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PROJECTED RICHARDSON VARIETIES AND AFFINE
SCHUBERT VARIETIES

by Xuhua HE & Thomas LAM (*)

Abstract. — Let G be a complex quasi-simple algebraic group and G/P be a
partial flag variety. The projections of Richardson varieties from the full flag variety
form a stratification of G/P . We show that the closure partial order of projected
Richardson varieties agrees with that of a subset of Schubert varieties in the affine
flag variety of G. Furthermore, we compare the torus-equivariant cohomology and
K-theory classes of these two stratifications by pushing or pulling these classes
to the affine Grassmannian. Our work generalizes results of Knutson, Lam, and
Speyer for the Grassmannian of type A.
Résumé. — Soit G un groupe algébrique complexe quasi-simple et G/P une va-

riété de drapeaux partiels. La projection sur G/P des variétés de Richardson (de la
variété des drapeaux complets) forment une stratification de G/P . Nous montrons
que les relations d’adhérence des variétés de Richardson projetées correspondent à
celles d’un certain sous-ensemble de variétés de Schubert sur la variété de drapeaux
affine de G. Nous comparons aussi les classes de cohomologie équivariante et de
K-théorie de ces deux stratifications. Notre travail généralise celui de Knutson,
Lam et Speyer pour la grassmannienne de type A.

1. Introduction

Let G be a complex quasi-simple algebraic group, B,B− ⊂ G be opposite
Borel subgroups, and T = B∩B− the maximal torus. The flag variety G/B
has a stratification G/B = tX̊w = tX̊w by Schubert cells X̊w = B−wB/B

and opposite Schubert cells X̊w = BwB/B. The intersections X̊v
w = X̊w ∩

X̊v are known as open Richardson varieties, and also form a stratification of
G/B. The closure of X̊v

w is the (closed) Richardson variety Xv
w = Xv∩Xw,

Keywords: flag variety, Schubert calculus, projected Richardson variety, affine Schubert
variety.
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where Xw = B−wB/B is a Schubert variety and Xv = BvB/B is an
opposite Schubert variety.
Let P ⊂ B be a fixed parabolic subgroup, and π : G/B → G/P denote

the projection. The open projected Richardson varieties Π̊v
w = π(X̊v

w) form
a stratification of G/P (for suitable w and v). Its closure Πv

w = π(Xv
w) is

called a projected Richardson variety and was studied by Lusztig [31] and
Rietsch [37] in the context of total positivity, and by Goodearl and Yaki-
mov [12] in the context of Poisson geometry. Projected Richardson varieties
enjoy many desirable geometric properties: Knutson, Lam, and Speyer [21]
(see also Billey and Coskun [1]) showed that they are Cohen-Macaulay, nor-
mal, have rational singularities and are exactly the compatibly Frobenius
split subvarieties of G/P with respect to the standard splitting.

Our main results are combinatorial, cohomological, andK-theoretic com-
parisons between the projected Richardson varieties Πv

w and the affine Schu-
bert varieties of the affine flag variety F̃ l of G. These results generalize work
of Knutson, Lam, and Speyer [20] in the case that G/P is a Grassmannian
of type A. The techniques of our proof differ significantly from those of
[20]. In particular, the proof of the cohomological part of [20] appears to
only extend to cominuscule G/P . A more geometric comparison in the
Grassmannian case was performed by Snider [38] who also recovered our
K-theoretic comparison in the case of the Grassmannian.
On the combinatorial side, we compare two posets. One is obtained from

the closure order of projected Richardson varieties, which we denote by
QJ . It was first studied by Rietsch [37] and Goodearl and Yakimov [12].
The other one is the admissible subset Adm(λ) associated to a dominant
coweight λ, introduced by Kottwitz and Rapoport in [24]. It is a subset
of the Iwahori-Weyl group Ŵ and the Bruhat order on Ŵ gives a partial
order on Adm(λ). One important result in the study of Shimura varieties is
that the special fiber of the local model is a union of finitely many opposite
affine Schubert cells IwI/I in the affine flag variety, where w runs over the
admissible set Adm(λ) for the Shimura coweight λ. See [34] and [42].

In this paper, we define an injection θ : QJ → Adm(λ). Our combinato-
rial theorem states that θ is order-reversing and the image is the W ×W -
double coset of the translation element t−λ. In the special case where λ
is a minuscule coweight, θ gives an order-reversing bijection between QJ
and Adm(λ). The proof relies on properties of the Demazure, or monoidal
product of Coxeter groups, studied for example by He, and He and Lu
in [15, 16, 18]. In Section 3, we describe some applications of our result
to the combinatorial properties of the poset QJ , and to the enumeration
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of Adm(λ) for minuscule coweights λ. We also give a closed formula for
the number of rational points of the special fiber of local model for “fake”
unitary Shimura varieties. The order-reversing bijection between QJ and
Adm(λ) also plays an important role in the proof of the normality and
Cohen-Macaulayness of local models [17].

In fact, our combinatorial theorem naturally extends to the comparison
of a larger partial order on W ×W J ⊃ QJ with a W ×W -double coset
in Ŵ . This partial order on W ×W J arises as the closure partial order of
a stratified space ZJ , studied by Lusztig [32]. In Section 4 we give maps
between these stratified spaces which in part explains the combinatorial
theorems.
Now let Gr = G(K)/G(O) denote the the affine Grassmannian of G,

where K = C((t)) and O = C[[t]]. Let Grλ ⊂ Gr denote the closure of
the G(O)-orbit containing the torus-fixed point t−λ labeled by −λ. The
dense open orbit G(O)t−λG(O)/G(O) is an affine bundle over G/P and
we let p : G/P ↪→ Grλ denote the composition of the zero section with
the open inclusion G(O)t−λG(O)/G(O) ⊂ Grλ. Our K-theoretic theorem
states that in KT (Grλ) we have

(1.1) p∗([OΠxy ]) = q∗(ψθ(x,y))

where [OΠxy ] ∈ KT (G/P ) and ψθ(x,y) ∈ KT (F̃ l) denote theK-theory classes
of the structure sheaves of projected Richardson varieties and affine Schu-
bert varieties respectively, and q∗ is induced by the composition of the in-
clusion Grλ → Gr, with the maps Gr ' ΩK → LK → LK/TR ' F̃ l. Here
K ⊂ G denotes the maximal compact subgroup, TR ⊂ T the compact torus,
and LK and ΩK are the free loop group and based loop group. The same
formula (1.1) holds for torus-equivariant cohomology classes. The proof of
the K-theoretic comparisons (Section 5) relies on the study of equivariant
localizations. We utilize the machinery developed by Kostant and Kumar
[23] where equivariant localizations of Schubert classes in both finite and
infinite-dimensional flag varieties are studied.
In Section 5.3, we use our K-theory comparison to prove a conjecture of

Knutson, Lam, and Speyer [20] stating that the affine stable Grothendieck
polynomials of [26, 27] represent the classes of the structure sheaves of
positroid varieties in the K-theory of the Grassmannian. In Section 5.4, we
explain the implications, in the case of a cominuscule G/P , towards the
comparison of the quantum K-theory of G/P and the K-homology ring of
the affine Grassmannian.

TOME 65 (2015), FASCICULE 6
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2. Combinatorial comparison

Let G be a complex connected quasi-simple algebraic group. Let B,B−
be opposite Borel subgroup of G and T = B ∩B− be a maximal torus. Let
Q be the coroot lattice and P be the coweight lattice of G. We denote by
P+ the set of dominant coweights and Q+ = Q∩P+. Let (αi)i∈S be the set
of simple roots determined by (B, T ). Let R (resp. R+, R−) be the set of
roots (resp. positive roots, negative roots). We denote byW the Weyl group
N(T )/T . For i ∈ S, we denote by si the simple reflection corresponding to
i. For α ∈ R, we let rα denote the corresponding reflection.
Let Wa = Q o W be the affine Weyl group and Ŵ = P o W be the

Iwahori-Weyl group (sometimes also called the extended affineWeyl group).
It is known that Wa is a normal subgroup of Ŵ and is a Coxeter group
with generators si (for i ∈ S̃ = S ∪ {0}). Here si (for i ∈ S) generates W
and s0 = t−θ

∨
sθ is a simple affine reflection, where θ is the largest positive

root of G. We emphasize that Ŵ , which serves as the key indexing set in
the sequel, depends on G and not just R.

Following [19], we define the length function on Ŵ by

(a) `(tχw) =
∑

α∈R+,w−1(α)∈R+

|〈χ, α〉|+
∑

α∈R+,w−1(α)∈R−
|〈χ, α〉+ 1|.

For any proper subset J of S̃, let WJ be the subgroup generated by si
for i ∈ J and wJ be the maximal element in WJ . We denote by Ŵ J (resp.
JŴ ) the set of minimal length representatives in Ŵ/WJ (resp. WJ\Ŵ ).
For J,K ⊂ S̃, we simply write Ŵ J ∩ KŴ as KŴ J . If moreover, J,K ⊂ S,
then we writeW J forW ∩Ŵ J , KW forW ∩KŴ J and KW J forW ∩KŴ J .
For any w ∈ W , the coset WJw contains a unique minimal and a unique
maximal element. We denote by min(WJw) and max(WJw) respectively.
The elements min(wWJ) and max(wWJ) are defined in a similar way.
Let Ω be the subgroup of length-zero elements of Ŵ . The Bruhat order

on Wa extends naturally to Ŵ . Namely, for w1, w2 ∈ Wa and τ1, τ2 ∈ Ω,
we define τ1w1 6 τ2w2 if and only if τ1 = τ2 and w1 6 w2 in Wa.

ANNALES DE L’INSTITUT FOURIER
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2.1. Demazure products

Now we introduce three operations ∗ : Ŵ × Ŵ → Ŵ , . : Ŵ × Ŵ → Ŵ

and / : Ŵ × Ŵ → Ŵ . Here ∗ is the Demazure, or monoidal, product
and following [21] we call . and / the downwards Demazure products.
They were also considered in [18] and [16] and some properties were also
discussed there.
We describe x ∗ y, x . y and x / y for x, y ∈ Ŵ as follows. See [15,

Lemma 1.4].
(1) The subset {uv;u 6 x, v 6 y} contains a unique maximal element,

which we denote by x ∗ y. Moreover, x ∗ y = u′y = xv′ for some
u′ 6 x and v′ 6 y and `(x ∗ y) = `(u′) + `(y) = `(x) + `(v′).

(2) The subset {uy;u 6 x} contains a unique minimal element which
we denote by x . y. Moreover, x . y = u′′y for some u′′ 6 x with
`(x . y) = `(y)− `(u′′).

(3) The subset {xv; v 6 y} contains a unique minimal element which
we denote by x / y. Moreover, x / y = xv′′ for some v′′ 6 y with
`(x / y) = `(x)− `(v′′).

Now we list some properties of ∗, . and /.
(4) If x′ 6 x and y′ 6 y, then x′ ∗ y′ 6 x ∗ y. See [16, Corollary 1].
(5) If x′ 6 x, then x′ / y 6 x / y. See [16, Lemma 2].
(6) z 6 x ∗ y if and only if z / y−1 6 x if and only if x−1 . z 6 y. See

[18, Appendix].
(7) If J is a proper subset of S̃, then min(WJx) = wJ .x, min(xWJ) =

x / wJ , max(WJx) = wJ ∗ x and max(xWJ) = x ∗ wJ .
In the rest of this section, we fix a dominant coweight λ. Set J = {i ∈

S; 〈λ, αi〉 = 0}. Any element in Wt−λW ⊂ Ŵ can be written in a unique
way as yt−λx−1 for x ∈ W J and y ∈ W . In this case, `(yt−λx−1) =
`(t−λ) + `(y) − `(x). The maximal element in Wt−λW is wSt−λ and the
minimal element is t−λwJwS .

Proposition 2.1. — Let x, x′ ∈W J and y, y′ ∈W . Then the following
conditions are equivalent:

(1) y′t−λ(x′)−1 6 yt−λx−1;
(2) There exists u ∈WJ such that y′u 6 y and xu−1 6 x′;
(3) There exists v ∈WJ such that y′ 6 yv and xv 6 x′.

Proof.
(1)⇒ (2): Since `(yt−λx−1) = `(t−λx−1)+`(y), we have that yt−λx−1 =

y ∗ t−λx−1. By 2.1 (6), y−1 . (y′t−λ(x′)−1) 6 t−λx−1. In other words, there

TOME 65 (2015), FASCICULE 6
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exists z 6 y such that z−1y′t−λ(x′)−1 6 t−λx−1. Now we have that

max(z−1y′WJ)t−λ = max(z−1y′t−λ(x′)−1W ) 6 max(t−λx−1W ) = wJ t
−λ.

Therefore max(z−1y′WJ) 6 wJ and z−1y′ ∈ WJ . We denote (y′)−1z by
u. Then u ∈WJ , y′u = z 6 y and u−1t−λ(x′)−1 6 t−λx−1. We have that

u−1t−λ(x′)−1 = (t−λwJwS)(wSwJu−1(x′)−1)

and
t−λx−1 = (t−λwJwS)(wSwJx−1).

Moreover,

`(u−1t−λ(x′)−1) = `(t−λ) + `(u)− `(x′)

= `(t−λwJwS) + `(wSwJ) + `(u)− `(x′)

= `(t−λwJwS) + `(wS)− `(wJ) + `(u)− `(x′)

= `(t−λwJwS) + `(wS)− `(wJu−1)− `(x′)

= `(t−λwJwS) + `(wS)− `(wJu−1(x′)−1)

= `(t−λwJwS) + `(wSwJu−1(x′)−1).

Similarly, `(t−λx−1) = `(t−λwJwS) + `(wSwJx−1).
From u−1t−λ(x′)−1 6 t−λx−1 we deduce that

wSwJu
−1(x′)−1 6 wSwJx

−1.

Hence wJu−1(x′)−1 > wJx−1 and xwJ 6 x′uwJ . By 2.1 (5),

xu−1 = (xwJ) / (wJu−1) 6 (x′uwJ) / (wJu−1) 6 x′.

(2) ⇒ (1): We have that yt−λx−1 = y(t−λwJwS)(wSwJx−1) and

`(yt−λx−1) = `(y) + `(t−λwJwS) + `(wSwJx−1).

Since xu−1 6 x′, we have that

xwJ = (xu−1)(uwJ) 6 x′ ∗ (uwJ) = x′uwJ .

Thus wSwJx−1 > wSwJu−1(x′)−1. Also we have that y′u 6 y. Therefore

y′t−λ(x′)−1 = (y′u)(t−λwJwS)(wSwJu−1(x′)−1)

6 y(t−λwJwS)(wSwJx−1)

= yt−λx−1.

(2) ⇒ (3): Since y′u 6 y, by 2.1 (4) y′ 6 y′u ∗ u−1 6 y ∗ u−1. In other
words, there exists v 6 u−1 such that y′ 6 yv. Notice that u ∈WJ . Hence
v ∈WJ . Since x ∈W J , we also have that xv 6 xu−1 6 x′.

ANNALES DE L’INSTITUT FOURIER
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(3) ⇒ (2): Since y′ 6 yv, by 2.1 (5) y′ / v−1 6 yv / v−1 6 y. In other
words, there exists u 6 v−1 such that y′u 6 y. Notice that v ∈WJ . Hence
u ∈WJ . Since x ∈W J , we also have that xu−1 6 xv 6 x′. �

Define the partial order � on W J ×W as follows:
(x′, y′) � (x, y) if and only if there exists u ∈WJ such that x′u 6 x and

y′u > y.
Define QJ = {(x, y) ∈ W J ×W ; y 6 x}. Then (QJ ,�) is a subposet of

(W J ×W,�). We shall show in Appendix that QJ is the same poset as the
one studied in [37, 12].
Following [24], we introduce the admissible set as

Adm(−wSλ) = {z ∈ Ŵ ; z 6 t−wλ for some w ∈W}.

Here −wSλ is the unique dominant coweight in the W -orbit of −λ.
Now we have the following result.

Theorem 2.2.
(1) The map

W J ×W →Wt−λW, (x, y) 7→ yt−λx−1

gives an order-preserving, graded, bijection between the poset (W J ×
W,�) and the poset (Wt−λW,6op). Here 6op is the opposite Bruhat
order on the Iwahori-Weyl group Ŵ .

(2) Its restriction to QJ gives an order-preserving, graded, bijection be-
tween the posets (QJ ,�) and (Wt−λW ∩Adm(−wSλ),6op).

Proof. — (1) is just a reformulation of the Proposition 2.1. Now we prove
(2). If (x, y) ∈ QJ , then y 6 x. Hence yt−λx−1 6 xt−λx−1 = t−xλ. So
yt−λx−1 ∈ Adm(−wSλ). On the other hand, if yt−λx−1 ∈ Adm(−wSλ),
then yt−λx−1 6 t−wλ = wt−λw−1 for some w ∈ W J . Again by Proposi-
tion 2.1, there exists u ∈ WJ such that y 6 wu 6 x. Therefore (x, y) ∈
QJ . �

Theorem 2.2(2) generalizes [20, Theorem 3.16].

3. Applications

It is a classical result of Björner and Wachs [3] that intervals in the
Bruhat order of a Coxeter group satisfy nice combinatorial properties known
as thinness and shellability. Verma [39] showed that the same intervals are
Eulerian. Dyer [10] extended these results by showing that these intervals
and their duals were more generally EL-shellable. For the definitions of

TOME 65 (2015), FASCICULE 6
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these combinatorial properties, we refer the reader to [2]; they will not play
a role elsewhere in this paper.
Since Theorem 2.2 identifies each QJ with a convex subposet of (dual)

affine Bruhat order we immediately obtain

Corollary 3.1. — The poset QJ is thin, Eulerian, and EL-shellable.

This result was first established by Williams [41], who proved the more
general result that the poset obtained from QJ by adjoining a maximal
element is shellable.
Recall that a nonzero dominant coweight λ is called minuscule if 〈λ, θ〉 =

1, where θ ∈ R+ is the highest root. Now we discuss the length-generating
function Fλ(q) of the admissible set Adm(−wSλ) for a minuscule coweight
λ. By definition,

Fλ(q) =
∑

w∈Adm(−wSλ)

q`(w).

This is the number of Fq-rational points of the union of all opposite affine
Schubert cells corresponding to the admissible set, where Fq is the finite
field with q elements. It is proved in [34] and [42] that this union is the
special fiber of the local model of Shimura variety.
We have Fλ(q) =

∑
(x,y)∈QJ q

`(yt−λx) =
∑

(x,y)∈QJ q
〈λ,2ρ〉+`(y)−`(x) by

Theorem 2.2, where ρ is the half sum of the positive roots of G.
On the other hand, as we’ll see in the appendix, (QJ ,�) is combinatori-

ally equivalent to the poset of totally nonnegative cells in the cominuscule
flag variety G/PJ (that is, a partial flag variety G/PJ where J = {i ∈
S; 〈λ, αi〉 = 0} for a minuscule coweight λ). The dimension of the cell cor-
responding to (x, y) ∈ QJ is `(x)− `(y). Let

AJ(q) =
∑

(x,y)∈QJ

q`(x)−`(y)

be the rank generating function of totally nonnegative cells in G/PJ . Then
we have that

(3.1) Fλ(q) = q〈λ,2ρ〉AJ(q−1).

In particular, the cardinality of Adm(−wSλ) is Fλ(1) = AJ(1). When G
is of classical type, the numbers AJ(1) and in some cases also the generating
function AJ(q) have been calculated:

Type A.
Let Ak,n(q) = AJ(q) where G/PJ is the Grassmannian Gr(k, n) of k-

planes in n-space, and similarly define Fk,n(q). Postnikov [35] calculated

ANNALES DE L’INSTITUT FOURIER
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Ak,n(1) and Williams [40] established the formula

Ak,n(q) = q−k
2
k−1∑
i=0

(−1)i
(
n

i

)
(qki[k − i]i[k − i+ 1]n−i

− q(k+1)i[k − i− 1]i[k − i]n−i)

which by (3.1) gives

Fk,n(q) =
k−1∑
i=0

(−1)i
(
n

i

)
qi+ni−ki[k − i]i[k − i+ 1]n−i

−
k−1∑
i=0

(−1)i
(
n

i

)
qn+ni−ki[k − i− 1]i[k − i]n−i.

Here [i] = 1 + q + · · ·+ qi−1 denotes the q-analog of i.
In particular,

Fk,n(1) =
k−1∑
i=0

(−1)i
(
n

i

)
((k − i)i(k − i+ 1)n−i − (k − i− 1)i(k − i)n−i).

The formulas for F1,n(1) and F2,n(1) was first established by Haines in
[13, Proposition 8.2 (1) & (2)].

Type B.
Let FBn(q) denote Fλ(q) for λ = ω∨1 the unique minuscule coweight when

G is adjoint of type B. Similarly define ABn(q).
Proposition 3.2. — We have∑

n>0
FBn(q)xn

= 1 + (−q− 3q2)x+ (−q+ 5q3 + 4q4)x2 + q4(−2− 5q− 3q2)x3 + q6[2]2x4

(1− q2x)(1− (q + q2)x)(1− [2]2x+ q3[2]x2) .

Proof. — Using the combinatorial description in [30, Section 9], we have
the recursion

ABn+1(q) = 1 + (1 + q)ABn(q) + b̂n+1(q)

for n > 1, where b̂n(q) =
∑

(wSwJ ,y)∈QJ q
`(wSwJ )−`(y) as in [30, Proposition

11.1]. This gives∑
n>0

ABn(q)xn =
b̂(x, q)− (1 + q)x+ x

1−x
1− (1 + q)x

where b̂(x, q) =
∑
n>0 b̂n(q)xn, and we have used the initial conditions

AB0(q) = 1 and AB1(q) = 2 + q. Substituting the generating function

TOME 65 (2015), FASCICULE 6
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for b̂n(q) given in [30, Proposition 11.1], and using (3.1) gives the stated
result. �

Type C.
Let FCn(q) denote Fλ(q) where λ = ω∨n is the unique minuscule coweight

when G is adjoint of type C. Haines [13, Proposition 8.2 (3)] showed that
FCn(1) =

∑n
i=0 2n−in!/i!, which is the greatest integer less than 2nn!

√
e.

This calculation was also done by Lam and Williams [30, Proposition 11.3]
where it is shown that FCn(1) satisfies the recurrence FC0(1) = 1 and
FCn+1(1) = 2(n+ 1)FCn(1) + 1.

Type D.
Let FDn(q) denote Fλ(q) where λ = ω∨1 is the minuscule coweight for G

simple of type D, such that G/PJ is an even dimensional quadric. Similarly
define ADn(q).

Proposition 3.3. — We have∑
n>0

FDn(q)xn = 1
(1− q2x)(1− (q + q2)x)(1− [2]2x+ q3[2]x2)×(
1− (q + 3q2)x− (q2 − q3 − 4q4)x2

− (2q + 3q2 − 2q3 − 8q4 − 2q5 + 3q6)x3

+ (2q3 + 3q4 − 3q5 − 9q6 − 4q7 + q8)x4

− (q6 − 3q8 − 2q9)x5
)
.

Proof. — Using the combinatorial description in [30, Section 9], we have
the recursion

ADn+1(q) = 1 + (1 + q)ADn(q) + d̂n+1(q)

for n > 2, where d̂n(q) =
∑

(wSwJ ,y)∈QJ q
`(wSwJ )−`(y) as in [30, Proposition

11.2]. Declaring the initial conditions AD0(q) = 1, AD1(q) = 2 + q, and
AD2(q) = 4 + 4q+ q2 and proceeding as in the proof of Proposition 3.2, we
obtain the stated result. �

Type D.
The other minuscule coweights for typeD give the even orthogonal Grass-

mannians. The authors do not know of a calculation of Fλ(q) in this case.
Part of the enumeration is done in [30, Theorem 11.11].
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4. Geometric comparison

In this section, we explain some geometry behind the combinatorial com-
parison. Here we consider three stratified spaces.

Let J ⊂ S and λ ∈ P+ be related by J = {i ∈ S; 〈λ, αi〉 = 0}. Let PJ
be the standard parabolic subgroup of type J and LJ the standard Levi
subgroup. Let UPJ be the unipotent radical of PJ . Let PJ be the variety of
parabolic subgroups conjugate to PJ . Then it is known that PJ ∼= G/PJ .
The first stratified space we consider is the partial flag variety PJ ∼=

G/PJ . By [31] and [37], G/PJ = t(x,y)∈QJ Π̊x
y where Π̊x

y = π(X̊x
y ) are the

open projected Richardson varieties. For any (x, y) ∈ QJ , the closure of
Π̊x
y is the union of Π̊x′

y′ , where (x′, y′) runs over elements in QJ such that
(x′, y′) � (x, y).
The second stratified space we consider is the variety ZJ introduced by

Lusztig in [32]. By definition,

ZJ = (G×G)/RJ ,

where RJ = {(lu, lu′); l ∈ LJ , u, u′ ∈ UPJ}.
For (x, y) ∈W J ×W , we define

[J, x, y]+,− = (B ×B−)(x, y)RJ/RJ ⊂ ZJ .

By [18, 2.2 & 2.4], ZJ = t(x,y)∈WJ×W [J, x, y]+,− and the closure of
[J, x, y]+,− in ZJ is the union of [J, x′, y′]+,−, where (x′, y′) runs over ele-
ments in W J ×W such that (x′, y′) � (x, y).
The third stratified space is contained in the loop group G(K). Let

O = C[[t]] and O− = C[t−1]. Let I be the inverse image of B under
the map p+ : G(O) → G by sending t to 0 and I− be the inverse im-
age of B− under the map p− : G(O−) → G by sending t−1 to 0. Then
we have that G(O−)t−λG(O) = tw∈Wt−λW I

−wI. The closure of I−wI
in G(O−)t−λG(O) is the union of I−w′I, where w′ runs over elements in
Wt−λW such that w 6 w′ for the Bruhat order on Ŵ .
We define f : G(O−)t−λG(O)→ ZJ by

f(gt−λ(g′)−1) = (p+(g′), p−(g))RJ/RJ ,

for g ∈ G(O−) and g′ ∈ G(O). Note that there is more than one way
to write an element in G(O−)t−λG(O) as gt−λ(g′)−1 for g ∈ G(O−) and
g′ ∈ G(O). Thus we need to check that the map f is well-defined.

Lemma 4.1. — The map f is well-defined.
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Proof. — Let I1 = ker(p+) and I−1 = ker(p−). Let g, g′ ∈ G. Suppose
that g′t−λg−1 ⊂ I−1 t−λI1, we’ll show that (g, g′) ∈ RJ .
We have that ∅ 6= tλI−1 g

′t−λ∩I1g ⊂ tλG(O−)t−λ∩G(O). We shall study
this intersection in more detail. We show that

(a) G(O−)t−λI = ∪w∈W I−wt−λI

Since I−w ⊂ G(O−) for all w ∈W , ∪w∈W I−wt−λI ⊂ G(O−)t−λI. On the
other hand, for any i ∈ S and w ∈W , siI−wt−λ ⊂ I−siwt−λI ∪ I−wt−λI.
Hence si ∪w∈W I−wt−λI ⊂ ∪w∈W I−wt−λI. Since G(O−) is generated by
I− and si for i ∈ S, we have that G(O−)∪w∈W I−wt−λI = ∪w∈W I−wt−λI.
In particular, G(O−)t−λI = ∪w∈W I−wt−λI. (a) is proved.

Similarly,

(b) For any w ∈WJ , I−t−λIwI ⊂ ∪v∈WJ
I−vt−λI.

Now for any v ∈ WJ and w ∈ JW , we have that `(vt−λw) = `(vt−λ) −
`(w). Hence vt−λ(I ∩ wI−w−1) ⊂ I−vt−λ and I−vt−λIwI = I−vt−λ(I ∩
wI−w−1)wI = I−vt−λwI.

Now suppose that g ∈ BwB for some w ∈ W . Then we may write
w as w = xy for x ∈ WJ and y ∈ JW . Then applying (a) and (b) we
deduce that t−λI1g ⊂ ∪v∈W I−vt−λyI and I−g′t−λ ⊂ ∪v∈W I−vt−λI. Since
t−λI1g ∩ I−g′t−λ 6= ∅, by the disjointness of the Birkhoff factorization (see
[25, Theorem 5.23(g)]) we have y = 1 and g ∈ PJ .

Assume that g = ul with u ∈ UPJ and l ∈ LJ . Then t−λg−1tλ ⊂ l−1I−1
and tλI−1 g

′t−λg−1 ⊂ tλI−1 g
′l−1I−1 t

−λ = tλI−1 g
′l−1t−λ, where for the last

equality we use the fact that G normalizes I1. Hence tλI−1 g′l−1t−λ∩I1 6= ∅.
Now it follows from [25, 5.2.3 (11)] that I1 = (I1 ∩ tλI−t−λ)(I1 ∩ tλIt−λ).
Since U normalizes I1, comparing Lie algebras and using the fact that I1 is
connected we obtain I1∩tλIt−λ = (I1∩tλI1t−λ)(I1∩tλUt−λ) and similarly
I1 ∩ tλI−t−λ = (I1 ∩ tλI−1 t−λ)(I1 ∩ tλU−t−λ).

It is easy to see that tλU−t−λ ∩ I1 = {1} and tλUt−λ ∩ I1 = tλUPJ t
−λ.

Thus I1 = (I1 ∩ tλI−1 t−λ)(I1 ∩ tλI1t−λ)tλUPJ t−λ. Hence g′l−1 ∈ UPJ and
(g, g′) ∈ RJ . The Lemma is proved. �

The group G(O−) × G(O) acts transitively on G(O−)t−λG(O). It also
acts transitively on ZJ via the action (g, g′) · z = (p+(g′), p−(g))z. The
map f : G(O−)t−λG(O)→ ZJ is G(O−)×G(O)-equivariant. Thus all the
fibers are isomorphic. Now we give an explicit description of the fiber over
RJ/RJ .

By Lemma 4.1, it is {I−1 UPJ lt−λl−1UPJ I1; l ∈ LJ} = I−1 UPJ t
−λUPJ I1,

where I1 = ker(p+) and I−1 = ker(p−). Since t−λUPJ tλ ⊂ I−1 and we have
tλUPJ t

−λ ⊂ I1, we have that
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I−1 UPJ t
−λUPJ I1 = I−1 t

−λ(tλUPJ t−λ)UPJ I1
⊂ I−1 t−λI1UPJ I1
= I−1 t

−λUPJ I1

= I−1 (t−λUPJ tλ)t−λI1
⊂ I−1 t−λI1.

On the other hand, I−1 t−λI1 ⊂ I
−
1 UPJ t

−λUPJ I1. Therefore the fiber over
RJ/RJ is

I−1 UPJ t
−λUPJ I1 = I−1 t

−λI1 ∼= I−1 × I1/(I
−
1 ∩ t−λI1tλ)

and is an infinite dimensional affine space.
Let ∆ : G→ G×G be the diagonal embedding. Since ∆(PJ) ⊂ RJ , there

is a unique map ι : G/PJ → ZJ such that the following diagram commutes

G
∆ //

��

G×G

��
G/PJ

ι // ZJ .

We have the following diagram which relates the three stratified spaces

G/PJ
ι // ZJ G(O−)t−λG(O)

foo .

This diagram is compatible with the respective stratifications: for (x, y) ∈
W J×W , f(I−yt−λx−1I) = (p+(I)x, p−(I−)y)RJ/RJ = [J, x, y]+,−, agree-
ing with Theorem 2.2(1). The following proposition shows that the map ι
preserves the stratifications onG/PJ and ZJ , agreeing with Theorem 2.2(2).

Proposition 4.2. — For (x, y) ∈ W J ×W , ι(G/PJ) ∩ [J, x, y]+,− 6= ∅
if and only if (x, y) ∈ QJ . In this case, ι(G/PJ) and [J, x, y]+,− intersect
transversally and the intersection is ι(Π̊x

y).

Proof. — If g ∈ BxB ∩ B−yB, then (g, g)RJ/RJ ∈ [J, x, y]+,−. Thus
ι(Π̊x

y) = ι(π(X̊x
y )) ⊂ ι(G/PJ) ∩ [J, x, y]+,−, where π : G/B → G/PJ is the

projection map. Since ι(G/PJ) = t(x,y)∈WJ×W ι(G/PJ) ∩ [J, x, y]+,− and
G/PJ = t(x,y)∈QJ Π̊x

y , we have that

ι(G/PJ) ∩ [J, x, y]+,− =
{
ι(Π̊x

y), if (x, y) ∈ QJ ;
∅, otherwise.
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Since ι(G/PJ) is a ∆(G)-orbit on ZJ and [J, x, y]+,− is a B− × B-orbit
on ZJ and Lie(∆(G)) + Lie(B− ×B) = Lie(G×G), by [36, Corollary 1.5],
the intersection is transversal. �

5. K-theory comparison

5.1. Kac-Moody flag varieties

In this subsection, let G/B be a Kac-Moody flag variety [25]. This is
an ind-finite ind-scheme with a stratification by finite-dimensional Schu-
bert varieties. Let W denote the Kac-Moody Weyl group with positive
(resp. negative) roots R+ (resp. R−). We consider K-cohomology with
integer coefficients. Kostant and Kumar [23] constructed the Schubert ba-
sis of the torus-equivariant K-cohomology KT (G/B), where T ⊂ G is the
maximal torus of the Kac-Moody group. Let {ψv | v ∈ W} denote the
torus-equivariant Schubert basis ψv ∈ KT (G/B) constructed by Kostant
and Kumar [23]. We shall follow the notations of [27], which differ slightly
from [23]. For the precise interpretation of ψv as the class of a structure
sheaf of a Schubert variety in the (possibly infinite-dimensional) G/B we
refer the reader to [27].
For v, w ∈ W , we let ev,w = ψv(w) := ψv|w ∈ KT (pt) denote the equi-

variant localization at the T -fixed point v ∈ G/B. A K-cohomology class
ψ ∈ KT (G/B) is completely determined by its equivariant localizations. We
review certain facts concerning ev,w.
If W is a finite Weyl group, we denote by w 7→ w? the conjugation

action w 7→ wSwwS by the longest element wS . The following result is [27,
Proposition 2.10].

Theorem 5.1. — Let v, w ∈ W and w = si1 · · · sip be a reduced ex-
pression. For 1 6 j 6 p, set βj = si1 · · · sij−1αij . Then

ev,w =
∑

(−1)p−m(1− eβj1 ) · · · (1− eβjm ),

where the summation runs over all those 1 6 j1 < · · · < jm 6 p such that
v = sij1

∗ · · · ∗ sijm .

Define E to be the (infinite) matrix E = (ev,w), and set C = (E−1)T .
Define the matrix C ′ by cu−1,v−1 = v−1wSc

′
wSv,wSu. Let M be the Bruhat

order matrix given by mv,w = 1 if v > w, and mv,w = 0 otherwise. The
following result is a variant of [23, Proposition 4.16].
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Proposition 5.2. — We have ET = DC ′M , where D is the scalar
matrix with value

∏
α∈R+(1− eα).

Proof. — Define EKK = (MT )−1E and CKK = (E−1
KK)T . Let E′KK be

the “E”-matrix of [23]; then by [27, Appendix A] we have (e′KK)v,w =
(eKK)v−1,w−1 . Note that mv,w = mv−1,w−1 = mw0w,w0v. Proposition 4.16
of [23] gives ETKK = DC ′KKM

−1, where (c′KK)v,u = v(cKK)u−1wS ,v−1wS .
Then

c′v,w = vcw−1wS ,v−1wS

=
∑
u−1wS

nw−1wS ,u−1wSv(cKK)u−1wS ,v−1wS

=
∑
u

nu,v(c′KK)v,u,

where N = M−1. It follows that ET = (MTEKK)T = ETKKM = DC ′KK =
DC ′M . �

Now we prove some properties of ev,w.

Lemma 5.3. — Let W be any Kac-Moody Weyl group.
(1) We have

ex,x =
∏

α∈R+∩xR−
(1− eα).

(2) Suppose W is a finite Weyl group. Then

e(x?)−1,(y?)−1 = wSy
−1ex,y.

(3) Suppose x, u, v ∈W and `(uv) = `(u) + `(v). Then

ex,uv =
∑

eu′,u(uev′,v),

where the summation runs over u′, v′ ∈W such that x = u′ ∗ v′.

Proof.
(1) Let x = sj1 · · · sjp be a reduced expression. Then

ex,x = (1− eβj1 ) · · · (1− eβjp ) = Πα∈R+∩xR−(1− eα).

(2) Let y = si1 · · · sip be a reduced expression. Then (y?)−1 = s?ip · · · s
?
i1

is
also a reduced expression. Moreover, x = sij1

∗ · · · ∗ sijm if and only if
(x?)−1 = s?ijm ∗ · · · ∗ s

?
ij1

. For any j, we have that

wSy
−1(1− eβj ) = wSsip · · · sij+1(1− e−αij )

= s?ip · · · s
?
ij+1

(wS(1− e−αij ))

= s?ip · · · s
?
ij+1

(1− e
αi?
j ).
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Now,

e(x?)−1,(y?)−1 =
∑

(−1)p−m(wSy−1(1− eβj1 )) · · · (wSy−1(1− eβjm ))

= wSy
−1ex,y.

Here the summation runs over all those 1 6 j1 < · · · < jm 6 p such
that x = sij1

∗ · · · ∗ sijm .
(3) Let u = si1 · · · sip and v = sip+1 · · · siq be reduced expressions. Let

1 6 j1 < · · · < jm 6 p < jm+1 < · · · < jn 6 p be such that
x = sij1

∗ · · · ∗ sijn . Then

(1− eβj1 ) · · · (1− eβjn )

= ((1− eβj1 ) · · · (1− eβjm ))((1− eβjm+1 ) · · · (1− eβjn ))

= ((1− eβj1 ) · · · (1− eβjm ))u
(
(sip+1 · · · sijm+1−1(1− eαijm+1 ))

· · · (sip+1 · · · sijn−1(1− eαijn ))
)

Now part (3) follows from Theorem 5.1. �

Lemma 5.4. — Let W be a finite Weyl group, and u 6 u′ ∈W . Then∑
v,u′′∈W

u6v6u′′6u′

eu−1,v−1(v−1wSewSu′′,wSv)(v−1wSewS ,wS )−1 = δu,u′ .

Proof. — By Proposition 5.2, we have that∑
u′′∈W
v6u′′6u′

ewSu′′,wSve
−1
wS ,wS = c′wSv,wSu′ .

By definition, cu′−1,v−1 = v−1wSc
′
wSv,wSu′

. Thus∑
v,u′′∈W

u6v6u′′6u′

eu−1,v−1(v−1wSewSu′′,wSv)(v−1wSewS ,wS )−1

=
∑
v∈W

u6v6u′

eu−1,v−1cu′−1,v−1

= δu,u′ .

�

We shall apply the results of 5.1 in the case where G/B is the finite flag
variety G/B, and in the case where G/B is the affine flag variety F̃ l =
G(K)/I. We return to the conventions of Section 2: W denotes the finite
Weyl group and Ŵ denotes the Iwahori-Weyl group. Note that the results
of 5.1 from [25] are stated for Wa (that is, for the affine flag variety of
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the simply-connected G), but extend without change to the Iwahori-Weyl
group Ŵ . We shall also abuse notation in two ways. First, if x, y ∈W , we
shall write ex,y without specifying whether we are considering equivariant
localizations of affine or finite Schubert basis, since the two agree. Secondly,
if x, y ∈ Ŵ , then ψx(y) normally takes values in KT̂ (pt) for the affine torus
T̂ . In the following we still denote by ex,y the image of this value in KT (pt)
for the finite torus T . That is, each affine root is considered as a root of
the finite torus T via the natural inclusion T ↪→ T̂ .
Let Gr = G(K)/G(O) denote the affine Grassmannian of G. Let

Grλ = G(O)t−λG(O)/G(O) ⊂ Gr

be the closure of the G(O)-orbit inside the affine Grassmannian containing
the T -fixed point labeled by t−λ. Then Grλ = tµ6λG(O)t−µG(O)/G(O),
where the union is over dominant coweights in dominance order. The sub-
scheme Grλ is not in general smooth, but it contains the smooth dense open
orbit G(O)t−λG(O)/G(O), which is a (finite-dimensional) affine bundle
over G/PJ , where J = {i ∈ S; 〈λ, αi〉 = 0} (see for example [33, Section 2]).
For general facts concerning equivariant K-theory, we refer the reader to

[9]. We now fix W,J, λ, and y ∈W , x,w ∈W J . The projected Richardson
varieties Πx

y ⊂ G/P are labeled by (x, y) ∈ QJ . We denote by [OΠxy ] ∈
KT (G/B) the torus-equivariant cohomology class, and by [OΠxy ]|w∈KT (pt)
the equivariant localization at a fixed point. (Note that the K-cohomology
and K-homology groups of G/P are isomorphic, and we prefer to consider
[OΠxy ] a class in K-cohomology.) Write π : G/B → G/P for the natural
projection.

Proposition 5.5. — We have

(5.1) [OΠxy ]|w =
∑
v∈WJ

ey,wv−1(wv−1wSewSx−1,wSvw−1)(wv−1wJewJ ,wJ )−1.

Proof. — Recall that Xy ⊂ G/B (resp. Xx ⊂ G/B) denotes the Schu-
bert (resp. opposite Schubert) varieties. Let Xx

y = Xx ∩Xy ⊂ G/B be the
Richardson variety. Then in KT (G/B) we have the equality

[OXw ][OXu ] = [OXuw ]

which follows from [4, Lemma 1]. Thus,

[OXxy ]|u = [OXy ]|u[OXx ]|u = ey,uwSewSx,wSu

since Xx is obtained from XwSx by the action of wS .
By [21, Theorem 4.5], we have that π∗OXxy = OΠxy and Riπ∗OXxy = 0 for

i > 0. Applying the equivariant pushforward π∗ : KT (G/B) → KT (G/P )
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to [OXxy ] gives

[OΠxy ]|w = (π∗[OXxy ])|w =
∑

u∈wWJ

[OXxy ]|ue(νu)−1

where e(νu) denotes the K-theoretic equivariant Euler class of the tangent
space νu at u ∈ G/B to the fiber π−1(w). This is a K-theoretic analogue
of the Atiyah-Bott localization formula in equivariant cohomology; see for
example [9, Chapter 5]. We calculate that

e(νu) =
∏

α∈R− :urα∈wWJ

u(1− eα) = uwJewJ ,wJ

by Lemma 5.3(1). Finally, we apply Lemma 5.3(2) to get

wSewSx,wSu = uwSewSx−1,wSu−1 .

�

Lemma 5.6. — For any x,w ∈W J and y ∈W , we have

eyt−λx−1,wt−λw−1

=
∑

u∈WJ ,y
′∈W

y=y′∗u−1

ey′,w(wet−λwJwS ,t−λwJwS )(wt−λwJwSewSwJu−1x−1,wSwJw−1).

Proof. — We have

`(w(t−λwJwS)(wSwJw−1)) = `(w) + `(t−λwJwS) + `(wSwJw−1).

By Lemma 5.3(3),

eyt−λx−1,wt−λw−1 =
∑

ev,w(wev′,t−λwJwS )(wt−λwJwSev′′,wSwJw−1),

where the summation runs over v 6 w, v′ 6 t−λwJwS and v′′ 6 wSwJw−1

such that v ∗ v′ ∗ v′′ = yt−λx. But t−λwJwS is minimal in Wt−λW , and
since v, v′′ ∈ W , we must have v′ = t−λwJwS . If v′′ = wSwJu

−1x−1,
then v ∗ (t−λwJwS) ∗ v′′ lies in Wt−λu−1x−1. It follows that we must have
u−1 ∈WJ , and (t−λwJwS) ∗ v′′ = u−1t−λx−1. The result follows. �

5.2. The pushforward map p∗

The affine Grassmannian Gr is weak homotopy-equivalent to the based
loop group ΩK, where K ⊂ G is a maximal compact subgroup. The affine
flag variety F̃ l is weak homotopy-equivalent to the quotient LK/TR of the
(unbased) loop group by the compact torus. The torus-equivariant composi-
tion ΩK → LK → LK/TR induces a pullback map r∗ : KT (F̃ l)→ KT (Gr),
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and we refer the reader to [14, Section 5] and [27] for a discussion of this.
The T -fixed points of Gr are labeled by the cosets of Ŵ/W . Thus the
pullback map can be described ([27, Lemma 4.6]) in terms of equivariant
localizations by the formula

(5.2) r∗(ψ)(t−λW ) = ψ(t−λ)

for ψ ∈ KT (F̃ l) and a dominant coweight λ. For our purposes, we can take
this formula to be the definition of r∗; indeed, it is checked algebraically in
[27] that (5.2) gives a well-defined map on the equivariant K-theories.

Let p′ : G/P → G(O)t−λG(O)/G(O) denote the zero-section of the
affine bundle G(O)t−λG(O)/G(O) → G/P , and let p : G/P → Grλ be
the composition of p′ with the open inclusion G(O)t−λG(O)/G(O) ⊂ Grλ.
The map p (and also p′) is a (torus-equivariant) closed embedding, and
thus a proper map.
We have a pushforward map p∗ : KT (G/P ) → KT (Grλ), defined as

follows. Let KT (G/P ) and KT (Grλ) denote the Grothendieck groups of
T -equivariant coherent sheaves on G/P and Grλ respectively, as defined
in [9, Chapter 5]. We have already remarked that KT (G/P ) ' KT (G/P ).
We also have KT (Grλ) ' KT (Grλ) by [9, Proposition 5.5.6] applied to the
Schubert stratification of Grλ (noting that the constructions of Kostant
and Kumar [23] are carried out in topological equivariant K-theory). The
pushforward map p∗ : KT (G/P ) → KT (Grλ) is defined on the level of
coherent sheaves by p∗[F ] =

∑
i(−1)i[Rip∗F ], whenever p is a proper map.

In fact Rip∗ = 0 for i > 0 since p is a closed embedding in our situation.
We use the same notation p∗ to denote the map KT (G/P ) → KT (Grλ)
obtained by composing with the isomorphisms KT (G/P ) ' KT (G/P ) and
KT (Grλ) ' KT (Grλ).

Let q∗ : KT (F̃ l)→ KT (Grλ) be the composition of r∗ with the restriction
KT (Gr)→ KT (Grλ). The following theorem generalizes [20, Theorem 12.8]
in two ways: from the Grassmannian to all partial flag varieties G/P , and
from cohomology to K-theory.

Theorem 5.7. — We have p∗([OΠxy ]) = q∗(ψyt−λx−1).

Proof. — We have yt−λx−1 6 tµ only if

max(Wyt−λx−1W ) 6 max(WtµW ),

only if µ′ > λ, where µ′ is the dominant coweight in theW -orbit of µ. Thus
q∗(ψyt−λx−1) is non-zero only on T - fixed points of the form wt−λw−1 ∈
G(O)t−λG(O)/G(O) ⊂ Grλ. Since p(G/P ) ⊂ G(O)t−λG(O)/G(O), the
class p∗([OΠxy ]) is also supported on the same T -fixed points. A class in
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KT (Grλ) is determined by its pullbacks to all the T -fixed points, and so it
suffices to compare the two sides at each of the T -fixed points wt−λw−1.
By Lemma 5.3(3), we have

(5.3) ey,wv−1 =
∑

u6v,y′∈W
y=y′∗u−1

ey′,w(weu−1,v−1).

and

ewSx−1,wSvw−1 = ewSx−1,(vwJ )?wSwJw−1

=
∑

e(u′′wJ )?,(vwJ )?
(
(vwJ)?ewSwJu′−1x−1,wSwJw−1

)
,

where the summation runs over all u′, u′′ ∈ W satisfying the equality
(u′′wJ)? ∗ (wSwJu′−1x−1) = wSx

−1. By definition, wSwJu′−1x−1 is an
element of WJ?wSx

−1 = wSWJx
−1 and u′ ∈ WJ . Then wSwJu′−1x−1 =

(wJu′−1)?wSx−1, here (wJu′−1)? ∈ WJ? and wSx
−1 is the maximal ele-

ment in WJ?wSx
−1. Hence (u′′wJ)? ∗ (wSwJu′−1x−1) = wSx

−1 if and only
if (u′′wJ)? > ((wJu′−1)?)−1, i.e., u′′wJ > u′wJ . This is equivalent to say
that u′′ 6 u′. Hence

ewSx−1,wSvw−1

=
∑

v6u′′6u′ in WJ

e(u′′wJ )?,(vwJ )?
(
(vwJ)?ewSwJu′−1x−1,wSwJw−1

)(5.4)

Thus applying Lemma 5.3(2),

v−1wSe(u′′wJ )?,(vwJ )? = wJewJu′′−1,wJv−1

= v−1wJewJu′′,wJv
(5.5)

and

wv−1wSewSx−1,wSvw−1

=
∑

v6u′′6u′ in WJ

(wv−1wJewJu′′,wJv)(wwJwSewSwJu′−1x−1,wSwJw−1).(5.6)

Substituting (5.3) and (5.6) into (5.1), we have that

[OΠxy ]|w =
∑

ey′,w(weu−1,v−1)(wv−1wJewJu′′,wJv)

(wv−1wJewJ ,wJ )−1(wwJwSewSwJu′−1x−1,wSwJw−1),

where the summation is over u 6 v 6 u′′ 6 u′ in WJ and y′ ∈W such that
y = y′ ∗ u−1.
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Applying Lemma 5.4 to∑
v,u′′∈WJ

u6v6u′′6u′

(weu−1,v−1)(wv−1wJewJu′′,wJv)(wv−1wJewJ ,wJ )−1

gives

[OΠxy ]|w =
∑

u∈WJ ,y
′∈W

y=y′∗u−1

ey′,w(wwJwSewSwJu−1x−1,wSwJw−1).

To compute p∗([OΠxy ])|wt−λw−1 we apply the formula [9, Theorem 5.11.7]
for the localization of a pushforward, in the form given in [11, Equation (7)].
Since Grλ is not smooth, to apply these results, we must first restrict to the
smooth open subset G(O)t−λG(O)/G(O). Let j : G(O)t−λG(O)/G(O) ↪→
Grλ denote the open inclusion. Then for any class ψ ∈ KT (Grλ), we have
ψ|wt−λw−1 = (j∗(ψ))|wt−λw−1 by composing pullbacks. It thus suffices to
calculate (j∗(p∗([OΠxy ]))|wt−λw−1 . Since p is a closed embedding, and j is
an open embedding, we have j∗(p∗([OΠxy ])) = p′∗([OΠxy ]). Now, p′ : G/P →
G(O)t−λG(O)/G(O) is a torus-equivariant closed embedding of smooth
varieties, and we apply [11, Equation (7)], as follows.
We have that p′∗([OΠxy ])|wt−λw−1 = e(νw)[OΠxy ]|w, where e(νw) is a prod-

uct of (1 − eβ) over the weights β of the normal space to G/P inside
G(O)t−λG(O)/G(O) at the point wt−λw−1. The factor e(νw) is equal to
the product of the weights of the T -invariant curves joining wt−λw−1 to
T -fixed points z inside Grλ which are outside of G/P . For w = wSwJ , these
are all T -fixed points of the form z = rαt

−λwJwS < t−λwJwS . The product
of the T -weights is thus e(ν1) = et−λwJwS ,t−λwJwS . A similar calculation
gives e(νw) = wet−λwJwS ,t−λwJwS .

Combining with Lemma 5.6, we get

p∗([OΠxy ])|wt−λw−1 = e(νw)[OΠxy ]|w

= q∗(ψyt
−λx−1

)|wt−λw−1 .

�

As claimed in the introduction, the analogue of Theorem 5.7 holds in
equivariant cohomology, either by a similar but easier proof, or by looking
at the “lowest degree terms” of the equivariant localizations.

Theorem 5.8. — We have p∗([Πx
y ]) = q∗(ξyt−λx−1), where [Πx

y ] ∈
H∗T (G/P ) denotes the equivariant cohomology class of a projected Richard-
son variety, and ξyt

−λx−1 ∈ H∗T (F̃ l) are the torus-equivariant cohomlogy
classes of Schubert varieties, constructed by Kostant and Kumar [22].

TOME 65 (2015), FASCICULE 6



2406 Xuhua HE & Thomas LAM

5.3. Affine stable Grothendieck polynomials

For background material on the symmetric function notation used in this
section, we refer the reader to [6, 27]. The general strategy of this section
is similar to [20, Section 7].

In this section we let G = PGL(n,C) and G/P be the Grassmannian
Gr(k, n) of k-planes in Cn. In [6], Buch defined stable Grothendieck poly-
nomials Gλ(X) ∈ Λ̂ for each partition λ, lying in the graded completion
Λ̂ of the ring of symmetric functions. Buch showed that the K-theory
K(Gr(k, n)) of the Grassmannian could be presented as Γ/Ik,n, where
Γ =

∏
λ Z · Gλ(X), and Ik,n is the ideal spanned (as a direct product)

by all Gλ where λ is not contained in a k× (n−k) rectangle. (Buch consid-
ered the direct sum rather than product of the Z ·Gλ(X), but the quotient
is the same.)
In [26], symmetric functions G̃w(X) called affine stable Grothendieck

polynomials were defined for each element w ∈ Ŵ of the affine Weyl group
(in this case, the affine symmetric group). Let Λ(n) be the quotient of
the ring of symmetric functions by the ideal generated by all monomial
symmetric functions mλ, for λ1 > n. Let Λ̂(n) be the graded completion of
Λ(n). Let r∗ : K(F̃ l) → K(Gr) denote the pullback map in K-theory, as
in Subsection 5.2. In [27], it was shown that K(Gr) ' Λ̂(n) and that under
this isomorphism one has

(5.7) r∗(ψw) = G̃w.

The following result was conjectured in [20, Conjecture 7.11].

Theorem 5.9. — Let ωk denote the k-th fundamental coweight. Under
the isomorphism κ : K(Gr(k, n)) ' Γ/Ik,n, we have

κ([OΠxy ]) = G̃yt−ωkx−1

where the right hand side is considered as an element of the quotient Γ/Ik,n.

Proof. — When λ is the fundamental coweight ωk we have G/P ' Grλ ⊂
Gr (see [20, Section 7]). Combining (the non-equivariant image of) Theo-
rem 5.7 with (5.7), it thus remains to check that the inclusion ι : G/P ↪→ Gr
induces the natural quotient map Λ̂(n) → Γ/Ik,n.
The ring Λ̂(n) contains distinguished symmetric functions G(m)(X) =

G̃sm−1sm−2···s0(X) for 1 6 m < n. The completion of the subring gener-
ated by theG(m)(X) is exactly Λ̂(n). The ring homomorphism ι∗ : K(Gr)→
K(Gr(k, n)) is compatible with graded completions, and is thus determined
by the images of G(m)(X). Now, in K∗(Gr), G̃sm−1sm−2···s0(X) represents
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the pullback r∗(ψsm−1sm−2···s0). For m 6 n − k, modulo length-zero ele-
ments of Ŵ (one has G̃v(X) = G̃u(X) if v and u differ by a length-zero
element), sm−1sm−2 · · · s0 is the same as sk+m−1 · · · sk+1skt

−ωkwJwS . But
under Buch’s isomorphism K(Gr(k, n)) ' Γ/Ik,n, the opposite Schubert
variety π(Xsk+m−1···sk+1sk) = ΠwJwS

sk+m−1···sk+1sk
is represented by the sym-

metric function G(m)(X) as well [6, Theorem 8.1]. Similarly, if m > n− k
one sees that ι∗ sends G(m)(X) to 0. Thus ι∗ induces the natural map
Λ̂(n) → Γ/Ik,n. �

5.4. Some implications

In [29], Lam and Shimozono, following work of Peterson, showed that the
quantum cohomology rings QH∗(G/P ) of partial flag varieties could, after
localization, be identified with a quotient of the homology H∗(Gr) of the
affine Grassmannians. In particular, the 3-point Gromov-Witten invariants
of G/P could be recovered from the homology Schubert structure constants
of H∗(Gr).
Let G/P be a cominuscule flag variety. In this section, we discuss the im-

plications of Theorem 5.7 towards the comparison of the quantumK-theory
QK(G/P ) of G/P and K-homology K0(Gr) of the affine Grassmannian.
We will work in the non-equivariant setting; the T -equivariant statements
are analogous. We now define four sets of integers.
(1) For u, v, w ∈ Ŵ/W , let dwuv ∈ Z denote the K-homology Schubert

structure constants of K0(Gr), defined in [27, (5.3)] (we will only
consider the non-equivariant structure constants). We remark that in
[27] only the affine Grassmannian Gr of a simply-connected simple
algebraic group is considered, but the extension is straightforward;
see for example [28].

(2) For u ∈ Ŵ , and y ∈ ŴS a minimal length coset representative of
Ŵ/W we can consider the coefficient kuy of the K-cohomology Schu-
bert class ψyGr in r∗(ψu

F̃ l
), where r∗ : K(F̃ l) → K(Gr) denotes the

pullback map in K-theory, as in Subsection 5.2.
(3) For a positroid variety Πu

v and y ∈ W J , consider the coefficient
πy(u,v) of the (class of the) Schubert structure sheaf [OXy ] in [OΠuv ] ∈
K(G/P ).

(4) For u, v, w ∈ W J , consider the K-theoretic Gromov-Witten invari-
ant Id(u, v, w) = Id(OXu ,OXv , (OXw)∨); see for example [5, Section
5]. Here {[(OXw)∨]} is the dual basis to {[OXw ]} in K(G/P ). The
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K-theoretic Gromov-Witten invariant is defined as the Euler charac-
teristic of the product of the pullbacks of these structure sheaves to
the moduli space Md,3(G/P ) of three-point, genus zero, stable maps
into G/P with degree d.

We now compare the four sets of integers.

(1) By [27, (5.1), (5.4) and Theorem 5.4],

dwuv =
∑
x∈Ŵ
x∗v=w

(−1)`(w)−`(v)−`(x)kxu.

Thus the kxu determine the dwuv, and it is easy to see that (picking v
and u appropriately) the dwuv also determine the kxu.

(2) By the cominuscule assumption we have G/P ' Grλ ⊂ Gr, where
λ is the appropriate minuscule coweight. Thus p∗ can be identified
with the identity, and Theorem 5.7 states that q∗(ψyt−λx−1) = [OΠxy ].
Now suppose that x = wSwJ and y ∈ W J . Then Πx

y = π(Xy) is
a usual Schubert variety in G/P , and since yt−λwJwS ∈ ŴS , we
have r∗(ψy

F̃ l
) = (ψyGr). It follows that the coefficient πy(u,v) is equal to

kvt
−λu−1

y .
(3) In [5], Buch, Chaput, Mihalcea, and Perrin studied the geometry

of the Gromov-Witten varieties associated to cominuscule G/P . An
unpublished(1) consequence of their work, communicated to us by L.
Mihalcea, is that

(5.8) Id(u, v, w) is equal to the coefficient of [OXw ] in [OΠxy ]

where [OXw ] is a Schubert structure sheaf and Πx
y is a projected

Richardson variety which depends on d, u, v. For an explicit descrip-
tion of Πx

y in type A see [20, Section 8]. For the classical types the
explicit description can presumably be recovered from [7], and for
other cominuscule types see [8]. Thus the coefficients πy(x,z) determine
all the coefficients Id(u, v, w).

Corollary 5.10. — Let G/P be cominuscule. Assuming (5.8), the K-
homology Schubert structure constants determine the 3-point K-theoretic
Gromov-Witten invariants of G/P .

(1)Since this paper was written, a preprint with related results has appeared as Pro-
jected Gromov-Witten varieties in cominuscule spaces, A. S. Buch, P.-E. Chaput, L. C.
Mihalcea, and N. Perrin, http://arxiv.org/abs/1312.2468.
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Appendix

Here we prove that the poset (QJ ,�) is combinatorially equivalent to
the poset introduced by Rietsch in [37, Section 5] and by Goodearl and
Yakimov in [12, Theorem 1.8].
Following [37], we set

Q′J = {(a, b, c) ∈W J
max ×WJ ×W J ; a 6 cb}

and define the partial order 6 on Q′J as follows.
For (a, b, c), (a′, b′, c′) ∈ Q′J , define

(a′, b′, c′) 6 (a, b, c)

if there exists u′1, u′2 ∈WJ with u′1u′2 = b′, `(u′1) + `(u′2) = `(b′) and

ab−1 6 a′(u′2)−1 6 c′u′1 6 c.

Following [12], we set

ΩJ = {(a, b) ∈W J
max ×W ; a 6 b}

and define the partial order 6 on ΩJ as follows.
For (a, b), (a′, b′) ∈ ΩJ , define

(a′, b′) 6 (a, b)

if there exists z ∈WJ such that a 6 a′z and b′z 6 b.

Proposition 5.11. — The maps
f : Q′J → ΩJ , (a, b, c) 7→ (a, cb)
g : ΩJ → QJ , (a, b) 7→ (min(bWJ), ab−1 min(bWJ))
h : QJ → Q′J , (x, y) 7→ (max(yWJ), y−1 max(yWJ), x)

give order-preserving bijections between the posets (Q′J ,6), (ΩJ ,6) and
(QJ ,�).

Proof. — For (a, b, c) ∈ Q′J , f(a, b, c) = (a, cb), g ◦ f(a, b, c) = (c, ab−1)
and h ◦ g ◦ f(a, b, c) = (a, b, c). Similarly, g ◦ f ◦ h is an identity map on QJ
and f ◦ h ◦ g is an identity map on ΩJ . Thus f, g, h are all bijective.
Now it suffices to show that f, g, h preserve the partial orders.
Let (a, b, c), (a′, b′, c′) ∈ Q′J with (a′, b′, c′) 6 (a, b, c). Then there exists

u′1 ∈ WJ such that ab−1 6 a′(b′)−1u′1 6 c′u′1 6 c. Thus a = ab−1 ∗ b 6
a′(b′)−1u′1 ∗ b. In other words, there exists v 6 b such that a 6 a′(b′)−1u′1v.
Let z = (b′)−1u′1v. Then c′b′z = c′u′1v 6 cv 6 cb since c ∈ W J . Hence
(a′, c′b′) 6 (a, cb) in ΩJ .
Let (a, b), (a′, b′) ∈ ΩJ with (a′, b′) 6 (a, b). Then there exists z ∈ WJ

with a 6 a′z and b′z 6 b. We assume that g(a, b) = (x, y) and g(a′, b′) =
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(x′, y′). Then there exists u, u′ ∈ WJ such that x = bu, y = au, x′ = b′u′

and y′ = a′u′. Since b′z 6 b, we have that b′z / u 6 b / u 6 bu = x. Hence
there exists v 6 u such that x′(u′)−1zv = b′zv 6 x.
Since a ∈W J

max,

y = au 6 av = a / v 6 a′z / v 6 a′zv = y′(u′)−1zv.

Thus (x′, y′) � (x, y) in QJ .
Now let (x, y), (x′, y′) ∈ QJ with (x′, y′) � (x, y). Then there exists

u ∈ WJ such that x′u 6 x and y′u > y. So we have that y′ ∗ u > y′u > y.
In other words, there exists v 6 u with y′∗u = y′v and `(y′v) = `(y′)+`(v).
Since x′ ∈W J , we also have that y′v 6 x′v 6 x′u 6 x.

We assume that h(x, y) = (a, b, x) and h(x′, y′) = (a′, b′, x′). Then y =
ab−1 and y′ = a′(b′)−1. We have that

ab−1 = y 6 y′v = a′(b′)−1v 6 x′v 6 x.

Since a′ ∈ W J
max, `(a′(b′)−1v) = `(a′) − `((b′)−1v) and `(y′v) = `(y′) +

`(v) = `(a′) − `(b′) + `(v). So `((b′)−1v) + `(v) = `(b′). Thus (a′, b′, x′) 6
(a, b, x) in Q′J . �
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