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A CONVERSE TO A THEOREM ON NORMAL FORMS
OF VOLUME FORMS WITH RESPECT TO A

HYPERSURFACE

by Konstantinos KOURLIOUROS (*)

Abstract. — We give here a positive answer to a question asked by Y. Colin de
Verdière concerning the converse of the following theorem, due to A. N. Varchenko:
two germs of volume forms are equivalent with respect to diffeomorphisms pre-
serving a germ of an isolated hypersurface singularity, if their difference is the
differential of a form whose restriction on the smooth part of the hypersurface is
exact.
Résumé. — Nous donnons ici une réponse positive à une question posée par Y.

Colin de Verdière concernant la réciproque du théorème suivant, dû à A. N. Var-
chenko : deux germes de formes volumes sont équivalents modulo difféomorphismes
préservant un germe d’hypersurface à singularités isolées, si leur différence est la
différentielle d’une forme dont la restriction sur la partie lisse de l’hypersurface est
exacte.

1. Introduction-Main Results

In this paper we give a positive answer to a question asked by Y. Colin
de Verdière in [2] which was formulated as follows: suppose that two germs
of symplectic forms at the origin of the plane are equivalent with respect
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to a diffeomorphism preserving a plane curve germ with an isolated sin-
gularity at the origin. Is it true that their difference is the differential of
a 1-form whose restriction on the smooth part of the curve is exact? This
question asks for the validity of the converse to a general normal form the-
orem in Lagrangian singularity theory according to which: two germs of
symplectic structures are equivalent with respect to diffeomorphisms pre-
serving a Lagrangian variety if their difference is the differential of a 1-form
whose restriction on the smooth part of the variety is exact. The proof of
this theorem can be easily deduced from the reasoning in A. B. Givental’s
paper [5] using Moser’s homotopy method. It holds in any dimension and
for arbitrary Lagrangian singularities. It’s converse though is not so easy
to deduce, at least when the singularities of Lagrangian varieties are non-
isolated(1) and thus their cohomology can be rather complicated. On the
other hand, for the 2-dimensional case and for the case of isolated singular-
ities, the normal form theorem stated above can be viewed as a special case
of a general theorem obtained by A. N. Varchenko in [13] concerning the
normal forms of germs of (powers of) volume forms with respect to an iso-
lated hypersurface singularity. Here we will prove a converse to Varchenko’s
normal form theorem, which trivially answers Verdière’s question, and it
can be formulated as follows:

Theorem 1.1. — Suppose that two germs of volume forms are equiv-
alent with respect to a diffeomorphism preserving a germ of an isolated
hypersurface singularity. Then their difference is the differential of a form
whose restriction on the smooth part of the hypersurface is exact.

The method of proof is as follows: we first prove the theorem in the for-
mal category. For this we use a formal interpolation lemma for the elements
of the isotropy group of an isolated hypersurface singularity (Lemma 3.1)
which is a variant of the one presented by J. -P. Françoise in [4] and re-
lies in a general interpolation method obtained by S. Sternberg [12]. Then
we pass to the analytic category using a comparison theorem between the
corresponding de Rham cohomologies in the formal and analytic categories
(Lemma 2.3). This is analogous to the well known Bloom-Brieskorn the-
orem [1] for the de Rham cohomology of an analytic space with isolated
singularities. But in contrast to the ordinary Bloom-Brieskorn theorem
where the cohomology of the complex of Kähler differentials is considered,

(1)cf. [5]: Proposition 1-Proposition 2, pp. 3249, and also [11]: Lemma 3.31-Corollary
3.32, pp. 75-76 for certain restrictions on the singular set of a Lagrangian germ, related
to its embedding dimension. In particular, if a Lagrangian germ of dimension n > 1 has
embedding dimension < 2n then it necessarily has non-isolated singularities.
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we need to consider instead the cohomology of the so called Givental com-
plex, i.e. the complex of germs of holomorphic forms modulo those that
vanish on the smooth part of the hypersurface (which naturally appears in
the statements of the theorems above).

2. De Rham Cohomology of an Isolated Hypersurface
Singularity and an Analog of the Bloom-Brieskorn

Theorem

Let f : (Cn+1, 0)→ (C, 0) be a germ of a holomorphic function with an
isolated singularity at the origin and let (X, 0) = {f = 0} be the corre-
sponding hypersurface germ, zero level set of f (we will suppose throughout
that the germ (X, 0) is reduced). To the germ (X, 0) we may associate sev-
eral complexes of holomorphic forms, quotients of the complex Ω• of germs
of holomorphic forms at the origin of Cn+1, the “largest” one being the so
called complex of Kähler differentials:

Ω•X,0 = Ω•

df ∧ Ω•−1 + fΩ• ,

where the differential is induced by the differential in Ω• after passing to
quotients. The cohomologies of this complex are finite dimensional vector
spaces and they have being computed by E. Brieskorn in [1]. In particular,
along with the results of M. Sebastiani [10] it follows that:

(2.1) Hp(Ω•X,0) =


C, p = 0,
0, 0 < p < n, p > n

Cd, p = n,

.

The number d can be interpreted as the degree of non-quasihomogeneity
of the germ f , i.e.

d = µ− τ,
where µ is the Milnor number and τ is the Tjurina number of the singu-
larity f :

µ = dimC
Ωn+1

df ∧ Ωn , τ = dimC
Ωn+1

df ∧ Ωn + fΩn+1 ,

d = dimC
df ∧ Ωn + fΩn+1

df ∧ Ωn .

Indeed, it is a result of K. Saito [9] according to which f is equivalent to a
quasihomogeneous germ if and only if it belongs to its gradient ideal, i.e.
fΩn+1 ⊂ df ∧ Ωn.
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Denote now by X∗ = X \0 the smooth part of the hypersurface X. In [3],
A. Ferrari introduced another important complex associated to X which is
the quotient complex of Ω• modulo the subcomplex Ω•(X∗) which consists
of forms whose restriction on the smooth part X∗ of X is identically zero:

Ω̃•X,0 = Ω•

Ω•(X∗) .

This complex was also used extensively by A. B. Givental in [5] and is
called the Givental complex in [7]. We adopt the same notation here as
well. As it is easy to see there is an identification of the complex of Kähler
differentials with the Givental complex on the smooth part X∗ and thus
there is a short exact sequence of complexes:

(2.2) 0→ T •X,0 → Ω•X,0 → Ω̃•X,0 → 0,

where T •X,0 is the torsion subcomplex of Ω•X,0 (here is where we need (X, 0)
to be reduced). Indeed, the kernel K•X,0 of the natural projection Ω•X,0 →
Ω̃•X,0 is torsion and hence it is contained in T •X,0. But since any torsion
element vanishes on the smooth part X∗, it follows that the complex T •X,0
is contained in the kernel K•X,0, i.e. there is an identification:

T •X,0 = K•X,0.

In [6], G. M. Greuel studied the relationship of the Givental and Kähler
complexes in the general case where (X, 0) defines an n-dimensional isolated
complete intersection singularity (embedded in some Cm). He proves that:

T pX,0 = 0, p < n,

T pX,0 = ΩpX,0, p > n,

and also:
Hp(Ω•X,0) = 0, 0 < p < n,

Hp(Ω̃•X,0) = 0, p 6= 0, n.

Thus, in the particular case where (X, 0) is an isolated hypersurface sin-
gularity we obtain the following analog of the Brieskorn-Sebastiani result
(2.1) for the cohomology of the Givental complex:
Proposition 2.1.

Hp(Ω̃•X,0) =


C, p = 0,
0, 0 < p < n, p > n

Cd, p = n,

,

where d = µ− τ is the degree of non-quasihomogeneity of the germ f .
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Proof. — It suffices only to show the following equality (the zero coho-
mology is trivial):

Hn(Ω̃•X,0) = Cd.

This in turn has been proved by Varchenko in [13]. Here we will give an
alternative, simple proof, which is distilled from [2]. To the germ f we
associate the Brieskorn module as in [1]:

H ′′f = Ωn+1

df ∧ dΩn−1 .

According to the Sebastiani theorem [10] this is a free module of rank µ
over C{f} and thus the quotient

H ′′f
fH ′′f

= Ωn+1

df ∧ dΩn−1 + fΩn+1

is a µ-dimensional C-vector space. Denote now by

QX,0 = Ωn+1

df ∧ Ωn + fΩn+1

the space of deformations of the germ (X, 0). By the fact that df ∧dΩn−1 +
fΩn+1 ⊆ df ∧ Ωn + fΩn+1 there is a natural projection:

H ′′f
fH ′′f

π→ QX,0,

whose kernel:
kerπ = df ∧ Ωn

df ∧ dΩn−1 + fΩn+1

is a priori a d = µ−τ -dimensional vector space. Now, the n-th cohomology
of the Givental complex is:

Hn(Ω̃•X,0) =
Ω̃nX,0
dΩ̃n−1

X,0
= Ωn

Ωn(X∗) + dΩn−1 ,

where:

(2.3) Ωn(X∗) = {α ∈ Ωn/df ∧ α ∈ fΩn+1}.

Indeed, for any n-form α there exists a meromorphic (n + 1)-form β with
a pole along X∗ and such that df ∧ α = fβ (the n-form α|X∗ is just the
Poincaré residue of β and the Poincaré residue map is surjective). Now, as
it is easy to confirm, α|X∗ = 0 if and only if β is holomorphic, i.e. β ∈ Ωn+1,
which is exactly the identity (2.3) above. It follows from this that

kerπ = df ∧Hn(Ω̃•X,0)

TOME 65 (2015), FASCICULE 6
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and thus there is a short exact sequence:

(2.4) 0→ Hn(Ω̃•X,0) df∧→
H ′′f
fH ′′f

π→ QX,0 → 0.

This proves that indeed Hn(Ω̃•X,0) = Cd as was asserted. �

The proof given above yields a non-canonical isomorphism of vector
spaces:

Hn(Ω•X,0) ∼= Hn(Ω̃•X,0).

Canonical isomorphisms between all cohomology vector spaces:

H•(Ω•X,0) ∼= H•(Ω̃•X,0)

are obtained by the long exact sequence associated to the short exact se-
quence (2.2) and the fact that the Kähler complex of an isolated hypersur-
face singularity is torsion free. Thus we may formulate the following version
of the Poincaré lemma for the germ (X, 0):

Corollary 2.2 (cf. [5] for n = 1). — The germ (X, 0) is quasihomoge-
neous if and only if its Givental (or Kähler) complex is acyclic (except in
zero degree).

Finally, we will need the following analog of the Bloom-Brieskorn the-
orem [1], which is a comparison of the cohomologies of the analytic and
formal Givental complexes. The proof we will give below is in fact a simple
variant of the one presented in [1]. Moreover, the fact that (X, 0) is an
isolated hypersurface singularity plays no significant role; the same proof
holds for any analytic space, as long as its singularities are isolated.

Lemma 2.3. — Let ˆ̃Ω•X,0 be the formal completion of the Givental com-
plex. Then the natural map Ω̃•X,0 →

ˆ̃Ω•X,0 induces an isomorphism of finite
dimensional vector spaces:

H•(Ω̃•X,0) ∼= H•( ˆ̃Ω•X,0).

Proof. — Following [1] let π : Y → X be a resolution of singularities in
the sense of Hironaka and denote by A = π−1(0) the exceptional set, which
we may suppose it is given by some equations y1 · · · yr = 0. Let Ω•Y be the
complex of holomorphic forms on Y and let Ω•Y |A be its restriction on A.
Let also

Ω̂•Y = lim
←
k

Ω•Y
mkΩ•Y

,
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where m is the maximal ideal in OX,0, viewed as an ideal sheaf in OY by the
fact that OY becomes a module over OX through the map π(2) . Consider
now the direct image complex R0π∗Ω•Y (this is also called the Noether
complex). Since the map π is proper this is a complex of coherent sheaves
(by Grauert’s coherence theorem), which away from the singular point 0 can
be identified with the Givental complex: R0π∗Ω•Y |X∗ ∼= Ω̃•X∗ . In particular
there is an inclusion j : Ω̃•X → R0π∗Ω•Y whose cokernel is concentrated
at the singular point 0 and it is thus finite dimensional. Consider now the
formal completion of the above complexes. It gives a commutative diagram:

(2.5)

Ω̃•X,0
j−−−−→ H0(A,Ω•Y |A)y y

ˆ̃Ω•X,0
ĵ−−−−→ H0(A, Ω̂•Y )

where of course H0(A,Ω•Y |A) ∼= (R0π∗Ω•Y )|0 and ĵ is the formal comple-
tion of the inclusion j. Indeed, this follows from the fact (cf. [1] and the
corresponding references therein):

H0(A, Ω̂•Y ) ∼= lim
←
k

H0(A, Ω•Y
mkΩ•Y

) ∼= lim
←
k

H0(A,Ω•Y |A)
mkH0(A,Ω•Y |A) .

Now, since the completion functor is exact and by the fact that the cokernel
of j is already complete (by finite dimensionality), it follows that

Cokerj ∼= Cokerĵ.

Thus, in order to show the theorem starting from the commutative diagram
above, it suffices to show the isomorphism:

H•(H0(A,Ω•Y |A)) ∼= H•(H0(A, Ω̂•Y )).

This is proved in turn in [1] (points (b)-(d), pp. 140-142). �

Remark 2.4. — For the hypersurface case, there is a simple alternative
proof of the above lemma, only for the nth-cohomology of the Givental
complex, without using resolution of singularities: let Ĥ ′′f be the formal
completion of the Brieskorn module with respect to the m-adic topology.
Then, by the properties of the analytical index of the Gauss-Manin con-
nection according to B. Malgrange [8], there is an isomorphism of C[[f ]]-
modules(3) :

Ĥ ′′f
∼= H ′′f ⊗C{f} C[[f ]]

(2) in fact m = π∗mX,0 ⊂ π∗OY |0 = OY |π−1(0)=A.
(3)or equivalently by the Bloom-Brieskorn theorem [1], but this uses again resolution of
singularities.

TOME 65 (2015), FASCICULE 6
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and thus the quotient

Ĥ ′′f

fĤ ′′f
= Ω̂n+1

df ∧ dΩ̂n−1 + fΩ̂n+1

is again a µ-dimensional vector space. The space of deformations QX,0 of
the germ (X, 0) is finite dimensional and thus it is already complete:

QX,0 ∼= Q̂X,0.

Following the construction presented in the proof of Proposition 2.1 for the
cohomology Hn(Ω̃•X,0) we obtain again a short exact sequence:

0→ Hn( ˆ̃Ω•X,0) df∧→
Ĥ ′′f

fĤ ′′f

π→ Q̂X,0 → 0.

The proof of the isomorphism

(2.6) Hn(Ω̃•X,0) ∼= Hn( ˆ̃Ω•X,0)

follows then immediately by comparing the short exact sequence above
with the analytic one (2.4).

3. An Interpolation lemma for the Isotropy Group of a
Hypersurface Singularity

LetRX,0 be the isotropy group of the germ (X, 0), i.e. the group of germs
of diffeomorphisms at the origin tangent to the identity and preserving the
hypersurface X = {f = 0}. It means that for every Φ ∈ RX,0 there exists
an invertible function germ g ∈ O such that the following hold:

Φ(x) = x mod m2, g(x) = 1 mod m,

Φ∗f = gf.

We will need the following interpolation lemma for the group RX,0 which
is a simple variant of the one presented by J.-P. Françoise in [4] and it relies
in a general method obtained by S. Sternberg in [12]. It can be also gen-
eralised without difficulty to any germ of an analytic subset (X, 0) (whose
singularities can be arbitrary).

Lemma 3.1. — Any diffeomorphism Φ ∈ RX,0 can be interpolated by a
1-parameter family of formal diffeomorphisms Φt ∈ R̂X,0, i.e. there exists
a family of formal function germs gt ∈ Ω̂0 such that:

Φ0 = Id, Φ1 = Φ,

ANNALES DE L’INSTITUT FOURIER



VOLUME FORMS-ISOLATED HYPERSURFACE SINGULARITIES 2445

g0 = 1, g1 = g,

Φ∗t f = gtf.

Proof. — Denote by (x1, ..., xn+1) the coordinates at the origin and let
xβ = xβ1

1 ...x
βn+1
n+1 , β = (β1, ..., βn+1) ∈ Nn+1, |β| =

∑n+1
i=1 βi. Let

Φi(x) = xi +
∑
j

∑
|β|=j

φi,βx
β , i = 1, ..., n+ 1

be the components of Φ. We will find the interpolation Φt with components
in the form:

Φt,i(x) = xi +
∑
j

∑
|β|=j

φi,β(t)xβ , i = 1, ..., n+ 1

as solution of the differential equation:

(3.1) Φ′t = Φ′0 ◦ Φt,

with boundary conditions Φ0 = Id, Φ1 = Φ (cf. [12]). We can can do this
by induction on j and we may assume that the φi,β are already known for
j 6 k − 1. Then, for j = k, equation (3.1) implies:

φ′i,β(t) = φ′i,β(0) + ψi,β(t),

where the functions ψi,β(t) are known by induction and they vanish at zero.
Integration then gives:

φi,β(t) = φ′i,β(0)t+
∫ t

0
ψi,β(τ)dτ.

Obviously the initial condition φi,β(0) = 0 is satisfied, and it suffices to
choose the φ′i,β(0) such that the boundary condition φi,β(1) = φi,β is sat-
isfied as well. Now, by the fact that the family Φt is an interpolation of Φ,
we may choose an interpolation gt of g:

gt(x) = g(0) +
∑
|β|>1

gβ(t)xβ ,

satisfying the required assumptions (recall that g(0) = 1) and such that
Φ∗t f = gtf for all integer values of t. In fact, the coefficients of Φt are poly-
nomials in t, and choosing the interpolation gt with polynomial coefficients
in t as well (linear in t for example), it follows that for any k fixed, the
homogeneous part of degree k in the Taylor expansion of Φ∗t f − gtf is a
polynomial in t which vanishes for all integer values of t. Thus, it vanishes
for all real t as well and this finishes the proof of the lemma. �
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4. Proof of the theorem

We will prove here Theorem 1.1 which can now be restated in the fol-
lowing form:

Theorem 4.1. — Let ω and ω′ be two germs of volume forms which
are RX,0-equivalent. Then there exists an n-form α such that ω − ω′ = dα

and [α] = 0 in Hn(Ω̃•X,0).

Proof. — Consider first the n-form α defined by ω − ω′ = dα (Poincaré
lemma) and let Φ ∈ RX,0 be the diffeomorphism providing the equivalence:
Φ∗ω′ = ω. It follows that

(4.1) ω − Φ∗ω = dα

holds in Ωn+1. Interpolate now Φ by the 1-parameter family of formal
diffeomorphisms Φt ∈ R̂X,0 as in Lemma 3.1 above. We have that:

ω − Φ∗ω =
∫ 1

0

d

dt
Φ∗tωdt =

∫ 1

0
Φ∗t (Lv̂ω)dt =

=
∫ 1

0
Φ∗t d(v̂yω)dt = d

∫ 1

0
Φ∗t (v̂yω)dt,

holds in Ω̂n+1, where v̂ is the 1-parameter family of formal vector fields
generating Φt: exp tv̂ = Φt. Thus, in Ω̂n+1 we may write:

(4.2) ω − Φ∗ω = dα̂,

where the formal n-form α̂ is defined by:

α̂ =
∫ 1

0
Φ∗t (v̂yω)dt+ dĥ,

for some formal (n − 1)-form ĥ. Now, since Φt preserves the germ (X, 0)
for all t and v̂ is tangent to its smooth part, it follows that α̂|X∗ = dĥ|X∗ ,
i.e. that [α̂] = 0 in Hn( ˆ̃Ω•X,0). View now the relation (4.1) as a relation in
Ω̂n+1. By comparing it with the relation (4.2) we obtain α = α̂ + dĝ for
some formal (n − 1)-form ĝ and thus [α] = [α̂] = 0 in Hn( ˆ̃Ω•X,0) as well.
By the Bloom-Brieskorn Lemma 2.3 and in particular by the isomorphism
(2.6) we finally obtain that [α] = 0 in Hn(Ω̃•X,0) and this finishes the proof
of the theorem. �

ANNALES DE L’INSTITUT FOURIER



VOLUME FORMS-ISOLATED HYPERSURFACE SINGULARITIES 2447

BIBLIOGRAPHY

[1] E. Brieskorn, “Die Monodromie der isolierten Singularitäten von Hyperflächen”,
Manuscripta Math. 2 (1970), p. 103-161.

[2] Y. Colin De Verdière, “Singular Lagrangian manifolds and semiclassical analy-
sis”, Duke Math. J. 116 (2003), no. 2, p. 263-298.

[3] A. Ferrari, “Cohomology and holomorphic differential forms on complex analytic
spaces”, Ann. Scuola Norm. Sup. Pisa (3) 24 (1970), p. 65-77.

[4] J.-P. Françoise, “Relative cohomology and volume forms”, in Singularities (War-
saw, 1985), Banach Center Publ., vol. 20, PWN, Warsaw, 1988, p. 207-222.

[5] A. B. Givental′, “Singular Lagrangian manifolds and their Lagrangian mappings”,
in Current problems in mathematics. Newest results, Vol. 33 (Russian), Itogi Nauki
i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow,
1988, Translated in J. Soviet Math. 52 (1990), no. 4, 3246–3278, p. 55-112, 236.

[6] G.-M. Greuel, “Der Gauss-Manin-Zusammenhang isolierter Singularitäten von
vollständigen Durchschnitten”, Math. Ann. 214 (1975), p. 235-266.

[7] C. Hertling, Frobenius manifolds and moduli spaces for singularities, Cambridge
Tracts in Mathematics, vol. 151, Cambridge University Press, Cambridge, 2002,
x+270 pages.

[8] B. Malgrange, “Intégrales asymptotiques et monodromie”, Ann. Sci. École Norm.
Sup. (4) 7 (1974), p. 405-430 (1975).

[9] K. Saito, “Quasihomogene isolierte Singularitäten von Hyperflächen”, Invent.
Math. 14 (1971), p. 123-142.

[10] M. Sebastiani, “Preuve d’une conjecture de Brieskorn”, Manuscripta Math. 2
(1970), p. 301-308.

[11] C. Sevenheck, “Singularités Lagrangiennes”, PhD Thesis, École Polytechnique
(France), 2003.

[12] S. Sternberg, “Infinite Lie groups and the formal aspects of dynamical systems”,
J. Math. Mech. 10 (1961), p. 451-474.

[13] A. N. Varchenko, “Local classification of volume forms in the presence of a hy-
persurface”, Funktsional. Anal. i Prilozhen. 19 (1985), no. 4, p. 23-31, 95.

Manuscrit reçu le 31 avril 2014,
accepté le 7 octobre 2014.

Konstantinos KOURLIOUROS
Imperial College London
Dept. of mathematics
Huxley Building 180 Queen’s Gate
London, SW7 (UK)
k.kourliouros10@imperial.ac.uk

TOME 65 (2015), FASCICULE 6

mailto:k.kourliouros10@imperial.ac.uk

	1. Introduction-Main Results
	2. De Rham Cohomology of an Isolated Hypersurface Singularity and an Analog of the Bloom-Brieskorn Theorem
	3. An Interpolation lemma for the Isotropy Group of a Hypersurface Singularity
	4. Proof of the theorem
	Bibliography

