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BALANCING CONDITIONS IN GLOBAL TROPICAL
GEOMETRY

by Tony Yue YU

Abstract. — We study tropical geometry in the global setting using
Berkovich’s deformation retraction. We state and prove the generalized balanc-
ing conditions in this setting. Starting with a strictly semi-stable formal scheme,
we calculate certain sheaves of vanishing cycles using analytic étale cohomology,
then we interpret the tropical weight vectors via these cycles. We obtain the bal-
ancing condition for tropical curves on the skeleton associated to the formal scheme
in terms of the intersection theory on the special fiber. Our approach works over
any complete discrete valuation field.
Résumé. — Nous étudions la géométrie tropicale dans le cadre global en utili-

sant la rétraction par déformation construite par V. Berkovich. Nous montrons les
conditions d’équilibre généralisées dans ce cadre. À partir d’un schéma formel stric-
tement semi-stable, nous calculons certains faisceaux de cycles évanescents par la
cohomologie étale analytique, puis nous interprétons les vecteurs de poids tropical
via ces cycles. Nous obtenons la condition d’équilibre pour les courbes tropicales
sur le squelette associé au schéma formel en fonction de la théorie d’intersection sur
la fibre spéciale. Notre approche fonctionne pour tout corps complet de valuation
discrète.

1. Introduction and statement of result

Tropicalization is a procedure which relates algebraic geometry with
tropical geometry. Usually, tropicalization is carried out in the setting of
toric varieties [11, 2, 13]. Let us give a quick review in the case of curves.

By definition, a toric variety contains an open dense torus Gnm. Assume
that our torus Gnm is defined over a complete discrete valuation field k.
Consider the coordinate-wise valuation map

(1.1) Gnm(k) ' (k×)n → Rn, (x1, . . . , xn) 7→ (val(x1), . . . , val(xn)).

Keywords: balancing condition, tropical curve, Berkovich space, vanishing cycle.
Math. classification: 14T05, 14G22.



1648 Tony Yue YU

This map can be extended to the Berkovich analytification (Gnm)an and we
obtain a continuous surjective map τ0 : (Gnm)an → Rn.

Now let C be an analytic curve embedded in (Gnm)an. Traditionally, the
tropicalization of C is by definition the image τ0(C) ⊂ Rn, which we denote
by Ct. The tropical curve Ct has the structure of a metrized graph sat-
isfying the balancing condition. One idea of tropical geometry is to study
curves in algebraic varieties in terms of such combinatorial gadgets.
Let us recall the classical balancing condition. To each edge e of Ct with

a chosen orientation, one can associate an element w̃e ∈ Zn, parallel to the
direction of e inside Rn, called the tropical weight vector of e. Then the
balancing condition states that for any vertex v ∈ Ct, we have

∑
e3v w̃e = 0,

where the sum is taken over all edges that contain v as an endpoint, and
the orientation of each edge is chosen to be the one that points away from
v. We refer to [17, 18, 20, 2] for the proofs.
In order to go beyond the toric case above, we propose to replace the

map τ0 : (Gnm)an → Rn by the deformation retraction of a non-archimedean
analytic space onto its skeleton constructed by V. Berkovich [7]. Let X

be a strictly semi-stable formal scheme over the ring of integers k◦ (see
Definition 2.2). Its generic fiber Xη is a Berkovich space over k and its
special fiber Xs is a scheme over the residue field k̃. Let SX denote the dual
intersection complex of Xs. Following [7], one can construct an embedding
SX ⊂ Xη, and a continuous proper surjective retraction map τ : Xη → SX.
So SX is called a skeleton of Xη. We consider the map τ : Xη → SX to be
the globalization of the map τ0 : (Gnm)an → Rn in (1.1).
Now in parallel, let C be a compact quasi-smooth(1) k-analytic curve, and

let f : C → Xη be a k-analytic morphism. We call the image (τ ◦f)(C) ⊂ SX

the associated tropical curve, and denote it again by Ct. By working locally,
one can show as in the toric case that Ct is a graph piecewise linearly
embedded in SX. However, the balancing condition for the tropical curve
Ct is no longer clear in the global setting, because the vertices of Ct may
sit on the corners of SX. So we ask the following question.

Question. Let v be a vertex of the tropical curve Ct. What are the
constraints on the shape of Ct near the vertex v?

(1)The quasi-smoothness assumption on the curve C is not restrictive because we are
considering morphisms from C to Xη rather than embedded curves, and one can always
make desingularizations.

ANNALES DE L’INSTITUT FOURIER



BALANCING CONDITIONS IN GLOBAL TROPICAL GEOMETRY 1649

In this paper, we give a necessary condition in terms of the intersection
theory on the special fiber.

Let {Di}i∈IX denote the set of irreducible components of the special fiber
Xs. We have a natural embedding SX ⊂ RIX . Assume that the vertex v sits
in the relative interior of the face of SX corresponding to a subset Iv ⊂ IX.
Let DIv denote the corresponding closed stratum of Xs, and let DIv denote
the base change to the algebraic closure of k̃.
As in the classical case, to each edge e of Ct containing v as an endpoint,

we can associate a weight vector w̃e ∈ ZIX (see Section 5, compare [2, §6]).
We denote the sum of weight vectors around v by

(1.2) σv :=
∑
e3v

w̃e ∈ ZIX .

Let Li be the pullback of the line bundle O(Di) to DIv , for every i ∈ IX.
Let α be the map

α : CH1
(
DIv

)
−→ ZIX

L 7−→
(
L · Li, i ∈ IX

)
,

that takes a one-dimensional cycle L in DIv to its intersection numbers
with the divisors Li for every i ∈ IX.

Our generalized balancing condition is stated in the following theorem.
The rest of the paper provides a proof of the theorem.

Theorem 1.1. — Assume that the closed stratumDIv is projective, and
that the vertex v does not lie in the image of the boundary (τ ◦ f)(∂C).
Then the sum σv of weight vectors lies in the image of the map

αQ := α⊗Q : CH1 (DIv )Q −→ QIX .

Example 1.2. — Assume that X is n-dimensional and that the vertex
v sits in the interior of an n-dimensional face of SX. Then DIv is a point
and the map α is zero. Our balancing condition in this case simply states
that the sum σv of weight vectors must be zero. So we recover the classical
balancing condition in our generalized setting.

Example 1.3. — Let us work out a concrete example for a degeneration
of K3 surfaces. Let k = C((t)) be the field of formal Laurent series. Let
X0 ⊂ P3

C[[t]] be the formal scheme given by the equation

x0x1x2x3 + tP4(x0, x1, x2, x3) = 0,

TOME 65 (2015), FASCICULE 4



1650 Tony Yue YU

where P4 is a generic homogeneous polynomial of degree four. We think
of X0 as a formal family of complex K3 surfaces. The special fiber X0

s

consists of the four coordinate hyperplanes in P3
C, which we denote by

D0, D1, D2, D3 respectively. The formal scheme X0 is not strictly semi-
stable. We make a small resolution (cf. [1]) at each of the 24 conical singu-
larities pα, given by the equations

P4(x0, x1, x2, x3) = 0, xi = xj = 0, for 0 6 i < j 6 3.

More precisely, we blow up the divisors D0, D1, D2, D3 subsequently, and
denote by X the formal scheme after the blow-ups. Other choices of small
resolutions are also possible. We make this particular choice for the sim-
plicity of exposition.

Now the formal scheme X is strictly semi-stable. Its special fiber Xs has
four irreducible components, which are strict transforms of the divisors
D0, D1, D2, D3. We denote them by D̃0, D̃1, D̃2, D̃3 respectively. We have

D̃0 ' P2
C,

D̃1 ' Bl{4 points} P2
C,

D̃2 ' Bl{8 points} P2
C,

D̃3 ' Bl{12 points} P2
C,

where the symbol Bl means blow-up. The dual intersection complex SX ⊂
R4 is a hollow tetrahedron, which is homeomorphic to the sphere S2.
Let v be a point in SX. Let us describe explicitly our balancing con-
dition at v. According to Theorem 1.1, it suffices to calculate the map
α : CH1

(
DIv

)
−→ Z4. We distinguish three cases.

First, the point v sits in the relative interior of a 2-dimensional face of
SX. Then we are in the situation of Example 1.2. So the map α is zero in
this case.
Second, the point v sits on a vertex of SX. Suppose for example v cor-

responds to the divisor D̃0. We have CH1(D̃0) ' CH1(P2
C) ' Z. The map

α : CH1(D̃0) → Z4 sends 1 to (−3, 1, 1, 1). We omit the cases where v
corresponds to other divisors.
Third, the point v sits in the relative interior of a 1-dimensional face

of SX. Suppose for example the corresponding closed stratum DIv is the
intersection D̃0 ∩ D̃1, which we denote by D̃01. It is isomorphic to the
projective line P1

C, so CH1(D̃01) ' Z. Let E1, E2, E3, E4 denote the four
exceptional curves in D̃1. Let π1 : D̃1 → P2

C denote the blow-up. Then

ANNALES DE L’INSTITUT FOURIER
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(π∗1O(1), [E1], [E2], [E3], [E4]) form a basis of CH1(D̃1). From the relations([
D̃0
]

+
[
D̃1
]

+
[
D̃2
]

+
[
D̃3
])∣∣[D̃0

] = 0 ∈ CH1
(
D̃0
)
,([

D̃0
]

+
[
D̃1
]

+
[
D̃2
]

+
[
D̃3
])∣∣[D̃1

] = 0 ∈ CH1
(
D̃1
)
,

we have [
D̃0
]∣∣[D̃0

] = −3 ∈ CH1
(
D̃0
)
,[

D̃1
]∣∣[D̃1

] = (−3, 1, 1, 1, 1) ∈ CH1
(
D̃1
)
.

Therefore, [
D̃0
]∣∣[D̃01

] = −3 ∈ CH1
(
D̃01

)
,[

D̃1
]∣∣[D̃01

] = −3 + 1 + 1 + 1 + 1 = 1 ∈ CH1
(
D̃01

)
.

It is obvious that[
D̃2
]∣∣[D̃01

] =
[
D̃3
]∣∣[D̃01

] = 1 ∈ CH1
(
D̃01

)
.

So we conclude that the map α : CH1
(
D̃01

)
→ Z4 sends 1 to (−3, 1, 1, 1).

Plan. Basic definitions are given in Section 2. In Section 3, we study
the geometry of strictly semi-stable formal schemes in terms of vanishing
cycles. In Section 5, we define tropical weight vectors. We prove that they
are homological in nature. Indeed, they are only related to the “vanishing
part” of the first degree cohomology of the generic fiber (Proposition 5.10).
In Section 4, we establish an important technical step which allows us to
localize our calculation of vanishing cycles to a smaller domain inside the
skeleton. In Section 6, we prove a weaker form of our balancing conditions
in terms of étale cohomology. The key ingredient is the long exact sequence
relating nearby cycles with vanishing cycles. In Section 7, we explain how
to use standard arguments in algebraic geometry to obtain the stronger
balancing condition (Theorem 1.1) which is stated in terms of algebraic
cycles.

Acknowledgement. I am very grateful to Maxim Kontsevich for inspir-
ing discussions, from which this article originates. Discussions with Antoine
Ducros, Pierrick Bousseau, Jean-François Dat, Ilia Itenberg, Sean Keel,
Bernhard Keller, Bruno Klingler and Grigory Mikhalkin are equally very
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essential and useful. I would also like to thank the referees for valuable
comments.

2. Strictly semi-stable formal schemes and skeleta

In this article, k always denotes a complete discrete valuation field. Let
k◦ be the ring of integers of k, k◦◦ the maximal ideal of k◦, and k̃ the
residue field. The symbol ` always denotes a prime number invertible in
the residue field k̃.

For n > 1, 0 6 d 6 n and a ∈ k◦◦ \ 0, put

(2.1) S(n, d, a) = Spf
(
k◦{T0, . . . , Td, S

±
d+1, . . . , S

±
n }/(T0 · · ·Td − a)

)
.

Definition 2.1. — A formal scheme X over k◦ is said to be finitely
presented if it is a finite union of open affine subschemes of the form

Spf (k◦{T0, . . . , Tn}/(f1, . . . , fm)) .

Definition 2.2. — Let X be a formal scheme finitely presented over k◦.
X is said to be strictly semi-stable if every point x of X has an open affine
neighbourhood U such that the structural morphism U→ Spf k◦ factorizes
through an étale morphism φ : U → S(n, d, a) for some 0 6 d 6 n and
a ∈ k◦◦ \ 0.

Recall that for a formal scheme X finitely presented over k◦, its special
fiber Xs is a scheme of finite type over k̃, and its generic fiber Xη is a
compact strictly k-analytic space (cf. [3, 4, 5]). When X is polystable in
the sense of [7], one can construct a polysimplicial set C(Xs). Its topological
realization is denoted by SX. In [7], Berkovich constructed an embedding
SX ⊂ Xη and a strong deformation retraction from Xη to SX. So SX is
called the skeleton of Xη with respect to X. In our simplified situation, i.e.
when X is strictly semi-stable, the skeleton SX has a simple description as
the dual intersection complex of the special fiber Xs.

Let {Di | i ∈ IX = {0, . . . , N} } be the set of irreducible components of
the special fiber Xs. For any non-empty subset I ⊂ IX, let DI =

⋂
i∈I Di

and

(2.2) JI =
{
j
∣∣ DI∪{j} 6= ∅

}
.

We further assume that the strata DI are all irreducible. The general con-
structions in [7] imply the following two lemmas.

ANNALES DE L’INSTITUT FOURIER
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Lemma 2.3. — The skeleton SX is the finite simplicial sub-complex of
the simplex ∆IX such that for any I ⊂ IX, ∆I is a face of SX if and only if
DI 6= ∅.

A face ∆I ⊂ SX for I ⊂ IX is called maximal if it does not belong
to another face of higher dimension. Let ∆I be a maximal face of SX of
dimension d. By Definition 2.2, there exists an affine open subscheme U

in X such that the structural morphism U → Spf k◦ factorizes through an
étale morphism φ : U → S(n, d, a) for some n ∈ N, a ∈ k◦◦ \ 0, and that
DI ∩ Us is given by the equations T0 = · · · = Td = 0. We denote this
element a ∈ k◦◦ \ 0 by aI .

Let

SI =
{∑

i∈I
ri〈Di〉

∣∣∣∣∣ ri ∈ R>0,
∑
i∈I

ri = val(aI)
}
⊂ RIX ,

where (〈Di〉)i∈IX is regarded as the standard basis of RIX .

Lemma 2.4. — The skeleton SX can be identified with the union of the
simplexes SI over all maximal faces I ⊂ IX. Thus we obtain an embedding
of SX into RIX .

We refer to [21, 8, 15, 14] for related constructions.

3. Calculation of vanishing cycles

For any space X, we denote by X∼ét the category of étale sheaves on
X whenever it makes sense. Let Λ = Z/`νZ for any positive integer ν.
We denote by ΛX the constant sheaf on X associated to Λ. Let ks be a
separable closure of k, k̂s its completion, and k̃s its residue field. For any
scheme X defined over Spec k̃, we denote X = X × k̃s. For any k-analytic
space X, we denote X = X × k̂s.

Let X be a strictly semi-stable formal scheme over k◦. Let Xs (resp. Xη)
denote the special (resp. generic) fiber of the formal scheme X := X⊗̂k◦ (k̂s)◦
over (k̂s)◦. In [5], Berkovich constructed two functors Θ: Xη∼ét → Xs

∼
ét and

Ψη : Xη∼ét → Xs
∼
ét. We call them the specialization functor and the nearby

cycles functor(2) respectively. We denote by RΘ and RΨ the corresponding
derived functors. Our aim in this section is to compute the sheaf of nearby
cycles RΨΛXη and the sheaf of vanishing cycles RΦΛXη defined as usual as
a cone ([12] XIII 2.1).

(2)Our terminology differs from [5], where Ψ is called the vanishing cycles functor.

TOME 65 (2015), FASCICULE 4



1654 Tony Yue YU

The question being local, we only have to study the affine charts φ : U→
S(n, d, a) as in Definition 2.2. The formal scheme S(n, d, a) is the comple-
tion of the scheme

Spec
(
k◦[T0, . . . , Td, S

±
d+1, . . . , S

±
n ]/(T0 · · ·Td − a)

)
along its special fiber. Therefore, by [5] Corollary 4.5(i) and Corollary 5.3,
the calculation is reduced to the case of ordinary schemes.

Proposition 3.1 ([19]). — We have R0ΨΛXη ' ΛXs , an exact sequence

0→ ΛXs

diag−−−→
⊕
i∈IX

ΛDi −→ R1ΨΛXη (1)→ 0,

and isomorphisms

∧qR1ΨΛXη ' RqΨΛXη , for q > 1.

The sheaf of vanishing cycles RΦΛXη is related to the sheaf of nearby
cycles RΨΛXη through an exact triangle

(3.1) ΛXs −→ RΨΛXη −→ RΦΛXη
+1−−→ .

Let ∆I , I ⊂ IX be a face of SX and let j : DI ↪→ Xs denote the closed
immersion. We assume that DI is a projective variety. Applying j∗ to (3.1),
we obtain an exact triangle

(3.2) j∗ΛXs −→ j∗RΨΛXη −→ j∗RΦΛXη
+1−−→ .

Taking global sections RΓ, we obtain a long exact sequence
(3.3)
· · · → R1Γ

(
j∗RΨΛXη

) β∗−→ R1Γ
(
j∗RΦΛXη

) α∗−−→ R2Γ
(
j∗ΛXs

)
→ · · · ,

where we denote the two arrows above by β∗ and α∗ respectively.

Corollary 3.2. — We have an isomorphism

R1Γ
(
j∗RΦΛXη

)
' Coker

(
Λ ∆−→ ΛJ

)
(−1),

where ∆ denotes the diagonal map that sends an element λ ∈ Λ to
(λ, . . . , λ) ∈ ΛJ . Moreover, the map

α∗ : Coker
(
Λ ∆−→ ΛJ

)
(−1) −→ R2Γ

(
j∗ΛXs

)
' H2

ét
(
DI ,Λ

)
is induced by the cycle class map in étale cohomology.

Proof. — The first statement is an immediate corollary of Proposition
3.1. Let us explain the second statement. Again by comparison theorems
between analytic and algebraic vanishing cycles, it suffices to work in the
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setting of ordinary schemes. In this proof, let us temporarily assume that
X is a scheme over Spec k◦ instead of a formal scheme. Let

is : Xs → X, iη : Xη → X

denote the inclusions, and let

is : Xs → X, iη : Xη → X, jD : DIv → X

denote the natural morphisms. We have an exact triangle

(3.4) is!i
!
sΛX −→ ΛX −→ iη∗i

∗
ηΛX

+1−−→ .

By purity, we have an isomorphism

R1iη∗i
∗
ηΛX '

⊕
i∈IX

ΛDi(−1)

given by the cohomology classes of the divisors Di for i ∈ IX. Applying j∗
D

to (3.4) and shifting by 1, we obtain an exact triangle

j∗
D

ΛX −→ j∗
D
iη∗i
∗
ηΛX −→ j∗

D
is!i

!
sΛX[1] +1−−→ .

We have a morphism from the exact triangle above to the exact triangle
(3.2)

j∗
D

ΛX j∗
D
iη∗i
∗
ηΛX j∗

D
is!i

!
sΛX[1] j∗

D
ΛX

j∗ΛXs j∗RΨΛXη j∗RΦΛXη j∗ΛXs [1],

f1 f2

b

f3 f4

b′

where the maps f1, f4 are identities, the map f2 is obtained from adjunction

iη∗i
∗
ηΛX −→ iη∗i

∗
ηΛX,

and the map f3 follows from the properties of triangulated categories. Now
the second statement in the corollary follows from the commutativity

f4 ◦ b = b′ ◦ f3

and the definition of the cycle class map in étale cohomology. �

4. Deformation of analytic tubes

The retraction map τ : Xη → SX constructed by Berkovich [7] is easy to
describe for the standard formal scheme B := S(n, d, a) defined as in (2.1).
By Lemma 2.4, we have

SB =
{

(r0, . . . , rd) ∈ Rd+1
>0

∣∣∣∣∣
d∑
i=0

ri = val a
}
⊂ Rd+1.

TOME 65 (2015), FASCICULE 4
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Lemma 4.1. — The retraction map τB : Bη → SB takes x ∈ Bη to the
point

(valT0(x), . . . , valTd(x)) ∈ SB ⊂ Rd+1.

For a general strictly semi-stable formal scheme X, the retraction map
τ : Xη → SX is defined by gluing the construction above in the étale
topology. Our aim in this section is to describe the local geometry of
this retraction in terms of nearby cycles. More precisely, let v be a point
in SX sitting in the relative interior of a dv-dimensional face ∆Iv for
Iv = {i0, . . . , idv} ⊂ IX. Denote by j the closed immersion DIv ↪→ Xs.
Let

(4.1) V s0...sdv
Iv

= SX ∩
{

(r0, . . . , rN ) ∈ RIX
∣∣ rij > sj for j ∈ {0, . . . , dv} }

where s0, . . . , sdv ∈ val k◦◦. It follow from the definition that

Lemma 4.2. — V
s0...sdv
Iv

6= ∅ if and only if s0 + · · ·+ sdv 6 val aIv .

We suppose from now on that V s0...sdv
Iv

6= ∅, and denote by ι the inclusion
map τ−1 : (V s0...sdv

Iv
) ↪→ Xη.

Theorem 4.3. — We have a quasi isomorphism

j∗j
∗RΨ

(
ΛXη

) ∼−→ RΨ
(
Rι∗ι

∗ΛXη

)
.

Proof. — By adjunction, we have a morphism ΛXη → Rι∗ι
∗ΛXη , thus a

morphism
j∗j
∗RΨ

(
ΛXη

) γ−→ j∗j
∗RΨ

(
Rι∗ι

∗ΛXη

)
.

In order to prove the theorem, we only have to show that
(i) The morphism γ is a quasi-isomorphism.
(ii) The sheaf RΨ(Rι∗ι∗ΛXη ) is supported on DIv .

The properties being local, we only have to show them for the formal
scheme B = S(n, d, a). We assume that dv 6 d because otherwise it will
not have contributions to the stratum DIv . The special fiber Bs is given
by the equation T0 · · ·Td = 0, and we assume that DIv ⊂ Bs is further cut
out by the equations Tdv = · · · = Td = 0.
Now pick any elements a0, . . . , adv ∈ k◦◦ such that val aj = sj . Let

a′ = a ·a−1
0 · · · a

−1
dv

, B̃ = S(n, d, a′). Let f : B̃→ B be the morphism given
by the algebra homomorphism

k◦{T0, . . . , Td, S
±
d+1, . . . , S

±
n }/(T0 · · ·Td − a) −→

k◦{T0, . . . , Td, S
±
d+1, . . . , S

±
n }/(T0 · · ·Td − a′),

ANNALES DE L’INSTITUT FOURIER
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which takes

Tj 7−→ ajTj for j = 0, . . . , dv,
Tj 7−→ Tj for j = dv + 1, . . . , d,
Sj 7−→ Sj for j = d+ 1, . . . , n.

We have

(4.2) Rfη∗ΛB̃η
' Rι∗ι∗ΛBη

.

By [5] Corollary 4.5(ii), we have

(4.3) RΨ
(
Rfη∗ΛB̃η

)
∼−→ Rfs∗

(
RΨ
(
Λ
B̃η

))
.

Combining (4.2) and (4.3), we obtain

RΨ
(
Rι∗ι

∗ΛBη

)
' Rfs∗

(
RΨ
(
Λ
B̃η

))
.

This shows (ii). Then (i) follows from the calculation of nearby cycles in
the last section and the fact that the fibers of fs are all cohomologically
trivial. �

Remark 4.4. — The geometry behind Theorem 4.3 is that the étale
cohomology does not change when we deform certain tubular neighbor-
hoods. A scheme theoretic analog can be found in [9]. Our approach may
be adapted to give a better understanding of the result loc. cit.

5. Cohomological interpretation of tropical weight vectors

Let C be a compact quasi-smooth k-analytic curve, and f : C → Xη a
k-analytic morphism. The image of C under τ ◦ f is a one-dimensional(3)

polyhedral complex embedded in the skeleton SX. We denote it by Ct,
and call it the associated tropical curve. We call the 0-dimensional faces of
Ct vertices and the 1-dimensional faces of Ct edges. We denote by e◦ the
interior of an edge e.

Proposition 5.1. — There exists a subdivision of the edges of the trop-
ical curve Ct such that, if we denote by Ct the polyhedral complex after
the subdivision of edges, then
(1) For any edge e of Ct, each connected component of (τ ◦ f)−1(e◦) is

isomorphic to an open annulus.

(3) In degenerate situations, the tropical curve Ct can be zero-dimensional. We are not
interested in such cases.
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(2) For each annulus A as above, there exists an open subscheme U in X,
equipped with an étale morphism φ : U→ S(n, d, a) as in Definition
2.2, such that f(A) is contained in Uη.

Proof. — (4) Let us choose affine charts U1, . . . ,Um as in Definition 2.2
such that

⋃m
i=1 Ui = X. Assume that for each i ∈ {1, . . . ,m}, the structural

morphism Ui → Spf k◦ factorizes through an étale morphism

φi : Ui → Spf
(
k◦
{
T

(i)
0 , . . . , T

(i)
di
, S

(i)±
di+1, . . . , S

(i)±
ni

}
/(T (i)

0 · · ·T
(i)
di
− ai)

)
for some 0 6 di 6 ni, ai ∈ k◦◦\0. Let Ci = f−1(Ui,η), tij = |T (i)

j ◦φi,η◦f|Ci |,
for i = 1, . . . ,m, j = 0, . . . , di, where | · | denotes the absolute value. We
have the following fact concerning the variation of holomorphic functions.

Lemma 5.2 ([10](4.4.35)). — For each i = 1, . . . ,m, there exists a finite
graph Γi ⊂ Ci such that the functions tij are locally constant over Ci \ Γi,
and piecewise linear over Γi.

By extending Γi, we can assume that it contains an analytic skeleton of
Ci (cf. [10](5.1.8)). Let Γ be the union of the analytic skeleton of C and⋃

Γi. Let Γ be the convex hull of Γ, and let Γi = Γ ∩ Ci. By [10](5.1), we
have a strong deformation retraction r : C → Γ, and r|Ci gives a retraction
of Ci onto Γi. Let Ki be the set of knot points(5) for the subgraph Γi ⊂ Ci
for i = 1, . . . ,m, and let K be the set of knot points for the subgraph
Γ ⊂ C. Let P0 = (τ ◦ f)

(
K ∪

⋃m
i=1Ki

)
, and let P1 be the union of the

points p ∈ Ct such that ((τ ◦ f)|Γ)−1(p) contains an infinite number of
points. The set of points P0 is finite by [10](5.1.12.2). The set of points P1
is also finite by Lemma 5.2. Therefore, the union P := P1∪P2 is a finite set.
Now it suffices to make the subdivision of the edges of our tropical curve
Ct by adding the points in P as new vertices. Indeed, for each edge e of
the subdivided tropical curve Ct, Γ∩ (τ ◦ f)−1(e◦) is a finite disjoint union
of open segments in Γ. Any such segment s is by construction contained
in a certain Γi. By [10](5.1.12.3), r−1(s) is isomorphic to an open annulus,
which we denote by A. By Lemma 5.2, we have f|Γ ◦ r|A = τ ◦ f|A. So we
have proved the first assertion of our proposition. Moreover, s ⊂ Γi implies
that Ai := (r|Ci)−1(s) is an open annulus inside Ci. We have an inclusion
of two open annuli Ai ⊂ A, and both of them retract to the same segment
s. Therefore we have Ai = A, and f(A) = f(Ai) ⊂ Ui,η. So we have proved
the second assertion as well. �

(4)Many thanks to Antoine Ducros for his help with this proof.
(5)The notion of knot point is defined in [10](5.1.12) for an analytically admissible and
locally finite subgraph inside a generically quasi-smooth k-analytic curve.
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Remark 5.3. — It is pointed out by the referee that Proposition 5.1 is
the analog of [2, Proposition 6.4(2)] in our global setting.

From now on, we replace our tropical curve Ct by the subdivided curve
Ct produced by Proposition 5.1.
We explain in the following how to equip every edge e of Ct a tropical

weight vector w̃e ∈ ZIX with respect to a choice of orientation of the edge
e. An orientation of an edge e is a choice of a direction parallel to e among
the two possible choices. We will see that the weight vector w̃e is multiplied
by −1 if we reverse the orientation of e.
Now fix an edge e of our tropical curve Ct and an orientation of e. Assume

that the interior e◦ of the edge e is contained in the relative interior of a
de-dimensional face ∆Ie for Ie ⊂ IX. Let A be a connected component
of (τ ◦ f)−1(e◦). Fix i ∈ IX and denote by pi : RIX → R the projection
to the ith coordinate. Let ri be the composition of pi ◦ τ ◦ f|A using the
embedding SX ⊂ RIX . By Proposition 5.1(2) and the explicit description
of the retraction map in Lemma 4.1, the map ri equals val(fi) for some
invertible function fi on the open annulus A. Choose a coordinate z on A
such that A is given by c1 < |z| < c2 for two positive real numbers c1 < c2
and that the image (τ ◦ f)(z) moves along the orientation of the edge e as
val(z) increases. Write

fi =
∑
m∈Z

fi,mz
m

with fi,m ∈ k. By [4] Lemma 6.2.2, there exists mi ∈ Z with |fi,mi |rmi >
|fi,m|rm for all m 6= mi, c1 < r < c2. Therefore, for c1 < |z| < c2, we have

(5.1) val(fi(z)) = val(fi,mi) +mi · val(z).

We define the ith component w̃iA of the weight vector w̃A to be mi for
every i ∈ IX.

Lemma 5.4. — The weight vector w̃A ∈ ZIX defined as above does not
depend on the choice of the invertible function fi or the coordiante z. It is
multiplied by −1 if we reverse the orientation of the edge e. It is parallel to
the direction of the edge e sitting inside RIX . In particular, it is an element
of Ker

(
ZIe Σ−→ Z

)
⊂ ZIX , where Σ: ZIe → Z sends (x1, . . . , xq) ∈ ZIe to

x1 + · · ·+ xq ∈ Z.

Proof. — All the assertions follow from Eq. (5.1). �

Definition 5.5. — Let w̃e be the sum of w̃A over every connected com-
ponent A of (τ ◦f)−1(e). The element w̃e ∈ Ker

(
ZIe Σ−→ Z

)
⊂ ZIX is called
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the tropical weight vector associated to the edge e with the chosen orien-
tation.

Remark 5.6. — Definition 5.5 is a globalization of the classical notion
of tropical weight vector. We refer to [2, §6] for similar considerations in
the toric case.

Let us explain the homological nature of the tropical weight vectors.
Let A be an open annulus as above and let φ : U → S(n, d, a) be as in
Proposition 5.1(2). We assume for simplicity that the divisors D0, . . . , Dd

restricted to U are given by the equations T0 ◦ φ = 0, . . . , Td ◦ φ = 0
respectively, where T0, . . . , Td are coordinates on S(n, d, a) (see Eq. (2.1)).
We further assume that Ie = {0, . . . , de}. Let B = S(n, d, a), and let
πU : Uη → Us, πB : Bη → Bs be the reduction maps (cf. [5, §1]).

Lemma 5.7. — There exists a closed point p ∈ Us such that f(A) ⊂
π−1
U (p).

Proof. — Consider the composition φη ◦ f|A : A → Bη. In terms of affi-
noid algebras, it is given by n power series:

Ti 7→
∑
m∈Z

fi,mz
m for i = 0, . . . , d,

Si 7→
∑
m∈Z

fi,mz
m for i = d+ 1, . . . , n.

From the definition of the weight vector w̃A, for any i = 0, . . . , n, c1 < r <

c2, m 6= w̃iA, we have ∣∣∣fi,w̃i
A

∣∣∣ rw̃iA > |fi,m|rm.
Therefore, if w̃iA = 0, then the ith-coordinate of all the points in (πB ◦φη ◦
f)(A) is f i,0, where f i,0 denotes the image of fi,0 in the residue field k̃.
If w̃iA 6= 0, then the ith-coordinate of all the points in (πB ◦ φη ◦ f)(A) is
zero. This shows that the image (πB ◦ φη ◦ f)(A) is a k̃-rational point in
Bs, which we denote by pB. By the commutativity

πB ◦ φη = φs ◦ πU : Uη → Bs,

we have
(πU ◦ f)(A) ⊂ φ−1

s (pB).

Since φs is étale, φ−1
s (pB) is discrete. Then by the connectedness of the

annulus A, there exists a point p ∈ φ−1
s (pB) such that (πU ◦f)(A) = p. �
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Since φ : U → B is étale, and φs induces an isomorphism between the
point p and the point pB = φs(p), φη induces an isomorphism between
π−1
U (p) and π−1

B (pB) ([7] Lemma 4.4). Now π−1
B (pB) is very easy to describe.

It is isomorphic to the generic fiber of the special formal scheme

(5.2) Spf
(
k◦[[T0, . . . , Tde , Sde+1, . . . , Sn]]/(T0 · · ·Tde − a′)

)
.

For i ∈ Ie, let Ai be the generic fiber of the special formal scheme

Spf
(
k◦[[Ti, T ′]]/(Ti · T ′ − a′)

)
,

and let ci denote the morphism of k-analytic spaces

π−1
B (pB)→ Ai

induced by the homomorphism of algebras

k◦[[Ti, T ′]]/(Ti · T ′ − a) −→ k[[T0, . . . , Tde , Sde+1, . . . , Sn]]/(T0 · · ·Tde − a′),

which takes

Ti 7−→ Ti

T ′ 7−→ T0 · · · T̂i · · ·Tde .

Lemma 5.8. — Let gi = ci◦φη◦f|A : A→ Ai, and let g∗i : H1
ét
(
Ai,Q`

)
→

H1
ét
(
A,Q`

)
be the induced homomorphism of étale cohomology groups.

Then w̃iA = g∗i (1) ∈ Q` for all i ∈ Ie.

Proof. — It follows from [4] Lemma 6.2.5 that the winding numbers in
terms of étale cohomology equals exactly the numbers mi in Eq. (5.1). �
Our next step is to relate the tropical weight vectors to vanishing cycles.

Since our tropical weight vectors are defined using étale cohomology with
Q`-coefficients, we shall take the inverse limit over ν for all our reasonings
in Sections 3 and 4. By abuse of notation, we will just replace Λ by Q`,
although it should be understood that the inverse limit is taken in the last
step rather than from the beginning.
Let v, Iv, V

s0...sdv
Iv

, j be as in Section 4. Let A, φ : U → B, p ∈ Us be
as before. Denote V := V

s0...sdv
Iv

for simplicity. We assume that f(A) ⊂
τ−1(V ). By Theorem 4.3, we have

H1
ét
(
τ−1(V )× k̂s,Q`

)
' R1Γ

(
j∗RΨQ`,Xη

)
.

Lemma 5.9. — We have an isomorphism

(5.3) R1Γ
(
j∗pRΨQ`,Uη

) ∼−→ H1
ét

((
τ−1(V ) ∩ π−1

U (p)
)
× k̂s,Q`

)
.
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Proof. — By [6], we have

(5.4) R1Γ
(
j∗pRΨQ`,Uη

) ∼−→ H1
ét
(
π−1
U (p)× k̂s,Q`

)
.

Using the isomorphism π−1
U (p) ' π−1

B (pB) and the explicit description
of π−1

B (pB) in Eq. (5.2), the same arguments as in the proof of Theorem
4.3 give an isomorphism

(5.5) H1
ét

((
τ−1(V ) ∩ π−1

U (p)
)
× k̂s,Q`

)
∼−→ H1

ét

(
π−1
U (p)× k̂s,Q`

)
.

Now our lemma follows from (5.4) and (5.5). �

Now assume that v is an endpoint of the edge e. Let J := JIv (see Eq.
(2.2)). Since Ie ⊂ J , by Lemma 5.4, the weight vector w̃A is an element in
Ker

(
ZJ Σ−→ Z

)
. Using the natural inclusion Ker(ZJ Σ−→ Z) ↪−→ Ker(QJ`

Σ−→
Q`
)
, the weight vector w̃A induces a map

w̃∗A : Coker
(
Q ∆−→ QJ

)
−→ Q`.

Proposition 5.10. — We have the following commutative diagram

R1Γ
(
j∗RΨQ`,Xη

)
R1Γ

(
j∗RΦQ`,Xη

)
Coker

(
Q`

∆−→ QJ`
)
(−1)

H1
ét
(
τ−1(V )× k̂s,Q`

)
H1

ét
(
A,Q`

)
Q`(−1).

β∗

∼

∼

w̃∗A
f∗|A ∼

Proof. — In order to simplify notation, let us temporarily denote

Ṽ = τ−1(V )× k̂s,

Ṽp =
(
τ−1(V ) ∩ π−1

U (p)
)
× k̂s,

Q[Ie]
` = Coker

(
Q`

∆−→ QIe` ),

Q[J]
` = Coker

(
Q`

∆−→ QJ` ).

Let jp denote the inclusion {p} ↪→ Us. By the description of the point p
in the proof of Lemma 5.7, we have

(5.6) R1Γ
(
j∗pRΨQ`,Uη

) ∼−→ R1Γ
(
j∗pRΦQ`,Uη

) ∼−→ Coker
(
Q`

∆−→ QIe` )(−1).

Combining (5.6) and (5.3), we have isomorphisms

H1
ét
(
Ṽp,Q`

) ∼←− R1Γ
(
j∗pRΨQ`,Uη

) ∼−→ R1Γ
(
j∗pRΦQ`,Uη

) ∼−→ Q[Ie]
` (−1).
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Then the following commutative diagram follows from the cohomological
interpretations of tropical weight vectors (Lemma 5.8).

(5.7)
R1Γ

(
j∗pRΨQ`,Uη

)
R1Γ

(
j∗pRΦQ`,Uη

)
Q[Ie]
` (−1)

H1
ét
(
Ṽp,Q`

)
H1

ét
(
A,Q`

)
Q`(−1).

∼

∼

∼

w̃∗A
f∗|A ∼

We conclude by the functoriality of the formation of vanishing cycles, i.e.
the following commutative diagram:

H1
ét
(
Ṽ ,Q`

)
R1Γ

(
j∗RΨQ`,Xη

)
R1Γ

(
j∗RΦQ`,Xη

)
Q[J]
` (−1)

H1
ét
(
Ṽp,Q`

)
R1Γ

(
j∗pRΨQ`,Uη

)
R1Γ

(
j∗pRΦQ`,Uη

)
Q[Ie]
` (−1).

∼ β∗ ∼

∼ ∼ ∼

�

Remark 5.11. — Intuitively, Proposition 5.10 says that the image of the
annulus A under the morphism f can only go around vanishing cycles in
τ−1(V ) rather than arbitrary homology cycles.

6. Balancing condition in terms of étale cohomology

We use the settings in Section 1. The aim of this section is to prove the
following theorem.

Theorem 6.1. — Let σv denote the sum of weight vectors around the
vertex v as in (1.2). Let J := JIv as in Section 5. Then σv lies in the image
of the following map:

α` : H2(dimDIv−1)
ét

(
DIv ×k̃ Spec k̃s,Q`

)
(dimDIv − 1) −→ Ker

(
QJ`

Σ−→ Q`
)

L 7−→
(
L · Lj , j ∈ J

)
where α` is dual to the map α∗ in Corollary 3.2 for Q` coefficients.

We begin with a simple observation.

Lemma 6.2. — For any extension k ⊂ k′ of non-archimedean fields, if
we apply extension of ground fields to Xη and to the map f : C → Xη, the
skeleton SX and the tropical curve Ct remains unchanged.
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We assume that our tropical curve Ct is already subdivided according
to Proposition 5.1. We choose a sufficiently small convex neighborhood V
of v inside SX which does not contain any other vertex of Ct. We further
require that V is of the form (4.1). This can be achieved by making a finite
extension of our field k.

Lemma 6.3. — Let k′ be a separably closed non-archimedean field, C◦
a connected compact quasi-smooth k′-analytic curve, and let b1, . . . , bm
be the boundary points of C◦. We assume that there are neighborhoods
A1, . . . , Am of b1, . . . , bm which are pairwise disjoint and are isomorphic to
annuli. Let A =

∐
Ai and let ιb denote the inclusion A ↪→ C◦. Then the

composition Σ ◦ ι∗b

H1
ét(C◦,Q`)(1) ι∗b−→ H1

ét(A,Q`)(1) ' Qm`
Σ−→ Q`

is zero, where Σ denotes the sum.

Proof. — By gluing discs onto b1, . . . , bm, we embed C◦ into a proper
smooth k′-analytic curve, which we denote by Ĉ◦. Let z1, . . . , zm be the
centers of the discs, and let Z =

∐m
i=1 zi. Now the lemma follows from the

Gysin exact sequence

0→ H1
ét(Ĉ◦,Q`)(1)→ H1

ét(C◦,Q`)(1)→ H0
ét(Z,Q`)

→ H2
ét(Ĉ◦,Q`)(1) ' Q` → · · · .

�

Let r be a positive real number. Let

V r =
{
x ∈ V ⊂ SX ⊂ RIX

∣∣ dist(x, V c) > r
}
,

where dist denotes the standard Euclidean metric in RIX and V c denotes
the complement of V in SX. Put V b = V \ V r, C◦ = (τ ◦ f)−1(V ), Cb =
(τ ◦ f)−1(V b), ιb : Cb ↪→ C◦. We choose r sufficiently small, such that Cb
does not contain any vertices of Ct. For each segment e in Ct∩V b, we choose
the orientation of e to be the one that points away from v. The definition of
tropical weight vectors in Section 5 gives an element w̃e ∈ Ker

(
ZJ

Σ−→ Z
)
,

which induces a map

w̃∗e : Coker
(
Q`

∆−→ QJ`
)
−→ Q`.

Then σv is the sum of w̃e over all segments e in Ct ∩ V b. It induces a map

σ∗v : Coker
(
Q`

∆−→ QJ`
)
−→ Q`.
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By Proposition 5.10, we have a commutative diagram
(6.1)

R1Γ
(
j∗RΨQ`,Xη

)
R1Γ

(
j∗RΦQ`,Xη

)
Coker

(
Q`

∆−→ QJ`
)
(−1)

H1
ét(τ−1(V )× k̂s,Q`) H1

ét(Cb,Q`) Q`(−1),

β∗

∼

∼

σ∗v
f∗
|Cb Σ

where the bottom row factorizes as

H1
ét(τ−1(V )× k̂s,Q`)

f∗|C◦−−−→ H1
ét(C◦,Q`)

ι∗b−→ H1
ét(Cb,Q`)

Σ−→ Q`(−1).

By Lemma 6.3, we have Σ◦ ι∗b = 0. By the commutativity of (6.1), we have

(6.2) σ∗v ◦ β∗ = 0.

By (3.3), we have a long exact sequence
(6.3)
· · · → R1Γ(j∗RΨQ`,Xη ) β∗−→ R1Γ

(
j∗RΦQ`,Xη

) α∗−−→ R2Γ(j∗Q`,Xs)→ · · · .

Combining (6.2) and the exactness of (6.3), we have proved that the sum
σv of weight vectors lies in the image of the map α`.

7. From cohomological classes to algebraic cycles

The passage from Theorem 6.1 to Theorem 1.1 is a simple application
of the standard conjectures on algebraic cycles, which is easy to prove in
codimension one. More precisely, for divisors with rational coefficients in
a projective variety, Matsusaka [16] proved that numerical equivalence im-
plies algebraic equivalence. So in particular, numerical equivalence implies
homological equivalence.

Let us suppose that Im(αQ) ⊂ QIX is contained in a hyperplane given by
f = 0. Let xi, i ∈ IX be the coordinates on QIX and write f as

∑
i∈IX aixi,

for some ai ∈ Q. The fact that Im(αQ) is contained in the hyperplane
f = 0 implies that the Q-divisor

∑
i∈IX aiLi is numerically equivalent to

0, it is thus homologically equivalent to 0. Therefore, the image Im(α`) in
Theorem 6.1 is also contained in the hyperplane in QIX` defined by the same
equation f = 0. To conclude, we have shown that ImαQ ⊗Q` ' Imα`. So
we have deduced Theorem 1.1 from Theorem 6.1.
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