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DUALITY ON BANACH SPACES AND A BOREL
PARAMETRIZED VERSION OF ZIPPIN’S THEOREM

by Bruno de Mendonça BRAGA (*)

Abstract. — Let SB be the standard coding for separable Banach spaces as
subspaces of C(∆). In these notes, we show that if B ⊂ SB is a Borel subset of
spaces with separable dual, then the assignment X 7→ X∗ can be realized by a
Borel function B→ SB. Moreover, this assignment can be done in such a way that
the functional evaluation is still well defined (Theorem 1). Also, we prove a Borel
parametrized version of Zippin’s theorem, i.e., we prove that there exists Z ∈ SB
and a Borel function that assigns for each X ∈ B an isomorphic copy of X inside
of Z (Theorem 5).
Résumé. — Soit SB le codage standard des espaces de Banach séparables

comme sous-espaces de C(∆). Dans ce papier, on montre que si B ⊂ SB est un
sous-ensemble borélien d’espaces à dual séparable, alors l’application X 7→ X∗ peut
être réalisée par une fonction borélienne de B à SB. En outre, cette application
peut être construite de manière que l’évaluation fonctionnelle est toujours bien
définie (Théorème 1). Par ailleurs, on démontre une version borélienne du théorème
de Zippin. Plus précisément, on démontre qu’il existe Z ∈ SB et une fonction
borélienne qui à chaque X associe une copie isomorphe à X à l’intérieur de Z
(Théorème 5).

1. Introduction.

These notes mainly deal with two problems, namely, (i) how to obtain
the assignment X 7→ X∗ in a Borel fashion, and (ii) how to obtain a Borel
parametrized version of M. Zippin’s theorem. More precisely, for the duality
problem, the dual of each X ∈ SD = {X ∈ SB | X∗ is separable} has an
isometric copy in SB. In these notes, we show that the assignment X 7→ X∗

can be obtained by a Borel function.

Keywords: Banach spaces, duality, descriptive set theory, Zippin’s theorem.
Math. classification: 46B10.
(*) The author would like to thank his adviser C. Rosendal for all the help and attention
he gave to this paper.
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Recall that SD = {X ∈ SB | X∗ is separable} is complete coanalytic
(hence non Borel). Indeed, there is a Borel map Θ : K([0, 1]) → SB such
that Θ(K) ∼= C(K), for all K ∈ K([0, 1]), where X ∼= Y means that X
is isomorphic to Y (see [8], Theorem 33.24). Therefore, as C(K) is an `1-
predual if K is countable, and C(K) is universal for the class of separable
Banach spaces if K is uncountable, this gives us a Borel reduction of {K ∈
K([0, 1]) | K is countable} to SD. As {K ∈ K([0, 1]) | K is countable}
is complete coanalytic (see [8], Theorem 27.5), SD is Π1

1-hard, i.e., every
coanalytic set Borel reduces to SD. For a proof that SD is coanalytic and
a detailed proof of the arguments above see [8], Theorem 33.24.

As SD is non Borel, we have to restrict ourselves to Borel subsets of SD
in order to define a Borel function. For a Borel B ⊂ SD, we show that there
exists a Borel map X ∈ B 7→ X• ∈ SB such that, for all X ∈ B, we have
X∗ ≡ X•, where X ≡ Y means X is isometric to Y . Moreover, we show
that there exists a Borel map

(X,x, g) ∈ A 7→ 〈g, x〉X ∈ R,

where A = {(X,x, g) ∈ B× C(∆)× C(∆) | x ∈ X, g ∈ X•}, that works as
the functional evaluation. Precisely, we prove:

Theorem 1.1. — Let B ⊂ SD be Borel. There exists a Borel map B→
SB, X 7→ X•, such that X• ≡ X∗, for all X ∈ B. Moreover, let

A = {(X,x, g) ∈ B× C(∆)× C(∆) | x ∈ X, g ∈ X•}.

Then there exists a Borel map 〈·, ·〉(·) : A→ R such that, for each X ∈ B,
(i) 〈·, ·〉X is bilinear and norm continuous, and
(ii) g ∈ X• 7→ 〈g, ·〉X ∈ X∗ is a surjective linear isometry.

This result is related and can be seen as an extension of the following
theorem due P. Dodos (see [6]).

Theorem 1.2 (Dodos, 2010). — Say SD = {X ∈ SB |X∗ is separable},
and let A ⊂ SD be analytic. Let A∗ = {X ∈ SB | ∃Y ∈ A, Y ∗ ∼= X}. Then
A∗ is analytic.

As SD is coanalytic, if A ⊂ SD is analytic, Lusin’s separation theorem
says that there exists a Borel set B ⊂ SD with A ⊂ B. Apply Theorem 1.1
to this B, and notice that A∗ = {X ∈ SB | ∃Y ∈ A, Y • ∼= X}. Therefore,
as the isomorphism relation ∼= ⊂ SB× SB is analytic, Theorem 1.2 can be
obtained from Theorem 1.1.
In order to prove Theorem 1.1, we proceed as follows. Fix a Borel B ⊂

SD. First, for X ∈ B, we code the unit ball of the dual of X by a subset
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of B`∞ (see Lemma 3.2). We refer to this coding as Dodos’ coding (the
reader can read more about it in [6]). Using the main technical result of [6]
(for a precise statement, see Lemma 3.4 below), we code the unit ball of
the bidual of X as a subset of B`∞ , for all X ∈ B (see Lemma 3.5). Those
codings will allow us to talk about elements of the abstract spaces X∗ and
X∗∗ as elements of their concrete codings in B`∞ . This will allow us to talk
about Borel functions coding the functional operations given by elements
of X∗, and X∗∗. At last, we will use those codings and Lemma 3.7 in order
to bring the codings of X∗ inside of SB. Those three steps will give us
Theorem 1.1.
Also, while proving Theorem 1, we obtain a coding for the functional eval-

uation on the entire SB. It is clearly not possible to obtain an assignment
X ∈ SB 7→ X• ∈ SB as before. Indeed, SB contains many spaces whose
duals are non separable Banach spaces, hence if we demand X∗ ≡ X•, we
cannot have X• ∈ SB. We are however capable of coding the functional
evaluation on the entire SB.

Theorem 1.3. — There exists a Borel map Θ : SB → K(B`∞) such
that, for each X ∈ SB, BX∗ ≡ Θ(X), where the isometry between BX∗ and
Θ(X) is the restriction of a linear isometry between X∗ and span{Θ(X)}.
Moreover, setting

A = {(X,x, x∗) ∈ SB× C(∆)×B`∞ | x ∈ X,x∗ ∈ Θ(X)},

there exists a Borel map 〈·, ·〉(·) : A→ R such that, for each X ∈ B,
(i) 〈·, ·〉X is norm continuous, and
(ii) x∗ ∈ Θ(X) 7→ 〈x∗, ·〉X ∈ BX∗ is a surjective isometry.

It would be nice to get a global function such that its restriction to SD
works as in Theorem 1.1.

Problem 1.4. — Can we define the functions of Theorem 1.1 globally?
Precisely, is there a Borel assignment X ∈ SB 7→ X• ∈ SB such that, once
restricted to SD, the assignment has the same properties as in Theorem 1.1?
What about a Borel map 〈·, ·〉(·) : A → R, where A = {(X,x, g) ∈ SB ×
C(∆) × C(∆) | x ∈ X, g ∈ X•}, such that, once restricted to A ∩ (SD ×
C(∆)× C(∆)), it has the same properties as in Theorem 1.1?

The second half of the paper is devoted to Zippin’s theorem. Zippin
had shown (see [11]) that any Banach space with separable dual can be
isomorphically embedded into a Banach space with a shrinking basis. We
show the following Borel parametrized version of it. For each Z ∈ SB, we
let SB(Z) = {X ∈ SB | X ⊂ Z}.

TOME 65 (2015), FASCICULE 6



2416 Bruno de Mendonça BRAGA

Theorem 1.5. — Say B ⊂ SD is Borel. There exists a Z ∈ SD, with a
shrinking basis, and a Borel map Ψ : B → SB(Z) such that X ∼= Ψ(X),
for all X ∈ B. Moreover, setting E = {(X,x) ∈ B × C(∆) | x ∈ X}, there
exists a Borel map

ψ : E→ Z

such that, letting ψX = ψ(X, ·), we have that ψX : X → Z is a 10-
embedding, for all X ∈ B.

In [7], Dodos and V. Ferenczi had shown the following.

Theorem 1.6 (Dodos and Ferenczi, 2007). — Let A ⊂ SD be analytic.
There exists a Banach space Z with a shrinking basis that contains an
isomorphic copy of every X ∈ A.

Hence, Theorem 1.5 can be seen as an improvement of Dodos and Fer-
enczi’s theorem. Indeed, if A ⊂ SD is analytic, then, as SD is coanalytic,
Lusin’s separation theorem gives us a Borel set B such that A ⊂ B ⊂ SD.
Therefore, applying Theorem 1.5 to B, we obtain not only Theorem 1.6,
but also that its result can be obtained by a Borel function.
The proof of Theorem 1.5, is divided into two parts. In [7], Dodos and

Ferenczi, had shown, using results due B. Bossard (see [3]), that if A ⊂ SD
is analytic, then there exists an analytic set A′ ⊂ SB such that (i) every
X ∈ A embeds into some Y ∈ A′, and (ii) every Y ∈ A′ has a shrinking
basis. Following Bossard’s work (see [3], or [5], chapter 5), we show that
this result can be obtained by a Borel function. Precisely, we show that
if B ⊂ SD is Borel, then there exists a Borel function σ : B → C(∆)N
which, for each X ∈ B, selects a shrinking basis whose span contains an
isomorphic copy of X (see Theorem 4.6 for a precise statement).

Finally, we show that if we have a Borel set of normalized shrinking basic
sequences U ⊂ SN

C(∆), we can find not only a space Z ∈ SD containing all
those basis (as it is done in [2]), but also an assignment

(xn) ∈ U 7→ X(∼= span{xn}) ∈ SB(Z)

which is Borel. Combining those two steps we get the Borel parametrized
version of Zippin’s theorem.
Our main references for these notes are Dodos’ book Banach spaces and

descriptive set theory: Selected topics, Dodos’ paper Definability under Du-
ality, S. Argyros and Dodos’ paper Genericity and amalgamation of classes
of Banach spaces, B. Bossard’s paper An ordinal version of some applica-
tions of the classical interpolation theorem, and Dodos and Ferenczi’s paper
Some strongly bounded classes of Banach spaces. What we do in these notes

ANNALES DE L’INSTITUT FOURIER
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is basically to show that some of the results obtained in those papers can
be actually obtained uniformly by Borel functions on Borel subsets of SD.

2. Notation.

Let SB = {X ⊂ C(∆) | X is closed and linear}, SB will be our coding
for the separable Banach spaces, where C(∆) is the space of continuous
functions on the Cantor set ∆ (i.e., 2N) endowed with the supremum norm.
We endow SB with its Effros-Borel structure, i.e., the σ-algebra generated
by

{X ∈ SB | X ∩ U 6= ∅},
where U varies among the open subsets of C(∆). It is well known that
SB is a standard Borel space with the Effros-Borel structure (see [5],
Theorem 2.2). We denote by SD the subset of SB consisting of Banach
spaces with separable duals, SD is well known to be complete coanalytic
(hence non Borel), as shown above. For every Banach space X, we denote
the unit ball of X by BX . Unless stated otherwise, we will always consider
the unit ball BX∗ endowed with its weak∗-topology. So, for all X ∈ SB,
BX∗ is a compact metric space. We denote by SX the unit sphere of X,
where X is a Banach space.
Similarly as above, if X is a Polish space, we can endow F(X), the set

of non empty closed subsets of X, with the Effros-Borel structure. Ku-
ratowski and Ryll-Nardzewski’s selection theorem gives us that, for any
Polish space X, there exists a sequence of Borel functions dn : F(X)→ X

such that, for all F ∈ F(X), the sequence (dn(F ))n∈N is dense in F (see [8],
Theorem 12.13). In these notes, we denote by dn : F(C[0, 1])→ C(∆) the
sequence above, where X = C[0, 1]. Moreover, by taking rational linear
combinations, we assume (dn)n∈N is closed under rational linear combina-
tions. AsX ∈ SB 7→ BX ∈ F(C(∆)) is a Borel map, the mapsX 7→ dn(BX)
are also Borel, and (dn(BX))n∈N is dense in BX , for all X ∈ SB.

Elements of BX∗ will usually be denoted by f , while elements of B`∞ will
usually be denoted by x∗ or x∗∗ (depending whether this element is coding
a functional from BX∗ or BX∗∗). The reader should always have in mind
that x∗ ∈ B`∞ actually denotes a bounded sequence x∗ = (x∗n)n∈N ∈ B`∞ .
In order to simplify notation, many times we omit the index of sequences,

writing (xn) instead of (xn)n∈N. We do the same for sums, i.e., we write∑
n xn instead of

∑
n∈N xn or

∑k
n=1 xn. We hope this will not cause any

confusion to the reader.

TOME 65 (2015), FASCICULE 6



2418 Bruno de Mendonça BRAGA

When dealing with functionals, say f ∈ X∗ and x ∈ X, we use both
“f(x)” and “〈f, x〉” to denote the value of the functional f evaluated at x.
Also, as we will be dealing with many spaces and norms, in order to have
a cleaner notation, we will usually simply write ‖x‖ instead of ‖x‖X to
denote the norm of x in X, where x ∈ X. The spaces in which the elements
whose norms are being computed lie in should always be clear, and if there
is room for any ambiguity we will specify the norm we are working with.
Say X and Y are Banach spaces. We write X ≡ Y to denote that X is

linearly isometric to Y , and we write X ∼= Y to denote that X is (linearly)
isomorphic to Y . Also, if X and Y are metric spaces, we write X ≡ Y to
denote that X and Y are isometric as metric spaces. If (xn) and (yn) are
two basic sequences, we write (xn) ∼ (yn) to denote that (xn) is equiva-
lent to (yn), i.e., xn 7→ yn defines an isomorphism between span{xn} and
span{yn}.

Let X be a metric space. We denote by K(X) the hyperspace of X, i.e.,
the space of all compact subsets of X endowed with the Vietoris topology
(which in metric spaces is equivalent to the topology generated by the
Hausdorff metric), the reader can find more about the hyperspace K(X)
in [8], Section 4.F .

In order to simplify notation when working with many quantifiers in the
same sentence, we will assume “n,m ∈ N” and “δ, ε ∈ Q+”. For example,
we only write “∃δ” instead of “∃δ ∈ Q+”. Similarly, “∃a1, ..., an” should be
interpreted as “∃a1, ..., an ∈ Q”. The set in which we are quantifying over
should always be clear.
Denote by [N]<N the set of all increasing finite tuples of natural numbers,

and [N]N the set of all increasing sequence of natural numbers. As [N]N ⊂ NN

is Borel, we have that [N]N is a standard Borel space. Also, if A is any set,
let A<N denote the set of finite subsets of A. Given s = (s0, ..., sn−1),
t = (t0, ..., tm−1) ∈ A<N we say that the length of s is |s| = n, s|i =
(s0, ..., si−1), for all i ∈ {1, ..., n}, and s|0 = {∅}. We say that s � t iff
n 6 m and si = ti, for all i ∈ {0, ..., n − 1}, i.e., if t is an extension of s.
We define s ≺ t analogously.

A subset T of A<N is called a tree (on A) if t ∈ T implies t|i ∈ T , for all
i ∈ {0, ..., |t|}. A tree T is called pruned if for all s ∈ T there exists t ∈ T
such that s ≺ t. We denote by [T ] the set {σ ∈ NN | ∀n σ|n ∈ T}. A subset
I of a tree T is called a segment if I is completely ordered and if s, t ∈ I
with s � t, then l ∈ I, for all l ∈ T such that s � l � t. Two segments
I1, I2 are called completely incomparable if neither s � t nor t � s hold,
for all s ∈ I1 and t ∈ I2.

ANNALES DE L’INSTITUT FOURIER
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A B-tree on a subset A is a subset S ⊂ A<N \ {∅} such that S = T \ {∅},
for some tree T on A. In other words, a B-tree is a tree without its root.
All the definitions in the previous paragraph extend to B-trees.
Let X ∈ SB, A be a countable set, T be a pruned B-tree on A, and

(xt)t∈T be a normalized sequence of elements of X indexed by T . We say
that (X,A, T, (xt)t∈T ) is a Schauder tree basis if

(i) X = span{xt | t ∈ T}, and
(ii) for every σ ∈ [T ], the sequence (xσ|n)n∈N is a bi-monotone basic

sequence.
Let (X,A, T, (xt)t∈T ) be a Schauder tree basis. We define the `2-Baire

sum of (X,A, T, (xt)t∈T ) as the completion of c00(T ) endowed with the
norm

‖z‖ = sup
{( k∑

n=1
‖
∑
s∈In

zsxs‖2X
) 1

2 | I1, ..., Ik completely

incomparable segments of T
}
,

for all z = (zs)s∈T ∈ c00(T ). By abuse of notation, we still denote by xt the
elements of the `2-Baire sum corresponding to the original xt ∈ X (see [5],
chapter 3, for details on Schauder tree basis and `2-Baire sums).

Let ϕ : T → N be a bijection such that, for all s � t ∈ T , we have
ϕ(s) 6 ϕ(t).

Theorem 2.1 (see [5], Corollary 3.29). — Let (X,A, T, (xt)t∈T ) be a
Schauder tree basis. Assume that for all σ ∈ [T ] the basic sequence (xσ|n)n∈N
is shrinking. Then (xϕ−1(n))n is a shrinking basis for the `2-Baire sum of
(X,A, T, (xt)t∈T ).

3. Duality on Banach spaces.

Our goal in this section is to prove Theorem 1.1, i.e., we will show how
to obtain the assignment X 7→ X∗ in a Borel fashion. Precisely, given a
Borel subset of SD = {X ∈ SB | X∗ is separable}, say B ⊂ SD, we will
define a Borel function X ∈ B 7→ X• ∈ SB such that X• is isometric to
X∗, for all X ∈ B. Moreover, we will keep track of the isometries between
X• and X∗ in such a way that it will be possible to actually interpret the
elements of X• as elements of X∗, i.e., we will be capable of computing
〈g, x〉X in a Borel manner, for all X ∈ B, all x ∈ X, and all g ∈ X•.
In order to prove Theorem 1.1, our main tools will be Dodos’ coding for

the unit ball BX∗ , Lemma 3.4, and Lemma 3.7, which will allow us to bring
families of separable Banach spaces into our coding SB.

TOME 65 (2015), FASCICULE 6



2420 Bruno de Mendonça BRAGA

We start by describing Dodos coding of BX∗ as a subset of B`∞ . Given
X ∈ SB, we code BX∗ by letting

KX∗ =
{
x∗ ∈ B`∞ | ∃f ∈ BX∗∀n x∗n = f(dn(X))

‖dn(X)‖

}
⊂ B`∞ ,

where if dn(X) = 0, we let x∗n = 0 above. It is not hard to see ([6], Section
3) that the set D ⊂ SB×B`∞ defined by

(X,x∗) ∈ D⇔ x∗ ∈ KX∗

is Borel. Also, for a given X ∈ SB, the natural map

f ∈ BX∗ 7→
(f(dn(X))
‖dn(X)‖

)
n
∈ KX∗

is a surjective isometry (see [6], Section 3). Moreover, the isometry is “lin-
ear”, i.e., if f, g ∈ BX∗ and αf + βg ∈ BX∗ , then

αf + βg 7→ α
(f(dn(X))
‖dn(X)‖

)
n

+ β
(g(dn(X))
‖dn(X)‖

)
n
.

This isometry between the compact metric spaces KX∗ and BX∗ is actually
the restriction of an isometry between the Banach spaces span{KX∗} and
X∗. This observation will be used in the proof of Theorem 1.1.

We will need the following result (see [8], Theorem 28.8).

Theorem 3.1. — Let B be a standard Borel space, Y be a Polish space,
and D ⊂ X×Y be a Borel set, all of whose sections Dx = {y ∈ Y | (x, y) ∈
D} are compact. Then the map x 7→ Dx is Borel as a map B→ K(Y ).

The lemma below is a simple application of the theorem above and it
summarizes what we need regarding the Dodos’ coding described above.

Lemma 3.2. — The map

X ∈ SB 7→ KX∗ ∈ K(B`∞)

is Borel. Moreover, for all X ∈ SB, there exists an onto isometry iX :
KX∗ → BX∗ such that, if f = iX(x∗), then x∗n = f(dn(X))/‖dn(X)‖, for
all n ∈ N such that dn(X) 6= 0, and x∗n = 0 otherwise. The isometries iX
are restrictions of linear isometries span{KX∗} → X∗.

Remark 3.3. — The lemma above can also be obtained by Lemma 3.4,
which we will state and use below. However, as Theorem 3.1 is more stan-
dard, we prefer to obtain this lemma by it.

ANNALES DE L’INSTITUT FOURIER
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We had already defined our coding for X∗, let us now define our coding
for X∗∗. For this, we will need the following result of Dodos (see [6], Section
1). First we need to introduce some notation. Let A ⊂ B ⊂ B`∞ , we say
that A is norm dense in B if A is dense in B with respect to the norm
topology of B`∞ . Similarly, we say A ⊂ B`∞ is norm separable if it is
separable with respect to the norm topology of B`∞ .

Lemma 3.4 (Dodos, 2010). — Let B be a standard Borel space, and let
D ⊂ B×B`∞ be a Borel subset. Assume that, for each x ∈ B, we have

(i) Dx = {f ∈ B`∞ | (x, f) ∈ D} is non-empty and compact, and
(ii) Dx is norm separable.

Then, there exists a sequence of Borel uniformizations of D, gn : B →
B`∞ , such that (gn(x))n is norm dense in Dx, for each x ∈ B.

Say B ⊂ SD is Borel, and define D as in Dodos’ coding above. As B ⊂ SD,
we have that DX is norm separable, for all X ∈ B. Therefore, by the lemma
above, there exists a sequence of Borel functions gn : B → B`∞ such that,
for each X ∈ B, the sequence (gn(X))n is norm dense in KX∗ . By taking
rational linear combinations of (gn), we can assume that (gn) are closed
under rational linear combinations. This sequence will play the same role as
the sequence of Kuratowski Ryll-Nardzewski’s selectors (dn)n did in Dodos’
coding for BX∗ .

We saw that, for each X ∈ B, X∗ is isometric to span{KX∗}. In order
to simplify notation, set [KX∗ ] = span{KX∗}. With that in mind, for each
X ∈ B, we define a coding for X∗∗ as

LX∗∗ =
{
x∗∗ ∈ B`∞ | ∃f ∈ B[KX∗ ]∗∀n x∗∗n = f(gn(X))

‖gn(X)‖∞

}
⊂ B`∞ ,

where if gn(X) = 0, we let x∗∗n = 0 above. It is not hard to see that the set
D′ ⊂ SB×B`∞ defined by

(X,x∗∗) ∈ D′ ⇔ x∗∗ ∈ LX∗∗

is Borel. Indeed,

(X,x∗∗) ∈ D′ ⇔∀n,m, ` ∈ N ∀p, q ∈ Q
pgn(X) + qgm(X) = g`(X)
→ px∗∗n ‖gn(X)‖∞ + qx∗∗m ‖gm(X)‖∞ = x∗∗` ‖g`(X)‖∞.

Also, for a given X ∈ SB, the natural map

f ∈ B[KX∗ ]∗ 7→
( f(gn(X))
‖gn(X)‖∞

)
n
∈ LX∗∗

TOME 65 (2015), FASCICULE 6



2422 Bruno de Mendonça BRAGA

is a surjective isometry. Indeed, if x∗∗(1), ..., x∗∗(k) ∈ LX∗∗ and f1, ..., fk
are the corresponding elements of B[KX∗ ]∗ , then, for every a1, ..., ak ∈ R,
we have ∥∥ k∑

i=1
aifi

∥∥
[KX∗ ]∗ = sup

{∣∣ k∑
i=1

ai
fi(gn(X))
‖gn(X)‖∞

∣∣ | gn(X) 6= 0
}

= sup
{∣∣ k∑

i=1
aix
∗∗
n (i)

∣∣ | n ∈ N
}

=
∥∥ k∑
i=1

aix
∗∗(i)‖∞.

We can now apply Theorem 3.1 and get the following lemma, which is
the first step to show that LX∗∗ can be used as a (nice) coding for X∗∗.

Lemma 3.5. — Say B ⊂ SD is Borel. The map

X ∈ B 7→ LX∗∗ ∈ K(B`∞)

is Borel. Moreover, for allX ∈ B, there exists an onto isometry jX : LX∗∗ →
B[KX∗ ]∗ such that, if f = jX(x∗∗), then x∗∗n = f(gn(X))/‖gn(X)‖, for all
n ∈ N such that gn(X) 6= 0, and x∗∗n = 0 otherwise.

Before we show how to interpret the elements in our coding for X∗ and
X∗∗, let us prove another lemma which will be crucial in our proof. Many
times in these notes we will be working with families of separable Banach
spaces which are not in SB. Lemma 3.7 is the tool that we will use in order
to bring those families back to SB.
For any given non-empty compact metric spaceM , there exists a contin-

uous surjection h : ∆→M (see [8], Theorem 4.18). The following lemmas
allow us to choose (in a Borel manner) continuous surjections hK : ∆→ K,
for all K ∈ K(M). Similar calculations can be found in [10], Proposition
3.8, page 14, and Theorem 2.1, page 106.

Lemma 3.6. — Let M be a metric space and L be a compact metric
space. Let h : L→M be a continuous function. Then the map

K ∈ K(M) 7→ h−1(K) ∈ K(L)

is Borel.

Proof. — Let U ⊂ L be an open set. We only need to show that {K ∈
K(M) | h−1(K) ∩ U 6= ∅} is Borel (see [5], proposition 1.4). We first prove
the following claim.
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Claim. — Say F ⊂ M is closed. Then {K ∈ K(M) | K ∩ F 6= ∅} is
Borel.

Say d is the metric of M , and write F = ∩mVm, where each Vm is open,
and d(x, F ) < 1/m, for all x ∈ Vm. Notice that

{K ∈ K(M) | K ∩ F 6= ∅} = ∩m{K ∈ K(M) | K ∩ Vm 6= ∅}.

Indeed, if K ∩ F 6= ∅, it is clear that K ∩ Vm 6= ∅, for all m ∈ N. Say
K ∩ Vm 6= ∅, for all m ∈ N, and pick vm ∈ K ∩ Vm, for each m ∈ N. As
K is compact, by taking a subsequence, we can assume vm → v, for some
v ∈ K. Also, as d(vm, F ) < 1/m, for all m ∈ N, we have that v ∈ F . Hence,
K ∩ F 6= ∅, and the claim is done.
Let us now finish the proof of the lemma. As L is a metric space and U

is open, we can write U = ∪nFn, where Fn is closed, for all n ∈ N. Also,
as L is compact and h is continuous, we have that h(Fn) is closed, for all
n ∈ N. Hence, as we have

{K ∈ K(M) | h−1(K) ∩ U 6= ∅} = {K ∈ K(M) | K ∩ h(U) 6= ∅}
= ∪n{K ∈ K(M) | K ∩ h(Fn) 6= ∅},

we are done. �

Lemma 3.7. — Let ∆ be the Cantor set. There exists a Borel function

Q : K(∆)→ C(∆,∆)

such that, for each K ∈ K(∆), Q(K) : ∆ → ∆ is a continuous function
onto K. Therefore, if M is a compact metric space, and h : ∆ → M is a
continuous surjection, we have that

H : K ∈ K(M) 7→ h ◦Q(h−1(K)) ∈ C(∆,M),

is a Borel function and, for eachK ∈ K(M),H(K) : ∆→M is a continuous
function onto K.

Proof. — The second part of the lemma follows from the first part and
the lemma above. Let us prove the first part. For each s ∈ 2<N, we let
∆s = {σ ∈ ∆ | s � σ}.

For each K ∈ K(∆), we define Q(K) : ∆ → ∆ as follows. If σ ∈ K, let
Q(K)(σ) = σ. If σ 6∈ K, let n(K,σ) = max{n ∈ N | ∆σ|n ∩K 6= ∅}, and
set

Q(K)(σ) = min ∆σ|n(K,σ) ∩K,
where the minimum above is taken under the lexicographical order 6lex. It
is easy to see that Q(K) ∈ C(∆,∆). Let us show that K 7→ Q(K) is Borel.
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Say g ∈ C(∆,∆), δ > 0, and let d∆ be the usual metric of ∆. We need
to show that {K ∈ K(∆) | supσ∈∆ d∆(Q(K)(σ), g(σ)) < δ} is Borel. Say
n ∈ N and σ ∈ ∆, then

{K ∈ K(∆) | n(K,σ) = n} = {K ∈ K(∆) | K ∩∆σ|n 6= ∅}
∩ {K ∈ K(∆) | K ∩∆σ|n+1 = ∅}

is Borel. Therefore, if G ⊂ ∆ is a countable dense set,

{K ∈ K(∆) | sup
σ∈∆

d∆(Q(K)(σ), g(σ)) < δ} = W ∩ P,

where

W = {K ∈ K(∆) | ∃ε∀σ ∈ G(∀n n(K,σ) 6= n)→ d∆(σ, g(σ)) < δ − ε}

is Borel, and

P =
{
K ∈ K(∆) | ∃ε∀σ ∈ G

(
∃n n(K,σ) = n

)
→
(
∃s ∈ 2<N(σ|n � s) ∀σ|n � s′ <lex s ∀σ̃ ∈ G ∩∆s

∆s ∩K 6= ∅ ∧∆s′ ∩K = ∅ ∧ d∆(σ̃, g(σ)) < δ − ε
)}
.

So, P is Borel, and we are done. �

We now show a couple of lemmas that will allow us to interpret KX∗

and LX∗∗ as X∗ and X∗∗, i.e., the lemmas will tell us how the functional
evaluation will work if x ∈ X, x∗ ∈ KX∗ , and x∗∗ ∈ LX∗∗ .

Lemma 3.8. — For each X ∈ SB, let iX be as in Lemma 3.2. Let A =
{(X,x, x∗) ∈ SB×C(∆)×B`∞ | x ∈ X,x∗ ∈ KX∗}, and let α : A→ R be
defined as

α(X,x, x∗) = 〈iX(x∗), x〉,
for each (X,x, x∗) ∈ A. Then, A is Borel, and α is a Borel map.

Proof. — As X 7→ KX∗ is Borel, it is clear that A is Borel. Pick
(X,x, x∗) ∈ A, and let (nj) ∈ [N]N be such that dnj (X) → x. Then
α(X,x, x∗) = lim x∗nj‖dnj (X)‖. Indeed, as dnj (X) → x, we have
〈iX(x∗), dnj (X)〉→ 〈iX(x∗), x〉. Hence, as 〈iX(x∗), dnj (X)〉= x∗nj‖dnj (X)‖,
we have x∗nj‖dnj (X)‖ → α(X,x, x∗).

To see that α is Borel notice that, given a < b ∈ R, we have

{(X,x, x∗) ∈ A | α(X,x, x∗) ∈ (a, b)}
={(X,x, x∗) ∈ A | ∃δ∀ε∃n‖dn(X)− x‖ < ε, x∗n‖dn(X)‖ ∈ (a+ δ, b− δ)}.

�

ANNALES DE L’INSTITUT FOURIER



DUALITY AND ZIPPIN’S THEOREM 2425

Notice that, we have finally obtained Theorem 1.3, which is the first
ingredient for Theorem 1.1. Indeed, Theorem 1.3 is a simple consequence
of Lemma 3.2 and Lemma 3.8.

Lemma 3.9. — Say B ⊂ SD is Borel, and let jX be as in Lemma 3.5.
Let F = {(X,x∗, x∗∗) ∈ B × B`∞ × B`∞ | x∗ ∈ KX∗ , x

∗∗ ∈ LX∗∗}, and let
β : F→ R be defined as

β(X,x∗, x∗∗) = 〈jX(x∗∗), x∗〉,

for each (X,x∗, x∗∗) ∈ F. Then, F is Borel, and β is a Borel map.

Proof. — As X 7→ KX∗ , and X 7→ LX∗∗ are Borel, it is clear that F is
Borel. If, in the proof of Lemma 3.8, we substitute the sequence (dn) by
the sequence (gn) given by Theorem 3.4, and we substitute iX by jX , the
rest of the proof follows exactly as in the proof of Lemma 3.8. �

Notice that, as B`∞ is a non-empty compact metric space, Lemma 3.7
gives us a Borel map H : K(B`∞) → C(∆, B`∞) such that, for all K ∈
K(B`∞),H(K) : ∆→ B`∞ is continuous and ontoK. We have the following
easy application of Lemma 3.7, and Lemma 3.9.

Corollary 3.10. — Let B ⊂ SD be Borel. Let H be as above, and β
as in Lemma 3.9. Set E = {(X,x∗, y) ∈ B × B`∞ × ∆ | x∗ ∈ KX∗}, and
define γ : E→ R as

γ(X,x∗, y) = β(X,x∗, H(LX∗∗)(y)),

for each (X,x∗, y) ∈ E. Then, E is Borel, and γ is a Borel map.

The following corollary is just a consequence of the previous lemmas.

Corollary 3.11. — Assume we are in the same setting as in Corol-
lary 3.10. Then, for all X ∈ B, and for all x∗ ∈ KX∗ , γ(X,x∗, ·) : ∆ → R
is a continuous function, and

supy∈∆γ(X,x∗, y) = ‖x∗‖∞ = ‖iX(x∗)‖X∗ .

The first equality in the lemma above follows from the fact thatH(LX∗∗) :
∆→ B`∞ is a function onto LX∗∗ ≡ BX∗∗ .

We are now ready to prove Theorem 1.1, the duality theorem. In the
same fashion as in the usual proof that every separable Banach space X
embeds into C(∆) (see [8], page 79), we will now use the function H to
show that we can embed (in a Borel manner) the duals of all spaces of
X ∈ B into C(∆).
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Proof of Theorem 1.1. — Let α, H, and γ be as in Lemma 3.8, and
Corollary 3.10. For each X ∈ B, let

X• = {g ∈ C(∆) | ∃x∗ ∈ KX∗∃λ ∈ R∀y ∈ ∆ g(y) = λγ(X,x∗, y)}.

Let us show that the assignment X 7→ X• is Borel. For this let (gn) be
given by Theorem 3.4, so (gn(X))n is norm dense in KX∗ , for all X ∈ B.
Let U(g, δ) ⊂ C(∆) be the δ-ball centered at g, i.e.,

U(g, δ) = {f ∈ C(∆) | ∃ε∀y ∈ ∆ d∆(f(y), g(y)) < δ − ε},

where g ∈ C(∆), δ > 0, and d∆ is the standard metric on ∆. Let G ⊂ ∆
be a countable dense set. We have

{X ∈ B | X• ∩ U(g, δ) 6= ∅}
= {X ∈ B | ∃x∗ ∈ KX∗∃λ ∃ε∀y ∈ ∆ d∆

(
λγ(X,x∗, y), g(y)

)
< δ − ε}

= {X ∈ B | ∃n∃λ ∃ε∀y ∈ G d∆
(
λγ(X, gn(X), y), g(y)

)
< δ − ε},

so X 7→ X• is Borel.
Let us now define the desired map 〈·, ·〉(·) : A→ R, where A = {(X,x, g) ∈

SB × C(∆) × C(∆) | x ∈ X, g ∈ X•}. For each (X,x, g) ∈ A, with
g = λγ(X,x∗, ·), we let

〈g, x〉X = λα(X,x, x∗).

Let us show this map is well defined.

Claim. — Fix X ∈ B. Say λ1γ(X,x∗(1), ·) = λ2γ(X,x∗(2), ·), where
λi ∈ R, and x∗(i) ∈ KX∗ , for i ∈ {1, 2}. Then λ1x

∗(1) = λ2x
∗(2). In

particular, 〈g, x〉X does not depend on the representative λγ(X,x∗, ·) of g.

Indeed, by the definition of γ, we have

λ1〈jX(H(LX∗∗)(·)), x∗(1)〉 = λ2〈jX(H(LX∗∗)(·)), x∗(2)〉,

which implies

〈jX(H(LX∗∗)(y)), λ1x
∗(1)− λ2x

∗(2)〉 = 0, ∀y ∈ ∆.

Therefore, as H(LX∗∗) : ∆ → LX∗∗ and jX : LX∗∗ → B[KX∗ ]∗ are surjec-
tive, we have that λ1x

∗(1)− λ2x
∗(2) = 0, and the first part of the claim is

done. By the definition of α, we have

λα(X,x, x∗) = λ〈iX(x∗), x〉.

Hence, as iX is linear, we conclude that 〈g, x〉X does not depend on the
representative of g. So, 〈·, ·〉(·) is well defined.
Let us now show that 〈·, ·〉(·) has the desired properties.

Claim. — For each X ∈ B, 〈·, ·〉X is bilinear.

ANNALES DE L’INSTITUT FOURIER



DUALITY AND ZIPPIN’S THEOREM 2427

Clearly, for a given g ∈ X•, the assignment x ∈ X 7→ 〈g, x〉X ∈ R is lin-
ear. Fix x ∈ X and let g1 = λ1γ(X,x∗(1), ·) ∈ X•, g2 = λ2γ(X,x∗(2), ·) ∈
X•, and g + h = λ3γ(X,x∗(3), ·) ∈ X•. Similarly as in the previous claim,
we have

λ1x
∗(1) + λ2x

∗(2) = λ3x
∗(3).

Hence, as iX is linear, we have 〈g+h, x〉X = 〈g, x〉X+〈h, x〉X . Analogously,
we have 〈λg, x〉X = λ〈g, x〉X , for all λ ∈ R, and we conclude that g ∈ X• 7→
〈g, x〉X ∈ R is linear.
By Corollary 3.11, we have that g ∈ X• 7→ 〈g, ·〉X ∈ X∗ is a surjective

isometry. Indeed, Corollary 3.11 gives us that, if g = λγ(X,x∗, ·),

‖g‖C(∆) = sup
y∈∆
|λγ(X,x∗, y)|

= ‖λx∗‖∞
= ‖λiX(x∗)‖X∗
= sup
x∈BX

|λ〈iX(x∗), x〉|

= sup
x∈BX

|λα(X,x, x∗)|

= sup
x∈BX

〈g, x〉X

= ‖〈g, ·〉X‖X∗ .

Also, if f ∈ X∗, there exists x∗ ∈ KX∗ , and λ ∈ R such that f = λiX(x∗).
Hence, letting g = λγ(X,x∗, ·), we have 〈g, ·〉X = f , so g ∈ X• 7→ 〈g, ·〉X ∈
X∗ is surjective.

We also get for free that 〈·, ·〉X is norm continuous, for each X ∈ B. Let
us show that 〈·, ·〉(·) : A→ R is Borel. For this, notice that the map

(X,x, x∗) ∈ {(X,x, x∗) ∈ B× C(∆)×B`∞ | x ∈ X,x∗ ∈ KX∗}
7→ (X,x, γ(X,x∗, ·)) ∈ {(X,x, g) ∈ B×C(∆)×C(∆) | x ∈X, g ∈BX•}

is a Borel isomorphism, call the inverse of this map J . As 〈g, x〉X does to
depend on the representative of g, we have

〈g, x〉X =

0 , if g = 0,
‖g‖α

(
J
(
X,x, g

‖g‖
))

, otherwise.

Therefore, the map 〈·, ·〉(·) is Borel, and we are done. �
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4. A Borel Parametrized version of Zippin’s Theorem

A famous theorem of Zippin says that, given a Banach space with separa-
ble dual X, there exists a Banach space Z with a shrinking basis such that
X embeds into Z (see [11] for Zippin’s original paper). Dodos and Ferenczi
had shown, using results from [3], that given an analytic subset A ⊂ SD,
there exists a Z ∈ SD such that every X ∈ A embeds into Z (see [7]). In
other words, Dodos and Ferenczi proved a parametrized version of Zippin’s
theorem.
We will now show that we can get something even stronger than a

parametrized version of Zippin’s theorem, we can get a Borel parametrized
version of it. Precisely, say B ⊂ SD is Borel (notice, if A ⊂ SD is analytic,
then, as SD is coanalytic, Lusin’s separation theorem gives us a Borel set B
such that A ⊂ B ⊂ SD), then one can find a space Z ∈ SD with a shrinking
basis, and a Borel function B → SB(Z) such that, for each X ∈ B, the
function assigns a subspace of Z isomorphic to X (see Theorem 1.5 for a
precise statement).

4.1. Embedding a Borel B ⊂ SD into spaces with shrinking
bases.

Dodos and Ferenczi had shown that for a given analytic set A ⊂ SD,
there exists an analytic set A′ ⊂ SD such that (i) for every X ∈ A, there
exists an Y ∈ A′ such that X ↪→ Y , and (ii) Y has a shrinking basis, for
all Y ∈ A′ (this was essentially done by using results of [3], the reader can
find a complete proof in [5], chapter 5). In this subsection, we will show
that we can actually find such A′ by a Borel function.

Fix a Borel B ⊂ SD. Bossard showed that for each X ∈ B, there exists a
sequence (eXk )k ∈ C(∆)N and a sequence of norms (‖ ·‖X,n)n on C(∆) such
that, for each X ∈ B, we have (a detailed construction of those objects can
be found in [5], chapter 5):

(i) Each ‖ · ‖X,n is equivalent to the standard norm of C(∆).
(ii) Let Z(X) = {f ∈ C(∆) |

∑
n ‖f‖2X,n < ∞}. Then Z(X) is a

Banach space under the norm ‖.‖Z(X) = (
∑
n ‖.‖2X,n)1/2.

(iii) The inclusion jX : Z(X) → C(∆) is continuous and BX ⊂ BZ(X).
So the inclusion τX : X ⊂ C(∆) → Z(X) is an embedding, and
‖τX‖ 6 1.

(iv) (j−1
X (eXk ))k is a shrinking bases for Z(X). By abuse of notation, we

will still denote this basis by (eXk )k.
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Bossard proved the following lemmas (for detailed proofs see [5], pages
85 and 86).

Lemma 4.1. — The map X ∈ B 7→ (eXk )k ∈ C(∆)N is Borel.

Lemma 4.2. — For every n ∈ N, the map (X, f) ∈ B × C(∆) 7→
‖f‖X,n ∈ R is Borel.

Therefore, by ‖.‖Z(X)-normalizing (eXk )k, we can assume:

(iv)’ (eXk )k is a normalized shrinking bases for Z(X).

We need one more property of the objects described above. The norms
‖.‖X,n are obtained by letting

‖x‖X,n = inf{λ > 0 | x
λ
∈ 2nWX + 2−nBX},

where WX ⊂ C(∆) is a closed, bounded, and symmetric subset of C(∆)
defined in terms of X (the map X ∈ B 7→ WX ∈ F(C(∆)) is actually
Borel, see [5], page 86). Hence, Z(X) is the 2-interpolation space of the pair
(C(∆),WX) (see Davis-Figiel-Johnson-Pelczynski [4], for definition and ba-
sic facts about this interpolation space). It is easy to see, looking at the
definition of interpolation spaces, that the inclusion jX : Z(X)→ C(∆) is
continuous and it is bounded by 9K, where

K = max{1, sup{|w| | w ∈WX}}.

By looking at the definition of WX (see [5], page 83), one easily sees that
WX ⊂ BC(∆), so K = 1. Therefore, the norms of the inclusions jX are
uniformly bounded by 9, for all X ∈ B.
The conclusion of the discussion above is that we can assume:

(iii)’ The inclusions jX : Z(X)→ C(∆) are continuous and their norms
are uniformly bounded by 9. As BX ⊂ BZ(X), the inclusion τX :
X ⊂ C(∆) → Z(X) is an embedding, and ‖τX‖ 6 1. Moreover,
τX : X ⊂ C(∆)→ Z(X) is a 9-embedding, for all X ∈ B.

The reader should be aware that, by abuse of notation, if x ∈ X, we
write x every time we refer to τX(x) ∈ Z(X). As τX is an inclusion, we
hope this will not cause any confusion.
Given a = (a1, ..., ak) ∈ Q<Q, let a× (eXj ) stand for

∑k
i=1 aie

X
i ∈ Z(X).

As Q<Q is countable, we can fix an enumeration for its non zero elements,
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say (αn)n. Given X ∈ B, let

KZ(X)∗

=
{
z∗ ∈B`∞ | ∃f ∈BZ(X)∗∀n∈N z∗n =

f(αn × (eXj ))
‖αn × (eXj )‖Z(X)

}
⊂B`∞ .

Thus, KZ(X)∗ is a coding for the unit ball BZ(X)∗ , and it is easy to check
that KZ(X)∗ ≡ BZ(X)∗ . Indeed, this follows from the same arguments as
when we proved that LX∗∗ ≡ B[KX∗ ]∗ , right before Lemma 3.5.

Define D ⊂ B×B`∞ by

(X, z∗) ∈ D⇔ z∗ ∈ KZ(X)∗ .

Then D is Borel. Indeed, we only need to notice that

(X, z∗) ∈ D⇔ ∀αn, αm, α` ∈ Q<Q∀p, q ∈ Q

pαn × (eXj ) + qαm × (eXj ) = α` × (eXj )

→ pz∗n‖αn × (eXj )‖Z(X) + qz∗m‖αm × (eXj )‖Z(X)

= z∗` ‖α` × (eXj )‖Z(X),

so, by Lemma 4.1, and Lemma 4.2, D is Borel. Theorem 3.1 gives us the
following.

Lemma 4.3. — Assume B ⊂ SD is Borel. The map

X ∈ B 7→ KZ(X)∗ ∈ K(B`∞)

is Borel. Moreover, for all X ∈ B, there exists an onto isometry iX :
KZ(X)∗ → BZ(X)∗ such that, if f = iX(z∗), then z∗n = f(αn× (eXj ))/‖αn×
(eXj )‖Z(X).

The following lemmas will play the same role Lemma 3.8, Lemma 3.9,
and Lemma 3.11 played in the previous section.

Lemma 4.4. — Say B ⊂ SD is Borel, and let iX be as in Lemma 4.3.
Let A = {(X,n, z∗) ∈ B× N×B`∞ | z∗ ∈ KZ(X)∗}. Define α : A→ R as

α(X,n, z∗) = 〈iX(z∗), αn × (eXj )〉,

for each (X,n, z∗) ∈ A. Then, A is a Borel set, and α a Borel map.

Notice that, for all (X,n, z∗) ∈ A, we have α(X,n, z∗) = z∗n‖αn ×
(eXj )‖Z(X). The proof of this lemma is analogous to the proof of Lemma 3.8.
The inclusion τX : X → Z(X) is an embedding, therefore, for each

x ∈ X, there exists a sequence (αnk × (eXj ))k converging to x in Z(X).
With this observation in mind we have the following.
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Lemma 4.5. — Let B ⊂ SD be Borel, and let iX be as in Lemma 4.3.
Set A′ = {(X,x, z∗) ∈ B× C(∆)×B`∞ | x ∈ X, z∗ ∈ KZ(X)∗}, and define
α′ : A′ → R by

α′(X,x, z∗) = 〈iX(z∗), x〉.
for each (X,x, z∗) ∈ A′. Then, A′ is a Borel set, and α′ a Borel map.

Notice that, when we write “〈iX(z∗), x〉”, we are thinking of x as an
element of Z(X) in order for this to make sense. For each (X,x, z∗) ∈ A′,
we have α′(X,x, z∗) = limk z

∗
nk
‖αnk × (eXj )‖Z(X), where αnk × (eXj ) → x

in Z(X). Hence, the proof of this lemma is also analogous to the proof of
Lemma 3.8.

We now prove the main theorem of this subsection.

Theorem 4.6. — Let B ⊂ SD be Borel, and let E = {(X,x) ∈ B ×
C(∆) | x ∈ X}. There are Borel maps

σ : B→ C(∆)N and ϕ : E→ C(∆)

such that, by setting ϕX = ϕ(X, ·), we have that, for each X ∈ B,
(i) σ(X) is a normalized shrinking basic sequence, and
(ii) Im(ϕX)⊂ span{σ(X)} and ϕX :X→ span{σ(X)} is a 9-embedding.

Proof. — Let H : K(B`∞) → C(∆, B`∞) be given by Lemma 3.7, and
let α and α′ be given by Lemma 4.4, and Lemma 4.5, respectively. Fix
(nk) ∈ NN such that, for each k ∈ N, αnk × (eXj ) = eXk (notice that this
does not depend on X). For each X ∈ B, let

σ(X) =
(
α(X,nk, H(KZ(X)∗)(·))

)
k
.

By Lemma 4.4, and as H and X 7→ KZ(X)∗ are Borel, it is clear that σ
is Borel. Also, σ(X) is equivalent to the (eXk )k, so σ(X) is normalized and
shrinking. Indeed, we can define a map on Z(X) by letting

αn × (eXj ) ∈ Z(X) 7→ α(X,n,H(KZ(X)∗)(·)) ∈ span{σ(X)},

and extending it to the entire Z(X), making it continuous. This map is
clearly surjective. Also, as H(KZ(X)∗) : ∆ → KZ(X)∗ , and iX : KZ(X)∗ →
BZ(X)∗ are surjective, we have that

〈iX(H(KZ(X)∗)(y)), x1 − x2〉 = 0, ∀y ∈ ∆,

can only happen if x1 = x2. So, by the definition of α, this map is a
bijection. Again by the definition of α, we have

‖αn × (eXj )‖Z(X) = sup
y∈∆
|α(X,n,H(KZ(X)∗)(y))|,
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hence, this map defines a surjective isometry between Z(X) and span{σ(X)},
and the basis (eXk ) is sent to(

α(X,nk, H(KZ(X)∗)(·))
)
k

= σ(X).

Therefore, σ(X) is indeed 1-equivalent to the (eXk )k.
Let ϕ(X,x) = α′(X,x,H(KZ(X)∗)(·)), for all (X,x) ∈ E. Lemma 4.5

gives us that ϕ is Borel. Notice that ϕX is the composition of τX : X ⊂
C(∆)→ Z(X) with the isometry

Z(X)→ span{σ(X)}

described above. Therefore, as the inclusion τX : X ⊂ C(∆) → Z(X) is a
9-embedding, we have that ϕX is a 9-embedding, for all X ∈ B. �

4.2. Embedding a Borel set of bases into a single space with a
shrinking bases.

In [2], Argyros and Dodos showed that if A ⊂ SD is analytic and X has
a shrinking Schauder basis, for all X ∈ A, then A can be embedded into a
single Z ∈ SD, i.e., there exists Z ∈ SD such that X ↪→ Z, for all X ∈ A. In
this section, we will follow Argyros and Dodos’ method in order to embed
A into a single Z ∈ SD in a Borel manner.
Let bs = {(fn) ∈ SN

C(∆) | (fn) is a basic sequence}. It is easy to see that
the set of basic sequences bs is Borel in C(∆)N.
Let us recall Schechtman’s construction of Pelczynski’s universal space

(see [9]). Let (dn) be a dense sequence in the unit sphere of C(∆). For each
s = (n1, ..., nk) ∈ [N]<N, let ms = nk. For each s ∈ [N]<N, let gs = dms .
The universal Pelczynski space U is defined as the completion of c00([N]<N)
under the norm

‖x‖U = sup{‖
∑
s∈I

xsgs‖ | I is a segment of [N]<N},

for all x = (xs) ∈ c00([N]<N). By taking an isometric copy of U inside of
C(∆), we can assume U ⊂ C(∆). Fix a bijection ϕ : [N]<N → N such that
if s1 ≺ s2 then ϕ(s1) < ϕ(s2). It is easy to see that (gϕ−1(n))n is a bases
for U .
This construction of U gives us that if (fk) ∈ SN

C(∆) is a basic sequence
and (dnk) is a subsequence of (dn) close enough to (fn), then (fk)k ∼
(g(n1,...,nk))k. More precisely, if (fk) has basic constant K, θ ∈ (0, 1), and
‖fk − dnk‖ < 2−kθ‖fk‖/2K, for all k ∈ N, the principle of small perturba-
tion gives us that (see [1], Theorem 1.3.9)

ANNALES DE L’INSTITUT FOURIER



DUALITY AND ZIPPIN’S THEOREM 2433

(i) (fk)k ∼ (g(n1,...,nk))k, and
(ii) the isomorphism between span{fk} ⊂ C(∆) and span{g(n1,...,nk)} ⊂

U , given by fk 7→ g(n1,...,nk), is an 1+θ
1−θ -isomorphism.

Fix θ > 0. Let us define a function bθ : bs → [N]N. For this, given
any basic sequence (fn) ∈ SN

C(∆) with basic constant K, we produce a
subsequence of (dn) as follows. Say n1 < ... < nk had been chosen. Let
nk+1 be the first natural number such that nk+1 > nk and

‖fk+1 − dnk+1‖ <
2−(k+1)

2K θ‖fk+1‖.

The map k : bs 7→ R that assigns to each basic sequence its basic constant
is Borel, indeed, given b ∈ R,

(fn) ∈ {(gn) ∈ bs | k((gn)n) < b} ⇔ ∃r ∈ (−∞, b) ∩Q ∀a1, ..., am ∈ Q

∀k 6 m ‖
k∑
i=1

aifi‖ 6 r‖
m∑
i=1

aifi‖.

Therefore, it should be clear that, for any fixed θ > 0, the function bθ :
bs → [N]N described in the previous paragraph is Borel. Also, we should
keep in mind that, if bθ((fk)k) = (nk)k, the isomorphism between span{fk}
and span{g(n1,...,nk)} ⊂ U is given by fk 7→ g(n1,...,nk).

Let S ⊂ [N]N be the standard coding for shrinking basic subsequences of
the bases of U , i.e., we define S by

S = {(nk)k ∈ [N]N | (g(n1,...,nk))k ∈ UN is shrinking}.

It is known that S is a coanalytic set (see for example [5], Section 2.5.3).
We now follow Argyros and Dodos’ approach. Fix θ ∈ (0, 1). Let B ⊂

SD be Borel, and σ be as in Theorem 4.6. Let ξθ = bθ ◦ σ : B → [N]N,
so ξθ(B) ⊂ [N]N is analytic, and ξθ(B) ⊂ S. As S is coanalytic, Lusin’s
separation theorem gives us a Borel set A such that ξθ(B) ⊂ A ⊂ S (see [8],
Theorem 14.7). Therefore, there exists a pruned tree T on N×N, such that
the projection p([T ]) = {σ ∈ [N]N | ∃τ (σ, τ) ∈ [T ]} equals A (see [5],
Theorem 1.6). For each t = (s, v) = ((s1, ..., sk), (v1, ..., vk)) ∈ (N × N)<N,
let xt = g(s1,...,sk).
Let U ′ = span{xt | t ∈ T}, and T ′ = T \{∅}. So (U ′,N×N, T ′, (xt)t∈T ′) is

a Schauder tree basis (see the last paragraphs of Section 2 for definitions).
Let Z be the `2-Baire sum of the Schauder tree basis (U ′,N × N, T ′,

(xt)t∈T ′). Then, by Theorem 2.1, (xt)t∈T is a shrinking bases for Z. In
particular, Z ∈ SD.
We have the following trivial lemma.
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Lemma 4.7. — Let γ : NN → ZN be defined by γ((nk)k) = (g(n1,...,nk))k.
Then γ is continuous, hence Borel.

Before proving Theorem 1.5 let us prove one more lemma. For each X ∈
SB, we let bs(X) = {(fn) ∈ SN

X | (fn) is basic}. So bs(X) is Borel.

Lemma 4.8. — Say Y,Z ∈ SB. Let

A = {((fn), (gn), x) ∈ bs(Y )× bs(Z)× Y | (fn) ∼ (gn)}.

For each basic sequences (fn) ∈ bs(Y ) and (gn) ∈ bs(Z), denote by If,g the
linear map such that fn 7→ gn. Then, A is Borel and the map

((fn), (gn), x) ∈ A 7→ If,g(x) ∈ Z

is Borel.

Proof. — Clearly, A is Borel. In order to see that this map is Borel, first
notice that if C = {((fn), (gn)) ∈ bs(Y )× bs(Z) | (fn) ∼ (gn)} then

((fn), (gn)) ∈ C 7→ ‖If,g‖ ∈ R

is Borel. Indeed, say b ∈ R, then

((fn), (gn)) ∈ {((fn), (gn)) ∈C | ‖If,g‖ < b}
⇔ ∃r ∈ (−∞, b) ∩Q ∀a1, ..., am ∈ Q

‖
m∑
i=1

aifi‖ 6 r‖
m∑
i=1

aigi‖.

Let U ⊂ C(∆) be an open ball open. Then

If,g(x) ∈ U 6= ∅ ⇔ ∃δ∃a1, ..., an ‖x−
∑

aifi‖X <
δ

‖If,g‖

∧
(
∀m‖dm(Z)−

∑
aigi‖Z < δ

)
→ dm(Z) ∈ U,

and we are done. �

Proof of Theorem 1.5. — Let B ⊂ SD be Borel. Fix θ ∈ (0, 1). Let Z be
the `2-Baire sum described in the discussion preceeding Lemma 4.7. Let σ
and ϕ be as in Theorem 4.6, and bθ and γ be as above. Let χθ = γ ◦ bθ ◦ σ,
and define, for each (X,x) ∈ E,

ψ(X,x) = Iσ(X),χθ(X)(ϕ(X,x)).

Notice that, for all X ∈ B, the sequence σ(X) is equivalent to χθ(X),
so Iσ(X),χθ(X) is well defined. By Lemma 4.8 and the fact that σ, ϕ and
χθ are Borel, we have that ψ is Borel. By Theorem 4.6, we have that ϕX :
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X → span{σ(X)} is a 9-embedding, for all X ∈ B. By the construction of
χθ, we have that

Iσ(X),χθ(X) : span{σ(X)} → Z

is an 1+θ
1−θ -embedding, for all X ∈ B. Hence, by choosing θ small enough,

ψX is a 10-embedding, for all X ∈ B.
For each X ∈ B, define Ψ(X) = span{ψX(dn(X)) | n ∈ N}. It is clear

that Ψ is Borel, and that it has the desired properties. �
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