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THE BREUIL–MÉZARD CONJECTURE FOR
QUATERNION ALGEBRAS

by Toby GEE & David GERAGHTY (*)

Abstract. — We formulate a version of the Breuil–Mézard conjecture for
quaternion algebras, and show that it follows from the Breuil–Mézard conjec-
ture for GL2. In the course of the proof we establish a mod p analogue of the
Jacquet–Langlands correspondence for representations of GL2(k), k a finite field
of characteristic p.
Résumé. — Nous formulons une version de la conjecture de Breuil–Mézard

pour les algèbres de quaternions. Nous montrons que cette version est une conse-
quence de la version originale pour GL2. Une partie de la démonstration est la
construction d’un analogue modulo p de la correspondance de Jacquet–Langlands
pour les représentations de GL2(k) ou k est un corps fini de caractéristique p.

1. Introduction.

The Breuil–Mézard conjecture ([2]) has proved to be one of the most im-
portant conjectures linking Galois representations and automorphic forms;
indeed, Kisin’s proof of (most cases of) the original formulation of the
conjectures ([9]) simultaneously established (most cases of) the Fontaine–
Mazur conjecture for GL2/Q. The original conjecture predicted the Hilbert–
Samuel multiplicities of the special fibres of potentially semistable deforma-
tion rings for two-dimensional mod p representations of GQp , the absolute
Galois group of Qp, in terms of the representation theory of GL2(Zp). The
statement of the conjecture was generalised in [10] to the case of represen-
tations of GK , for K an arbitrary finite extension of Qp. This conjecture
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1558 Toby GEE & David GERAGHTY

is largely open, although it has been proved for potentially Barsotti–Tate
representations ([5]).
The connection between potentially semistable deformation rings and

the representation theory of GL2 is via the local Langlands correspon-
dence. Given the Jacquet–Langlands correspondence, it is natural to won-
der whether for potentially semistable deformation rings of discrete series
type, the Hilbert–Samuel multiplicities could also be described in terms of
the representation theory of the units in a non-split quaternion algebra.
One advantage of such a description is that the representation theory is
much simpler in this case; all the irreducible admissible representations are
finite-dimensional, and the irreducible mod p representations of the maxi-
mal compact subgroup are all one-dimensional.
In this paper we formulate such a conjecture, and show that it is a con-

sequence of the conjecture for GL2. In particular, we prove the conjecture
(in most cases) over Qp, as a consequence of Kisin’s proof of the conjecture
for GL2 in this case ([9]). In order to do this, we have found it helpful
to reformulate the conjecture slightly more abstractly in terms of linear
functionals on Grothendieck groups of representations, and also to prove
a general result on the reduction modulo p of the Jacquet–Langlands cor-
respondence, or rather a version of this correspondence for types. In the
remainder of the introduction, we will explain this in some detail.
Let K be a finite extension of Qp with absolute Galois group GK , and

let τ be an inertial type for K (i.e. a two-dimensional representation of
the inertia group IK with open kernel, which can be extended to GK).
Let λ be a highest weight for an irreducible algebraic representation of
ResK/Qp GL2/K . Then a recipe using Henniart’s inertial local Langlands
correspondence (see the appendix to [2]) associates to the pair (τ, λ) a
finite-dimensional irreducible representation σ(τ, λ) of GL2(OK) over Qp.
Let k denote the residue field of OK . Choosing a stable lattice, reducing
modulo p and semisimplifying, we can write

σ(τ, λ) ∼= ⊕σσnτ,λ(σ),

where σ runs over the equivalence classes of irreducible mod p representa-
tions of GL2(k), and nτ,λ(σ) is a nonnegative integer.

Let ρ : GK → GL2(Fp) be a continuous representation. Then there
is (after fixing a sufficiently large coefficient field) a universal lifting ring
Rτ,λ for lifts of ρ which are potentially semistable of inertial type τ and
Hodge type λ. Let e(Rτ,λ/$) denote the Hilbert–Samuel multiplicity of
the special fibre of Rτ,λ. Then the Breuil–Mézard conjecture asserts that
there are uniquely determined nonnegative integers µσ(ρ), depending only
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on ρ and σ (and not on τ or λ) such that for all τ, λ, we have

(1.1) e(Rτ,λ/$) =
∑
σ

nτ,λ(σ)µσ(ρ).

Now, the right hand side of (1.1) depends only on σ(τ, λ), the semisim-
plification of the reduction modulo p of σ(τ, λ). Let RFp(GL2(k)) denote
the Grothendieck group of finite-dimensional Fp-representations of GL2(k);
then we may define a linear functional ι : RFp(GL2(k)) → Z by sending σ
to µσ(ρ). Then the right hand side of (1.1) is just ι(σ(τ, λ)) by definition.
With this perspective in mind, let D be the non-split quaternion algebra

with centre K, and let OD be the maximal order in D. Suppose that τ
is a discrete series type (that is, it is scalar or it can be extended to an
irreducible representation of GK). As explained in Section 3, a natural ana-
logue of the procedure above associates a finite-dimensional representation
σD(τ, λ) of O×D to the pair (τ, λ). If l is the quadratic extension of k, then
irreducible mod p representations of O×D factor through l×, so we see that
the natural analogue of the Breuil–Mézard conjecture for D× is to ask for
a linear functional ιD : RFp(l×) → Z with the property that for all pairs
(τ, λ) where τ is discrete series, we have

e(Rτ,λ,ds/$) = ιD(σD(τ, λ)),

where Rτ,λ,ds denotes the maximal quotient of Rτ,λ corresponding to dis-
crete series lifts (see Section 5 for more details).
Our approach in this paper is to deduce the existence of ιD from the

existence of ι. The existence of such functionals for all representations
ρ strongly suggests the possibility of there being a homomorphism JL :
RFp(l×) → RFp(GL2(k)) such that ιD = ι ◦ JL, and the construction of
such a map is the main objective of this paper. Since elements of the
Grothendieck group are determined by their Brauer characters, this de-
termines a map between the class functions on the semisimple conjugacy
classes of GL2(k) and l×. The usual Jacquet–Langlands correspondence
involves a sign-reversing relation between the characters evaluated at reg-
ular elliptic elements; our correspondence satisfies a close analogue of this
relation.
Having written down this map, in order to check that ι ◦ JL satisfies the

properties required of ιD, the main fact we need to check is that JL takes
σD(τ, λ) to σ(τ, λ) when τ is of supercuspidal type. In other words, we
need to check that JL is compatible with the usual Jacquet–Langlands cor-
respondence (or rather the induced correspondence for types) and reduction
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1560 Toby GEE & David GERAGHTY

modulo p. In order to do this, we use results of Carayol [3] on the construc-
tion of supercuspidal representations as well as results of Kutzko [11] on
the characters of supercuspidal representations and the characters of the
types they contain. Fred Diamond has pointed out to us that it is presum-
ably also possible to verify this directly using the explicit formulas in the
appendix to [1]. We suspect that the approach taken here will extend to
give similar results for GLn (and that the extension should be relatively
straightforward when n is prime); we intend to return to this question in
future work. Florian Herzig pointed out to us that our correspondence JL
is given (up to a sign) by the reduction modulo p of Deligne–Lusztig in-
duction from a non-split torus in GL2 to GL2. This immediately suggests
natural analogues of JL in the case of GLn.
We would like to thank Kevin Buzzard for asking whether there was

a Breuil–Mézard conjecture for quaternion algebras. We would also like
to thank Matthew Emerton, Florian Herzig, Guy Henniart, Mark Kisin,
Vytautas Paškūnas, and Shaun Stevens for helpful conversations.

Notation

Fix a prime number p and an algebraic closure Qp of Qp. This determines
an algebraic closure Fp of Fp.

Fix K a finite extension of Qp with ring of integers OK , uniformiser $,
and residue field k of cardinality q. Write GK for (a choice of) the absolute
Galois group of K, and IK for its inertia subgroup.

Let D be the (unique up to isomorphism) non-split quaternion algebra
with centre K, and let OD be the maximal order in D. Fix a uniformiser
$D ofD. Let L be the quadratic unramified extension ofK, so thatD splits
over L. If l is the residue field of L, then OD/$D

∼= l. We let νD denote the
valuation on D defined by νD(x) = νK(Nm(x)) where Nm is the reduced
norm on D and νK the valuation on K normalised by νK($) = 1. We
define U0

D = O×D and if a > 1 is an integer, we let UaD = 1 +$a
DOD ⊂ U0

D.
We let recp be the local Langlands correspondence of [7], so that if π is an

irreducible Qp-representation of GLn(K), then recp(π) is a Weil–Deligne
representation of the Weil group WK defined over Qp. If R = (r,N) is a
Weil–Deligne representation of WK (so in particular, r is a representation
ofWK with open kernel and N is a nilpotent endomorphism), then by R|IK
we mean r|IK .

If E/Qp is an algebraic extension and V is a continuous representation
of a compact group G on a finite-dimensional E-vector space V , then we
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define a semisimple representation V of G over the residue field of E as
follows: since G is compact, it stabilizes an OE-lattice in V . Reducing such
a lattice modulo the maximal ideal of OE and semisimplifying gives the
required representation. This representation is independent of the choice of
lattice by the Brauer–Nesbitt theorem.
If K is a p-adic field, W is a de Rham representation of GK over E,

and κ : K ↪→ E, then we will write HTκ(W ) for the multiset of Hodge–
Tate weights of W with respect to κ. By definition, the multiset HTκ(W )
contains i with multiplicity dimE(W ⊗κ,F F̂ (i))GF . Let Z2

+ = {(a1, a2) ∈
Z2 : a1 > a2}, and fix λ ∈ (Z2

+)HomQp (K,E). If W is two-dimensional,
then we say that W has Hodge type λ if for each κ : K ↪→ E, we have
HTκ(W ) = {λκ,1 + 1, λκ,2}.
If G is a finite group, we let RFp(G) denote the Grothendieck group of

the category of finitely generated Fp[G]-modules.
If R is a commutative ring, we let Rred denote the maximal reduced

quotient of R.

2. A mod p Jacquet–Langlands correspondence for finite
groups

We begin by defining an analogue of the Jacquet–Langlands correspon-
dence for mod p representations of GL2(OK) and O×D. The irreducible
mod p representations of these two groups are obtained via inflation from
the irreducible mod p representations of GL2(k) and l×, and our corre-
spondence is actually between the Grothendieck groups RFp(GL2(k)) and
RFp(l×). An element of either Grothendieck group is determined by its
Brauer character so we may equivalently describe our map on the level of
Brauer characters. Both descriptions are given below. Given an element σ
of either RFp(GL2(k)) and RFp(l×), we write χσ for its Brauer character,
which we view as being valued in our fixed Qp. Recall that if G is a finite
group, the Brauer character of a finite Fp[G] module is a function on the
p-regular conjugacy classes in G. For G = GL2(k), the p-regular conjugacy
classes coincide with the semisimple conjugacy classes; representative ele-
ments for these conjugacy classes are given by the diagonal matrices, and
the matrices i(z), where z ∈ l× \ k× and i : l ↪→M2(k) denotes a choice of
embedding of k-algebras. For G = l×, the p-regular conjugacy classes are
just the elements of l×.

TOME 65 (2015), FASCICULE 4



1562 Toby GEE & David GERAGHTY

Definition 2.1. — We define an additive map JL : RFp(l×) →
RFp(GL2(k)) as follows:

• if ψ : k× → F×p is a character, then

JL([ψ ◦Nl/k]) = [spψ]− [ψ ◦ det]

• if ψ : l× → F×p is a character which does not factor through the
norm Nl/k, then

JL([ψ]) = [Θ(ψ)].

Here the representations spψ and Θ(ψ) are as defined in [4, §1].

We let C(GL2(k)) (resp. C(l×)) be the space of Qp-valued class functions
on the semisimple conjugacy classes in GL2(k) (resp. l×). Then we have
C(GL2(k)) = RFp(GL2(k))⊗ZQp (resp. C(l×) = RFp(l×)⊗ZQp). Note that
C(GL2(k)) and C(l×) have natural ring structures, where multiplication
corresponds to the tensor product on RFp(GL2(k)) and RFp(l×). We may
also describe JL : C(l×) → C(GL2(k)) as follows: If χ ∈ C(l×) then JL(χ)
is defined by the following rule:

i(z) 7−→ −χ(z)− χ(zq) if z ∈ l× \ k×(
x 0
0 x

)
7−→ (q − 1)χ(x) if x ∈ k×(

x 0
0 y

)
7−→ 0 if x, y ∈ k×, x 6= y.

That this definition agrees with the previous one follows immediately from
the table of Brauer characters in [4, §1].

3. Types and supercuspidal representations

In this section we will discuss types for GL2(OK) and O×D, and the in-
ertial local Langlands and Jacquet–Langlands correspondences. All repre-
sentations in this section will be over Qp, unless otherwise stated. Recall
that an irreducible admissible smooth representation of GL2(K) is either
one-dimensional, a principal series representation, a twist of the Steinberg
representation, or is a supercuspidal representation. If it is either supercus-
pidal or a twist of the Steinberg representation, we say that it is a discrete
series representation. There is a bijection JL (the Jacquet–Langlands corre-
spondence) from the irreducible smooth admissible representations of D×
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(which are necessarily finite-dimensional) to the discrete series represen-
tations of GL2(K) (which are necessarily infinite-dimensional). Under this
correspondence, the 1-dimensional representations of D× correspond to the
twists of the Steinberg representation. More precisely, for each character
ψ : K× → Qp, we have JL(ψ ◦Nm) = Sp2(ψ| |−1/2). (See [7, p.32] for this
formula and the definition of Sp2(∗).) Moreover, we note that the map JL
preserves central characters.

3.1. Types

In this paper we will be particularly concerned with types, which are
finite-dimensional representations of GL2(OK) and O×D, and with their re-
lationship to inertial types. An inertial type is a two-dimensional represen-
tation τ of IK with open kernel which may be extended to a representation
of GK . We say that τ is a discrete series type if it is either scalar, or can
be extended to an irreducible representation of GK . In the latter case, we
say that τ is supercuspidal.

In the GL2 case, the theory of types is worked out explicitly in Henniart’s
appendix to [2]. We recall his main result. (We follow [9] in introducing the
notation σcr(τ).)

Theorem 3.2. — For any inertial type τ , there are unique finite di-
mensional irreducible representations σ(τ) and σcr(τ) of GL2(OK), with
the following properties:
(1) if π is an infinite dimensional smooth irreducible representation of

GL2(K), then HomGL2(OK)(σ(τ), π) 6= 0 if and only if recp(π)|IK ∼= τ ,
in which case HomGL2(OK)(σ(τ), π) is one-dimensional.

(2) if π is any smooth irreducible representation of GL2(K), then we have
HomGL2(OK)(σcr(τ), π) 6= 0 if and only if recp(π)|IK ∼= τ and the mon-
odromy operatorN on recp(π) is 0. In this case, HomGL2(OK)(σcr(τ), π)
is one-dimensional.

There is an analogous (but much simpler) theory for D×, which we now
recall, following Section 5.2 of [5]. Note that K×O×D has index two in D×.
Thus if πD is an admissible smooth representation of D×, then πD|O×

D
is

either irreducible or a sum of two irreducible representations which are
conjugate under a uniformiser $D in D×. Moreover, we easily see that if
π′D is another smooth irreducible representation of D×, then πD and π′D
differ by an unramified twist if and only if πD|O×

D

∼= π′D|O×
D
.

TOME 65 (2015), FASCICULE 4



1564 Toby GEE & David GERAGHTY

Let τ be a discrete series inertial type. Then by the Jacquet–Langlands
correspondence, there is an irreducible smooth representation πD,τ of D×
such that recp(JL(πD,τ ))|IK ∼= τ . Define σD(τ) to be one of the irreducible
components of πD,τ |O×

D
; then by the above discussion, we have the following

property.

Theorem 3.3. — Let τ be a discrete series inertial type. If πD is a
smooth irreducible Qp-representation of D× then HomO×

D
(σD(τ), πD) is

non-zero if and only if recp(JL(π))|IK ∼= τ , in which case HomO×
D

(σD(τ), π)
is one-dimensional.

Remark 3.4. — By the above discussion, any representation satisfying
the property of σD(τ) given in Theorem 3.3 is necessarily isomorphic to
σD(τ) or to σD(τ)$D .

For our purposes, we will however require some more precise results: we
will need to know exactly when πD,τ |O×

D
is irreducible and we will need

to relate the characters of σ(τ) and σD(τ) in a sense we will make precise
below.

3.5. Supercuspidal representations

Let π be a smooth irreducible representation of GL2(K) or D×. Then π
is said to be minimal if π has minimal conductor amongst all its twists by
characters. (As in [3], we define the conductor of π to be the integer c(π)
such that the epsilon factor ε(s, π, ψ) of Godement–Jacquet is of the form
aq−c(π)s when the additive character ψ has conductor OK .) Following [3],
we define subgroups Zs, Ks of GL2(K) for s = 1, 2 as follows:
• Z1 =〈$〉, K1 =GL2(OK),

• Z2 =〈
(

0 1
$ 0

)
〉, K2 =

{(
a b

c d

)
∈GL2(OK) : a, d∈O×, c∈($), b∈O

}
.

We refer to [3, §4] for the definition of a very cuspidal representation of
ZsKs Z2K2 of type m > 1. When s = 2, such representations exist only
when m is even.

Theorem 3.6 ([3] Théorèmes 4.2 & 8.1).
(1) Let s = 1 or 2 and set r = 2/s. Let ρ be a very cuspidal representa-

tion of ZsKs of type m. Then c-IndGL2(K)
ZsKs

ρ is an irreducible min-
imal supercuspidal representation of GL2(K) of conductor r(m −
1) + 2.
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(2) The representations obtained in (1) are all inequivalent.
(3) Every irreducible minimal supercuspidal representation of GL2(K)

is isomorphic to c-IndGL2(K)
ZsKs

ρ for a uniquely determined pair s, ρ
as in (1).

We note that the representations given by (1) have even conductor when
s = 1 and odd conductor when s = 2. This result in fact allows us to give
an explicit description of the types corresponding to supercuspidal inertial
types.

Proposition 3.7. — Let τ : IK → GL2(Qp) be a supercuspidal inertial
type. Moreover, assume that τ has minimal conductor amongst its twists
by smooth characters that extend to GK . Choose a (necessarily minimal
and supercuspidal) representation π of G with rec(π) equal to an extension
of τ to WK . Write π = c-IndGL2(K)

ZsKs
ρ as in Theorem 3.6. Then

σ(τ) ∼= IndGL2(OK)
Ks

(ρ|Ks).

Proof. — The construction of σ(τ) described by Henniart in [2, §A.3.1]
is exactly the description given in the statement of the proposition. �

When we pass to representations of D× via the Jacquet–Langlands cor-
respondence, there is a similar dichotomy which tells us precisely when the
restriction to O×D of a smooth irreducible representation of D× is reducible.

Proposition 3.8. — Let πD be a smooth irreducible minimal represen-
tation of D× of dimension greater than 1. Write c(πD) for the conductor
of πD.

(1) If c(πD) is odd, then πD|O×
D

is irreducible.
(2) If c(πD) is even, then πD|O×

D

∼= σD ⊕ σ$DD for some irreducible
representation σD of O×D with σD 6∼= σ$DD .

Proof. — Suppose first of all that c = c(πD) is odd. Let a = (c − 1)/2
and let χ denote a character of the abelian group UaD/U

c−1
D appearing in

πD|Ua
D
. In [3, §6.7] (where the integer a is denoted p), it is shown that the

stabilizer Zχ of χ in D× is equal to K(u)×UaD where u ∈ D is an element
generating a ramified quadratic extension of K. In [3, §6.8], it is shown
that

πD ∼= IndD
×

K(u)×Ua
D
ψ

for some character ψ extending χ. Now, since O×D\D×/K(u)×UaD ∼=
Z/νD(K(u)×) = Z/Z = 0, it follows that

πD|O×
D

∼= IndO
×
D

O×
K(u)U

a
D

ψ.

TOME 65 (2015), FASCICULE 4
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Thus, πD|O×
D

is irreducible if and only if for each t ∈ O×D − O
×
K(u)U

a
D,

the characters ψ and ψt of Ht := tO×K(u)U
a
Dt
−1 ∩ O×K(u)U

a
D are distinct.

However, if ψ = ψt on Ht for some t ∈ O×D−O
×
K(u)U

a
D, then since UaD ⊂ Ht,

we certainly have ψt|Ua
D

= χ. Thus, by definition, t ∈ Zχ = K(u)×UaD, a
contradiction.
Suppose now that c = c(πD) is even and set a = (c − 2)/2. Then in [3,

§6.9] it is shown that
πD ∼= IndD

×

K(u)×Ua
D
ρ

where now u ∈ D generates the quadratic unramified extension of K and
ρ is a representation of dimension 1 or q2. Since

O×D\D
×/K(u)×UaD ∼= Z/νD(K(u)×) = Z/2,

we deduce immediately that πD|O×
D
has at least 2 irreducible components.

The stated result now follows easily from the fact that K×O×D has index 2
in D×. �

We now recall some further results of Carayol.

Proposition 3.9. — Let πD be a smooth irreducible minimal repre-
sentation of D× of dimension greater than 1. Let π = JL(πD) and write

π = c-IndGL2(K)
ZsKs

ρ

for some uniquely determined pair s, ρ as in Theorem 3.6 (1). Then
• If s = 2, then (q − 1) dim πD = (q + 1) dim ρ.
• If s = 1, then (q − 1) dim πD = 2 dim ρ.

Proof. — By [3, Proposition 7.4], the dimension of πD coincides with the
formal degree of π (when Haar measure on GL2(K)/K× is normalized as
in [3, §5.10]). The stated result now follows from the formulas obtained in
[3, §5.9 – 5.11]. �

We deduce the following formula relating the dimension of types for
GL2(K) and D×.

Corollary 3.10. — Let πD be a smooth irreducible minimal represen-
tation of D× of dimension greater than 1. Let π = JL(πD) and write

π = c-IndGL2(K)
ZsKs

ρ

for some uniquely determined pair s, ρ as in Theorem 3.6 (1). Define

σ := IndGL2(OK)
Ks

(ρ|Ks)

and let σD denote an irreducible constituent of πD|O×
D
. Then

(q − 1) dim σD = dim σ.

ANNALES DE L’INSTITUT FOURIER
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Remark 3.11. — In our definition of the type σD(τ) for O×D, we arbi-
trarily choose one of the irreducible constituents of πD,τ |O×

D
. This has the

apparent disadvantage of breaking the symmetry of the situation but has
the advantage that the dimension formula above holds independently of the
parity of the conductor. Ultimately in our statement of the Breuil–Mézard
conjecture for D× we will consider both choices; see Conjecture 5.3 and
Remark 5.4.

Keep the notation of the preceding corollary. We now proceed to show
that the characteristic p reductions σ and σD of σ and σD are related by
the mod p Jacquet–Langlands map defined in Definition 2.1. For this we
will make use of results of Kutzko [11].

We will denote the characters of σ and σD by χσ and χσD respectively.
Note that the representation σ (resp. σD) factors through the quotient
GL2(OK) � GL2(k) (resp. O×D � l×). We denote the Brauer character
of σ (resp. σD) by χσ : (GL2(k)/ ∼)ss → Zp (resp. χσD : l× → Zp).
Here (GL2(k)/ ∼)ss is the set of semisimple (or equivalently, p-regular)
conjugacy classes in GL2(k).
If x ∈ l×, we let x̃ ∈ O×L denote its Teichmüller lift. Choose an isomor-

phism of OK-modules i : OL
∼−→ OK ⊕ OK . This gives rise to injections

i : O×L ↪→ GL2(OK) and i : l× ↪→ GL2(k). We also fix an embedding
j : L ↪→ D giving rise to an injection j : O×L ↪→ O×D.

Proposition 3.12. — Let πD be a smooth irreducible minimal repre-
sentation of D× of dimension greater than 1. Let π = JL(πD) and write

π = c-IndGL2(K)
ZsKs

ρ

for some uniquely determined pair s, ρ as in Theorem 3.6 (1). Define

σ := IndGL2(OK)
Ks

ρ|Ks

and let σD denote an irreducible constituent of πD|O×
D
. Then

JL(σD) = σ.

Proof. — Since both JL(σD) and σ are semisimple, it suffices to show
that we have an equality of Brauer characters JL(χσD ) = χσ. Let g ∈
GL2(k) be a p-regular element. We need to check that JL(χσD )(g) = χσ(g).
There are three cases:

(1) We have g = x with x ∈ k×. In this case, we need to show that

(q − 1)χσD (x) = χσ(x)
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or equivalently, that (q − 1)χσD (x̃) = χσ(x̃). This follows from
Corollary 3.10 and the fact that π and πD have the same central
character.

(2) We have g ∼ diag(x, y) with x, y ∈ k× distinct. In this case we are
required to show that χσ(g) = 0, or equivalently, that χσ(g̃) = 0
where g̃ = diag(x̃, ỹ). If s = 2, this follows from [11, Prop. 3.4] and
the Frobenius formula for the trace of an induced representation. If
s = 1, it follows from [11, Lemmas 6.3 & 6.4].

(3) We have g ∼ i(z) for some z ∈ l× \ k×. (In the following we make
use of the fact that $Dx$

−1
D ≡ xq mod $D for x ∈ OD.) In this

case, we need to show that

−χσD (z)− χσD (zq) = χσ(i(z)).

Let us first consider the sub-case where s = 2. Then πD|O×
D

is
irreducible and it suffices for us to show that

−2χσD (j(z̃)) = χσ(i(z̃)).

We will in fact show that both sides vanish. To see that the right
hand side vanishes, recall that σ = IndGL2(OK)

K2
ρ and note that for

all t ∈ GL2(OK), we have t−1i(z̃)t 6∈ K2. For the left hand side, we
have

−χσD (j(z̃)) = −χπD (j(z̃)) = χπ(i(z̃)),
where the second equality is a property of the Jacquet-Langlands
correspondence. The vanishing then follows from [11, Prop. 5.5(2)].
Finally, we treat the sub-case where s = 1. Then πD|O×

D
is re-

ducible and it suffices to show that

−χσD (j(z̃))− χσD (j(z̃q)) = χσ(i(z̃)).

For this, note that the left hand side is just −χπD (j(z̃)), which in
turn equals χπ(i(z̃)). Thus we are required to show that χπ(i(z̃)) =
χσ(i(z̃)). Yet this follows from [11, Prop 6.11(1)] and the proof is
complete. �

4. Compatibility of Jacquet–Langlands correspondences

In this section we prove our main technical result, a generalization of
Proposition 3.12 which includes the case of twists of the Steinberg represen-
tation (that is, the case where πD as in Proposition 3.12 is one-dimensional)
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and incorporates algebraic representations. Again, all representations will
be over Qp unless otherwise stated.

Let Wλ be an irreducible algebraic representation of ResK/Qp GL2/K of
highest weight λ. More precisely, we let λ ∈ (Z2

+)HomQp (K,Qp), and take Wλ

to be the representation

Wλ = ⊗τ∈HomQp (K,Qp)(Symaτ,1−aτ,2 ⊗det aτ,2)(Q2
p)

of ResK/Qp GL2/K ×QpQp =
∏
τ GL2

/Qp
. We regard Wλ as a representation

of GL2(K) via the map
∏
τ τ : GL2(K)→

∏
τ GL2(Qp). We can also regard

it as a representation of D× as follows: choose an isomorphism D ⊗K L ∼=
M2×2(L) and for each Qp-embedding τ : K ↪→ Qp choose an embedding
τ̃ : L ↪→ Qp extending τ . Then we regard Wλ as representation of D×

via the chain of maps D× ↪→ (D ⊗K L)× ∼= GL2(L)
∏

τ
τ̃

−→
∏
τ GL2(Qp).

The isomorphism class of the resulting representation is independent of
any choices. We can then regard Wλ as a representation of GL2(OK) or
O×D, by restriction.
Fix a discrete series inertial type τ : IK → GL2(Qp), so that we have

finite-dimensional representations σ(τ) and σcr(τ) (resp. σD(τ)) of GL2(OK)
(resp. O×D). Define

σ(τ, λ) := σ(τ)⊗Wλ

σcr(τ, λ) := σcr(τ)⊗Wλ

σD(τ, λ) := σD(τ)⊗Wλ,

regarded as representations of GL2(OK) or O×D as appropriate. Since
GL2(OK) and O×D are compact, we may consider the corresponding semi-
simple Fp-representations σ(τ, λ), σcr(τ, λ) and σD(τ, λ) obtained by re-
ducing a stable lattice and semisimplifying. These representations factor
through the quotients GL2(OK) � GL2(k) and O×D � l×. In the case
λ = 0 (when Wλ is the trivial representation), we will write σ(τ), σcr(τ)
and σD(τ) for σ(τ, 0), σcr(τ, 0) and σD(τ, 0).

Let Fλ (respectively FDλ ) be the representation of GL2(k) (respectively
l×) obtained from Wλ|GL2(OK) (resp. Wλ|O×

D
) by taking a stable lattice,

reducing mod p, and semisimplifying. The following lemma is trivial.

Lemma 4.1. — We have χFλ
((

x 0
0 x

))
= χFD

λ
(x) for each x ∈ k×,

and χFλ(i(z)) = χFD
λ

(z) for each z ∈ l× \ k×.
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The following theorem expresses the compatibility of our mod p Jacquet–
Langlands correspondence with the reduction modulo p of the inertial cor-
respondence.

Theorem 4.2. — Let τ : IK → GL2(Qp) be a discrete series inertial
type.

(1) Suppose τ is scalar.
Then for each highest weight λ ∈ (Z2

+)HomQp (K,Qp), we have

JL(σD(τ, λ)) = σ(τ, λ)− σcr(τ, λ).

(2) Suppose τ is supercuspidal.
Then for each highest weight λ ∈ (Z2

+)HomQp (K,Qp), we have

JL(σD(τ, λ)) = σ(τ, λ).

Proof. — Since all of the representations involved are semisimple, it
suffices to prove equalities of Brauer characters. By definition we have
χσ(τ,λ) = χσ(τ)χFλ , χσcr(τ,λ) = χσcr(τ)χFλ , and χσD(τ,λ) = χσD(τ)χFD

λ
,

so by Lemma 4.1 we may immediately reduce to the case λ = 0.
In case (1), since everything is compatible with twists by characters we

may reduce to the case that τ is the trivial type; but then σD(τ) and σcr(τ)
are the trivial representation, and σ(τ) = sp1, and the result is immediate
from Definition 2.1. In case (2), after twisting we may reduce to the case
that σD(τ) extends to a minimal representation of D×, and the result is
immediate from Proposition 3.12. �

5. The Breuil–Mézard conjecture

In this section we prove the main theorem of this paper, relating the
Breuil–Mézard conjectures for GL2(OK) and O×D. We begin by recalling the
Breuil–Mézard conjecture, reformulated in terms of Grothendieck groups,
as in the introduction.
Fix a finite E/Qp with ring of integers O, uniformiser $ and residue

field F, and fix a continuous representation ρ : GK → GL2(F). Let R� be
the universal lifting ring of ρ on the category of complete Noetherian local
O-algebras with residue field F. Let τ be an inertial type and λ a weight as
in Section 4. Extending E if necessary, we may assume that τ , σ(τ), σcr(τ)
and σD(τ) (when τ is a discrete series type) are all defined over E. Then,
there is a quotient Rτ,λ of R� which is reduced and p-torsion free, and
is “universal” for liftings which are potentially semistable of Hodge type λ
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and inertial type τ . Specifically, we take Rτ,λ to be the image of the natural
map R� → (R�[1/p])τ,λ,red where (R�[1/p])τ,λ is the quotient of R�[1/p]
constructed in [8, Theorem 2.7.6] (where our λ corresponds to Kisin’s v).
There is also a universal lifting ring Rτ,λ,cr which is reduced and p-torsion
free, and is universal for liftings which are potentially crystalline of Hodge
type λ and inertial type τ . In this case, we take Rτ,λ,cr to be the image of
the map R� → (R�[1/p])τ,λ,cr, where the latter is ring constructed in [8,
Cor. 2.7.7]; it is reduced by [8, Theorem 3.3.8]. If R is a complete local
Noetherian O-algebra with residue field F, then we write e(R/$) for the
Hilbert–Samuel multiplicity of R/$.

Conjecture 5.1 (The Breuil–Mézard Conjecture for GL2.).
(1) There is a linear functional ι : RF(GL2(k))→ Z such that for each

τ, λ we have ι(σ(τ, λ)) = e(Rτ,λ/$).
(2) There is a linear functional ιcr : RF(GL2(k))→ Z such that for each

τ, λ we have ι(σcr(τ, λ)) = e(Rτ,λ,cr/$).

Lemma 5.2. — If Conjecture 5.1 holds, then we necessarily have ι = ιcr.

Proof. — Since Rτ,λ = Rτ,λ,cr and σcr(τ, λ) = σ(τ, λ) unless τ is a scalar
type, it is enough to show that ι (and thus ιcr) is uniquely determined by
its values on the σ(τ, λ) for τ non-scalar. We may replace RF(GL2(k)) by
RF(GL2(k))⊗ZQp, so it suffices to prove that C(GL2(k)) is spanned by the
Brauer characters χσ(τ,λ) for τ non-scalar. Now, χσ(τ,λ) = χσ(τ)χFλ , and
the χFλ span C(GL2(k)), so the span of the χσ(τ,λ) for τ non-scalar is an
ideal in C(GL2(k)) (the ideal generated by the χσ(τ) for τ non-scalar).
Since the maximal ideals in C(GL2(k)) are given by the sets of functions

which vanish on some semisimple conjugacy class, it suffices to show that
for each semisimple conjugacy class, there is some non-scalar type τ such
that χσ(τ) does not vanish on that class; but this follows immediately from
the table of Brauer characters in [4, §1]. �

The obvious variant for representations of D× is as follows. Let λ and τ
be as above. Let Rτ,λ,ds denote the maximal reduced p-torsion free quotient
of Rτ,λ which is supported on the set of irreducible components of SpecRτ,λ
where the associated Weil–Deligne representation is generically of discrete
series type. More specifically, if τ is a supercuspidal type, then Rτ,λ,ds =
Rτ,λ = Rτ,λ,cr; if τ is a principal series type, then Rτ,λ,ds = 0; while if τ is
a scalar type, then SpecRτ,λ,ds is the union the irreducible components of
SpecRτ,λ not occurring in SpecRτ,λ,cr, with the reduced induced scheme
structure. Recall that for some τ of supercuspidal type, we chose σD(τ)
to be one of the two irreducible constituents of the restriction to O×D of
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a certain supercuspidal representation; in the statement of the following
conjecture, we consider both choices.

Conjecture 5.3. — There is a linear functional ιD : RF(l×)→ Z such
that for each discrete series type τ , each algebraic weight λ, and each choice
of σD(τ) we have ιD(χσD(τ,λ)) = e(Rτ,λ,ds/$).

Remark 5.4. — As in the proof of Lemma 5.2, a functional ιD as in
Conjecture 5.3 is necessarily unique. Note that in the case that there are
two choices of σD(τ), the two possibilities are related by conjugation by
$D, and in the other case σD(τ) is invariant under conjugation by $D.
The representation Wλ is also invariant under conjugation by $D (as it
is a representation of D×). Conjugation by $D induces the involution c :
x 7→ xq on l×, so rather than insisting on allowing both choices of σD(τ) in
the statement of Conjecture 5.3, we could equivalently have insisted that
ιD be invariant under the action of c, and only used one choice of σD(τ).

Before stating our main result, we note that in the case where τ is a
scalar type, the potentially semistable deformation ring of weight λ and
type τ constructed in [8] is not necessarily reduced. More specifically, we
denote by R̃τ,λ the image of the map R� → (R�[1/p])τ,λ; it is p-torsion
free, equidimensional and its generic fibre is generically reduced (by [8,
Theorem 3.3.4]). The ring Rτ,λ is its maximal reduced quotient. Similarly,
we may consider quotients R̃τ,λ,ds of the ring R̃τ,λ that are p-torsion free
and have support consisting of the irreducible components generically of
discrete series type. (There need not be a maximal such quotient.) The ring
Rτ,λ,ds is the maximal reduced quotient of any such R̃τ,λ,ds. If we work with
these potentially larger rings R̃τ,λ and R̃τ,λ,ds, then the question arises as
to whether the Hilbert Samuel multiplicities of the special fibres change.
The following lemma shows that this is not the case.

Lemma 5.5. — Let R be a complete Noetherian O-algebra with residue
field F. Suppose that R is p-torsion free, equidimensional, and that R[1/p]
is generically reduced. Then

e(R/$) = e(Rred/$).

Proof. — Let I denote the kernel of the surjection R� Rred. Since R is
assumed to be p-torsion free, Rred is also p-torsion free and we thus have
an exact sequence

0→ I/$I → R/$ → Rred/$ → 0.

Thus e(R/$) = e(Rred/$)+e(I/$I,R/$) (notation as in [9, §1.3]) and we
are reduced to showing that e(I/$I,R/$) = 0. Since R[1/p] is generically
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reduced, the localisation I℘ vanishes for every minimal prime ℘ of R. Thus
the support of I on R is of dimension strictly smaller than that of R. Since
I ⊂ R ⊂ R[1/p], each minimal prime in the support of I is p-torsion free.
It follows that the support of I/$I is of dimension strictly smaller than
that of R/$. Thus e(I/$I,R/$) = 0, as required. �

The main result of this paper is the following.

Theorem 5.6. — Conjecture 5.1 implies Conjecture 5.3.

Proof. — Assume that Conjecture 5.1 holds. Define ιD := ι ◦ JL. If τ is
supercuspidal, then by Theorem 4.2, we have ιD(σD(τ, λ)) = ι(σ(τ, λ)) =
e(Rτ,λ/$) = e(Rτ,λ,ds/$), as required. If τ is scalar, then we see in the
same way using Lemma 5.2 that ιD(σD(τ, λ)) = ι(σ(τ, λ) − σcr(τ, λ)) =
e(Rτ,λ/$)−e(Rτ,λ,cr/$) = e(Rτ,λ,ds/$). (The last equality follows from [9,
Prop. 1.3.4], taking f to be the map Rτ,λ → Rτ,λ,cr ⊕Rτ,λ,ds.) �

Corollary 5.7. — Suppose that K = Qp and that p > 5. Then Con-
jecture 5.3 holds.

Proof. — Under these hypotheses, Conjecture 5.1 holds by the main re-
sult of [12]. �

Remark 5.8. — It should also be possible to use the main result of [5] to
prove that there is a functional ι satisfying the conclusion of Conjecture 5.1
whenever λ = 0 (the only issue being for scalar types, where the results of [5]
consider only the potentially crystalline, rather than potentially semistable
representations; but when λ = 0, the only representations excluded are
ordinary, so it should be possible to prove the automorphy lifting theorems
necessary to use the machinery of [5]). It would then follow that a functional
ιD as in Conjecture 5.3 exists if we restrict to the case λ = 0.

Remark 5.9. — It may seem to the reader that the proof of Theorem
5.6 is a little too simple, and that we have avoided various technical issues,
in particular the formulation of the weight part of Serre’s conjecture for ρ,
which are usually present in discussions of the Breuil–Mézard conjecture.
However, following [5], the weight part of Serre’s conjecture can be for-
mulated in terms of the Breuil–Mézard conjecture; namely, the predicted
weights for ρ are precisely the irreducible representations σ of GL2(k) for
which ı(σ) > 0. (Note that if Conjecture 5.1 is true, then ı(σ) is positive
whenever it is non-zero; this follows from taking τ to be trivial and Wλ to
be a lift of σ in the second part of the conjecture.)

The analogous definition could be made for weights of D× (that is, for
irreducible representations of l×). In fact, if we translate the definition of

TOME 65 (2015), FASCICULE 4



1574 Toby GEE & David GERAGHTY

the weight part of Serre’s conjecture for quaternion algebras made in [6,
Definition 3.4] to this language, it is easy to see that this is precisely the
definition made there.
More precisely, let σ be an F×-character of l×, and let σ̃ be its Teichmüller

lift. Then the discussion before Definition 3.2 of [6] shows that σ̃ = σD(τ)
for some type τ (in fact, the tame type corresponding to σ̃ ⊕ σ̃q via local
class field theory). Taking λ = 0, we see that ıD(σ) = e(Rτ,0,ds/$) > 0,
which is positive if and only if ρ has a discrete series lift of weight 0 and
type τ . This recovers [6, Definition 3.4].

Remark 5.10. — Our results in fact give rise to a formula for the pre-
dicted D× weights of ρ in terms of the predicted GL2 weights of ρ. Under
the perfect pairing

RF(GL2(k))×RF(GL2(k))→ Z

which sends two irreducibles (σ, σ′) to dimF HomGL2(k)(σ, σ′), we can iden-
tify the functional ι with an element

∑
σ µρ(σ)σ of RF(GL2(k)). We have

a similar pairing
RF(l×)×RF(l×)→ Z

which allows us to think of ιD as an element of RF(l×). Moreover, we
may consider the adjoint JL∗ : RF(GL2(k))→ RF(l×) of the map JL with
respect to these pairings. Since ιD = ι ◦ JL, we see that for any element V
of RF(l×), we have

(ιD, V ) = (ι, JL(V )) = (JL∗(ι), V ).

In other words, ιD = JL∗(ι). Note that for any irreducible F[GL2(k)]-
representation σ, we have

JL∗(σ) =
∑
ξ

mξ(σ)[ξ] +
∑
χ

mχ(σ)[χ ◦Nl/k]

where ξ runs over characters l× → F× not factoring through Nl/k and χ
runs over characters k× → F× and where:

• mξ(σ) is equal to the multiplicity with which σ appears in Θ(ξ)
(which is either 0 or 1 by [4, Proposition 1.3]);

• mχ(σ) is 1 if σ = spχ; it is −1 if σ = χ ◦ det and it is 0 otherwise.
Thus, we have:

ιD =
∑
ξ

(∑
σ

mξ(σ)µρ(σ)
)

[ξ] +
∑
χ

(
µρ(spχ)− µρ(χ ◦ det)

)
[χ ◦Nl/k].
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