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THE ORLIK-SOLOMON MODEL FOR HYPERSURFACE
ARRANGEMENTS

by Clément DUPONT (*)

Abstract. — We develop a model for the cohomology of the complement
of a hypersurface arrangement inside a smooth projective complex variety. This
generalizes the case of normal crossing divisors, discovered by P. Deligne in the
context of the mixed Hodge theory of smooth complex varieties. Our model is a
global version of the Orlik-Solomon algebra, which computes the cohomology of
the complement of a union of hyperplanes in an affine space. The main tool is the
complex of logarithmic forms along a hypersurface arrangement, and its weight fil-
tration. Connections with wonderful compactifications and the configuration spaces
of points on curves are also studied.
Résumé. — Nous mettons au point un modèle pour la cohomologie du complé-

mentaire d’un arrangement d’hypersurfaces dans une variété complexe projective
lisse. Cela généralise le cas des diviseurs à croisements normaux, découvert par P.
Deligne dans le cadre de la théorie de Hodge mixte des variétés complexes lisses.
Notre modèle est une version globale de l’algèbre d’Orlik-Solomon, qui calcule la
cohomologie du complémentaire d’une union d’hyperplans dans un espace affine.
L’outil principal est le complexe des formes logarithmiques le long d’un arrange-
ment d’hypersurfaces, et sa filtration par le poids. Nous étudions aussi des liens
avec les compactifications magnifiques et les espaces de configuration de points sur
des courbes.

1. Introduction

Let X be a complex manifold of dimension n. A hypersurface arrange-
ment in X is a union

L = L1 ∪ · · · ∪ Ll

Keywords: arrangements, mixed Hodge theory, logarithmic forms, configuration spaces.
Math. classification: 14C30, 14F05, 14F25, 52C35.
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2508 Clément DUPONT

of smooth hypersurfaces Li ⊂ X, i = 1, . . . , l, that locally looks like a union
of hyperplanes in Cn: around each point of X we can find a system of local
coordinates in which each Li is defined by a linear equation.
This generalizes the notion of a (simple) normal crossing divisor: a hy-

persurface arrangement is a normal crossing divisor if the local linear equa-
tions defining the Li’s are everywhere linearly independent; in other words,
if we can always choose local coordinates (z1, . . . , zn) such that L is locally
defined by the equation z1 · · · zr = 0 for some r.
Besides normal crossing divisors, examples of hypersurface arrangements

include unions of hyperplanes in a projective space Pn(C), or unions of
diagonals ∆i,j = {yi = yj} ⊂ Y n inside the n-fold cartesian product of a
Riemann surface Y . The class of hypersurface arrangements is also closed
under certain blow-ups.
The aim of this article is to define and study a model M•(X,L) for the

cohomology algebra over Q of the complement X \ L of a hypersurface
arrangement, when X is a smooth projective variety over C.

Our model, which we call the Orlik-Solomon model, has combinatorial in-
puts coming from the theory of hyperplane arrangements (the local setting)
and geometric inputs coming from the cohomology of smooth hypersurface
complements in a smooth projective variety (the global setting). Roughly
speaking, it is the direct product of two classical tools related to these two
situations, that we first recall.
• Combinatorics: the Orlik-Solomon algebra. Let L be a union of hyper-
planes in Cn that contain the origin, and call any multiple intersection
of hyperplanes of L a stratum of L. The strata of L form a poset which
is graded by the codimension of the strata, and denoted by S•(L).
In [20], Orlik and Solomon introduced Q-vector spaces AS(L) for ev-
ery stratum S, and gave the direct sum

(1.1) A•(L) =
⊕

S∈S•(L)

AS(L)

the structure of a graded algebra, via product maps

(1.2) AS(L)⊗AS′(L)→ AS∩S′(L).

Furthermore, there are natural morphisms

(1.3) AS(L)→ AS′(L)

for any inclusion S ⊂ S′ of strata of L such that codim(S′) =
codim(S)− 1. The crucial fact is that the Orlik-Solomon algebra is
a combinatorial object, which means that it only depends on the poset
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THE ORLIK-SOLOMON MODEL 2509

of strata of L. We now recall the classical Brieskorn-Orlik-Solomon the-
orem (see Theorem 2.1 for a more precise statement). Here H•(Cn \L)
denotes the cohomology of the complement Cn \L with rational coef-
ficients.

Theorem 1.1 (Brieskorn-Orlik-Solomon). — We have an isomor-
phism of graded algebras

H•(Cn \ L) ∼= A•(L).

One may define an Orlik-Solomon algebra A•(L) for L any hypersur-
face arrangement inside a complex manifold X. We still have a direct
sum decomposition (1.1), with S•(L) the graded poset of strata of L,
as well as product maps (1.2) and natural morphisms (1.3). As in the
local case, the Orlik-Solomon algebra A•(L) only depends on the poset
of strata of L. It is functorial with respect to (X,L) in the sense that
any holomorphic map ϕ : X → X ′ such that ϕ−1(L′) ⊂ L induces a
map of graded algebras A•(ϕ) : A•(L′)→ A•(L).

• Geometry: the Gysin long exact sequence. For a smooth hypersur-
face V inside a smooth projective variety X over C, the Gysin mor-
phisms of the inclusion V ⊂ X are the morphisms Hk−2(V )(−1) →
Hk(X) , where (−1) denotes a Tate twist, obtained as the Poincaré
duals of the natural morphisms H2n−k(X) → H2n−k(V ) where n =
dimC(X). They fit into a long exact sequence, called the Gysin long
exact sequence:

(1.4)
· · · → Hk−2(V )(−1)→ Hk(X)→ Hk(X \ V )→ Hk−1(V )(−1)→ · · ·

It is worth noting that the connecting homomorphisms Hk(X \ V )→
Hk−1(V )(−1) are residue morphisms, which are easily described using
logarithmic forms.

We can now state our main theorem (see Theorem 4.8 for more precise
statements).

Theorem 1.2. — Let X be a smooth projective variety over C and L
be a hypersurface arrangement in X.

(1) For integers q and n let us consider

Mn
q (X,L) =

⊕
S∈Sq−n(L)

H2n−q(S)(n− q)⊗AS(L)

TOME 65 (2015), FASCICULE 6



2510 Clément DUPONT

viewed as a pure Hodge structure of weight q, where (n− q) is a Tate
twist. Then the direct sum

M•(X,L) =
⊕
q

M•q (X,L)

has the structure of a differential graded algebra (dga) in the (semi-
simple) category of split mixed Hodge structures over Q. The product
inM•(X,L) is induced by the product maps (1.2) of the Orlik-Solomon
algebra and the cup-product on the cohomology of the strata. The
differential in M•(X,L) is induced by the natural morphisms (1.3)
and the Gysin morphisms

H2n−q(S)(n− q)→ H2n−q+2(S′)(n+ 1− q)

of the inclusions of strata S ⊂ S′. The dgaM•(X,L) is functorial with
respect to (X,L) in the sense explained above.

(2) The dga M•(X,L) is a model for the cohomology of X \ L in the
following sense: we have isomorphisms of pure Hodge structures over Q

grWq Hn(X \ L) ∼= Hn(M•q (X,L))

which are compatible with the algebra structures, and functorial with
respect to (X,L).

The precise definition of the Orlik-Solomon model M•(X,L) is given in
§4.4. Theorem 1.2 generalizes the case of normal crossing divisors, which is
due to P. Deligne [9], see also [26, 8.35], as a by-product of the definition of
the mixed Hodge structure on the cohomology of smooth varieties over C.
The Orlik-Solomon model appears as the first page of a spectral sequence,
called the Orlik-Solomon spectral sequence.
Before we describe the proof of Theorem 1.2 and some of its applica-

tions, we mention that it completes a result by E. Looijenga [18, §2] who
first considered the Orlik-Solomon spectral sequence. Our approach is to-
tally different, with a prominent use of differential forms. In particular, we
introduce a complex of logarithmic differential forms (see §1.3 in this In-
troduction) that should have applications in other situations. Concretely,
the main advantages of the use of differential forms are the following.
(1) It allows us to prove the functoriality of the Orlik-Solomon model,

whereas Looijenga’s spectral sequence cannot be easily proved to be
functorial. This is crucial when discussing the behaviour of the Orlik-
Solomon model with respect to blow-ups (see §1.1 in this Introduc-
tion and §5). As a consequence, we are able to reconcile Kriz’s and

ANNALES DE L’INSTITUT FOURIER



THE ORLIK-SOLOMON MODEL 2511

Totaro’s approaches on models for configuration spaces of points on
curves (see §1.2 in this Introduction and §6.4).

(2) It makes the multiplicative structure of the Orlik-Solomon model trans-
parent and closer in spirit to the classical Brieskorn-Orlik-Solomon
theorem.

(3) Our approach is more down-to-earth in that we prove that the Orlik-
Solomon spectral sequence is compatible with Hodge structures using
only mixed Hodge theory à la Deligne. With Looijenga’s formalism,
one would have to use Saito’s theory of mixed Hodge modules (in this
direction, see also [13]): indeed, his spectral sequence is defined out of
a complex of sheaves built out of the constructible sheaves i!i!Q for i a
closed immersion, hence it is not immediate that it is compatible with
mixed Hodge theory.

1.1. Wonderful compactifications

We should say a word on the usefulness of the generalization from normal
crossing divisors to hypersurface arrangements. Indeed, Deligne’s approach
relies on the fact that any smooth variety over C can be viewed as the
complement of a normal crossing divisor inside a smooth projective va-
riety, using Nagata’s compactification theorem and Hironaka’s resolution
of singularities. Thus the case of normal crossing divisors is (in princi-
ple) sufficient to give a model for the cohomology of any smooth variety
over C. In the framework of Theorem 1.2, we may even produce, follow-
ing [12, 8, 14, 17], an explicit sequence of blow-ups (see Theorem 5.4)

π : X̃ → X

sometimes called a “wonderful compactification”, that transforms L into a
normal crossing divisor L̃ = π−1(L) inside X̃ and induces an isomorphism

π : X̃ \ L̃ '→ X \ L.

Thus Deligne’s special case of Theorem 1.2 applied to (X̃, L̃) gives a model
M•(X̃, L̃) for the cohomology ofX\L. The functoriality of our construction
gives a quasi-isomorphism of differential graded algebras

(1.5) M•(π) : M•(X,L) ∼→M•(X̃, L̃)

that we may compute explicitly (see Theorem 5.5).
The model M•(X,L) has three advantages over M•(X̃, L̃). Firstly, it is

in general smaller (M•(π) is always injective). Secondly, its definition only

TOME 65 (2015), FASCICULE 6



2512 Clément DUPONT

uses geometric and combinatorial information from the pair (X,L) without
having to look at the blown-up situation (X̃, L̃). Thirdly, it is functorial
with respect to (X,L).
Along with the work of Morgan [19, Theorem 10.1], the quasi-isomor-

phism (1.5) implies that M•(X,L) is a model of the space X \ L in the
sense of rational homotopy theory (Theorem 5.6).

1.2. Configuration spaces of points on curves

Let Y be a compact Riemann surface and n be an integer. For all 1 6
i < j 6 n we have a diagonal

∆i,j = {yi = yj} ⊂ Y n

inside the n-fold cartesian product of Y . Any union of ∆i,j ’s then defines
a hypersurface arrangement in Y n. For example, if we consider the union
of all diagonals, the complement is the configuration space of n ordered
points in Y :

C(Y, n) = {(y1, . . . , yn) ∈ Y n | yi 6= yj for i 6= j}.

Theorem 1.2 hence gives an Orlik-Solomon model for the cohomology
of C(Y, n). This model is isomorphic to the one independently found by
I. Kriz [15] and B. Totaro [25], as we prove in Theorem 6.2.

On the one hand, our method is close to Totaro’s, since the Orlik-Solomon
spectral sequence that we are considering in §4.3 is the Leray spectral se-
quence of the inclusion j : X \L ↪→ X. On the other hand, the functoriality
of our constructions implies that there exists a quasi-isomorphism M•(π)
associated to any wonderful compactification π; in §6.4 we prove that this
quasi-isomorphism is exactly the one used by Kriz to prove the main result
of [15]. Hence, our method reconciles Kriz’s and Totaro’s approaches in the
case of curves.
As a natural generalization, we consider the union of only certain diago-

nals ∆i,j . Such a generalization has been recently studied by S. Bloch [5],
who gives a model in the spirit of Kriz and Totaro’s model. We prove that
this model is also isomorphic to our Orlik-Solomon model.
Shortly after a preprint of the present article was released, C. Bibby

independently showed [3] the existence of the Orlik-Solomon model follow-
ing Totaro’s approach, and applied it to the case of abelian arrangements.
In [4], C. Bibby and J. Hilburn used the Orlik-Solomon model to study the
homotopy-theoretic properties of certain configuration spaces of points on
curves.

ANNALES DE L’INSTITUT FOURIER
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1.3. Logarithmic forms and mixed Hodge theory

We now discuss the proof of Theorem 1.2. Our approach follows Deligne’s
proof of the case of normal crossing divisors, hence makes extensive use of
logarithmic forms and the formalism of mixed Hodge structures.

Let X be a smooth projective variety and L = L1 ∪ · · · ∪ Ll be a hyper-
surface arrangement in X. The first task is to define a complex of sheaves
on X, denoted by Ω•〈X,L〉, of meromorphic forms on X with logarithmic
poles along L. In local coordinates where each Li is defined by a linear
equation fi = 0, a section of Ω•〈X,L〉 is a meromorphic differential form
on X which is a linear combination over C of forms of the type

(1.6) η ∧ dfi1
fi1
∧ · · · ∧ dfis

fis

with η a holomorphic form and 1 6 i1 < · · · < is 6 l. It has to be
noted that the complex Ω•〈X,L〉 is in general a strict subcomplex of the
complex Ω•X(logL) introduced by Saito [23], even though the two complexes
coincide in the case of a normal crossing divisor.
The main point of the complex Ω•〈X,L〉 is that it computes the cohomology

of the complement X \L. More precisely, if we denote by j : X \L ↪→ X the
open immersion of the complement of L inside X, we prove the following
theorem (Theorem 3.13).

Theorem 1.3. — The inclusion Ω•〈X,L〉 ↪→ j∗Ω•X\L is a quasi-isomor-
phism, and hence induces isomorphisms

(1.7) Hn(Ω•〈X,L〉) ∼= Hn(X \ L,C).

It has to be noted (Remark 3.10) that according to this theorem, a con-
jecture of H. Terao [24] is equivalent to the fact that the inclusion Ω•〈X,L〉 ⊂
Ω•X(logL) is a quasi-isomorphism.
The proof of Theorem 1.3 is local and relies on the Brieskorn-Orlik-

Solomon theorem. Another central technical tool is the weight filtration W
on Ω•〈X,L〉: we define WkΩ•〈X,L〉 ⊂ Ω•〈X,L〉 to be the subcomplex spanned
by the forms (1.6) with s 6 k. In view of the isomorphism (1.7), we get
a filtration on the cohomology of X \ L which is proved to be defined
over Q. Together with the Hodge filtration F pΩ•〈X,L〉 = Ω>p

〈X,L〉, it defines a
mixed Hodge structure on H•(X \L). The functoriality of our construction
then implies that this is the same as the mixed Hodge structure defined by
Deligne.

TOME 65 (2015), FASCICULE 6



2514 Clément DUPONT

According to the general theory of mixed Hodge structures, the hyper-
cohomology spectral sequence associated to the weight filtration degener-
ates at the E2-term, hence the E1-term gives a model for the cohomol-
ogy of X \ L. We then prove that this model is indeed the Orlik-Solomon
model M•(X,L). This concludes the proof of Theorem 1.2.

1.4. Outline of this article

In §2 we recall some classical facts about the Orlik-Solomon algebra
and the Brieskorn-Orlik-Solomon theorem in the framework of hyperplane
arrangements, and introduce the Orlik-Solomon algebra of a hypersurface
arrangement.

In §3, we introduce the complex of logarithmic forms along a hyperplane
arrangement and its weight filtration, and prove the local form (Theo-
rem 3.9) of the comparison Theorem 1.3. Then we globalize our results to
the framework of hypersurface arrangements (Theorem 3.13).
In §4, we use the formalism of mixed Hodge complexes to give an alter-

native definition of the mixed Hodge structure on the cohomology of X \L.
This allows us to prove Theorem 1.2 (Theorem 4.8).
In §5, we study the functoriality of the Orlik-Solomon model with respect

to blow-ups, giving explicit formulas (Theorem 5.5).
In §6, we apply our results to configuration spaces of points on curves and

prove (Theorem 6.2) the isomorphism between the Orlik-Solomon model
and the model proposed by Kriz and Totaro and generalized by Bloch.

1.5. Conventions and notations

(1) (Coefficients) Unless otherwise stated, all vector spaces, algebras, as
well as tensor products of such objects, are implicitly defined over Q.
All (mixed) Hodge structures are implicitly defined over Q.

(2) (Cohomology) If Y is a complex manifold, we will simply write Hp(Y )
for the p-th singular cohomology group of Y with rational coefficients.
We will write Hp(Y,C) = Hp(Y )⊗C for the p-th singular cohomology
group of Y with complex coefficients. This group is naturally isomor-
phic, via the de Rham isomorphism, to the p-th de Rham cohomology
group of Y tensored with C, hence we allow ourselves to use smooth
differential forms as representatives for cohomology classes.

ANNALES DE L’INSTITUT FOURIER
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2. The Orlik-Solomon algebra of a hypersurface
arrangement

We first recall some classical facts about hyperplane arrangements. The
interested reader will find more details in the expository book [21] or the
survey [27]. Then we introduce hypersurface arrangements, define their
Orlik-Solomon algebras and discuss their functoriality properties.

2.1. The Orlik-Solomon algebra of a hyperplane arrangement

A hyperplane arrangement in Cn is a finite set L of hyperplanes of Cn,
all containing the origin.(1) For a matter of notation, we will implicitly fix
a linear ordering on the hyperplanes and write L = {L1, . . . , Ll}. Neverthe-
less, the objects that we will define out of a hyperplane arrangement will
be independent of such an ordering.
We will use the same letter L to denote the union of the hyperplanes:

L = L1 ∪ · · · ∪ Ll.

For a subset I ⊂ {1, . . . , l}, the stratum of the arrangement L indexed
by I is the vector space LI =

⋂
i∈I Li with the convention L∅ = Cn.

We write S•(L) for the set of strata of L, graded by the codimension, so
that S0(L) = {Cn} and S1(L) = {L1, . . . , Ll}. With the order given by
reverse inclusion, S•(L) is given the structure of a graded poset, called the
poset of the hyperplane arrangement L.

We set Λ•(L) = Λ•(e1, . . . , el), the exterior algebra over Q with a gen-
erator ei in degree 1 for each Li. Let δ : Λ•(L) → Λ•−1(L) be the unique
derivation of Λ•(L) such that δ(ei) = 1 for i = 1, . . . , l.

For I = {i1 < · · · < ik} ⊂ {1, . . . , l} we set eI = ei1 ∧ · · · ∧ eik ∈ Λk(L)
with the convention e∅ = 1. The derivation δ is then given by the formula

δ(eI) =
k∑
s=1

(−1)s−1ei1 ∧ · · · ∧ êis ∧ · · · ∧ eik .

A subset I ⊂ {1, . . . , l} is said to be dependent (resp. independent)
if codim(LI) < |I| (resp. codim(LI) = |I|), which is equivalent to saying
that the linear forms defining the Li’s, for i ∈ I, are linearly dependent
(resp. independent). Let J•(L) be the homogeneous ideal of Λ•(L) gener-
ated by the elements δ(eI) for I ⊂ {1, . . . , l} dependent. The quotient

A•(L) = Λ•(L)/J•(L)

(1) In many references, this would be called a central hyperplane arrangement.

TOME 65 (2015), FASCICULE 6



2516 Clément DUPONT

is a graded Q-algebra called the Orlik-Solomon algebra of the hyperplane
arrangement L. It only depends on the poset of L.
For a stratum S, let AS(L) to be the sub-vector space of A•(L) spanned

by the monomials eI for I such that LI = S. One easily sees that we have
a direct sum decomposition

(2.1) A•(L) =
⊕

S∈S•(L)

AS(L)

and AS(L) only depends on the hyperplane arrangement consisting of the
hyperplanes in L that contain S, and more precisely on its poset.
The product in A•(L) splits with respect to the direct sum decomposition

(2.1), with components

(2.2) AS(L)⊗AS′(L)→ AS∩S′(L)

which are zero if codim(S ∩ S′) < codim(S) + codimS′.
The derivation δ induces a derivation δ : A•(L)→ A•−1(L) which splits

with respect to the direct sum decomposition (2.1), with components

(2.3) AS(L)→ AS′(L)

for S ⊂ S′, codim(S′) = codim(S)− 1.

2.2. Deletion and restriction

Let L = {L1, . . . , Ll} be a hyperplane arrangement in Cn such that l > 1.
In this article we will only be concerned about deletion and restriction with
respect to the last hyperplane Ll. The deletion of L (with respect to Ll)
is the arrangement L′ = {L1, . . . , Ll−1} in Cn. The restriction of L (with
respect to Ll) is the arrangement L′′ on Ll ∼= Cn−1 consisting of all the
intersections of Ll with the Li’s, i = 1, . . . , l− 1. If the hyperplanes Li are
not in general position, it may happen that the cardinality l′′ of L′′ is less
than l − 1.

For all k, we have a short exact sequence of Q-vector spaces, called the
deletion-restriction short exact sequence, see [21, Theorem 3.65] or [27,
Corollary 2.17]:

(2.4) 0→ Ak(L′) i→ Ak(L) j→ Ak−1(L′′)→ 0.

This exact sequence splits with respect to the direct sum decomposition
(2.1). For S a stratum of L, there are three cases:

ANNALES DE L’INSTITUT FOURIER
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• S is not contained in Ll, then it is not a stratum of L′′ but is a stratum
of L′, and we just get an isomorphism

0→ AS(L′)→ AS(L)→ 0→ 0;
• S is contained in Ll but is not a stratum of L′, and we just get an
isomorphism

0→ 0→ AS(L)→ AS(L′′)→ 0;
• S is contained in Ll and is a stratum of L′, and we get a short exact
sequence

0→ AS(L′)→ AS(L)→ AS(L′′)→ 0.

2.3. The Brieskorn-Orlik-Solomon theorem

Let L = {L1, . . . , Ll} be a hyperplane arrangement in Cn. For i = 1, . . . , l
we fix a linear form fi on Cn such that Li = {fi = 0}. Such a form is unique
up to a non-zero multiplicative constant. We define holomorphic 1-forms
on Cn \ L:

ωi = dfi
fi
·

For a subset I = {i1 < · · · < ik} ⊂ {1, . . . , l} we set ωI = ωi1 ∧ · · · ∧ ωik .
Let Ω•(Cn \ L) be the algebra of global holomorphic forms on Cn \ L

and R•(L) ⊂ Ω•(Cn \L) be the subalgebra over Q generated by 1 and the
forms 1

2iπωi for i = 1, . . . , l. We define a morphism of graded algebras u :
Λ•(L)→ R•(L) by the formula

u(ei) = 1
2iπωi.

A simple computation shows that u passes to the quotient and defines a
map of graded algebras

u : A•(L)→ R•(L).

Each form 1
2iπωi is closed and its class is in the cohomology of Cn \ L

with rational (and even integer) coefficients, thus there is a well-defined
map of graded algebras

v : R•(L)→ H•(Cn \ L).

Theorem 2.1 (Brieskorn-Orlik-Solomon theorem). — The maps u

and v are isomorphisms of graded algebras:

A•(L)
u
'−→ R•(L)

v
'−→ H•(Cn \ L).

TOME 65 (2015), FASCICULE 6



2518 Clément DUPONT

Remark 2.2. — The fact that v is an isomorphism was first conjectured
by Arnol’d [2] and then proved by Brieskorn [6]. The fact that u is an
isomorphism was proved by Orlik and Solomon [20]. A proof may be found
in [21, Theorems 3.126 and 5.89].

2.4. The Orlik-Solomon algebra of a hypersurface arrangement

We write ∆ = {|z| < 1} ⊂ C for the open unit disk and ∆n ⊂ Cn for the
unit n-dimensional polydisk. Let X be a complex manifold. The following
terminology is borrowed from P. Aluffi [1].

Definition 2.3. — A finite set L = {L1, . . . , Ll} of smooth hypersur-
faces of X is a hypersurface arrangement if around each point of X we may
find a system of local coordinates in which each Li is defined by a linear
equation. In other words, X is covered by charts V ∼= ∆n such that for
all i, Li ∩ V is the intersection of ∆n with a linear hyperplane in Cn.

As for hyperplane arrangements, the objects that we will define out of
a hypersurface arrangement will be independent of the linear ordering on
the hypersurfaces Li. We use the same letter L to denote the union of the
hypersurfaces:

L = L1 ∪ · · · ∪ Ll.
The notion of hypersurface arrangement generalizes that of (simple) nor-

mal crossing divisor: a hypersurface arrangement is a normal crossing di-
visor if the local linear equations defining the Li’s are everywhere linearly
independent, i.e. if we can always choose local coordinates such that the
irreducible components Li are coordinate hyperplanes.
For a subset I ⊂ {1, . . . , l}, we still write LI =

⋂
i∈I Li, which is a

disjoint union of complex submanifolds of X. A stratum of L is a non-
empty connected component of some LI ; it is a complex submanifold of X.
We write S•(L) for the set of strata of L, graded by the codimension. We
give S•(L) the structure of a graded poset using reverse inclusion, and call
it the poset of the hypersurface arrangement L.
Let p be a point in X and V be a neighbourhood of p. Then any

chart V ∼= ∆n as in the above definition defines a hyperplane arrange-
ment denoted L(p) in Cn. It is an abuse of notation since choosing another
chart gives a different hyperplane arrangement, but it will not matter since
we will only be interested in the poset of L(p), which is well-defined. More
intrinsically, L(p) may be read off the tangent space of X at p. Let S be a
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stratum of L; since S is connected, the poset consisting of the strata of L(p)

that contain S is independent of the point p ∈ S, and we may define

AS(L) = AS(L(p))

for any choice of point p ∈ S. Let us then define

A•(L) =
⊕

S∈S•(L)

AS(L).

We now give A•(L) the structure of a graded algebra. The product

(2.5) AS(L)⊗AS′(L)→ AT (L)

is non-zero only if T is a connected component of S ∩ S′ such that
codim(T ) = codim(S) + codim(S′), and is then given by (2.2) by choosing
any point p ∈ T .
The graded algebra A•(L) is called the Orlik-Solomon algebra of the

hypersurface arrangement L.
For S⊂S′ an inclusion of strata of L such that codim(S′) = codim(S)− 1,

we define

(2.6) AS(L)→ AS′(L)

as in the local case (2.3) by choosing any point p ∈ S. One should note that
in general the map A•(L)→ A•−1(L) induced by (2.6) is not a derivation
of the Orlik-Solomon algebra.

Remark 2.4. — Let us assume that

(2.7) for all I, LI is connected.

The Orlik-Solomon algebra of L = {L1, . . . , Ll} thus has a presentation
similar to that of a hyperplane arrangement. A subset I ⊂ {1, . . . , l} is
said to be null if LI = ∅ and dependent (resp. independent) if LI 6= ∅
and codim(LI) < |I| (resp. codim(LI) = |I|). Then A•(L) is the quotient
of Λ•(e1, . . . , el) by the homogeneous ideal generated by the monomials eI
for I null and the elements δ(eI) for I dependent. In the case of a general
hyperplane arrangement (the hyperplanes do not necessarily contain the
origin), we recover the classical definition [21, Definition 3.45]. Without the
assumption (2.7), the Orlik-Solomon algebra may not even be generated in
degree 1.
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2.5. Functoriality of the Orlik-Solomon algebra

Let L = {L1, . . . , Ll} and L′ = {L′1, . . . , L′l′} be hyperplane arrangements
respectively in Cn and Cn′ . Let ϕ : ∆n → ∆n′ be a holomorphic map such
that ϕ−1(L′) ⊂ L, i.e. ϕ(∆n \ L) ⊂ ∆n′ \ L′.

Then ϕ induces a map ϕ∗ : H•(∆n′ \ L′)→ H•(∆n \ L) in cohomology.
The inclusions ∆n \ L ⊂ Cn \ L and ∆n′ \ L′ ⊂ Cn′ \ L′ are retractions
and hence induce isomorphisms in cohomology. Thus the Brieskorn-Orlik-
Solomon theorem 2.1 implies that there is a unique map of graded algebras

A•(ϕ) : A•(L′)→ A•(L)

that fits into the following commutative square.

A•(L′)
A•(ϕ) //

∼=
��

A•(L)

∼=
��

H•(∆n′ \ L′)
ϕ∗ // H•(∆n \ L)

For j = 1, . . . , l′, there is an equality

f ′j ◦ ϕ = uj
∏
i

f
mij
i

between germs at 0 of holomorphic functions on ∆n, with uj a holomorphic
function such that uj(0) 6= 0 and mij > 0. One then sees that A•(ϕ) :
A•(L′) → A•(L) is the unique map of graded algebras such that for j =
1, . . . , l′,

A1(ϕ)(e′j) =
∑
i

mijei.

We may globalize this construction; if L (resp. L′) is a hypersurface
arrangement in a complex manifold X (resp. X ′), and ϕ : X → X ′ a
holomorphic map such that ϕ−1(L′) ⊂ L, then we define

(2.8) AS,S′(ϕ) : AS′(L′)→ AS(L)

for strata S ∈ S•(L) and S′ ∈ S•(L′) by looking at ϕ in local charts and
applying the above definition. It is clear that this defines a map of graded
algebras A•(ϕ) : A•(L) → A•(L′) that is functorial in the sense that we
have A•(ψ ◦ ϕ) = A•(ϕ) ◦ A•(ψ) whenever this is meaningful. If ϕ : X →
X ×X is the diagonal of X, then A•(ϕ) is the product morphism A•(L)⊗
A•(L)→ A•(L).
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3. Logarithmic forms and the weight filtration

We define and study the forms with logarithmic poles along a hyperplane
arrangement. In §3.1, 3.2, 3.3, 3.4, we focus on hyperplane arrangements
(the local case). The main results are Theorem 3.6 which computes its
graded pieces, and Theorem 3.9 which states that the logarithmic complex
computes the cohomology of the complement of the hyperplane arrange-
ment. Then in §3.5 we extend our constructions and results to the case of
hypersurface arrangements (the global case).

If Y is a complex manifold, we write ΩpY for the sheaf of holomorphic p-
forms on Y and Ωp(Y ) = Γ(Y,ΩpY ) for the vector space of global holomor-
phic p-forms on Y .

3.1. The logarithmic complex

Let L = {L1, . . . , Ll} be a hyperplane arrangement in Cn. We recall
that we defined some differential forms ωi = dfi

fi
for i = 1, . . . , l, and ωI =

ωi1 ∧ · · · ∧ ωik for I = {i1 < · · · < ik}, which is zero if I is dependent.

Definition 3.1. — A meromorphic form on Cn is said to have loga-
rithmic poles along L if it is a linear combination over C of forms of the
type η ∧ ωI for some I ⊂ {1, . . . , l}, where η is a holomorphic form on Cn.

We define Ωp〈L〉 to be the C-vector space of meromorphic p-forms on Cn
with logarithmic poles along L. These forms are stable under the exterior
differential, hence we get a complex Ω•〈L〉 that embeds into the complex
of holomorphic forms on Cn \ L:

Ω•〈L〉 ↪→ Ω•(Cn \ L)

which we call the complex of logarithmic forms of L.

Remark 3.2. — This definition is not standard in the theory of hy-
perplane arrangements. In [21], following Saito [23], one defines a com-
plex Ω•(logL) in the following way. Let Q = f1 · · · fl be a defining poly-
nomial for the arrangement. Then Ωp(logL) is the set of meromorphic p-
forms ω on Cn such that Qω and Qdω are holomorphic.
We have an inclusion Ω•〈L〉 ⊂ Ω•(logL) which is an equality if and only

if L = {L1, . . . , Ll} is independent. For instance, in C2 with coordinates x
and y, let us look at L1 = {x = 0}, L2 = {y = 0}, L3 = {x = y}.
Then Q = xy(x − y) and the closed form ω = dx∧dy

xy(x−y) is in Ω2(logL) but
not in Ω2〈L〉.
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3.2. Residues

We briefly recall the notion of residue of a form with logarithmic poles
along a hyperplane arrangement. In the case of dimension n = 1, this is the
usual Cauchy residue in complex analysis; the general notion of residue is
due to Poincaré and Leray [16]. For residues in the setting of hyperplane
arrangements, see [21, 3.124].
We fix a hyperplane arrangement L = {L1, . . . , Ll} in Cn. Let L′

(resp. L′′) the deletion (resp. the restriction) of L with respect to Ll =
{fl = 0}. Let ω be a p-form on Cn with logarithmic poles along L. Then
there exists a (p−1)-form α and a p-form β, both of which have logarithmic
poles along L′, such that

ω = α ∧ ωl + β.

The form
ResLl(ω) = 2iπ α|Ll

is independent of the choices. It is a (p − 1)-form on Ll with logarithmic
poles along L′′, called the residue of ω along Ll. We then have a morphism
of complexes

ResLl : Ω•〈L〉 → Ω•−1〈L′′〉
where L′′ is the restriction of L with respect to Ll. We then have a sequence
of morphisms of complexes

(R) : 0→ Ω•〈L′〉 i→ Ω•〈L〉
ResLl−→ Ω•−1〈L′′〉 → 0

where i is the natural inclusion. It is obvious from the definitions that
ResLl ◦ i = 0, that i is injective and ResLl is surjective. We will prove in
the next paragraph that ker(ResLl) ⊂ Im(i), so that the above sequence is
a short exact sequence.

Remark 3.3. — When taking iterated residues, one should note that
they “do not commute” in general, even when this has a clear mean-
ing. For example, if L1 = {x = 0}, L2 = {y = 0}, L3 = {x = y}
in C2 and ω = dx

x ∧
dy
y ∈ Ω2〈L〉, we have ResL2∩L3ResL2(ω) = (2iπ)2

and ResL3∩L2ResL3(ω) = 0.

3.3. The weight filtration

We fix a hyperplane arrangement L = {L1, . . . , Ll} in Cn. The following
terminology is borrowed from P. Deligne [9, 3.1.5].
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Definition 3.4. — For k > 0, we define WkΩ•〈L〉 ⊂ Ω•〈L〉 to be the
subcomplex spanned by the forms that are of the type η ∧ ωI with |I| 6
k, where η is a holomorphic form on Cn. These subcomplexes define an
ascending filtration

W0Ω•〈L〉 ⊂W1Ω•〈L〉 ⊂ · · ·

on Ω•〈L〉 called the weight filtration.

We have W0Ω•〈L〉 = Ω•(Cn) and WpΩp〈L〉 = Ωp〈L〉.
By definition, the residue morphisms induce morphisms ResLl :

WkΩ•〈L〉 → Wk−1Ω•−1〈L′′〉 which are easily seen to be surjective. Thus
the sequence (R) induces sequences

(3.1) (WkR) : 0→WkΩ•〈L′〉 i→WkΩ•〈L〉
ResLl−→ Wk−1Ω•−1〈L′′〉 → 0

and

(3.2) (grWk R) : 0→ grWk Ω•〈L′〉 i→ grWk Ω•〈L〉
ResLl−→ grWk−1Ω•−1〈L′′〉 → 0.

We will prove that they are short exact sequences. For now, the only easy
facts are that (WkR) is exact on the left and on the right, and that (grWk R)
is exact on the right.
The following lemma is easily proved by choosing appropriate coordinates

on Cn.

Lemma 3.5. — Let I ⊂ {1, . . . , l}, |I| = k, be an independent subset
and η a holomorphic form on Cn. If η|LI = 0 then η ∧ ωI ∈Wk−1Ω•〈L〉.

For all k, we define

G•k(L) =
⊕

S∈Sk(L)

Ω•−k(S)⊗AS(L).

This is a complex of C-vector spaces. We define a morphism of complexes

Φ : G•k(L)→ grWk Ω•〈L〉

in the following way. For I independent of cardinality k, for η ∈ Ω•−k(LI),
we set

Φ(η ⊗ eI) = (2iπ)−kη̃ ∧ ωI
where η̃ ∈ Ω•−k(Cn) is any form such that η̃|Ll = η. Lemma 3.5 implies
that this does not depend on the choice of η̃ and one immediately sees that
it passes to the quotient that defines the groups AS(L). It is then easy to
check that Φ is a morphism of complexes.

Theorem 3.6. — The morphism Φ : G•k(L)→ grWk Ω•〈L〉 is an isomor-
phism of complexes.
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Proof. — The surjectivity is trivial; we prove the injectivity by induction
on the cardinal l of the arrangement.
For l = 0, the only non-trivial case is k = 0 and Φ is just the identity

of Ω•(Cn).
Suppose that the statement is proved for arrangements of cardinality 6

l − 1 and take an arrangement L of cardinality l. Tensoring the deletion-
restriction short exact sequence from §2.2 with the complexes Ω•−k(S) we
get a short exact sequence of complexes of C-vector spaces

0→ G•k(L′)→ G•k(L)→ G•−1
k−1(L′′)→ 0.

We then have a diagram

0 // G•k(L′) //

Φ
��

G•k(L) //

Φ
��

G•−1
k−1(L′′) //

Φ
��

0

0 // grWk Ω•〈L′〉 // grWk Ω•〈L〉 // grWk−1Ω•−1〈L′′〉 // 0

where the bottom row is the sequence (3.2). This diagram is easily seen to
be commutative.
By the inductive hypothesis, the vertical arrows on the right and on the

left are isomorphisms. Thus a diagram chase shows that the bottom row is
exact in the middle.

Now the complexes (3.1) and (3.2) give rise to a short exact sequence of
complexes

0→ (Wk−1R)→ (WkR)→ (grWk R)→ 0.

The long exact sequence in cohomology tells us that if (Wk−1R) is exact
in the middle then it is also the case for (WkR). Since (W0R) is just the
sequence

0→ Ω•(Cn) id→ Ω•(Cn)→ 0→ 0,

we show by induction on k shows that (WkR) is exact in the middle,
hence a short exact sequence, for all k. Again, the long exact sequence in
cohomology shows that (grWk R) is also a short exact sequence for all k.

Thus, in the above commutative diagram, both rows are exact and a
diagram chase (the 5-lemma) shows that the middle Φ is injective. This
completes the induction and the proof of the theorem. �

Remark 3.7. — The inverse morphism Ψ : grWk Ω•〈L〉 → G•k(L) is given,
for η holomorphic and I independent of cardinality k, by

Ψ(η ∧ ωI) = (2iπ)k η|LI ∈ Ω•−k(LI)
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For k = 1 this is exactly the definition of a residue, but for k > 1 one
should note that this has nothing to do with an “iterated residue” (see
Remark 3.3).
Since (R) = (WkR) for k large enough, the proof of Theorem 3.6 implies

the following.
Theorem 3.8. — The sequences (R), (WkR) and (grWk R) are short

exact sequences of complexes.

3.4. The comparison theorem

Theorem 3.9. — The inclusion Ω•〈L〉 ↪→ Ω•(Cn \ L) is a quasi-iso-
morphism.
Proof. — Since Cn \ L is a smooth affine algebraic variety over C, the

cohomology of Ω•(Cn \L) is the cohomology of Cn \L with complex coef-
ficients. Thus we have to prove that the natural map

Hp(Ω•〈L〉)→ Hp(Cn \ L,C)

is an isomorphism for all p. We proceed by induction on the cardinality l
of the arrangement. For l = 0 the statement is trivial. To pass from l − 1
to l we consider the commutative diagram

· · · // Hp(Ω•〈L′〉) //

��

Hp(Ω•〈L〉) //

��

Hp−1(Ω•〈L′′〉) //

��

· · ·

0 // Hp(Cn \ L′) // Hp(Cn \ L) // Hp−1(Ll \ L′′) // 0

The first row is the long exact sequence in cohomology associated to (R),
the second row is induced by the deletion-restriction exact sequence via the
Brieskorn-Orlik-Solomon theorem. Both rows are exact. By induction the
vertical arrows on the left and on the right are isomorphisms. A classical
diagram chase implies that the vertical arrow in the middle is also an
isomorphism. �

Remark 3.10. — We have the inclusions of complexes

Ω•〈L〉 i1↪→ Ω•(logL) i2
↪→ Ω•(Cn \ L)

where Ω•(logL) has been defined in Remark 3.2.
A conjecture by H. Terao [24] states that i2 is a quasi-isomorphism. Ac-

cording to Theorem 3.9, the composite i2 ◦ i1 is a quasi-isomorphism, hence
Terao’s conjecture is equivalent to the fact that i1 is a quasi-isomorphism.
This is equivalent to the acyclicity of the quotient complex Ω•(logL)/Ω•〈L〉.
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3.5. Logarithmic forms along hypersurface arrangements

In this paragraph we globalize the definitions of the logarithmic complex
and the weight filtration. As in the local case, we determine the weight-
graded parts of the logarithmic complex and prove a comparison theorem.
This generalizes the case of normal crossing divisors, studied by Deligne
in [9, 3.1].

Let X be a complex manifold and L a hypersurface arrangement in X.
A meromorphic form on X is said to have logarithmic poles along L if it is
locally a linear combination over C of forms of the type

(3.3) η ∧ dfi1
fi1
∧ · · · ∧ dfir

fir

with η holomorphic and the fi’s local defining (linear) equations for the Li’s.
The meromorphic forms on X with logarithmic poles along L form a com-
plex of sheaves of C-vector spaces on X, that we denote by Ω•〈X,L〉. As in
the local setting (Remark 3.2), we should point out that Ω•〈X,D〉 differs from
Saito’s complex Ω•X(logL) if L is not a normal crossing divisor.

It was pointed out to us by A. Dimca that the sheaves Ω1
〈X,L〉 have

been previously defined in [7] (where they are denoted ΩX(logL)) and [11]
(where they are denoted Ω̃X(logL)).

We globalize the weight filtration on Ω•〈X,L〉 to get subcomplexes of
sheaves WkΩ•〈X,L〉 ⊂ Ω•〈X,L〉.

The complex of sheaves Ω•〈X,L〉 is functorial in (X,L) in the following
sense. If L′ is another hypersurface arrangement in a complex manifold X ′,
and if we have a holomorphic map ϕ : X → X ′ such that ϕ−1(L′) ⊂ L,
then there is a pull-back map

ϕ∗ : ϕ−1Ω•〈X′,L′〉 → Ω•〈X,L〉

that is compatible with composition in the usual sense. This follows from
the discussion in §2.5. The weight filtration is also functorial.
For a stratum S we denote by iS : S ↪→ X the closed immersion of S in-

side X. We globalize the definition of G•k(L) from §3.3 and define a complex
of sheaves of C-vector spaces on X:

G•k(X,L) =
⊕

S∈Sk(L)

(iS)∗Ω•−kS ⊗AS(L).

As in the local case, we may define a morphism of complexes of sheaves

Φ : G•k(X,L)→ grWk Ω•〈X,L〉
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by putting

Φ(η ⊗ eI) = (2iπ)−k η̃ ∧ dfi1
fi1
∧ · · · ∧ dfik

fik

for I = {i1 < · · · < ik}, η ∈ Ω•−kS a local section, η̃ ∈ Ω•−kX a local extension
of η, and the fi’s local equations for the Li’s. This definition is independent
from the choice of the local equations fi. The following theorem is a global
version of Theorem 3.6.

Theorem 3.11. — The morphism Φ : G•k(X,L) → grWk Ω•〈X,L〉 is an
isomorphism.

Proof. — It is enough to prove that for every chart V ∼= ∆n on which L
is a hyperplane arrangement, the morphism

Γ(V,G•k(X,L))→ Γ(V, grWk Ω•〈X,L〉)

is an isomorphism. This is exactly Theorem 3.6 with the ambient space Cn
replaced by the polydisk ∆n. One can check that the proof of Theorem 3.6
can be copied word for word in that local setting. �

Remark 3.12. — The inverse morphism Ψ : grWk Ω•〈X,L〉 → G•k(X,L) is
given locally by the same formula as in Remark 3.7. As already noted,
this should not be mistaken with an iterated residue, unless L is a normal
crossing divisor (in this case, Deligne calls Ψ the Poincaré residue, see [9,
3.1.5.2]).

Let j : X \ L ↪→ X be the open immersion of the complement of L
inside X. The following theorem is a global version of Theorem 3.9.

Theorem 3.13. — The inclusion Ω•〈X,L〉 ↪→ j∗Ω•X\L is a quasi-isomor-
phism.

Proof. — It is enough to prove that for every chart V ∼= ∆n on which L
is a hyperplane arrangement, the morphism

Γ(V,Ω•〈X,L〉)→ Γ(V, j∗Ω•X\L) = Ω•(V \ L)

is a quasi-isomorphism. This is exactly Theorem 3.9 with the ambient
space Cn replaced by the polydisk ∆n. One can check that the proof of
Theorem 3.9 can be copied word for word in the local setting. The argu-
ment that the strata LI are contractible has to be replaced by the fact
that the local strata ∆n∩LI are contractible (because they are polydisks).
The Brieskorn-Orlik-Solomon theorem remains true in the local setting be-
cause the inclusion ∆n \ L ⊂ Cn \ L is a retraction and hence induces an
isomorphism in cohomology. �
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4. A functorial mixed Hodge structure and the
Orlik-Solomon model

If X is a smooth projective variety and L is a hypersurface arrangement
in X, we put a functorial mixed Hodge structure on the cohomology of the
complement X \ L. Our construction mimicks Deligne’s [9] in the case of
normal crossing divisors.

4.1. Mixed Hodge complexes

We refer to [10, 7.1,8.1] for the definitions of mixed Hodge complexes.
If K is a field, the filtered (resp. bifiltered) derived category of (bounded
from above) complexes of K-vector spaces on a complex manifold Y is
denoted by D+F(Y,K) (resp. D+F2(Y,K)). A cohomological mixed Hodge
complex on Y is a triple

K = ((KQ,W ), (KC,W, F ), α)

with (KQ,W ) ∈ D+F(Y,Q), (KC,W, F ) ∈ D+F2(Y,C) and α : (KQ,W ) ⊗
C ∼= (KC,W ) an isomorphism in D+F(Y,C). These data must satisfy some
compatibility conditions.
The following theorem [10, 8.1.9] is the fundamental theorem of mixed

Hodge complexes. Our convention for spectral sequences uses decreasing
filtrations. One passes from an increasing filtration {Wp}p∈Z to a decreasing
filtration {W p}p∈Z by putting W p = W−p.

Theorem 4.1. — Let Y be a complex manifold and K = ((KQ,W ),
(KC,W, F ), α) be a cohomological mixed Hodge complex on Y .
(1) For all n, the filtration W [−n] and the filtration F define a mixed

Hodge structure on Hn(KQ).
(2) Let wE be the cohomological spectral sequence defined by (KQ,W ).

Then for all (p, q), the filtration F induces on wE
−p,q
1 = H−p+q(grWp KQ)

a Hodge structure of weight q and the differentials d−p,q1 are morphisms
of Hodge structures.

(3) The spectral sequence wE degenerates at E2: wE
−p,q
2 = wE

−p,q
∞ =

grWp Hn(KQ) = grW [−n]
q Hn(KQ) for n = −p+ q.

4.2. A functorial mixed Hodge structure

Let X be a smooth projective variety over C and L a hypersurface ar-
rangement in X. We use the previous constructions to put a functorial
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mixed Hodge structure on the cohomology H•(X \ L) of the complement,
using the formalism of mixed Hodge complexes. This generalizes the case
of normal crossing divisors, studied by Deligne in [9, 3.2], and summa-
rized in terms of mixed Hodge complexes in [10, 8.1.8]. We recall the no-
tation j : X \ L ↪→ X.
We define a triple

K(X,L) = ((KQ(X,L),W ), (KC(X,L),W, F ), α)

in the following way:
(1) KQ(X,L) = Rj∗QX\L with the filtration W = τ , the canonical filtra-

tion [9, 1.4.6].
(2) KC(X,L) = Ω•〈X,L〉 with the weight filtration W defined in §3.5, and

the Hodge filtration F defined by

F pΩ•〈X,L〉 = Ω>p
〈X,L〉.

(3) We have isomorphisms in D+(X,C):

Rj∗QX\L ⊗ C ∼= Rj∗CX\L ∼= j∗Ω•X\L ∼= Ω•〈X,L〉
the last one being the quasi-isomorphism of the comparison theo-
rem 3.13.
Hence we have an isomorphism (Rj∗QX\L ⊗ C, τ) ∼= (Ω•〈X,L〉, τ)

in D+F(X,C). Finally the identity gives a filtered quasi-isomorphism
(Ω•〈X,L〉, τ) ∼= (Ω•〈X,L〉,W ), as follows from the same proof as in [9,
3.1.8], in view of the comparison theorem 3.13. This gives the isomor-
phism

α : (Rj∗QX\L, τ)⊗ C ∼= (Ω•〈X,L〉,W )

in D+F(X,C).

Theorem 4.2. — The triple K(X,L) is a cohomological mixed Hodge
complex on X, which is functorial with respect to the pair (X,L). It thus
defines a functorial mixed Hodge structure on Hn(Rj∗QX\L) ∼= Hn(X \L)
for all n.

Here, functoriality has to be understood in the sense of §2.5.
Proof. — Theorem 3.6 gives an isomorphism

grWk Ω•〈X,L〉 ∼=
⊕

S∈Sk(L)

(iS)∗Ω•−kS ⊗AS(L).

A local computation as in [22, Lemma 4.9], shows that this isomorphism is
defined over Q if we take care of the Tate twists. In other words we have a
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commutative diagram:

grWk Ω•〈X,L〉
∼= // ⊕

S∈Sk(L)(iS)∗Ω•S [−k]⊗AS(L)

grτkRj∗CU
∼= //

∼=

OO

⊕
S∈Sk(L)(iS)∗CS [−k]⊗AS(L)

∼=

OO

grτkRj∗QU
∼= //

OO

⊕
S∈Sk(L)(iS)∗QS [−k](−k)⊗AS(L)

OO

To complete the proof it is enough to notice that the top row of this diagram
is compatible with the Hodge filtrations. Hence we get

grWk K(X,L) =
⊕

S∈Sk(L)

(iS)∗K(S)[−k](−k)⊗AS(L)

which is a cohomological Hodge complex of weight k.
The functoriality statement follows from the functoriality of the sheaves

of logarithmic forms. �

The following theorem shows that the Hodge structures that we have
just defined are indeed the functorial Hodge structures defined by Deligne.

Theorem 4.3. — Let U be a smooth quasi-projective variety over C.
(1) There exists a smooth projective variety X and an open immer-

sion U ↪→ X such that the complement L = X \U is a hypersurface
arrangement in X.

(2) Given two such compactifications (X1, L1) and (X2, L2), the mixed
Hodge structures on H•(U) defined via (X1, L1) and (X2, L2) are
the same.

(3) The mixed Hodge structure on H•(U) defined in Theorem 4.2 is
the same as the mixed Hodge structure defined by Deligne in [9].

Proof.
(1) This follows from Nagata’s compactification theorem and Hiron-

aka’s resolution of singularities. In fact, we can assume that L is a
normal crossing divisor.

(2) Using resolution of singularities, we can always embed U in a smooth
projective variety X such that X \U = L is a simple normal cross-
ing divisor (and hence a hypersurface arrangement), and such that
there exists morphisms

(X1, X1 \ L1)← (X,X \ L)→ (X2, X2 \ L2)
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that are the identity on U . Hence by functoriality the two mixed
Hodge structures are isomorphic to the mixed Hodge structure de-
fined via (X,L).

(3) The claim follows from (2) and the fact that for a given U , one can
always choose (X,L) such that L is a normal crossing divisor (using
resolution of singularities).

�

4.3. The Orlik-Solomon spectral sequence

Let X be a smooth projective variety and L be a hypersurface arrange-
ment in X. In the previous paragraph we defined a cohomological mixed
Hodge complex on X that defines a mixed Hodge structure on the coho-
mology of X \L. The general formalism of mixed Hodge complexes (Theo-
rem 4.1) tells us that the Orlik-Solomon spectral sequence wE

p,q
r associated

to the weight filtration degenerates at E2. In this section we make the E1
term explicit. We will write wE

p,q
r = wE

p,q
r (X,L) when confusion might

occur.
By definition we have wE

−p,q
1 = H−p+q(grWp KQ(X,L)). From the proof

of Theorem 4.2 we get

wE
−p,q
1

∼=
⊕

S∈Sp(L)

H−2p+q(S)(−p)⊗AS(L).

We first study the functoriality of the Orlik-Solomon spectral sequence.

Proposition 4.4. — Let L (resp. L′) be a hypersurface arrangement in
a smooth projective variety X (resp. X ′), and ϕ : X → X ′ a holomorphic
map such that ϕ−1(L′) ⊂ L. Let S and S′ be strata of codimension p

respectively of L and L′ such that ϕ(S) ⊂ S′ and let us denote by ϕS,S′ :
S → S′ the restriction of ϕ. Then the component of the morphism

wE
−p,q
1 (ϕ) : wE

−p,q
1 (X ′, L′)→ wE

−p,q
1 (X,L)

indexed by strata S and S′ is obtained by tensoring the morphism (2.8)

AS,S′(ϕ) : AS′(L′)→ AS(L)

with the pull-back morphism

ϕ∗S,S′ : H−2p+q(S′)→ H−2p+q(S).

The other components of wE
−p,q
1 (ϕ) are zero.
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Proof. — It is enough to do the proof over C and work with the com-
plexes Ω•〈X,L〉. There is a pull-back morphism

ϕ−1Ω•〈X′,L′〉 → Ω•〈X,L〉
that is compatible with the weight filtrations. Via the isomorphisms of The-
orem 3.11, one sees by local computation that this pull-back is as described
in the Proposition at the level of holomorphic forms. �

When applied to the diagonal morphismX → X×X, one gets an algebra
structure on the E1 term of the Orlik-Solomon spectral sequence, as follows.

Proposition 4.5. — The product

(4.1) wE
−p,q
1 ⊗ wE

−p′,q′
1 → wE

−(p+p′),q+q′
1

is obtained by tensoring the product morphisms (2.5)

AS(L)⊗AS′(L)→ AT (L)

with the morphisms

H−2p+q(S)⊗H−2p′+q′(S′)→ H−2p+q(T )⊗H−2p′+q′(T )
∪→ H−2(p+p′)+(q+q′)(T )

multiplied by the sign (−1)pq′ . The above morphism is the composition of
the restriction morphisms for the inclusion of T inside S and S′, followed
by the cup-product on T .

Note the sign (−1)pq′ , which is a Koszul sign associated to the inter-
changing of the terms AS(L) and H−2p′+q′(S′).

We now turn to the description of the differential of the E1 term of the
Orlik-Solomon spectral sequence.

Proposition 4.6. — Let S ⊂ S′ be an inclusion of strata of L with
codim(S) = p and codim(S′) = p−1. Then the component of the differential

d1 : wE
−p,q
1 → wE

−p+1,q
1

indexed by S and S′ is obtained by tensoring the natural morphism (2.6)

AS(L)→ AS′(L)

with the Gysin morphism

H−2p+q(S)(−p)→ H−2p+q+2(S′)(−p+ 1)

multiplied by the sign (−1)q−1. The other components of d1 are zero.
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Proof.

First Step. — If L = D = {D1, . . . , Dl} is a normal crossing divisor, this
is [26, Proposition 8.34], see also [22, Proposition 4.7]. Indeed in this case
we have for every subset I ⊂ {1, . . . , l}, ADI (D) = Q eI a one-dimensional
vector space.

Second Step. — We deduce the general case from the functoriality of
the Orlik-Solomon spectral sequence and the fact that A•(L) is spanned
by monomials eI with I independent. Let eI be such a monomial and let
us write L(I) =

⋃
i∈I Li, which is a normal crossing divisor in X. From the

functoriality of the spectral sequence, there is a map of spectral sequences

wE
−p,q
1 (X,L(I))→ wE

−p,q
1 (X,L)

which is easily seen to be injective (this follows from the injectivity in
the deletion-restriction short exact sequence). Thus the differential of an
element in H−2p+q(S)⊗Q eI can be read off wE

p,q
1 (X,L(I)). We are then

reduced to the first step. �

Remark 4.7. — If X is any complex manifold, then we can also consider
the Orlik-Solomon spectral sequence converging to the cohomology ofX\L,
and the above discussion for the E1 term remains valid. The only thing that
we gain when assuming that X is a projective variety is the degeneracy of
this spectral sequence at the E2 term, by Theorem 4.1.

4.4. The Orlik-Solomon model and the main theorem

We restate the results of the previous paragraph. Let X be a smooth
projective variety and L a hypersurface arrangement in X. Let us define

Mn
q (X,L) =

⊕
S∈Sq−n(L)

H2n−q(S)(n− q)⊗AS(L)

viewed as a Hodge structure of weight q.
(1) We have a product

(4.2) Mn
q (X,L)⊗Mn′

q′ (X,L)→Mn+n′
q+q′ (X,L).

obtained by tensoring the product morphisms (2.5)

AS(L)⊗AS′(L)→ AT (L)

with the morphisms

H2n−q(S)⊗H2n′−q′(S′)→ H2n−q(T )⊗H2n′−q′(T ) ∪→ H2(n+n′)−(q+q′)(T )
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multiplied by the sign (−1)(q−n)q′ . The above morphism is the com-
position of the restriction morphisms for the inclusion of T inside S
and S′, followed by the cup-product on T .

(2) We have a differential

(4.3) d : Mn
q (X,L)→Mn+1

q (X,L).

Let S ⊂ S′ be an inclusion of strata of L with codim(S) = q − n

and codim(S′) = q − (n + 1). Then the component of the differen-
tial (4.3) indexed by S and S′ is obtained by tensoring the natural
morphism (2.6)

AS(L)→ AS′(L)
with the Gysin morphism

H2n−q(S)(n− q)→ H2n−q+2(S′)(n− q + 1)

multiplied by the sign (−1)q. The other components of the differential
(4.3) are zero.

(3) Let X ′ be another smooth projectiver variety, L′ be a hypersurface
arrangement in X ′ and ϕ : X → X ′ be a holomorphic map such that
ϕ−1(L′) ⊂ L. Then we define a map

(4.4) M•(ϕ) : M•(X ′, L′)→M•(X,L).

Let S and S′ be strata of codimension q − n respectively of L and L′
such that ϕ(S) ⊂ S′, and let ϕS,S′ : S → S′ be the restriction of ϕ.
Then the component of Mn

q (ϕ) indexed by S and S′ is obtained by
tensoring the morphism (2.8)

AS,S′(ϕ) : AS′(L′)→ AS(L)

with the pull-back morphism

ϕ∗S,S′ : H2n−q(S′)→ H2n−q(S).

The other components of M•(ϕ) are zero.
In the next theorem, a split mixed Hodge structure is a mixed Hodge

structure that is a direct sum of pure Hodge structures. Recall that a graded
algebra B = ⊕n>0Bn is said to be graded-commutative if for homogeneous
elements x and x′ in B we have xx′ = (−1)|x||x′|x′x.

Theorem 4.8. — Let X be a smooth projective variety over C and L
be a hypersurface arrangement in X.

(1) The direct sumM•(X,L) =
⊕

qM
•
q (X,L) is a graded-commutative

differential graded algebra in the category of split mixed Hodge
structures. It is functorial with respect to (X,L), using (4.4).
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(2) We have isomorphisms of algebras in the category of split mixed
Hodge structures:

grWH•(X \ L) ∼= H•(M•(X,L)).

They are functorial with respect to (X,L).

We call M•(X,L) the Orlik-Solomon model of the pair (X,L).

Proof of Theorem 4.8.

(1) The assertion is a consequence of the previous paragraph (Proposi-
tions 4.5, 4.6 and 4.4). Note that we have multiplied the differential
by −1 for the sake of convenience; this gives an isomorphic differ-
ential graded algebra.

(2) The isomorphism is just, after the change of variables n = −p+ q,
the fact that the spectral sequence wE

p,q
r degenerates at E2 and

converges to the cohomology of X \ L:

Hp(wE
−•,q
1 ) ∼= grWq H−p+q(X \ L).

�

Remark 4.9. — Under the assumption (2.7), we may give a presentation
of the Orlik-Solomon model that is more suitable in certain situations. For S
a stratum of L and I ⊂ {1, . . . , l} an independent subset such that LI =
S, we have a monomial eI ∈ AS(L). If we identify H2n−q(S) ⊗ Q eI =
H2n−q(LI), then we see that Mn

q (X,L) is the quotient of

⊕
|I|=q−n
I indep.

H2n−q(LI)(n− q)

by the sub-vector space spanned by the images of the morphisms

H2n−q(LI′)→
⊕
i∈I′

I′\{i} indep.

H2n−q(LI′\{i})

for I ′ dependent. The above morphism the alternate sum of identity mor-
phisms (if I ′ is dependent and I ′ \ {i} is independent, then LI′\{i} = LI′

for dimension reasons).
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5. Wonderful compactifications and the Orlik-Solomon
model

5.1. Hypersurface arrangements and wonderful
compactifications

Definition 5.1. — Let L = {L1, . . . , Ll} be a hyperplane arrangement
in Cn and let Z be a stratum of L. We say that Z is a good stratum if there
exists coordinates (z1, . . . , zn) on Cn such that Z = {z1 = · · · = zr = 0}
for some r, and for each i = 1, . . . , l, Li is either of the type {a1z1 + · · ·+
arzr = 0} or of the type {ar+1zr+1 + · · ·+ anzn = 0}.

Example 5.2. — In C3, let L1 = {x = 0}, L2 = {y = 0}, L3 = {z = 0},
L4 = {x = y}. Then the stratum {x = y = 0} is good, but the stratum
{x = z = 0} is not.

Let L = {L1, . . . , Ll} be a hypersurface arrangement in a complex man-
ifold X and let Z be a stratum of L. We say that Z is a good stratum if
in every local chart where the Li’s are hyperplanes, it is a good stratum
in the sense of the above definition. A stratum of dimension 0 (a point) is
always good. In the case of a normal crossing divisor, all strata are good.

Lemma 5.3. — Let L = {L1, . . . , Ll} be a hypersurface arrangement in
a complex manifold X, Z be a good stratum of L, and

π : X̃ → X

be the blow-up of X along Z. Let E = π−1(Z) be the exceptional divisor,
and for all i, let L̃i be the strict transform of Li. Then L̃ = {E, L̃1, . . . , L̃l}
is a hypersurface arrangement in X̃.

Proof. — It is enough to do the proof for X = ∆n and the Li’s hyper-
planes. We choose coordinates (z1, . . . , zn) as in Definition 5.1. We have r
natural local charts X̃k

∼= ∆n on X̃, k = 1, . . . , r. On the chart X̃k, the
blow-up morphism is given by

π(z1, . . . , zn) = (z1zk, . . . , zk−1zk, zk, zk+1zk, . . . , zrzk, zr+1, . . . , zn)

In this chart, E is defined by the equation zk = 0. The strict transform
of a hyperplane of the type {a1z1 + · · · + arzr = 0} is given by the equa-
tion a1z1 + · · · + ak−1zk−1 + ak + ak+1zk+1 + · · · + arzr = 0. The strict
transform of a hyperplane of the type {ar+1zr+1+· · ·+anzn = 0} is defined
by the same equation.
To sum up, in the chart X̃k, all the hypersurfaces of L̃ are given by affine

equations. Up to some translations, we can then find smaller charts where
all the equations are linear. This completes the proof. �
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With the notations of the above lemma, we will simply write that

π : (X̃, L̃)→ (X,L)

is the blow-up of the pair (X,L) along the good stratum Z. We stress the
fact that L̃ is the hypersurface arrangement consisting of the exceptional
divisor E and all the proper transforms L̃i of the hypersurfaces Li.
The blow-ups along good strata are enough to resolve the singularities of

a hypersurface arrangement, as the following theorem shows. It is simply
a reformulation of classical results on “wonderful compactifications” [12, 8,
14, 17].

Theorem 5.4. — Let L be a hypersurface arrangement in a complex
manifold X. There exists a sequence

(X̃, L̃) = (X(N), L(N)) πN−→ (X(N−1), L(N−1)) πN−1−→ · · ·

· · · π1−→ (X(0), L(0)) = (X,L)

where

(1) for all k, X(k) is a complex manifold and L(k) a hypersurface ar-
rangement in X(k)

(2) for all k, πk : (X(k), L(k)) → (X(k−1), L(k−1)) is the blow-up of
(X(k−1), L(k−1)) along a good stratum of L(k−1)

(3) L̃ is a normal crossing divisor in X̃.

Proof. — An arrangement of hypersurfaces defines an arrangement of
subvarieties in the sense of [17]. Let us fix a building set G and let π : X̃ →
X be the corresponding wonderful compactification, with L̃ = π−1(L).
Then according to [17], π is a composition of blow-ups along a minimal
element of a building set. It simply remains to prove that a minimal element
of a building set is a good stratum. We work in the cotangent spaces, hence
reducing to a statement of linear algebra.
Let G be a building set of an arrangement of subspaces C in the context

of [8], and let us write M =
∑
C∈C C. We have a G-decomposition

M = G1 ⊕ · · · ⊕Gr

where the Gi ∈ G are the maximal elements. Let X ∈ C be any element,
then X ⊂ M and by definition of a building set X ⊂ Gi for some unique
i = 1, . . . , r. Hence if we write Ui =

⊕
j 6=iGj , we then have, for all X ∈

C, X 6⊂ Gi ⇒ X ⊂ Ui. �
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5.2. Functoriality of the Orlik-Solomon model with respect to
blow-ups

Let us consider a sequence of blow-ups along good strata as in Theo-
rem 5.4:

(X̃, L̃) = (X(N), L(N)) πN−→ (X(N−1), L(N−1)) πN−1−→ · · ·

· · · π2−→ (X(1), L(1)) π1−→ (X(0), L(0)) = (X,L).

Then by the functoriality of the Orlik-Solomon model we get a sequence
of morphisms of differential graded algebras (in the category of split mixed
Hodge structures):

M•(X,L) = M•(X(0), L(0))
M•(π1)
∼−→ M•(X(1), L(1))

M•(π2)
∼−→ · · ·

· · ·
M•(πN−1)

∼−→ M•(X(N−1), L(N−1))
M•(πN )
∼−→ M•(X(N), L(N)) =M•(X̃, L̃).

For each k, M•(πk) is a quasi-isomorphism since πk induces an isomor-
phism X(k) \ L(k) '→ X(k−1) \ L(k−1). Thus we get a natural quasi-isomor-
phism between the Orlik-Solomon model of (X,L) and that of (X̃, L̃).

In the following theorem, we give explicit formulas in the case of a single
blow-up. For simplicity, we work under the assumption (2.7) and use the
presentation of the Orlik-Solomon model given in Remark 4.9.

Theorem 5.5. — Let X be a smooth projective variety over C and L
be a hypersurface arrangement in X such that the assumption (2.7) is
satisfied. Let Z be a good stratum of L and

π : (X̃, L̃)→ (X,L)

the blow-up of (X,L) along Z. Let

M•(π) : M•(X,L)→M•(X̃, L̃)

be the morphism of differential graded algebras induced by π on the Orlik-
Solomon models. Then

(1) M•(π) is a quasi-isomorphism.
(2) the components of Mn

q (π) are given, for I = {i1 < · · · < iq−n}
independent, by
(a) the pull-back morphism H2n−q(LI)

π∗→ H2n−q(L̃I).
(b) for all s such that Z ⊂ Lis , the morphism H2n−q(LI) →

H2n−q(E ∩ L̃I\{is}) which is the pull-back morphism corre-
sponding to E ∩ L̃I\{is}

π→ Z ∩LI\{is} = Z ∩LI ↪→ LI , multi-
plied by the sign (−1)s−1.
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Proof.
(1) This is obvious by Theorem 4.8, since π induces an isomorphism

X̃ \ L̃ '→ X \ L.
(2) It is a consequence of the general formula for functoriality given in

§4.4. Using the notation E = L̃0, a local computation shows that
we have the following formula for A•(π) : A•(L)→ A•(L̃).

A1(π)(ei) =
{
ei if Li does not contain S
e0 + ei if Li contains S

Thus we get

A•(π)(eI) = eI +
∑

16s6q−n
Z⊂Lis

(−1)s−1e0 ∧ eI\{is}

and the claim follows. �

The above theorem and the work of Morgan [19, Theorem 10.1] imply
that M•(X,L) is a model of the space X \ L in the sense of rational ho-
motopy theory.

Theorem 5.6. — The differential graded algebra M•(X,L) and the
space X \ L have (non-canonically) isomorphic minimal models.

6. Configuration spaces of points on curves

6.1. Configuration spaces associated to graphs

Let Y be a compact Riemann surface, i.e. a smooth projective complex
curve. Let Γ be a finite unoriented graph with no multiple edges and no
self-loops, with V its set of vertices and E its set of edges. Let Y V be the
cartesian power of Y indexed by V , with coordinates yv. For v ∈ V , we
have a projection

pv : Y V → Y.

Every edge e ∈ E with endpoints v and v′ defines a diagonal ∆e =
{yv = yv′} ⊂ Y V which is the locus where the coordinates corresponding
to the two endpoints of e are equal. We define ∆Γ =

⋃
e∈E ∆e and then

the configuration space of points on Y associated to Γ:

C(Y,Γ) = Y V \∆Γ.

In the case where Γ = Kn is the complete graph on n vertices, we recover
the configuration space
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C(Y, n) = {(y1, . . . , yn) ∈ Y n | yi 6= yj for i 6= j} = Y n \
⋃
i<j

∆i,j .

6.2. A model for the cohomology

In [15] and [25], I. Kriz and B. Totaro independently found a model
for the cohomology of C(Y, n). Their result has been recently generalized
to C(Y,Γ) by S. Bloch in [5] (even though Bloch’s framework is slightly
more general, with external edges in Γ labeled by points of Y ). We recall the
definition of this model. Here Y has dimension 1, but the general definition
is similar.
If B = ⊕n>0Bn is a graded-commutative graded algebra and {xα} are

indeterminates with prescribed degrees {dα}, then there is a well-defined
notion of graded-commutative algebra generated by the xα’s over B. This
is a graded-commutative graded algebra which is the quotient of B[{xα}]
by the relations bxα = (−1)|b|dαxαb for b homogeneous, and xβxα =
(−1)dαdβxαxβ for all α and β. For example, if B is a field concentrated
in degree 0 then we recover the exterior algebra generated by the xα’s. We
use the wedge notation xα ∧ xβ to remember the graded-commutativity
property.
Let us define, following [5], a graded-commutative differential graded

algebra N•(Y,Γ) in the following way. It is generated (as a graded-commu-
tative algebra) by the cohomology H•(Y V ) and elements Ge in degree 1
for every edge e ∈ E, modulo the relations:

(1) p∗v(c)Ge = p∗v′(c)Ge for every class c ∈ H•(Y ), where v and v′ are
the endpoints of e in Γ.

(2)
∑r
i=1(−1)i−1Ge1 ∧ · · · ∧ Ĝei ∧ · · · ∧ Ger = 0 if {e1, . . . , er} ⊂ E

contains a loop.
We now define a differential d on N•(Y,Γ) as zero on H•(Y V ) and given

on the elements Ge by the formula

d(Ge) = [∆e] ∈ H2(Y V ).

One shows that d is well-defined and makes N•(Y,Γ) into a graded-commu-
tative differential graded algebra.

6.3. The isomorphism with the Orlik-Solomon model

By choosing charts on Y , one easily sees that L = ∆Γ is a hyper-
surface arrangement in X = Y V . Thus Theorem 4.8 can be applied to
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the pair (Y V ,∆Γ) and gives a model for the cohomology of C(Y,Γ) =
Y V \∆Γ. We fix an linear order on the set E of edges of Γ, hence on the
irreducible components ∆e of ∆Γ. This allows us to consider the Orlik-
Solomon model M•(Y V ,∆Γ), with its presentation given by Remark 4.9.
Thus Mn

q (Y V ,∆Γ) is a quotient of⊕
I⊂E
|I|=q−n
I indep.

H2n−q(∆I)(n− q).

We note that a subset I ⊂ E is dependent if and only if it contains a
loop, and is a circuit if and only if it is a simple loop.
We define a morphism of differential graded algebras

α : N•(Y,Γ)→M•(Y V ,∆Γ)

in the following way.
First we note that for all n we have Mn

n (Y V ,∆Γ) = Hn(Y V ), and we
easily see that the resulting (injective) map H•(Y V ) → M•(Y V ,∆Γ) is
a map of graded algebras. Then we define α(Ge) to be a generator ge
of H0(∆e)(−1) ⊂M1

2 (Y V ,∆Γ).

Lemma 6.1. — The morphism α is well-defined and compatible with
the differentials. It is thus a map of differential graded algebras.

Proof. — First we show that α respects relations (R1) and (R2). For
relation (R1) we see that by definition

α(p∗v(c)Ge) = p∗v(c)ge = p∗v(c)|∆e
∈ H•(∆e).

This equals i∗e(p∗v(c)) = (pv ◦ ie)∗(c) where ie : ∆e ↪→ Y V is the inclusion
of ∆e. The relation then follows from the equality pv ◦ ie = pv′ ◦ ie.

For relation (R2) we can assume that we have e1 < · · · < er. Then if R
is the expression in the relation (R2) we have

α(R) =
r∑
i=1

(−1)i−1ge1 · · · ĝei · · · ger

and ge1 · · · ĝei · · · ger is a generator of H0(∆e1∩· · ·∩∆̂ei∩· · ·∩∆er )(−r+1).
Since {∆e1 , . . . ,∆er} is dependent, α(R) is thus killed by the quotient that
defines M•(Y V ,∆Γ).
We then show that α is compatible with the differentials. By definition,

the differential is zero on H•(Y V ) ⊂M•(Y V ,∆Γ). Furthermore, dα(Ge) =
d(ge) is, by definition of the Gysin morphism, the class of ∆e in H2(Y V ).
This completes the proof. �
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Theorem 6.2. — The morphism α : N•(Y,Γ) → M•(Y V ,∆Γ) is an
isomorphism of differential graded algebras.

Proof. — We sketch the proof and leave the details to the reader. We
define the inverse morphism β in the following way. Let I ⊂ E be an
independent set of edges of Γ of cardinality |I| = q − n, let iI : ∆I ↪→ Y V

be the inclusion of the corresponding stratum. Let fI : Y V → ∆I be any
natural splitting of iI defined out of projections pv’s. Then we define the
component of β:

βnq : H2n−q(∆I)→ H2n−q(Y V )GI

to be the pull-back f∗I . The degrees match since H2n−q(Y V )GI is in de-
gree 2n−q+ |I| = n. It remains to prove that β passes to the quotient that
defines M•(Y V ,∆Γ), and defines an inverse to α. �

Remark 6.3. — It is striking that Kriz and Totaro’s model works for
configuration spaces of points on any smooth projective variety Y , where
the diagonals can have any codimension. It is then tempting to ask for
a generalization of the Orlik-Solomon model to the cohomology of X \ L
where L ⊂ X locally looks like a union of sub-vector spaces of any codimen-
sion inside Cn. In [25], B. Totaro suggests a particular case of the previous
question, focusing on vector spaces Vi of a fixed codimension c such that
all intersections Vi1 ∩· · ·∩Vir have codimension a multiple of c (the present
article handles the case c = 1).

6.4. Comparison with Kriz’s quasi-isomorphism

In this paragraph we sketch the proof that Kriz’s quasi-isomorphism ϕ

from [15] can be recovered as a consequence of the functoriality of the
Orlik-Solomon model.
For the sake of convenience we use the notations from [15] and write

E•(n) for N•(Y,Kn) where Kn is the complete graph on n vertices. We
write ∆ = ∆Kn for the union of all diagonals of Y n. According to Theo-
rem 6.2, we have an isomorphism of differential graded algebras

α : E•(n)
∼=→M•(Y n,∆).

Let π : Y [n] → Y n be the Fulton-MacPherson wonderful compactifica-
tion [12]. Then D = π−1(∆) is a simple normal crossing divisor whose irre-
ducible components D(S) are indexed by subsets S ⊂ {1, . . . , n} with |S| >
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2. We now describe the model F •(n) defined by Kriz. By its very defini-
tion [12, §6], we have a natural isomorphism of differential graded algebras

ε : F •(n)
∼=−→M•(Y [n], D)

between F •(n) and the Orlik-Solomon model M•(Y [n], D). To make this
isomorphism precise, let us mention that

• on H•(Y n), ε is the pull-back H•(π) : H•(Y n)→ H•(Y [n]);
• ε(S) is the generator gS ∈ H0(D(S))(−1) and ε(DS) is the class

[D(S)] ∈ H2(Y [n]).

Theorem 6.4. — We have a commutative square

F •(n) ε // M•(Y [n], D)

E•(n)
α
//

ϕ

OO

M•(Y n,∆)

M•(π)

OO

where ϕ is defined in [15, §3], the horizontal arrows are isomorphisms of
differential graded algebras and the vertical arrows are quasi-isomorphisms
of differential graded algebras.

Proof. — It only remains to prove that we have

M1(π)(ga,b) =
∑

S⊃{a,b}

gS .

We do the proof in the case n = 3 (the cases n < 3 being trivial) and
leave the general case to the reader. We may assume that {a, b} = {1, 2}.
Then π is simply the blow-up along ∆1,2,3, D(1, 2, 3) is the exceptional
divisor, and the equality M1(π)(g1,2) = g1,2 + g1,2,3 is a consequence of
Theorem 5.5. �
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