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UNIQUE CONTINUATION FOR QUASIMODES ON
SURFACES OF REVOLUTION: ROTATIONALLY

INVARIANT NEIGHBOURHOODS

by Hans CHRISTIANSON (*)

Abstract. — We introduce the definition of irreducible quasimodes, which
are quasimodes with h-wavefront sets living on the smallest invariant sets in phase
space. We prove a strong conditional unique continuation estimate for these quasi-
modes in rotationally invariant neighbourhoods on compact surfaces of revolution.
The estimate states that irreducible Laplace quasimodes have L2 mass bounded
below by Cελ−1−ε for any ε > 0 on any open rotationally invariant neighbourhood
which meets the semiclassical wavefront set of the quasimode. For an analytic man-
ifold, we conclude the same estimate with a lower bound of Cδλ

−1+δ for some fixed
δ > 0.
Résumé. — Nous introduisons la définition de quasimodes irréductibles, qui

sont des quasimodes du laplacien dont les h-front d’onde est localisé sur les en-
sembles invariants minimaux de l’espace des phases. Nous prouvons une estima-
tion de prolongement unique conditionnelle pour ces quasimodes sur les ensembles
invariants par rotation des surfaces compactes de révolution. L’estimée affirme que
les quasimodes ont une norme L2 minorée par Cελ−1−ε pour tout ε > 0 et sur tout
ensemble ouvert invariant par rotation qui intersecte le front d’onde semi-classique
du quasimode. Si la surface est analytique, nous obtenons la même estimation
minorée par Cδλ

−1+δ pour δ > 0 fixe.

1. Introduction

We consider a compact periodic surface of revolution X = S1
x × S1

θ,
equipped with a metric of the form

ds2 = dx2 +A2(x)dθ2,

Keywords: Unique continuation, quasimode, irreducible quasimode, surface of revolution.
Math. classification: 35P20, 35B60, 58J50.
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1618 Hans CHRISTIANSON

where A ∈ C∞ is a smooth function, A > ε > 0. Our analysis is microlocal,
so applies also to any compact surface of revolution with no boundary, and
to certain surfaces of revolution with boundary under mild assumptions,
however we will concentrate on the toral case for ease of exposition.
From such a metric, we get the volume form

dVol = A(x)dxdθ,

and the Laplace-Beltrami operator acting on 0-forms

∆f = (∂2
x +A−2∂2

θ +A−1A′∂x)f.

We are concerned with quasimodes, which are the building blocks from
which eigenfunctions are made, however we need to define the most basic
kind of quasimodes, which we will call irreducible quasimodes. The very
rough idea in this definition is that the quasimode cannot be decomposed as
a sum of two or more nontrivial quasimodes. However, we will use a slightly
weaker definition than this (see Section 2.3 for more on this distinction).
Quasimodes are known to live in phase space on sets which are invariant

under the geodesic flow. For a two dimensional surface of revolution, the
classical flow is completely integrable. Quasimodes can live on invariant
tori, but they can also live on degenerate sets of higher codimension (for
example, a periodic geodesic). This paper is primarily concerned with un-
derstanding how quasimodes are concentrated as invariant sets degenerate
from tori into lower dimensional sets. Our definition must distinguish be-
tween these different types of sets. To make our definition, we recall first
that the geodesic flow on T ∗X is the Hamiltonian system associated to the
principal symbol of the Laplace-Beltrami operator:

p(x, ξ, θ, η) = ξ2 +A−2(x)η2.

A fixed energy level p = const. consists of all the geodesics of that constant
“speed”. For the case of the geodesic Hamiltonian system on T ∗X, there
are two conserved quantities, the total energy and the angular momentum
η2. The moment map is the map sending points of T ∗X to their associated
conserved quantities, that is

M(x, ξ, θ, η) =
(
ξ2 +A−2(x)η2

η2

)
.

When the gradient of M has rank 2, then M defines a submersion, so each
connected component of the preimage is a 2-manifold; a Liouville torus.
Points in T ∗X where M has rank 1 or 0 are called critical points, and
points (P,Q) ∈ R2 such that {M = (P,Q)} contains critical points are
called critical values.

ANNALES DE L’INSTITUT FOURIER
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If M has rank 0, then the total energy p = 0. At points where M has
rank 1 there are two possibilities. The first is η = 0 and ξ 6= 0, where there
is uniform lateral propagation. The second possibility is ξ = 0, A′(x) = 0
but η 6= 0. These critical points have no lateral propagation but do have an-
gular momentum, so correspond to longitudinal periodic geodesics. These
longitudinal periodic geodesics can also carry quasimode mass, and critical
values have preimages which may have infinitely many longitudinal peri-
odic geodesics, if A′ ≡ 0 in some neighbourhood. One way to measure the
localization of quasimodes in phase space is by describing their semiclas-
sical wavefront set. Roughly speaking, the semiclassical wavefront set is
where a function is non-trivial in phase space (i.e. roughly the complement
of the set where the quasimode is O(λ−∞)). See Section 2.1 below for a
brief review, or [12] for a comprehensive overview of semiclassical analysis.
The semiclassical wavefront set is always a closed invariant subset of the
energy surface, so our definition of irreducible quasimode will be one which
has wavefront mass confined to the closure of one of these two kinds of sets,
distinguished by rank of M .

Definition 1.1. — A graded quasimode is a quasimode whose semi-
classical wavefront set is contained in a set where M has constant rank.

An irreducible quasimode is a graded quasimode whose semiclassical
wavefront set is contained in the closure of a single connected component
of a level set of M in T ∗X.

In Section 2.3 we discuss how this definition is related to a more intuitive,
but more restrictive definition.

We also will require a limit on the geodesic complexity by assuming
there are only a finite number of connected regions of longitudinal periodic
geodesics. This will not preclude having infinitely many periodic longitudi-
nal geodesics, but merely having accumulation points of connected compo-
nents of longitudinal geodesics. We therefore will assume that the moment
map has a finite number of critical values, each of which has a preimage of
finitely many non-empty connected components. Note this allows intervals
of longitudinal periodic geodesics, but does not allow accumulation of such
sets. For an example, see Figure 1.1.

Finally, we will require a certain 0-Gevrey regularity on the manifold,
which in a sense says our manifold is not too far from being analytic.
Such a 0-Gevrey assumption nevertheless allows for non-trivial functions
which are constant on intervals, so this is a very general class of manifolds.
Of course this includes analytic manifolds, for which we have a stronger
estimate. See Subsection 2.2 for the precise definitions.

TOME 65 (2015), FASCICULE 4
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Figure 1.1. A surface of revolution with many longitudinal periodic

geodesics, corresponding to critical points of the generating curve A(x).

Below is the reduced phase space (at a fixed angular momentum).

The longitudinal geodesics are where A′(x) = ξ = 0, or where the

Hamiltonian flow in the reduced phase space is stationary.

‖u‖ = 1 and

(−Δ− λ2)u = O(λ−β0),

for some fixed β0 > 0. Let Ω ⊂ X be a rotationally invariant neigh-

bournood, Ω = (a, b)x × S1θ. Then either

(1)

‖u‖L2(Ω) = O(λ−∞),

or

(2) for any ε > 0, there exists C = Cε,Ω,β0
> 0 such that

(1.1) ‖u‖L2(Ω) � Cλ−1−ε.

In the analytic category, we have a significant improvement. Of course

in the case of an analytic manifold, there can be no infinitely degenerate

critical elements, nor can there be any accumulation points of sets of lon-

gitudinal periodic geodesics, so we do not need to make the assumption

about finite geodesic complexity.

Corollary 1.2. — Let X be as above, and assume X is analytic. Sup-

pose u is a (weak) irreducible quasimode satisfying ‖u‖ = 1 and

(−Δ− λ2)u = O(1).

Then for any open rotationally invariant neighbourhood Ω ⊂ X, either
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Figure 1.1. A surface of revolution with many longitudinal periodic
geodesics, corresponding to critical points of the generating curveA(x).
Below is the reduced phase space (at a fixed angular momentum).
The longitudinal geodesics are where A′(x) = ξ = 0, or where the
Hamiltonian flow in the reduced phase space is stationary.

Theorem 1.2. — Let X be as above, for a generating curve in the 0-
Gevrey class A(x) ∈ G0

τ (R) for some τ <∞. Assume the moment map has
finitely many critical values, with preimages consisting of finitely many con-
nected components. Suppose u is a (weak) irreducible quasimode satisfying
‖u‖ = 1 and

(−∆− λ2)u = O(λ−β0),
for some fixed β0 > 0. Let Ω ⊂ X be a rotationally invariant neigh-
bournood, Ω = (a, b)x × S1

θ. Then either
(1)

‖u‖L2(Ω) = O(λ−∞),
or

(2) for any ε > 0, there exists C = Cε,Ω,β0 > 0 such that

(1.1) ‖u‖L2(Ω) > Cλ−1−ε.

In the analytic category, we have a significant improvement. Of course
in the case of an analytic manifold, there can be no infinitely degenerate
critical elements, nor can there be any accumulation points of sets of lon-
gitudinal periodic geodesics, so we do not need to make the assumption
about finite geodesic complexity.

ANNALES DE L’INSTITUT FOURIER
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Corollary 1.3. — Let X be as above, and assume X is analytic. Sup-
pose u is a (weak) irreducible quasimode satisfying ‖u‖ = 1 and

(−∆− λ2)u = O(1).

Then for any open rotationally invariant neighbourhood Ω ⊂ X, either
(1)

‖u‖L2(Ω) = O(λ−∞),

or
(2) there exists a fixed δ > 0 and a constant C = CΩ > 0 such that

‖u‖L2(Ω) > Cλ−1+δ.

Remark 1.4. — The δ > 0 appearing in Corollary 1.3 can be computed
explicitly. The proof of both Theorem 1.2 and Corollary 1.3 proceed by sep-
arating variables to reduce to a one dimensional semiclassical Schrödinger
operator, and then describing the behaviour of quasimodes near cricital
points of the potential. For an analytic manifold, there are necessarily
finitely many critical points of finite degeneracy. If 2m is the maximum
degeneracy of the local maxima, and 2m2 + 1 is the maximum degeneracy
of the inflection points, then

δ = min
{

2
m+ 1 ,

4
2m2 + 3

}
.

In the case of one non-degenerate maximum (m = 1) and no inflection
points, the lower bound is 1/ log(λ), which was already known in much
greater generality [3, 5, 6].
The spectral estimates for finitely degenerate critical points are all sharp,

so the lower bounds for a particular analytic manifold are also sharp.

Remark 1.5. — The assumption that Ω ⊂ X is a rotationally invariant
neighbourhood of the form Ω = (a, b)x × S1

θ is necessary for this level of
generality. See Section 2.3 for an example illustrating this point.

2. Preliminaries

In this section we review some of the definitions and preliminary compu-
tations necessary for Theorem 1.2, as well as recall the spectral estimates
we will be using.

TOME 65 (2015), FASCICULE 4
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2.1. A brief review of semiclassical analysis

We collect for future reference a brief review of the standard symbol
classes and corresponding pseudodifferential operators used later on (see
also [12, Section 4.4]). Throughout this subsection, let X be a compact
Riemannian manifold without boundary. We denote x ∈ X and (x, ξ) ∈
T ∗X as variables on the manifold and the cotangent bundle respectively.

The standard homogeneous symbol spaces that are relevant here are

Smρ,δ(T ∗X)

= {a(x, ξ) ∈ C∞(T ∗X \ 0); |∂αx ∂
β
ξ a(x, ξ)| = Oα,β(〈ξ〉m−ρ|α|+δ|β|), }(2.1)

with 1 > ρ > δ. As for the semiclassical symbols, the relevant symbol
classes for our purposes are

Sm,kcl (T ∗X × (0, h0]) = {a(x, ξ;h) ∈ C∞(T ∗X × (0, h0]);(2.2)

a(x, ξ;h) ∼
∞∑
j=0

am−j(x, ξ)h−m+j , am−j ∈ Sk0,0},

Smδ (T ∗X × (0, h0])(2.3)
= {a(x, ξ;h) ∈ C∞(T ∗X × (0, h0]);

|∂αx ∂
β
ξ a| = Oα,β(h−mh−δ(|α|+|β|)〈ξ〉−∞)},

with δ ∈ [0, 1/2]. Consequently, the semiclassical symbol classes Smδ are
most relevant. In the special case where δ = 0,

Sm0 (T ∗X × (0, h0])

= {a ∈ C∞(T ∗X × (0, h0]); |∂αx ∂
β
ξ a| = Oα,β(h−m〈ξ〉−∞)}.

When the context is clear, we sometimes just write Smδ instead of Smδ (T ∗X×
(0, h0]). The case where δ = 0 is sometimes denoted by Sm(1) in the liter-
ature.
The corresponding h-Weyl pseudodifferential operators have Schwartz

kernels that are sums of the local integrals of the form

(2.4) Opwh (a)(x, y) = (2πh)−n
∫
Rn
ei〈x−y,ξ〉/ha

(
x+ y

2 , ξ;h
)
dξ.

We will use Opwh (a), awh and aw(x, hDx) interchangeably to denote h-Weyl
quantizations of a(x, ξ;h) since each has its advantages. We write Ψm

δ for
the algebra of semiclassical operators so quantized. It is standard that for
a ∈ Sm1,k1

cl , b ∈ Sm2,k2
cl ,

aw(x, hDx) ◦ bw(x, hDx) = eihσ(Dx,Dξ,Dy,Dη)/2a(x, ξ)b(y, η)|y=x,η=ξ

ANNALES DE L’INSTITUT FOURIER
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= cw(x, hDx) ∈ Opwh (Sm1+m2,k1+k2
cl (T ∗X))

with c(x, ξ;h) = a(x, ξ;h)#b(x, ξ;h) and σ(x, ξ, y, η) = yξ − xη. Similarily,
for a ∈ Sm1

δ , b ∈ Sm2
δ with δ ∈ [0, 1/2),

aw(x, hDx) ◦ bw(x, hDx) = cw(x, hDx) ∈ Opwh (Sm1+m2
δ (T ∗X))

with c(x, ξ;h) = a(x, ξ;h)#b(x, ξ;h).
We recall the definition of semiclassical wavefront set, which measures

where in phase space a distribution is nontrivial. Let u(h), 0 < h 6 h0 be a
family of h-tempered distributions. The semiclassical wavefront set of u(h)
is defined by its complement:

WFh(u) = {{(x, ξ) ∈ T ∗X : ∃a ∈ S0
0 with a(x, ξ) 6= 0

and ‖awu‖Hk(X) = O(h∞)}

for every Sobolev space Hk, k > 0.
The key facts to remember about the h-wavefront set are that it is a

closed subset of T ∗X and it is not increased by application of pseudodiffer-
ential operators. Further, suppose u is a family of quasimodes for an elliptic
pseudodifferential operator

(P − z)u = f,

for z ∼ 1 and f ∈ L2. Then, if p is the principal symbol of P and ∂p 6= 0 on
{p = z}, then propagation of singularities (see Lemma 3.2 below) implies
that WFh(u) \WFh(f) is invariant under the Hamiltonian flow of p. In
particular, WFh(u) ⊂WFh(f) ∪ {p = z}.

Since eigenfunctions and quasimodes have compact h-wavefront sets (see
for example [12, Section 8.4]) we are interested here in only the case where
the ξ variables are in a compact set. Hence it is the algebra Oph(S∗δ ) that
is most relevant here.

2.2. The 0-Gevrey class of functions

For this paper, we use the following 0-Gevrey classes of functions with
respect to order of vanishing, introduced in [2].

Definition 2.1. — For 0 6 τ < ∞, let G0
τ (R) be the set of all smooth

functions f : R → R such that, for each x0 ∈ R, there exists a neighbour-
hood U 3 x0 and a constant C such that, for all 0 6 s 6 k,

|∂kxf(x)− ∂kxf(x0)| 6 C(k!)C |x− x0|−τ(k−s)|∂sxf(x)− ∂sxf(x0)|,

as x→ x0 in U .

TOME 65 (2015), FASCICULE 4
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This definition says that the order of vanishing of derivatives of a function
is only polynomially worse than that of lower derivatives. Every analytic
function is in one of the 0-Gevrey classes G0

τ for some τ < ∞, but many
more functions are as well. For example, the function

f(x) =
{

exp(−1/xp), for x > 0,
0, for x 6 0

is in G0
p+1, but

f(x) =
{

exp(− exp(1/x)), for x > 0,
0, for x 6 0

is not in any 0-Gevrey class for finite τ .

2.3. On the definition of “irreducible quasimode”

There is a more intuitive but more restrictive definition of irreducible
quasimode, which may be useful in other situations. In this section we dis-
cuss this other definition and show it is strictly stronger than the definition
we have chosen.

The intuitive definition says that a reducible quasimode is one which
can be broken up as a sum of two nontrivial quasimodes. We will call this
strong irreducibility.

Definition 2.2. — Let u be a quasimode satisfying

(−∆− λ2)u = O(λ−β0)‖u‖

for some β0 > 0. Assume ‖u‖ = 1. We say u is (strongly) reducible if there
exist pseudodifferential operators B1, B2 ∈ Ψ0 such that (B1 + B2)u =
u+O(λ−β0), B1B2 = O(λ−∞),

(−∆− λ2)Bju = OBj (λ−β0)‖Bju‖,

for j = 1, 2, and
min {‖B1u‖, ‖B2u‖} > λ−N

for some N < ∞. Here β0 > 0 is the order of the quasimode as in the
introduction.

We now show that in our situation, the notion of irreducible defined in
Definition 2.2 is strictly stronger than that in Definition 1.1.

ANNALES DE L’INSTITUT FOURIER
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Proposition 2.3. — Suppose u is a strongly irreducible quasimode as
in Definition 2.2. Then u is an irreducible quasimode as defined in Definition
1.1.

Proof. — This is equivalent to showing reducibility in Definition 1.1 im-
plies strong reducibility In Definition 2.2. If u is a reducible quasimode
according to Definition 1.1, then u has semiclassical wavefront set on the
closures of at least two different connected components of a level set of
M in T ∗X where M has constant rank. Let K1,K2 be two distinct sets
carrying wavefront mass of u. This means that K1 and K2 are the closures
of flow invariant sets. The Hamiltonian flow preserves the total energy p
and the angular momentum η, so K1 and K2 lie in level sets of both, that
is, a level set of the moment map.
First, suppose K1 and K2 lie in different level sets of the moment map.

That means they have either different energy p or different angular mo-
menta η (or both). Suppose K1 has angular momentum η1 and K2 has
angular momentum η2 6= η1. Then one can construct a microlocal partition
of unity B1+B2 as functions of η alone, localizing near η1 or η2 respectively.
As the Bj , j = 1, 2 are functions of η alone, their quantizations commute
with −∆, which shows u is strongly irreducible.

If the two sets belong to the same energy and angular momentum, then
they are closed connected components in a compact set in T ∗X, hence
compact. Either K1 ∩ K2 6= ∅ or K1 ∩ K2 = ∅. In the latter case, there
is a positive distance between K1 and K2 so again a microlocal partition
of unity B1 + B2 is easy to construct. If K1 ∩ K2 6= ∅, since the angular
momentum is the same, both sets project into the same reduced phase
space in the (x, ξ) variables (for an example, see Figure 1.1). Let η0 be the
angular momentum of K1 and K2, and let π : {(x, ξ, θ, η0)} → {(x, ξ)} be
the projection, and let K̃j = π(Kj) for j = 1, 2 be the projections. Since
the Kj are flow invariant in T ∗X, the K̃j are flow invariant in the reduced
(x, ξ) phase space, and K̃1 ∩ K̃2 6= ∅ as well. Then either K̃1 = K̃2 (since
they are flow invariant), or they intersect at a point p where the rank of
M changes. For fixed η0, the rank of M changes when moving from sets
where A′(x) = 0 to sets where A′(x) 6= 0. Either there exists a partition of
unity as in the definition of strong reducibility 2.2, or for every b ∈ S0

0 with
b(p) 6= 0, bwu is nontrivial. But then u has h-wavefront set both at p and
where the rank of M is larger. Hence u was not a graded quasimode. �

On the other hand, there are quasimodes which can be decomposed as a
sum of nontrivial quasimodes which are nevertheless irreducible according

TOME 65 (2015), FASCICULE 4
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to Definition 1.1. This also explains why our main theorem requires a rota-
tionally invariant neighbourhood. Consider the case where X has part of a
2-sphere embedded in it. The longitudinal geodesic at the thickest part is
elliptic, in the sense of being stable as a dynamical system. In particular,
there are many periodic geodesics close to the longitudinal one. Select a
stable periodic geodesic near the longitudinal one, for example a great cir-
cle on the spherical part transversal to the longitudinal periodic geodesic.
Call this geodesic γ0. By rotating γ0 by a fixed angle α in the θ direction,
a continuous family γα of distinct stable periodic geodesics is obtained (see
Figure 2.1) without changing the angular momentum. Each one of these is
elliptic and can carry a Gaussian beam type quasimode (see, for example,
[6] and the references therein). That means there is a continuous family
(one for each 0 6 α < 2π) of quasimodes, with each quasimode highly
concentrated on a single elliptic periodic geodesic. Hence one can create
an irreducible quasimode as a continuous superposition of these Gaussian
beams. That is, for each angle α, there is a Gaussian beam quasimode as-
sociated to the periodic geodesic rotated around the sphere by angle α, say
uα(x, θ). The function uα has wavefront set confined to (the lift of) this
single periodic geodesic. We take a superposition of such quasimodes. Let
f(α) be a continuous positive function; f represents the profile of weight
for each quasimode uα, and can be chosen to be small or large wherever
we choose. Then the function

u(x, θ) =
∫ 2π

0
f(α)uα(x, θ)dα

is also a quasimode, and can have mass in “bands” with arbitrary weight,
according to the profile function f . These resulting bands of quasimodes
need not have nontrivial mass except in a rotationally invariant neighbour-
hood, which will automatically see the tallest of the profile function f . See
Figure 2.1.

2.4. Conjugation to a flat problem

We observe that we can conjugate ∆ by an isometry of metric spaces
and separate variables so that spectral analysis of ∆ is equivalent to a
one-variable semiclassical problem with potential. That is, let

T : L2(X, dVol)→ L2(X, dxdθ)

be the isometry given by

Tu(x, θ) = A1/2(x)u(x, θ).

ANNALES DE L’INSTITUT FOURIER
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γα

θ

U

V

γ0

Figure 2.1. A surface of revolution with a piece of S2 embedded. Also

sketched are two “isoenergetic” periodic geodesics γ0 and γα, which are

rotations of each other by a fixed angle α in the θ direction. One can

construct pathological quasimodes which are continuous, compactly

supported superpositions of isoenergetic quasimodes associated to such

geodesics. The neighbourhood U is not rotationally invariant, hence

may not see the full L2 mass of this superposition. On the other hand,

the neighbourhood V is rotationally invariant, so passes through every

γα. In other words, V must see the full L2 mass of this superposition.

Then Δ̃ = TΔT−1 is essentially self-adjoint on L2(X, dxdθ). A simple

calculation gives

−Δ̃f = (−∂2x −A−2(x)∂2θ + V1(x))f,

where the potential

V1(x) =
1

2
A′′A−1 − 1

4
(A′)2A−2.

If we now separate variables and write ψ(x, θ) =
∑

k ϕk(x)e
ikθ, we see

that

(−Δ̃− λ2)ψ =
∑

k

eikθPkϕk(x),

where

Pkϕk(x) =

(
− d2

dx2
+ k2A−2(x) + V1(x)− λ2

)
ϕk(x).

SUBMITTED ARTICLE : EF-SURF-REV.TEX

Figure 2.1. A surface of revolution with a piece of S2 embedded. Also
sketched are two “isoenergetic” periodic geodesics γ0 and γα, which are
rotations of each other by a fixed angle α in the θ direction. One can
construct pathological quasimodes which are continuous, compactly
supported superpositions of isoenergetic quasimodes associated to such
geodesics. The neighbourhood U is not rotationally invariant, hence
may not see the full L2 mass of this superposition. On the other hand,
the neighbourhood V is rotationally invariant, so passes through every
γα. In other words, V must see the full L2 mass of this superposition.

Then ∆̃ = T∆T−1 is essentially self-adjoint on L2(X, dxdθ). A simple
calculation gives

−∆̃f = (−∂2
x −A−2(x)∂2

θ + V1(x))f,

where the potential

V1(x) = 1
2A
′′A−1 − 1

4(A′)2A−2.

If we now separate variables and write ψ(x, θ) =
∑
k ϕk(x)eikθ, we see

that
(−∆̃− λ2)ψ =

∑
k

eikθPkϕk(x),

where
Pkϕk(x) =

(
− d2

dx2 + k2A−2(x) + V1(x)− λ2
)
ϕk(x).
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Setting h = |k|−1 and rescaling, we have the semiclassical operator

(2.5) P (z, h)ϕ(x) =
(
−h2 d

2

dx2 + V (x)− z
)
ϕ(x),

where the potential is

V (x) = A−2(x) + h2V1(x)

and the spectral parameter is z = h2λ2. In Section 3 we will at first let
h = λ−1 be our semiclassical parameter for the whole quasimode, but then
switch to h = |k|−1 to estimate the parts of the quasimode microsupported
where the critical elements are located. The relevant microlocal estimates
near critical elements are summarized in the following Subsection.

2.5. Spectral estimates for weakly unstable critical sets

In this subsection we summarize the spectral estimates we will use for
weakly unstable critical elements obtained in [3, 5, 6, 8, 7, 2].

Definition 2.4. — Let (P,Q) be a critical value of the moment map.
Then there are points in M−1(P,Q) where the moment map has rank 1
(or 0, but these points are easy to handle (see below)). For these points,
there are longitudinal periodic geodesics. If the principal part of the po-
tential, A−2(x), for the reduced Hamiltonian ξ2 +A−2(x) has an “honest”
minimum at x0 in the sense that if [a, b] is the maximal closed interval
containing x0 with A−2(x) = A−2(x0) on it, then (A−2)′ < 0 for x < a in
some small neighbourhood, and (A−2)′ > 0 for x > b in some other small
neighbourhood, then we say this critical element is weakly stable. In all
other cases, we say the critical element is weakly unstable.

In the following subsections, we review the microlocal estimates from
[2] for weakly unstable critical elements. Taken together, they imply the
following theorem.

Theorem 2.5. — Let Λ be a weakly unstable critical element in the
reduced phase space T ∗S1

x, and assume u has h-wavefront set sufficiently
close to Λ. Then for any η > 0, there exists C = Cη such that

‖u‖ 6 Ch−2−η‖((hD)2 + V (x)− z)u‖,

for any z ∈ R.
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Remark 2.6. — We observe that the set Λ is a subset of a fixed energy
for the semiclassical principal symbol Λ ⊂ {p = ξ2 +V (x) = E}. For values
of z far from E, (hD)2 + V (x) − z is microlocally elliptic on Λ, so the
estimate is trivial in that case. The interest then lies in values of z close
to E, which will range over critical values of the potential V (x). Hence the
microlocal spectral estimates catalogued below will be stated as valid in a
small spectral window near the values of V at a critical point of specific
type.

2.5.1. Unstable nondegenerate critical elements

A nondegenerate unstable critical element exists where the principal part
of the potential V0(x) = A−2(x) has a nondegenerate maximum. To say
that x = 0 is a nondegenerate maximum means that x = 0 is a critical
point of V0(x) satisfying V ′0(0) = 0, V ′′0 (0) < 0.
The following result as stated can be read off from [3, 6], and has also

been studied in slightly different contexts in [10, 11] and [1], amongst many
others.

Lemma 2.7. — Suppose x = 0 is a nondegenerate local maximum of the
principal part of the potential V0, V0(0) = 1. For ε > 0 sufficiently small,
let ϕ ∈ S(T ∗R) have compact support in {|(x, ξ)| 6 ε}. Then there exists
Cε > 0 such that

(2.6) ‖P (z, h)ϕwu‖ > Cε
h

log(1/h)‖ϕ
wu‖, z ∈ [1− ε, 1 + ε].

Remark 2.8. — This estimate is known to be sharp, in the sense that
the logarithmic loss cannot be improved (see, for example, [10]).

2.5.2. Unstable finitely degenerate critical elements

In this subsection, we consider an isolated critical point at an unstable
but finitely degenerate maximum. That is, we now assume that x = 0 is a
degenerate maximum for the function V0(x) = A−2(x) of orderm > 2. If we
again assume V0(0) = 1, then this means that near x = 0, V0(x) ∼ 1−x2m.
Critical points of this form were first studied in [8].
This Lemma and the proof are given in [8, Lemma 2.3].

Lemma 2.9. — For ε > 0 sufficiently small, let ϕ ∈ S(T ∗R) have com-
pact support in {|(x, ξ)| 6 ε}. Then there exists Cε > 0 such that

(2.7) ‖P (z, h)ϕwu‖ > Cεh2m/(m+1)‖ϕwu‖, z ∈ [1− ε, 1 + ε].
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Remark 2.10. — This estimate is known to be sharp, in the sense that
the exponent 2m/(m+ 1) cannot be improved (see [8]).

2.5.3. Finitely degenerate inflection transmission critical elements

We next study the case when the principal part of the potential has an
inflection point of finitely degenerate type. That is, let us assume the point
x = 0 is a finitely degenerate inflection point, so that locally near x = 0,
the potential V0(x) = A−2(x) takes the form

V0(x) ∼ 1− c2x2m2+1, m2 > 1

with c2 > 0. We remark that c2 could be negative as well without changing
the following estimate. This Lemma and the proof are in [7].

Lemma 2.11. — For ε > 0 sufficiently small, let ϕ ∈ S(T ∗R) have
compact support in {|(x, ξ)| 6 ε}. Then there exists Cε > 0 such that

(2.8) ‖P (z, h)ϕwu‖ > Cεh(4m2+2)/(2m2+3)‖ϕwu‖, z ∈ [1− ε, 1 + ε].

Remark 2.12. — This estimate is also known to be sharp in the sense
that the exponent (4m2 + 2)/(2m2 + 3) cannot be improved (see [7]).

2.5.4. Unstable infinitely degenerate and cylindrical critical elements

In this subsection, we study the case where the principal part of the
potential V (x) = A−2(x)+h2V1(x) has an infinitely degenerate maximum,
say, at the point x = 0. Let V0(x) = A−2(x). As usual, we again assume
that V0(0) = 1, so that

V0(x) = 1−O(x∞)

in a neighbourhood of x = 0. Of course this is not very precise, as V0 could
be constant in a neighbourhood of x = 0 and still satisfy this. So let us
first assume that V0(0) = 1, and V ′0(x) vanishes to infinite order at x = 0,
however, ±V ′0(x) < 0 for ±x > 0. That is, the critical point at x = 0 is
infinitely degenerate but isolated.

Lemma 2.13. — For ε > 0 sufficiently small, let ϕ ∈ S(T ∗R) have
compact support in {|(x, ξ)| 6 ε}. Then for any η > 0, there exists Cε,η > 0
such that

(2.9) ‖P (z, h)ϕwu‖ > Cε,ηh2+η‖ϕwu‖, z ∈ [1− ε, 1 + ε].
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For our next result, we consider the case where there is a whole interval
at a local maximum value. That is, we assume the principal part of the
effective potential V0(x) has a maximum V0(x) ≡ 1 on an interval, say
x ∈ [−a, a], and that ±V ′0(x) < 0 for ±x > a in some neighbourhood.

Lemma 2.14. — For ε > 0 sufficiently small, let ϕ ∈ S(T ∗R) have
compact support in {|x| 6 a+ ε, |ξ| 6 ε}. Then for any η > 0, there exists
Cε,η > 0 such that

(2.10) ‖P (z, h)ϕwu‖ > Cε,ηh2+η‖ϕwu‖, z ∈ [1− ε, 1 + ε].

2.5.5. Infinitely degenerate and cylindrical inflection transmission critical
elements

In this subsection, we assume the effective potential has a critical element
of infinitely degenerate or cylindrical inflection transmission type. This is
very similar to Subsection 2.5.4, but now the potential is assumed to be
monotonic in a neighbourhood of the critical value.

We begin with the case where the potential has an isolated infinitely
degenerate critical point of inflection transmission type. As in the previous
subsection, we write V (x) = A−2(x)+h2V1(x) and denote V0(x) = A−2(x)
to be the principal part of the potential. Let us assume the point x = 0
is an infinitely degenerate inflection point, so that locally near x = 0, the
potential takes the form

V0(x) ∼ 1− (x− 1)∞.

Let us assume that our potential satisfies V ′0(x) 6 0 near x = 0, with
V ′0(x) < 0 for x 6= 0 in some neighbourhood so that the critical point x = 0
is isolated.

Lemma 2.15. — For ε > 0 sufficiently small, let ϕ ∈ S(T ∗R) have
compact support in {|(x, ξ)| 6 ε}. Then for any η > 0, there exists C =
Cε,η > 0 such that

(2.11) ‖P (z, h)ϕwu‖ > Cεh2+η‖ϕwu‖, z ∈ [1− ε, 1 + ε].

On the other hand, if V ′0(x) ≡ 0 on an interval, say x ∈ [−a, a] with
V ′0(x) < 0 for x < −a and x > a, we do not expect anything better than
Lemma 2.15. The next lemma says that this is exactly what we do get. To
fix an energy level, assume V0 ≡ 1 on [−a, a].
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Lemma 2.16. — For ε > 0 sufficiently small, let ϕ ∈ S(T ∗R) have
compact support in {|x| 6 a+ ε, |ξ| 6 ε}. Then for any η > 0, there exists
C = Cε,η > 0 such that

(2.12) ‖P (z, h)ϕwu‖ > Cεh2+η‖ϕwu‖, z ∈ [1− ε, 1 + ε].

3. Proof of Theorem 1.2 and Corollary 1.3

Recall the conjugated Laplacian is

−∆̃ = −∂2
x −A−2(x)∂2

θ + V1(x),

where V1(x) has been computed above. We will do some analysis and re-
ductions now before separating variables. If we are considering quasimodes

(−∆̃− λ2)u = E(λ)‖u‖,

where
E(λ) = O(λ−β0)

for some β0 > 0, then we begin by rescaling. Set h = λ−1 so that

(−h2∂2
x − h2A−2(x)∂2

θ + h2V1(x)− 1)u = Ẽ(h)‖u‖,

where Ẽ(h) = h2E(h−1) = O(h2+β0). With ξ, η the dual variables to x, θ
as usual, the semiclassical symbol of this operator is

p = ξ2 +A−2(x)η2 + h2V1(x)− 1,

and the semiclassical principal symbol is

p0 = ξ2 +A−2(x)η2 − 1.

It is worthwhile to point out that at this point our semiclassical parameter is
h = λ−1. After separating variables later in the proof, we will let h = |k|−1,
where k is the angular momentum parameter. However, in the regime where
we so take h, |k| and λ will be comparable, so it is merely a choice of
convenience.
It is important to keep in mind for the remainder of this paper what the

various parameters represent. Here, the variable η represents hDθ. As we
will eventually be decomposing in Fourier modes in the θ direction, this
means that the variable η takes values in hZ.

We next record that a standard h-parametrix argument tells us that any
quasimode is concentrated on the energy surface where {p0 = 0}. The proof
is standard.
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Lemma 3.1. — Suppose u satisfies

(−h2∂2
x − h2A−2(x)∂2

θ + h2V1(x)− 1)u = Ẽ(h)‖u‖,

where Ẽ(h) = h2E(h−1) = O(h2+β0), and Γ ∈ S0 satisfies Γ ≡ 1 in a small
fixed neighbourhood of {p0 = 0}. Then

(1− Γw)u = O(h2+β0).

Hence we will restrict our attention to the characteristic surface where
{p0 = 0}. Using our moment map idea, we know that η is invariant under
the classical flow. Hence if η is very large, our operator will be elliptic,
while if η is very small, the parameter ξ will be bounded away from zero,
and hence we will have uniform propagation estimates. Let us make this
more precise. Let A0 = min(A(x)) and A1 = max(A(x)), and let

1 = ψ0(η) + ψ1(η) + ψ2(η)

be a partition of unity satisfying

ψ0 ≡ 1 on {|η|2 6 1
2A

2
0}

with support in {|η|2 6 3
4A

2
0};

ψ2 ≡ 1 on {|η|2 > 2A2
1}

with support in {|η|2 > 3
2A

2
1}. Then, on suppψ0, we have

η2A−2(x) 6 η2A−2
0 6 3

4 ,

and on suppψ2, we have

η2A−2(x) > η2A−2
1 > 3

2 .

Now for our quasimode u, write

u = u0 + u1 + u2 + u3 := ψw0 Γwu+ ψw1 Γwu+ ψw2 Γwu+ (1− Γw)u.

The derivative hDθ commutes with −∆̃ and we can choose Γ = Γ(p0) so
that [pw0 ,Γw] = O(h3). This means that each of these uj are also quasi-
modes, but with an error in terms of u. That is, each uj satisfies

Puj = O(h2+β1)‖u‖.
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3.1. Some reductions

In this section, we make a few reductions. Lemma 3.1 shows us that
‖u3‖ = O(h2+β0).
On the other hand, on the support of ψ2, we have the principal symbol

satisfies
|p0| >

1
2 ,

so we will use an elliptic argument.
That is, since |p0| > 1

2 on support of ψ2, there is an h-parametrix for P
there: there exists Q such that

QPψw2 = ψw2 +O(h∞),

and further Q has bounded L2 norm. Hence

‖u2‖ = ‖QPu2‖+O(h∞)‖u2‖
6 C‖Pu2‖+O(h∞)‖u2‖

= O(h2+β0)‖u‖.

This implies u2 = O(h2+β0).
This tells us that our original quasimode u satisfies

u = u0 + u1 +O(h2+β0).

Since we are proving lower bounds instead of upper bounds, we need to
show that u is controlled from below by u0 and u1. We compute

‖u‖2 = ‖u0‖2 + ‖u1‖2 + 〈u0, u1〉+ 〈u1, u0〉+O(h2(2+β0))

= ‖u0‖2 + ‖u1‖2 + 〈ψ0Γu, ψ1Γu〉+ 〈ψ1Γu, ψ0Γu〉+O(h2(2+β0))

= ‖u0‖2 + ‖u1‖2 + 〈Γψ1ψ0Γu, u〉+ 〈Γψ0ψ1Γu, u〉+O(h2(2+β0))(3.1)

= ‖u0‖2 + ‖u1‖2 + 2 〈Γψ1ψ0Γu, u〉+O(h2(2+β0))

> ‖u0‖2 + ‖u1‖2 − Ch‖u‖2 −O(h2(2+β0)).

Equation (3.1) follows from the sharp Gårding inequality since the principal
symbol of Γψ1ψ0Γ is non-negative. The previous line follows since [ψ1, ψ0] =
0. Rearranging (3.1), we have

‖u‖ > 1
2(‖u0‖+ ‖u1‖)−O(h2+β0).

This means we need to prove lower bounds on u0 and u1 in terms of u. On
the other hand, we also have

‖u‖ 6 ‖u0‖+ ‖u1‖+O(h2+β0).
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This means that, in particular, since u is normalized, for h > 0 sufficiently
small, we must have either

‖u0‖ >
1
3 ,

or
‖u1‖ >

1
3 .

3.2. Estimation of u0

In this subsection we assume ‖u0‖ > 1/3, so that in particular ‖u0‖ is
comparable to ‖u‖. Observe that on the support of ψ0, since η is invariant,
we have |ξ|2 > 1/4 − O(h2), which means the propagation speed in the
x-direction is bounded below. We claim this implies

‖u0‖L2
x,θ
6 c0‖u0‖L2([a,b]x×Sθ)

for some c0 > 0. In other words, u0 is uniformly distributed in the sense
that the mass cannot be vanishing in h on any set, unless it is vanishing in
h everywhere.
The claim follows by propagation of singularities. The standard propa-

gation of singularities result applies whenever the classical flow propagates
singularities from one region to another in phase space. It says that if all
points in a region in phase space flow into a second region under the clas-
sical flow, then the mass of a function in the first region is controlled by
the mass in the second, modulo a term with the operator. Since we are
analyzing the region where ξ 6= 0, we have uniform propagation in the x
direction. A general statement is given in the following Lemma (a refine-
ment of Hörmander’s original result [9]). For a proof in this context, see,
for example, [4, Lemma 2.4] and [1, Lemma 4.1].

Lemma 3.2. — Let V1, V2 b T ∗X, p the symbol of a semiclassical pseu-
dodifferential operator P with principal symbol p0. Suppose A,B are pseu-
dodifferential operators with A ≡ 1 on V2, and the semiclassical wavefront
set of B is in V1. Suppose there exists T > 0 such that{

∀ρ in a neighbourhood of V1,

exp(tHp0)(ρ) ∈ V2 for t ∼ T.(3.2)

Then

‖Bv‖ 6 C
(
h−1 ‖Pv‖+ ‖Av‖

)
+O(h∞)‖v‖.(3.3)
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Fix two non-empty intervals in the x direction, (a, b) and (c, d) and as-
sume u0 is L2 normalized (this is possible since ‖u0‖ ∼ ‖u‖). Now using
that Pu0 = O(h2+β0)‖u0‖, we have

‖u0‖L2((c,d)×S1) 6 Ch−1‖Pu0‖+ C2‖u0‖L2((a,b)×S1)

6 Ch1+β0‖u0‖L2(S1×S1) + C2‖u0‖L2((a,b)×S1),

for some C2 > 0. For h > 0 sufficiently small, this implies if u0 has mass
bounded below independent of h in any x neighbourhood (c, d) (and in
particular also for S1), then

‖u0‖L2((a,b)×S1) > c′ > 0

independent of h. Rescaling in terms of u0 if u0 is not normalized, we
recover

‖u0‖L2((a,b)×S1) > c′‖u0‖.
Since the interval (a, b) is arbitrary, we have shown that the L2-mass

on any rotationally invariant neighbourhood is positive independent of h.
Thus (1.1) holds with a lower bound independent of h = λ−1.

3.3. Estimation of u1

We next analyze u1, assuming that

‖u1‖ >
1
3 = 1

3‖u‖.

The quasimode u1 is microsupported where all the critical points of A(x)
are. Let us recall that we are trying to prove that for any open interval
(a, b) in the x variable, that either

‖u1‖L2((a,b)x×S1
θ
) = O(λ−∞),

or for all ε > 0, there is a constant Cε > 0 such that

‖u1‖L2((a,b)×S1) > Cελ−1−ε‖u1‖L2(S1
x×S1

θ
).

We also have yet to use the fact that u = u0 +u1 +u2 +u3 was assumed to
be irreducible. We will use that in two ways in this subsection. First, we use
this assumption to decompose the Fourier series of u1 into finer “bands” in
phase space, each associated to distinct angular momenta. An irreducible
quasimode can live on at most one of these finer bands, so that we require
fewer Fourier modes in u1 than at first impression. Second, we use this
assumption together with the geodesic complexity assumption to describe
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the possible behaviour of u1 in each possible invariant set in a fixed level
set of the moment map.
Since u1 is microsupported in a region where |η| is bounded between two

constants, say, a0 6 |η| 6 a1, and η = hk for some integer k, a priori the
number of angular momenta k in the wavefront set of u1 is comparable to
h−1. We can do better than that. Using the semiclassical calculus, we will
next show that there exists k0 ∈ Z such that for any ε > 0, we have

u1 =
∑

|k−k0|6h−ε
eikθϕk(x) +O(h∞)‖u1‖.

That is, we claim that the Fourier decomposition of u1 can actually only
have O(h−ε) non-trivial modes. To prove this claim, fix k0 ∈ Z and any
ε > 0, and choose a k1 ∈ Z satisfying

|k1 − k0| > h−ε.

We will show that we can decompose u1 into (at least) two pieces with
disjoint microsupport, one near hk0 and one near hk1. Evidently, these
two pieces correspond to different angular momenta η, so have wavefront
sets associated to different level sets of the moment map. Of course, level
sets sufficiently close (in an h-dependent set) may contribute to a single
irreducible quasimode, but the point is to quantify how far away from
a single level set one needs to go before leaving the microsupport of an
irreducible quasimode.
In order to make this rigorous, let ηj = hkj for j = 0, 1, and choose

χ(r) ∈ C∞c (R) satisfying

χ(r) ≡ 1 for |r| 6 1,

with support in {|r| 6 2}. For j = 0, 1, let

χj(η, h) = χ

(
η − ηj
h1−ε/2

)
.

As semiclassical symbols, the χj are in a harmless S0
1/2−ε/4 symbol class

(after rescaling the local Weyl integral), and moreover they only depend
on η (not on θ) and commute with −∆̃. On the support of each of the χj ,
we have ∣∣∣∣ η − ηjh1−ε/2

∣∣∣∣ =
∣∣∣∣hk − hkjh1−ε/2

∣∣∣∣ =
∣∣∣∣k − kjh−ε/2

∣∣∣∣ 6 2.

This implies
|k − kj | 6 2h−ε/2,
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so as h→ 0+, χ0 and χ1 have disjoint supports. This means the functions
χ1u1 and χ2u1 have disjoint h-wavefront sets, so they are almost orthgonal:

〈χ1u1, χ2u1〉 = O(h∞).

Hence if each of these functions has nontrivial L2 mass, then u was not an
irreducible quasimode.
Finally, we analyze the function u1, but spread over at most O(h−ε)

Fourier modes. Fix k0 as above. Recalling again the separated equation
(2.5) with the potential

V (x) = A−2(x) + h2V1(x),

let A0 and A1 again be the min/max respectively of A(x). Our spectral
parameter now is z = h2λ2, where h will be allowed to vary in the values
h ∈ {|k|−1 : |k − k0| 6 kε0}. We are localized where

1
2A

2
0 6 (λ−1k)2 6 2A2

1,

or
1
2A
−2
1 6 z 6 2A−2

0 .

This of course implies that λ and k are comparable, and hence both com-
parable to h−1. Write

(3.4) u1 =
∑

|k−k0|6kε0

ϕk(x)eikθ +O(h∞).

Throughout the remainder of this section, let λ be large and fixed. Let
(a, b) ⊂ S1 be a non-empty interval, and assume that u1 is nontrivial in
(a, b)× S1:

‖u1‖L2((a,b)×S1) > |λ|−N

for some N . Let Γ ⊂ T ∗X be the set

Γ = (a, b)x × Rξ.

If ϕk(x) is one of the Fourier modes in the Fourier series (3.4) for u1,
then either ‖ϕk‖L2((a,b)) = O(|k|−∞), or ‖ϕk‖L2((a,b)) > |k|−Nk for some
Nk > 0. In the first case, WF|k|−1(ϕk)∩Γ = ∅, so these modes have disjoint
wavefront set from u1. Hence these Fourier modes would contribute to a
reducible quasimode, so must not be in the sum. Hence let

A = {k : |k − k0| 6 |k0|ε and ‖ϕk‖L2((a,b)) > |k|−Nk for some Nk > 0},

and write

(3.5) u1 =
∑
k∈A

ϕk(x)eikθ +O(h∞).
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The key point is that, by orthonormality, there is at least one of the ϕk
which is relatively large. We have

‖u1‖2L2(S1×S1) =
∑
k∈A

‖ϕk‖2L2(S1) +O(h∞),

so at least one of the ϕks satisfies

c0k
−ε0
0 ‖u1‖2L2(S1×S1) 6 ‖ϕk‖2L2(S1)

for some small constant c0 > 0. Fix this ϕk. We have for this k and h = |k|−1

as usual

((hD)2 + V (x)− z)ϕk = O(h2+β0)‖u1‖ = O(h2+β0−ε)‖ϕk‖,

so that ϕk is a quasimode of order h2+β0/2 if ε < β0/2 is sufficiently small.
We now need to show that if u is a weak irreducible quasimode,

((hD)2 + V (x)− z)u = O(h2+β0/2)‖u‖,

with ‖u‖ = 1, then either ‖u‖L2(a,b) = O(h∞) = O(λ−∞), or ‖u‖L2(a,b) >
Cεh

1+ε for any ε > 0. If u is the ϕk selected above, then we have already
assumed that u is nontrivial in (a, b), so that ‖u‖L2(a,b) > chN for some
N . For the remainder of this section, we replace β0/2 with β0 to avoid
excessive notation.
There are a number of subcases to consider here. We observe that, ac-

cording to Lemma 3.1, we can always microlocalize further to a set close
to the energy level of interest. That is, for P (z, h) = (hD)2 + V (x) − z, if
P (z, h)u = O(h2+β0), then if ψ(r) ∈ C∞c (R) satisfies ψ ≡ 1 for r near 0, we
have for any δ > 0

ψw((ξ2 + V (x)− z)/δ)u = u+O(h2+β0).

For the rest of this section, we write ψw for this energy cutoff.

Case 1. — Next, assume z is in a small neighbourhood of a critical
energy level, and assume A′(x) 6= 0 somewhere on (a, b). Then let (a′, b′)
be a non-empty interval with

(a′, b′) b {A′ 6= 0} ∩ (a, b),

and let (α′, β) ⊃ (a′, b′) be the maximal connected interval with A′(x) 6= 0
on (α′, β). Now A′ has constant sign on (α′, β), so at least one of α′ or β
is part of a weakly unstable critical element (see Figure 3.1).
Without loss in generality, assume A′ < 0 on (α′, β) so that at least

β lies in a weakly unstable critical element. That is, the principal part
of the potential A−2(x) increases as x → β−, and takes the value, say
A−2(β) = A2. Let (α, β) be the maximal open interval containing (α′, β)
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A2

α α′ a′ b′ β

Figure 3.1. The function A−2(x) and the weakly unstable critical

point β.

where A−2(x) < A2 on (α, β). As A−2(x) < A−2(α) for x ∈ (α, β) and

A−2(α) = A2, we have (A−2(x))′ < 0 for x ∈ (α, β) sufficiently close to

α. That means that either α is part of a weakly unstable critical element,

or A′(α) �= 0. We break the analysis into the two separate subsubcases,

beginning with A′(α) �= 0.

Case 1a: If A′(α) �= 0, then the weakly unstable/stable manifolds as-

sociated to (A−2)′(β) = 0 are homoclinic to each other (see Figure 3.2),

and in particular, propagation of singularities can be used to control the

mass along this whole trajectory, as long as we stay away from the right

hand endpoint β. That is, propagation of singularities implies for any η > 0

independent of h,

‖ψwu‖L2(α,β−η) � Cη(h
−1‖((hD)2 + V − z)ψwu‖+ ‖ψwu‖L2(a′,b′)

� Cηh
1+β0‖u‖+ ‖ψwu‖L2(a′,b′).

Hence by taking h > 0 sufficiently small, we need to bound ‖ψwu‖L2(α,β−η)

from below in terms of ‖u‖.
Let [β, κ] be the maximal connected interval containing β on which A′ =

0 (we allow κ = β if the critical point is isolated). Let χ̃ ≡ 1 on [β, κ] with

support in a small neighbourhood thereof, and let χ ≡ 1 on supp χ̃ with

support in a slightly smaller set so that (1−χ̃) � (1−χ) and (1−χ̃) � c|χ′|.
Then writing P (z, h) = (hD)2+V − z, we have from Theorem 2.1 (for any
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Figure 3.1. The function A−2(x) and the weakly unstable critical
point β.

where A−2(x) < A2 on (α, β). As A−2(x) < A−2(α) for x ∈ (α, β) and
A−2(α) = A2, we have (A−2(x))′ < 0 for x ∈ (α, β) sufficiently close to
α. That means that either α is part of a weakly unstable critical element,
or A′(α) 6= 0. We break the analysis into the two separate subsubcases,
beginning with A′(α) 6= 0.

Case 1a. — If A′(α) 6= 0, then the weakly unstable/stable manifolds
associated to (A−2)′(β) = 0 are homoclinic to each other (see Figure 3.2),
and in particular, propagation of singularities can be used to control the
mass along this whole trajectory, as long as we stay away from the right
hand endpoint β. That is, propagation of singularities implies for any η > 0
independent of h,

‖ψwu‖L2(α,β−η) 6 Cη(h−1‖((hD)2 + V − z)ψwu‖+ ‖ψwu‖L2(a′,b′)

6 Cηh1+β0‖u‖+ ‖ψwu‖L2(a′,b′).

Hence by taking h > 0 sufficiently small, we need to bound ‖ψwu‖L2(α,β−η)
from below in terms of ‖u‖.
Let [β, κ] be the maximal connected interval containing β on which A′ =

0 (we allow κ = β if the critical point is isolated). Let χ̃ ≡ 1 on [β, κ] with
support in a small neighbourhood thereof, and let χ ≡ 1 on supp χ̃ with
support in a slightly smaller set so that (1−χ̃) > (1−χ) and (1−χ̃) > c|χ′|.
Then writing P (z, h) = (hD)2 +V − z, we have from Theorem 2.5 (for any
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βα

Figure 3.2. If A′(α) �= 0, the unstable manifold from β flows into the

stable manifold at β (homoclinicity). The interval indicates a region

with propagation speed uniformly bounded below.

ε > 0)

‖u‖ � ‖χu‖+ ‖(1− χ)u‖
� Cεh

−2−ε‖P (z, h)χu‖+ ‖(1− χ̃)u‖
� Cεh

−2−ε(‖χP (z, h)u‖+ ‖[P (z, h), χ]u‖) + ‖(1− χ̃)u‖
� C ′ε(h

β0−ε‖u‖+ h−1−ε‖(1− χ̃)u‖) + ‖(1− χ̃)u‖
Rearranging and taking h > 0 sufficiently small and ε < β0, we get

(3.6) ‖(1− χ̃)u‖ � Cεh
1+ε‖u‖.

Now either the wavefront set of u is contained in the closure of the lift

of (α, β) or it isn’t. In the latter case there is nothing to prove. In the

former case, we conclude that u = O(h∞) on any open subset whose closure

does not meet the set [α, β]. We appeal to propagation of singularities

one more time. Since A′(α) �= 0, propagation of singularities applies in a

neighbourhood of α, so that (shrinking η > 0 if necessary) for some c1 > 0,

‖u‖L2(α,β−η) � c1‖u‖L2(α−η,β−η).

Since we have assumed u = O(h∞) on (α−η, β+η)c, this estimate, together

with (3.6) and (3.3) allows us to conclude

‖u‖L2(α,β−η) � C‖(1− χ̃)u‖ � Cεh
1+ε‖u‖.

Case 1b: We now consider the possibility that A′(α) = 0 as well as

A′(β) = 0 (see Figure 3.3). In this case, propagation of singularities fails

at both endpoints of (α, β), so we can only conclude that for any η > 0

independent of h,

‖u‖L2(α+η,β−η) � Cη(h
−1‖((hD)2 + V − z)u‖+ ‖u‖L2(a′,b′).

SUBMITTED ARTICLE : EF-SURF-REV.TEX

Figure 3.2. If A′(α) 6= 0, the unstable manifold from β flows into the
stable manifold at β (homoclinicity). The interval indicates a region
with propagation speed uniformly bounded below.

ε > 0)

‖u‖ 6 ‖χu‖+ ‖(1− χ)u‖

6 Cεh−2−ε‖P (z, h)χu‖+ ‖(1− χ̃)u‖

6 Cεh−2−ε(‖χP (z, h)u‖+ ‖[P (z, h), χ]u‖) + ‖(1− χ̃)u‖

6 C ′ε(hβ0−ε‖u‖+ h−1−ε‖(1− χ̃)u‖) + ‖(1− χ̃)u‖

Rearranging and taking h > 0 sufficiently small and ε < β0, we get

(3.6) ‖(1− χ̃)u‖ > Cεh1+ε‖u‖.

Now either the wavefront set of u is contained in the closure of the lift
of (α, β) or it isn’t. In the latter case there is nothing to prove. In the
former case, we conclude that u = O(h∞) on any open subset whose closure
does not meet the set [α, β]. We appeal to propagation of singularities
one more time. Since A′(α) 6= 0, propagation of singularities applies in a
neighbourhood of α, so that (shrinking η > 0 if necessary) for some c1 > 0,

‖u‖L2(α,β−η) > c1‖u‖L2(α−η,β−η).

Since we have assumed u = O(h∞) on (α−η, β+η)c, this estimate, together
with (3.6) and (3.3) allows us to conclude

‖u‖L2(α,β−η) > C‖(1− χ̃)u‖ > Cεh1+ε‖u‖.

Case 1b. — We now consider the possibility that A′(α) = 0 as well as
A′(β) = 0 (see Figure 3.3). In this case, propagation of singularities fails
at both endpoints of (α, β), so we can only conclude that for any η > 0
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βα

Figure 3.3. If A′(α) = 0, the unstable manifold from β flows into the

stable manifold at α and vice versa. The interval indicates a region

with propagation speed uniformly bounded below.

Hence now it suffices to prove that for some η > 0 small but independent

of h, we have the estimate

‖u‖L2(α+η,β−η) � Cεh
1+ε‖u‖

for any ε > 0.

Let [β, κ] be the maximal connected interval containing β on which A′ =
0, and let [ω, α] be the maximal connected interval containing α on which

A′ = 0. Let χ̃ ≡ 1 on [β, κ] ∪ [ω, α] with support in small neighbourhoods

thereof, and let χ ≡ 1 on supp χ̃ with support in a slightly smaller set so

that (1 − χ̃) � (1 − χ) and (1 − χ̃) � c|χ′|. Since both [ω, α] and [β, κ]

are weakly unstable, we can apply Theorem 2.1 and the same argument as

above to finish this case.

Case 2: Finally, we assume (a, b) ⊂ {A′ = 0}. Again, if A−2 ≡ A3

on (a, b) and z �= A3, we can use propagation of singularities to control

‖u‖L2(a,b) from below by its mass on the connected component in {p = z}
containing (a, b) (as in the case of u0 above). Hence we are interested in

the case where z is in a small neighbourhood of A3.

If u = O(h∞) on (a, b) there is nothing to prove, so assume not. Then if

[α, β] ⊃ (a, b) is the maximal connected interval where A−2(x) ≡ A3, the

wavefront set of u is contained in a small neighbourhood of [α, β], so that

for δ > 0 as small as we like by taking a sufficiently localized energy cutoff,

we have

‖u‖L2([α−δ,β+δ]c) = Oδ(h
∞).

That means that, either

‖u‖L2([a,b]) � c > 0, ‖u‖L2([α−δ,a]) � c > 0, or ‖u‖L2([b,β+δ]) � c > 0.
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Figure 3.3. If A′(α) = 0, the unstable manifold from β flows into the
stable manifold at α and vice versa. The interval indicates a region
with propagation speed uniformly bounded below.

independent of h,

‖u‖L2(α+η,β−η) 6 Cη(h−1‖((hD)2 + V − z)u‖+ ‖u‖L2(a′,b′).

Hence now it suffices to prove that for some η > 0 small but independent
of h, we have the estimate

‖u‖L2(α+η,β−η) > Cεh1+ε‖u‖

for any ε > 0.
Let [β, κ] be the maximal connected interval containing β on which A′ =

0, and let [ω, α] be the maximal connected interval containing α on which
A′ = 0. Let χ̃ ≡ 1 on [β, κ] ∪ [ω, α] with support in small neighbourhoods
thereof, and let χ ≡ 1 on supp χ̃ with support in a slightly smaller set so
that (1 − χ̃) > (1 − χ) and (1 − χ̃) > c|χ′|. Since both [ω, α] and [β, κ]
are weakly unstable, we can apply Theorem 2.5 and the same argument as
above to finish this case.

Case 2. — Finally, we assume (a, b) ⊂ {A′ = 0}. Again, if A−2 ≡ A3
on (a, b) and z 6= A3, we can use propagation of singularities to control
‖u‖L2(a,b) from below by its mass on the connected component in {p = z}
containing (a, b) (as in the case of u0 above). Hence we are interested in
the case where z is in a small neighbourhood of A3.
If u = O(h∞) on (a, b) there is nothing to prove, so assume not. Then if

[α, β] ⊃ (a, b) is the maximal connected interval where A−2(x) ≡ A3, the
wavefront set of u is contained in a small neighbourhood of [α, β], so that
for δ > 0 as small as we like by taking a sufficiently localized energy cutoff,
we have

‖u‖L2([α−δ,β+δ]c) = Oδ(h∞).
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Ã−2

α
a b

β

χ

A−2

Figure 3.4. The setup for Case 2. Here if the quasimode is small in

(a, b), we cut off to the right of (a, b) and modify A−2 to the left to be

weakly unstable. We then arrive at a contradiction.

If the first estimate is true, we’re done, so assume without loss in generality

that ‖u‖L2([b,β+δ]) � c > 0. Assume for contradiction that there exists

ε0 > 0 such that ‖u‖L2(a,b) � Ch1+ε0 . Let χ ∈ C∞c be a smooth function

such that χ ≡ 1 on [b, β + δ] with support in (a, β + 2δ). Write ũ = χu. If

[α, β] is a weakly stable critical element, modify A−2(x) on the support of

1−χ so that [α, β] is weakly unstable. That is, if (A−2(x))′ < 0 for x < α in

some neighbourhood, replace A with a locally defined function Ã satisfying

Ã ≡ A on suppχ but (Ã−2(x))′ > 0 for x < α in some neighbourhood. If

[α, β] is weakly unstable, then let Ã ≡ A (see Figure 3.4. We apply Theorem

2.1 once again (for any ε > 0):

‖χu‖ � Cεh
−2−ε‖((hD)2 + Ã−2 + h2V1 − z)χu‖

= Cεh
−2−ε‖((hD)2 +A−2 + h2V1 − z)χu‖

� Cεh
−2−ε(‖P (z, h)u‖+ ‖[P (z, h), χ]u‖)

� C ′ε(h
ε0−ε‖u‖+ h−1−ε‖u‖L2(a,b)) +O(h∞),

where the O(h∞) error comes from the part of the commutator [P (z, h), χ]

supported outside a neighbourhood of [α, β] (the other part contributing

the integral over (a, b)). But our contradiction assumption implies that the

right hand side is o(1) as h → 0 provided ε < ε0. As ‖χu‖ � c > 0, this is

a contradiction.

3.4. Finishing up the proof

We now put together the estimates of u0, u1, u2, u3. Since u3 = O(h2+β0)

and u2 = O(h∞), for h > 0 sufficiently small, at least one of u0 and u1

must have L2 mass bounded below independent of h. If u0 has L2 mass

SUBMITTED ARTICLE : EF-SURF-REV.TEX

Figure 3.4. The setup for Case 2. Here if the quasimode is small in
(a, b), we cut off to the right of (a, b) and modify A−2 to the left to be
weakly unstable. We then arrive at a contradiction.

That means that, either

‖u‖L2([a,b]) > c > 0, ‖u‖L2([α−δ,a]) > c > 0, or ‖u‖L2([b,β+δ]) > c > 0.

If the first estimate is true, we’re done, so assume without loss in generality
that ‖u‖L2([b,β+δ]) > c > 0. Assume for contradiction that there exists
ε0 > 0 such that ‖u‖L2(a,b) 6 Ch1+ε0 . Let χ ∈ C∞c be a smooth function
such that χ ≡ 1 on [b, β + δ] with support in (a, β + 2δ). Write ũ = χu. If
[α, β] is a weakly stable critical element, modify A−2(x) on the support of
1−χ so that [α, β] is weakly unstable. That is, if (A−2(x))′ < 0 for x < α in
some neighbourhood, replace A with a locally defined function Ã satisfying
Ã ≡ A on suppχ but (Ã−2(x))′ > 0 for x < α in some neighbourhood. If
[α, β] is weakly unstable, then let Ã ≡ A (see Figure 3.4. We apply Theorem
2.5 once again (for any ε > 0):

‖χu‖ 6 Cεh−2−ε‖((hD)2 + Ã−2 + h2V1 − z)χu‖

= Cεh
−2−ε‖((hD)2 +A−2 + h2V1 − z)χu‖

6 Cεh−2−ε(‖P (z, h)u‖+ ‖[P (z, h), χ]u‖)

6 C ′ε(hε0−ε‖u‖+ h−1−ε‖u‖L2(a,b)) +O(h∞),

where the O(h∞) error comes from the part of the commutator [P (z, h), χ]
supported outside a neighbourhood of [α, β] (the other part contributing
the integral over (a, b)). But our contradiction assumption implies that the
right hand side is o(1) as h → 0 provided ε < ε0. As ‖χu‖ > c > 0, this is
a contradiction.
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3.4. Finishing up the proof

We now put together the estimates of u0, u1, u2, u3. Since u3 = O(h2+β0)
and u2 = O(h∞), for h > 0 sufficiently small, at least one of u0 and u1
must have L2 mass bounded below independent of h. If u0 has L2 mass
bounded below independent of h we’re done by the propagation of singu-
larities argument in Subsection 3.2. Hence we need to conclude Theorem
1.2 assuming u0 is small and u1 carries most of the L2 mass.

Fix (a, b) as considered in Subsection 3.3 and recall we know that for any
ε > 0 there is a set A ⊂ {k : |k − k0| 6 |k0|ε} of nontrivial Fourier modes
such that

u1 =
∑
k∈A

eikθϕk(x) +O(h∞)‖u1‖.

We have fixed a k1 ∈ A with

‖ϕk1‖L2((a,b)) > |k1|−N

for some integer N and also

‖ϕk1‖L2(S1) > c0|k1|−ε‖u1‖L2(S1×S1).

We use the notation Ω = (a, b)x×S1
θ as in the statement of Theorem 1.2.

Since ϕk1 is nontrivial in (a, b), it satisfies

‖ϕk1‖L2(a,b) > c2|k1|−1−ε‖ϕk1‖L2(S1
x),

for any ε > 0. We conclude

‖u1‖2L2(Ω) =
∑
k∈A

‖ϕk(x)‖2L2(a,b) +O(h∞)‖u1‖2

> c′2‖ϕk1‖2L2(a,b) −O(h∞)‖u1‖2

> c′′2k−2−2ε
1 ‖ϕk1(x)‖2L2(S1

x) −O(h∞)‖u1‖2

> c′′′2 λ−2−4ε‖u1‖2L2(S1
x×S1

θ
) −O(λ−∞)‖u1‖2.

This concludes the proof of Theorem 1.2. �
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