ : π1(W ) −→ π1(M).

Then the following holds:
(1) Let p : M −→ M be the covering corresponding to the subgroup

j∗(π1(W )) of π1(M), and W ⊂ M be a lift as isometric copy of
W to M , which exists by the choice of this covering. Denote by
D(M,W ) the double of the manifold M \ int(W ). This double is
partitioned by ∂W . There exists an extension of the Mishchenko
line bundle V(∂W ) over ∂W to a flat bundle E over D(M,W ).

(2) IfM is a spin manifold andW = N×D2 is a tubular neighborhood
of a connected and closed submanifold N ⊂M with codim(N) = 2
and trivial normal bundle, then (3) is automatically satisfied and if
α(N) 6= 0 then the manifold M does not admit a metric of positive
scalar curvature.

The condition (2) in Theorem 4.3 is necessary. For example consider
M := N × S2 with some N which has non-trivial Â-genus. Then M does
admit a metric with positive scalar curvature, but all the other assumptions
are satisfied by a tubular neighborhood W of one copy of N in N × S2.

Remark 4.4. — IfM,N are as in part b) of Theorem 4.3, and α(N) 6= 0
then the index of π1(N) in π1(M) is necessarily infinite. Otherwise, passing
to the finite covering M the complement M \W is a compact spin bordism
between N × S1 and the empty set, over which the Mishchenko bundle of
N × S1 extends.
By bordism invariance of the index of the twisted Dirac operator we have

α(N×S1) = 0 and therefore also α(N) = 0, as explained in Proposition 4.2.

Corollary 4.5. — Let N be a closed connected spin manifold with
π2(N) = 0 and α(N) 6= 0 in K∗(C∗π1(N)). Let X be the total space of a
fiber bundle N ↪→ X → Σ with fiber N over a compact surface Σ different
from S2 or RP 2. If the spin structure on N extends to a compatible spin
structure on X, then X does not admit a Riemannian metric with positive
scalar curvature.

Proof. — We view N as fiber over some point in Σ. Local triviality of
the bundle implies the existence of a trivialized tubular neighborhood W
of N in X. By assumption Σ is neither RP 2 nor S2. Hence π2(Σ) = 0 and
the long exact homotopy sequence of the bundle implies that the inclusion
j : W −→ X is π1-injective. By the same reasoning π2(X) = 0. So (2) and
(4) of Theorem 4.3 are satisfied. �
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Proof of Theorem 4.3. — We consider the connected covering p : M −→
M corresponding to the subgroup j∗(π1(W )) of π1(M). The inclusion map
j : W −→ M lifts to an injection j : W −→ M which is an π1-isomorphism,
where W is homeomorphic to W via p.

(a) We will show subsequently that the inclusion map k : ∂W −→M \W
induces an injection on π1 and that there exists a homomorphism r : π1(M \
W ) −→ π1(∂W ) satisfying r ◦ k∗ = id, i.e., k∗ is a split injection. From this
it follows that E := (Br ◦ c)∗V(Bπ1(∂W )) satisfies k∗E ∼= V(∂W ) if c is the
classifying map of the universal covering of M \W .

Injectivity of k∗: Let i : ∂W ↪→W be the inclusion. Then the diagram

(4.1)

π1(∂W ) k∗−−−−→ π1(M \W )

i∗

y ym∗
π1(W ) j∗−−−−→∼= π1(M)

is by the van Kampen theorem a pushout diagram (the right vertical arrow
is induced by the inclusion m : M \W −→ M). Since j∗ is an isomorphism
one has ker(k∗) ⊂ ker(i∗). Therefore, if [α] ∈ ker(k∗) then the loop α

is both null-homotopic as a map to M \ W and as a map to W . This
allows us to construct a singular sphere σ : S2 −→M which maps the lower
and upper hemisphere S2

− and S2
+, into W and M \W , respectively, and

whose restriction of σ to the equator S1 ⊂ S2 is α. By assumption (2)
we have π2(M) = π2(M) = 0 and hence σ∗[S2] = 0 in singular homology.
Therefore, by the construction of the boundary operator ∂ of the Mayer-
Vietoris sequence of the triad (M,M \W,W ) also ∂(σ∗[S2]) = α∗[S1] =
hur1[α] = 0. But this in conjunction with (3) implies [α] = 0, proving that
k∗ is injective.
Let now N be the normal closure of k∗(ker(i∗)) in π1(M \W ) . We get

the bigger commutative diagram

π1(∂W ) k∗−−−−→ π1(M \W )y y
π1(∂W )/ker(i∗)

k∗−−−−→ π1(M \W )/N

i∗

y ym∗
π1(W ) j∗−−−−→∼= π1(M)
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Because the outer square is a pushout diagram and the map π1(M\W )→
π1(M \W )/N is surjective, also the lower square is a pushout square. Now,
as i∗ is injective and j∗ is an isomorphism, commutativity implies that k∗ is
injective. By the universal property of an amalgamated product, the lower
pushout diagram is an amalgamed product. Using standard properties of
amalgamated products (both factors π1(W ) and π1(M \W )/N inject, and
their intersection is precisely π1(∂W )/ker(i∗)), and because j∗ is an iso-
morphism, also k∗ is an isomorphism. In particular, we have the product
decomposition

(4.2) π1(M \W ) = π1(∂W ) ·N.

Existence of r: Since M and W are path connected, π1(W )→ π1(M) is
an isomorphism and since by assumption (ii) π2(M) = 0, the pair (M,W )
is 2-connected. By the relative Hurewicz theorem, H∗(M,W ) = 0 for j =
0, 1, 2. By excision the groups H1(M \W,∂W ) and H2(M \W,∂W ) are
also trivial. In particular, H1(k) is an isomorphism. From (4.1) we obtain
the following diagram

(4.3)

π1(∂W ) k∗−−−−→ π1(M \W )

i∗×hur1

y ym∗×hur1

π1(W )×H1(∂W )
∼=−−−−−−→

j∗×H1(k)
π1(M)×H1(M \W )

which commutes by the naturality of the Hurewicz homomorphism. The
lower horizontal arrow in (4.3) is an isomorphism as j∗ and H1(k) are
isomorphisms. Furthermore, our assumption (3) implies the injectivity of
i∗×hur1. This allows us to regard π1(∂W ) as subgroup of π1(M)×H1(M \
W ) via the injection given by the composition of this injection with the
lower horizontal arrow in (4.3). Using the product decomposition (4.2) and
the facts that the image of N in π1(M) is trivial and the image of the
normal closure N of ker(i∗) in the abelian group H1(M \W ) is equal to the
image of ker(i∗), the right vertical arrow then surjects onto this subgroup
π1(∂W ) of π1(M)×H1(M \W ), giving rise to the required split r of k∗.

(b) Assume first that M is odd dimensional. Denote by W a trivial
tubular neighbourhood of N . Then W is a zero-codimensional submanifold
of M . The manifold D(M,W ) admits a spin structure and is partitioned
by the boundary ∂W ∼= N × S1 of W . By part (a) there is a flat bundle
E over D(M,W ) which extends the Mishchenko line bundle V(∂W ) over
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∂W . By Theorem 4.1 we have:

(4.4) ϕ∂W (ind(DD(M,W ),E)) = ind(D∂W,V(∂W )) ∈ K0(C∗π1(∂W )) .

On the other hand, using Proposition 4.2,

(4.5) ind(D∂W,V(∂W )) = α(∂W ) = α(∂W ) = α(N × S1) = α(N)⊗ e .

Since we assume α(N) 6= 0, by Proposition 4.2 we can conclude

(4.6) ind(DD(M,W ),E) 6= 0.

We conclude the proof by contradiction as follows. If M admits a metric
of positive scalar curvature, then M admits a metric of uniformly positive
scalar curvature. We can use this metric (deformed in a neighborhood of
∂W to get a smooth metric) to obtain a Riemannian metric with uniformly
positive scalar curvature outside of a compact neighbourhood of ∂W on
D(M,W ). But since the bundle E is flat, Equation (4.6) and Theorem 3.11
imply that D(M,W ) has no metric with uniformly positive scalar curvature
outside of a compact subset. Hence M cannot admit a metric of positive
scalar curvature.

Now assume thatM is even-dimensional. In this case we replace the pair
(M,N) by (M × S1, N × S1). Since N has trivial normal bundle in M the
normal bundle of N ×S1 in M ×S1 is trivial. Also the fundamental group
of the submanifold still injects into the fundamental group of the ambient
manifold. Since

(4.7) α(N × S1) 6= 0⇐⇒ α(N)⊗ e 6= 0 ⇐⇒ α(N) 6= 0

it follows from the previous paragraph that M × S1 admits no metric of
positive scalar curvature. So in particular M has no such metric. �

Remark 4.6. — It should be possible to generalize the results of this
paper in the following directions:

− Using real C∗-operators and Cln-linear versions, more refined in-
variants in the K-theory of real group C∗-algebras should be defined
for which the same kind of vanishing result holds, and which should
give rise to stronger obstructions to positive scalar curvature. Note
that the (stable) Gromov-Lawson-Rosenberg conjecture concerns
the real Dirac operator and the corresponding Rosenberg index.

− Using suitable further twists, as developed systematically by Stolz,
compare e.g. [25, Section 5] one should be able to extend the theory
to non-spin manifolds and even non-orientable manifolds, provided
the universal covering carries a spin structure.
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− The partitioned manifold index theorem underlying our approach
has generalizations to multi-partitioned manifolds [28]. It should
be possible, at least in special, iterated situations, to generalize
the codimension two obstruction of Theorem 4.3 to even higher
codimensions. For example, think of the following situation: one is
given a codimension two hypersurface N1 of a manifold M which
itself contains a codimension two hypersurface H, for example let
H = N1 ∩N2 be the intersection of two codimension two hypersur-
faces. Is the Rosenberg index of H an obstruction to positive scalar
curvature of M (under an appropriate assumption on fundamental
groups and the vanishing of higher homotopy groups of M)?
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