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WEAK TRANSCENDENTAL HOLOMORPHIC MORSE
INEQUALITIES ON COMPACT KÄHLER MANIFOLDS

by Jian XIAO (*)

Abstract. — Transcendental holomorphic Morse inequalities aim at charac-
terizing the positivity of transcendental cohomology classes of type (1, 1). In this
paper, we prove a weak version of Demailly’s conjecture on transcendental Morse
inequalities on compact Kähler manifolds. And as a consequence, we partially im-
prove a result of Boucksom-Demailly-Paun-Peternell.
Résumé. — Les inégalités de Morse holomorphes transcendantes caractérisent

la positivité des classes cohomologiques transcendantes de type (1, 1). Dans ce
papier, nous démontrons une version faible d’une conjecture de Demailly sur les
inégalités de Morse holomorphes transcendantes sur les variétés kähleriennes. En
conséquence, nous améliorons partiellement un résultat de Boucksom-Demailly-
Paun-Peternell.

1. Introduction

There are many beautiful results on holomorphic Morse inequalities for
rational cohomology classes of type (1, 1). For rational cohomology classes
of type (1, 1) which are first Chern classes of holomorphic Q-line bundles,
these inequalities are related to the holomorphic sections of line bundles.
Demailly has applied holomorphic Morse inequalities for rational cohomol-
ogy classes to reprove a stronger statement of Grauert-Riemenschneider
conjecture (ref. [5, 15]). Recently, these inequalities are also applied to the
Green-Griffiths-Lang conjecture (ref. [8]).

Keywords: Transcendental holomorphic Morse inequalities, positivity of cohomology
classes, Kähler manifolds.
Math. classification: 32C30, 32Q15.
(*) I would like to thank Prof. Jixiang Fu for his constant encouragement and sup-
port, and Prof. Jean-Pierre Demailly for informing me of the recent observation of Dan
Popovici. Popovici’s work is an important step to go further. Thus, I would like to thank
Popovici for his important observation. I would also like to thank the referee for his/her
careful reading and valuable comments.
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However, if the cohomology class is not rational, which we also call tran-
scendental class, we do not have holomorphic sections for these cohomology
classes, it is hard to prove the associated holomorphic Morse inequalities. In
the nice paper of Boucksom-Demailly-Paun-Peternell (ref. [1]), the authors
proposed the following conjecture on transcendental holomorphic Morse
inequalities.

Conjecture 1.1. — (ref. [1]) LetX be an n-dimensional compact com-
plex manifold.
(i) Let α be a real d-closed (1, 1)-form and let X(α,6 1) be the set where
α has at most one negative eigenvalue, if

∫
X(α,61) α

n > 0, then the Bott-
Chern class {α} contains a Kähler current and

vol({α}) >
∫
X(α,61)

αn.

(ii) Let {α} and {β} be two nef cohomology classes of type (1, 1) on X

satisfying {α}n − n{α}n−1 · {β} > 0. Then the Bott-Chern class {α − β}
contains a Kähler current and

vol({α− β}) > {α}n − n{α}n−1 · {β}.

In this paper, all the cohomology classes are in the Bott-Chern coho-
mology groups. First let us recall some definitions about the positivity of
(1, 1)-forms. Let X be a compact complex manifold, and fix a hermitian
metric ω on X. A cohomology class {α} ∈ H1,1

BC(X,R) is called a nef (nu-
merically effective) class if for any ε > 0, there exists a smooth function ψε
such that α+ εω+ i∂∂̄ψε is strictly positive. And a cohomology (1, 1)-class
{α} is called pseudo-effective if there exists a positive current T ∈ {α}.
A positive (1, 1)-current T is called a Kähler current if T is d-closed and
T > δω for some δ > 0. Then if {α} contains a Kähler current, we call
{α} a big class. We remark that we can also define similar positivity for
(k, k)-classes. For any pseudo-effective (1, 1)-class {α}, we can define its
volume

vol({α}) := supT

∫
X

Tnac,

where T ranges over all the positive currents in {α} and Tac is the absolutely
continuous part of T .

Remark 1.2. — Indeed, for holomorphic line bundles L, the above an-
alytical definition of volume coincides with its volume in algebraic geome-
try, i.e., vol(L) = lim supk n!

knh
0(X, kL). And Conjecture 1.1 holds true for

holomorphic line bundles (ref. [5, 6]).

ANNALES DE L’INSTITUT FOURIER



TRANSCENDENTAL MORSE INEQUALITIES 1369

In their paper [1], the authors observed that in Conjecture 1.1, (i) implies
(ii). Thus we will call part (ii) weak transcendental holomorphic Morse
inequalities. Indeed, the authors proved the following theorem.

Theorem 1.3. — (ref. [1]) Let X be a projective manifold of dimension
n. Then

vol(ω − c1(A)) > ωn − (n+ 1)2

4 ωn−1 · c1(A)
holds for every Kähler class ω and every ample line bundle A on X, where
c1(A) is the first Chern class of A. In particular, if ωn− (n+1)2

4 ωn−1 ·c1(A) >
0, then ω − c1(A) is big, i.e., it contains a Kähler current.

In this paper, we can improve the second part of Theorem 1.3 and get rid
of the projective and rational conditions. For part (ii) of Conjecture 1.1, we
get some partial results for Kähler manifolds and even for some a priori non-
Kähler manifolds. For general compact complex manifolds, we do not know
how to prove the transcendental holomorphic Morse inequalities unless we
have some special metrics.

Theorem 1.4. — Let X be an n-dimensional compact complex mani-
fold with a hermitian metric ω satisfying ∂∂̄ωk = 0 for k = 1, 2, ..., n − 1.
Assume {α}, {β} are two nef classes on X satisfying

{α}n − 4n{α}n−1 · {β} > 0,

then {α−β} is a big class, i.e., there exists a Kähler current T in {α−β}.

Thus, our result covers the Kähler case and improves Theorem 1.3 for n
large enough. Moreover, the key point is that the cohomology classes α, β
can be transcendental.

Remark 1.5. — Indeed, when n 6 3, we can slightly weaken the metric
hypothesis. In this situation, a hermitian metric ω just satisfying ∂∂̄ω = 0
is sufficient (see the appendix).

Remark 1.6. — For any n-dimensional compact complex manifold X,
Gauduchon’s result (ref. [11]) tells us there always exists a metric ω such
that ∂∂̄ωn−1 = 0. And these metrics are called Gauduchon metrics. In
particular, if n = 2, there always exists a metric ω such that ∂∂̄ω = 0. Thus
our theorem holds on any compact complex surfaces. And as a consequence,
these compact complex surfaces must be Kählerian. Indeed, this is already
known thanks to the work of Buchdahl [2, 3] and Lamari [13, 12].

Remark 1.7. — A priori, a compact complex manifold admitting a spe-
cial hermitian metric described in Theorem 1.4 need not be Kählerian.

TOME 65 (2015), FASCICULE 3



1370 Jian XIAO

However, I. Chiose in [4] has proved that if a compact complex manifold X
admits a nef class with positive top self-intersection and a hermitian metric
ω with ∂∂̄ωk = 0 for every k, then X must be Kählerian. In our proof, we
do not need this fact and we will prove Theorem 1.4 directly.

Now let X be a compact complex manifold in the Fujiki class C, then
there exists a proper modification µ : X̃ → X such that X̃ is Kähler. This
yields the following direct corollary for compact complex manifolds in the
Fujiki class C.

Corollary 1.8. — Let X be a compact complex manifold in the Fujiki
class C with dimX = n. Assume {α}, {β} are two nef classes onX satisfying
{α}n − 4n{α}n−1 · {β} > 0, then {α− β} contains a Kähler current.

Indeed, the proof of our theorem is inspired by I. Chiose. In section 3
of [4], I. Chiose cleverly applied a lemma of Lamari (Lemma 3.3 of [13])
characterizing positive currents and the ideas on mass concentration of [9]
to simplify the proof of the main theorem of Demailly and Paun. However,
just as I. Chiose said, the proof of [4] is not independent of the proof
of Demailly and Paun. [4] replaced the explicit and involved construction
of the metrics ωε in [9] by the abstract sequence of Gauduchon metrics
given by the Hahn-Banach theorem, via Lamari’s lemma. We remark that
Lamari’s lemma uses the technique introduced by Sullivan in [16]. We find I.
Chiose’s method is useful to prove positivity of the difference of cohomology
classes, at least in our case. Indeed, in addition to solving a different family
of Monge-Ampère equations, our proof almost follows the argument of [4].
However, our result seems not easily reachable by the mass concentration
method.

Remark 1.9. — Very recently, Dan Popovici [14] observed that keeping
the same method and only changing the details of the estimates in the
Monge-Ampère equation, one can get the optimal constant n for (1, 1)-
classes on Kähler manifolds. For more details of this recent improvement,
we refer the readers to [14].

This paper is organized as follows. In section 2, we present some prelimi-
nary results. Then in section 3, we prove our main result. We give the proof
of Theorem 1.4. Finally, for the reader’s convenience, we present the proof
of Lamari’s lemma and the proof of one additional key point in Remark 1.5
in the appendix.

ANNALES DE L’INSTITUT FOURIER
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2. Preliminaries

Let X be an n-dimensional compact complex manifold, for every real
(1, 1)-form α, we have the space PSH(X,α) consisting of all α-PSH func-
tions. A function u is called α-PSH (α-plurisubharmonic) if u is an upper
semi-continuous and locally integrable function such that α+ i∂∂̄u > 0 in
the sense of currents. We have the following uniform L1 bound for α-PSH
functions.

Lemma 2.1. — Let X be an n-dimensional compact complex manifold
with a hermitian metric ω and let α be a real (1, 1)-form, then there exists
a positive constant c such that ||u||L1(ωn) =

∫
X
|u|ωn 6 c for any u ∈

PSH(X,α) with supXu = 0.

Proof. — Since X is compact and α is smooth, there exists a constant
B such that Bω > α, then Bω + i∂∂̄u > 0 for u ∈ PSH(X,α). Then the
above result follows from Proposition 2.1 of [10]. �

Remark 2.2. — We will apply Lemma 2.1 to nef classes. Let {α} be a
nef class, then for any ε > 0, there exists a smooth function ψε such that
ψε is a (α + εω)-PSH function. We can always assume supXψε = 0, then
these ψε are uniformly L1 bounded. This uniform L1 bound is needed when
we deal with the situation when X only admits a metric ω with ∂∂̄ω = 0
and dimX 6 3 (see the appendix).

In order to apply the method of [9] on a general compact complex man-
ifold which maybe a priori non-Kähler, we need Tosatti’s and Weinkove’s
result [17] on the solvability of complex Monge-Ampère equation on her-
mitian manifolds.

Lemma 2.3. — Let X be an n-dimensional compact complex manifold
with a hermitian metric ω. Then for any smooth real-valued function F on
X, there exist a unique real number C > 0 and a unique smooth real-valued
function ϕ on X solving

(ω + i∂∂̄ϕ)n = CeFωn,

where ω + i∂∂̄ϕ > 0 and supXϕ = 0.

Finally, we state Lamari’s lemma (Lemma 3.3 of [13]) on the charac-
terization of positive currents. Lamari’s result is only stated for positive
(1, 1)-currents, and it also can be stated for positive (k, k)-currents for any
k. However, the proof for general k is the same as in Lemma 3.3 of [13]. And
for the reader’s convenience, we will give Lamari’s proof in the appendix.

TOME 65 (2015), FASCICULE 3



1372 Jian XIAO

Lemma 2.4. — Let X be an n-dimensional compact complex manifold
and let Φ be a real (k, k)-form, then there exists a real (k−1, k−1)-current
Ψ such that Φ + i∂∂̄Ψ is positive if and only if for any strictly positive
∂∂̄-closed (n− k, n− k)-form Υ, we have

∫
X

Φ ∧Υ > 0.

3. The main result

Now we can prove our main result (Theorem 1.4). Though the a priori
non-Kähler manifolds satisfying the conditions in our theorem are actually
Kähler, we still hope Tosatti’s and Weinkove’s hermitian version of Calabi-
Yau theorem could apply to general compact complex manifolds (with some
new ideas). Therefore, we give the proof for the special possibly non-Kähler
metrics described in the statement of Theorem 1.4.

Proof of Theorem 1.4. — Firstly, fix a special hermitian metric ω satis-
fying ∂∂̄ωk = 0 for k = 1, 2, ..., n−1. Since {α}, {β} are nef classes, for any
ε > 0, there exist smooth functions ϕε, ψε such that αε := α+εω+i∂∂̄ϕε >
0 and βε := β + εω + i∂∂̄ψε > 0. There is no doubt we can always assume
supϕε = supψε = 0. And we have {α − β} = {αε − βε}, thus {α − β}
is a big class if and only if there exists a positive constant δ > 0 and a
(αε − βε)-PSH function θδ, such that

(3.1) αε − βε + i∂∂̄θδ > δαε.

Now let us first fix ε. Then Lemma 2.4 implies (3.1) is equivalent to

(3.2)
∫
X

(αε − βε − δαε) ∧G > 0

for any strictly positive ∂∂̄-closed (n−1, n−1)-form G. Then G is (n−1)-th
power of a Gauduchon metric. Now, (3.2) is equivalent to

(3.3)
∫
X

(1− δ)αε ∧G >
∫
X

βε ∧G.

Thus, the class {α − β} = {αε − βε} is not big is equivalent to for any
δm ↘ 0, there exists a Gauduchon metric Gm,ε such that

(3.4)
∫
X

(1− δm)αε ∧Gm,ε <
∫
X

βε ∧Gm,ε.

Without loss of generality, we can assume
∫
X
βε ∧Gm,ε = 1.

By the Calabi-Yau theorem on hermitian manifold of Lemma 2.3, we can
solve the following family of Monge-Ampère equations

(3.5) α̃ε
n = (αε + i∂∂̄uε)n = cεβε ∧Gm,ε

ANNALES DE L’INSTITUT FOURIER
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with α̃ε = αε + i∂∂̄uε, supX(ϕε +uε) = 0 and cε =
∫
X

(αε + i∂∂̄uε)n. Then
∂∂̄ωk = 0 for k = 1, 2, ..., n− 1 implies

(3.6) cε =
∫
X

(α+ εω)n ↘ c0 =
∫
X

αn > 0.

We defineMε =
∫
X

(αε+i∂∂̄uε)n−1∧βε, then ∂∂̄ωk = 0 for k = 1, 2, ..., n−1
also implies

(3.7) Mε =
∫
X

(α+ εω)n−1 ∧ (β + εω)↘M0 =
∫
X

αn−1 ∧ β.

We define Eγ := {x ∈ X| α̃ε
n−1∧βε

Gm,ε∧βε (x) > γMε} for some γ > 1. The condi-
tion γ > 1 implies Eγ is a proper open subset in X, since we have assumed∫
X
βε ∧Gm,ε = 1 and

(3.8)
∫
Eγ

Gm,ε ∧ βε =
∫
Eγ

Gm,ε ∧ βε
α̃ε

n−1 ∧ βε
· α̃εn−1 ∧ βε <

1
γMε

Mε = 1
γ
< 1.

On the closed subset X\Eγ , the definition of Eγ tells us that

(3.9) α̃ε
n−1 ∧ βε 6 γMε ·Gm,ε ∧ βε.

For any fixed point p ∈ X\Eγ , choose holomorphic coordinates such that
βε(p) =

∑√
−1dzi ∧ dz̄i, α̃ε(p) =

∑√
−1λidzi ∧ dz̄i with λ1 6 λ2 6 ... 6

λn. Then at the point p, if we denote dV (p) := (
√
−1)ndz1 ∧ dz̄1 ∧ ... ∧

dzn ∧ dz̄n, then (3.5) is just

(3.10) n!λ1 · λ2 · ... · λndV (p) = cεβε ∧Gm,ε,

and (3.9) is

(3.11) (n− 1)!
∑

λi1 · λi2 · ... · λin−1dV (p) 6 γMε ·Gm,ε ∧ βε.

The above two inequalities (3.10), (3.11) yield

λ1(p) > cε
nγMε

.

Since p ∈ X\Eγ is arbitrary, we get

(3.12) α̃ε >
cε

nγMε
· βε

TOME 65 (2015), FASCICULE 3
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on X\Eγ . Now let us estimate the integral
∫
X
α̃ε ∧ Gm,ε =

∫
X

(α + εω) ∧
Gm,ε. The inequality (3.12) implies∫

X

α̃ε ∧Gm,ε >
∫
X\Eγ

α̃ε ∧Gm,ε(3.13)

>
∫
X\Eγ

cε
nγMε

· βε ∧Gm,ε(3.14)

= cε
nγMε

(
∫
X

βε ∧Gm,ε −
∫
Eγ

βε ∧Gm,ε)(3.15)

>
cε

nγMε
(1− 1

γ
).(3.16)

Take γ = 2, we get

(3.17) cε − 4nMε

∫
X

α̃ε ∧Gm,ε = cε − 4nMε

∫
X

(α+ εω) ∧Gm,ε < 0.

On the other hand, (3.4) implies

(3.18)
∫
X

αε ∧Gm,ε =
∫
X

(α+ εω) ∧Gm,ε <
1

1− δm
.

Fix a small ε to be determined. Since
∫
X
βε ∧Gm,ε = 1, by compactness of

the sequence {Gm,ε}, there exists a weakly convergent subsequence which
we also denote by {Gm,ε} with

lim
m→∞

Gm,ε = G∞,ε

where the convergence is in the weak topology of currents and G∞,ε is a
∂∂̄-closed positive (n− 1, n− 1)-current with

(3.19) 0 6
∫
X

(α+ εω) ∧G∞,ε 6 1.

Now our assumption

{α}n − 4n{α}n−1 · {β} > 0

implies
c0 − 4nM0 > 0.

Then after taking the limit of m in (3.17) and (3.18), (3.19) implies

cε − 4nMε 6 cε − 4nMε

∫
X

(α+ εω) ∧G∞,ε < 0.

It is clear that the contradiction is obtained in the limit when we let ε go
to zero.

ANNALES DE L’INSTITUT FOURIER
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Thus the assumption that {α− β} is not a big class is not true. In other
words, {α}n − 4n{α}n−1 · {β} > 0 implies there exists a Kähler current in
the class {α− β}. �

After proving Theorem 1.4, Corollary 1.8 follows easily.
Proof of Corollary 1.8. — Since X is in the Fujiki class C, there exists

a proper modification µ : X̃ → X such that X̃ is Kähler. Pull back α, β to
X̃, the class µ∗α, µ∗β are still nef classes on X̃ and {µ∗α}n−4n{µ∗α}n−1 ·
{µ∗β} > 0. Theorem 1.4 yields there exists a Kähler current

T̃ ∈ {µ∗(α− β)}.

Then T := µ∗T̃ is our desired Kähler current in the class {α− β}. �

Remark 3.1. — We point out that, for the Bott-Chern cohomology
classes {αk − βk} on Kähler manifolds, we can prove a result analogous
to Theorem 1.4. Its proof is almost a copy and paste of that in the (1, 1)-
case. Let {α} and {β} be two nef cohomology classes of type (1, 1) on
an n-dimensional compact Kähler manifold X satisfying the inequality
{α}n− 4Ckn{α}n−k · {β}k > 0 with Ckn = n!

k!(n−k)! , then {α
k−βk} contains

a “strictly positive" (k, k)-current. And one can get the constant n!
k!(n−k)! by

using Popovici’s observation. Here, we also call such a (k, k)-cohomology
class big and a (k, k)-current T is called “strictly positive" if there exist
a positive constant δ and a hermitian metric ω such that T > δωk. Fix
a Kähler metric ω, since {α} and {β} are nef, for any ε > 0 there exist
functions ϕε, ψε such that αε := α+ εω+ i∂∂̄ϕε and βε := β + εω+ i∂∂̄ψε
are Kähler metrics. In general, unlike the (1, 1)-case, we should note that
{αkε − βkε } 6= {αk − βk}. Thus the bigness of {αkε − βkε } does not im-
ply the bigness of {αk − βk}. However, we can still apply the ideas of
the proof of Theorem 1.4 by the following observation. It is obvious that
{α}n − 4Ckn{α}n−k · {βε}k > 0 for ε small enough. We fix such a ε0, then
we claim that the bigness of {αk − βkε0

} implies the bigness of {αk − βk}.
The bigness of {αk−βkε0

} yields the existence of some current θε0 and some
positive constant δε0 such that

αk − βkε0
+ i∂∂̄θε0 > δε0ω

k.

Then we have αk − βk + i∂∂̄θ̃ε0 > δε0ω
k + γε0 , where i∂∂̄θ̃ε0 = i∂∂̄θε0 −∑k

l=1 C
l
k

∑l
p=1 C

p
l (i∂∂̄ψε0)p ∧ (ε0ω)l−p ∧ βk−l and γε0 =

∑k
l=1 C

l
k(ε0ω)l ∧

βk−l. Since {β} is nef, it is clear that the class {γε0} contains a positive
current Υε0 := γε0 + i∂∂̄Φε0 . Then αk − βk + i∂∂̄(θ̃ε0 + Φε0) is a “strictly
positive" (k, k)-current in {αk − βk}. Thus we can assume β is a Kähler
metric in the beginning. With this assumption, we only need to show that

TOME 65 (2015), FASCICULE 3
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the class {αk−βk} contains a (k, k)-current T := αk−βk + i∂∂̄θ such that
T > δβk for some positive constant δ. This can be done as in the proof of
Theorem 1.4.

Appendix A. Lamari’s lemma

In this section, for the reader’s convenience, we include the proof of
Lemma 2.4 due to Lamari (see Lemma 3.3 of [13]). The proof is an appli-
cation of Hahn-Banach theorem.

Lemma A.1. — Let X be an n-dimensional compact complex manifold
and let Φ be a real (k, k)-form, then there exists a real (k−1, k−1)-current
Ψ such that Φ + i∂∂̄Ψ is positive if and only if for any strictly positive
∂∂̄-closed (n− k, n− k)-forms Υ, we have

∫
X

Φ ∧Υ > 0.

Proof. — It is obvious that if there exists a (k − 1, k − 1)-current Ψ
such that Φ + i∂∂̄Ψ is positive, then for any strictly positive ∂∂̄-closed
(n− k, n− k)-form Υ, we have

∫
X

Φ ∧Υ > 0.
In the other direction, assume

∫
X

Φ ∧ Υ > 0 for any strictly positive
∂∂̄-closed (n−k, n−k)-form Υ. Firstly, let us define some subspaces in the
real vector space Dn−k,n−kR consisting of real smooth (n − k, n − k)-forms
with Fréchet topology. We denote

E = {Υ ∈ Dn−k,n−kR |∂∂̄Υ = 0},
C1 = {Υ ∈ E|Υ is strictly positive},

C2 = {Υ ∈ Dn−k,n−kR |Υ is strictly positive}.

Then if we consider Φ as a linear functional on Dn−k,n−kR , we have Φ|C1 > 0.
If there exists a Υ0 ∈ C1 such that Φ(Υ0) = 0. Then we consider the

affine function f(t) = Φ(tα+(1− t)Υ0), where α ∈ E is fixed. The function
f(t) satisfies f(0) = 0, moreover, since Υ0 ∈ C1 is strictly positive and X
is compact, for ε small enough, f(±ε) > 0 by the assumption. This implies
f(t) ≡ 0, in particular, f(1) = Φ(α) = 0. By the arbitrariness of α ∈ E, we
get Φ|E = 0, thus Φ = i∂∂̄Ψ for some current Ψ. So in this case, we have
Φ + i∂∂̄(−Ψ) = 0.

Otherwise, for any Υ0 ∈ C1, we have Φ(Υ0) > 0, i.e., Φ|C1 > 0. Since
Φ can be seen as a linear functional on Dn−k,n−kR , we can define its kernel
space kerΦ, it’s a linear subspace. We denote F = E∩kerΦ, then F ∩C2 =
∅. Next, we need the following geometric Hahn-Banach theorem or Mazur’s
theorem.

ANNALES DE L’INSTITUT FOURIER
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• LetM be a vector subspace of the topological vector space V . Suppose
K is a non-empty convex open subset of V with K ∩M = ∅. Then there is
a closed hyperplane N in V containing M with K ∩N = ∅.
The above theorem yields there exists a real (k, k)-current T such that

T |F = 0 and T |C2 > 0. Take Υ ∈ C1, then Φ(Υ), T (Υ) are both positive. So
there exists a positive constant λ such that (Φ−λT )(Υ) = 0. Observe that F
is codimension one in E and Υ ∈ E\F , thus Φ−λT is identically zero on E.
This fact yields there exists a current Ψ such that Φ+ i∂∂̄Ψ = λT > 0. �

Appendix B. Proof of Remark 1.5

Proof. — From the proof of Theorem 1.4, we know that a key ingredient
is the dependence of cε,Mε on ε as ε tends to zero. These constants come
from the following family of Monge-Ampère equations:

α̃ε
n = (αε + i∂∂̄uε)n = cεβε ∧Gm,ε.

In this case, the uniform L1 bound in Lemma 2.1 plays an important role.
For c large enough, we have ψε, ϕε + uε are all cω-PSH. Since supψε =
sup(ϕε + uε) = 0, if we denote ϕε + uε by ηε, we have

(B.1) ||ψε||L1(ωn) + ||ηε||L1(ωn) < C

for a uniform constant C.
Firstly, assume n = 3, then by (B.1) and ∂∂̄ω = 0

cε =
∫
X

(α+ εω + i∂∂̄ηε)3

=
∫
X

(α+ i∂∂̄ηε)3 + ε3ω3

+ 3εω ∧ (α+ i∂∂̄ηε)2 + 3ε2ω2 ∧ (α+ i∂∂̄ηε)

=
∫
X

α3 +O(ε).

Thus, cε > 0 for ε small and limε→0 cε = c0. Similarly, by the definition of
Mε, we have

Mε =
∫
X

(α+ εω + i∂∂̄ηε)2 ∧ (β + εω + i∂∂̄ψε)

=
∫
X

((α+ i∂∂̄ηε)2 + ε2ω2 + 2(α+ i∂∂̄ηε) ∧ εω) ∧ β

+
∫
X

(· · · ) ∧ εω +
∫
X

(· · · ) ∧ i∂∂̄ψε

= rε + sε + tε.
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By (B.1) and ∂∂̄ω = 0 again, it is easy to see that

rε =
∫
X

α2 ∧ β + 2εα ∧ β ∧ ω +O(ε2),

sε = ε

∫
X

α2 ∧ ω +O(ε2),

tε = O(ε2).

So by the above calculation, we get limε→0 Mε = M0 =
∫
X
α2∧β. A priori,

it is not obvious whether we have Mε > 0 for ε > 0 small enough. We
claim Mε > 0 and this depends on c0 =

∫
X
α3 > 0. Since α and β are nef,

we only need to verify
∫
X
α2 ∧ ω > 0. Firstly, inspired by [7], we solve the

following family of complex Monge-Ampère equations

(B.2) (α+ εω + i∂∂̄uε)3 = Uεω
3

where supuε = 0 and Uε =
∫
X

(α+ εω + i∂∂̄uε)3/
∫
X
ω3 is a positive con-

stant. By the above estimate of cε, we know

(B.3) Uε =
∫
X

(α+ εω + i∂∂̄uε)3∫
X
ω3 = c0 +O(ε)∫

X
ω3 .

It is easy to see that

(B.4)
∫
X

(α+ εω + i∂∂̄uε)2 ∧ ω =
∫
X

α2 ∧ ω +O(ε),

or equivalently,

(B.5)
∫
X

α2 ∧ ω =
∫
X

(α+ εω + i∂∂̄uε)2 ∧ ω −O(ε).

Then the pointwise inequality

(α+ εω + i∂∂̄uε)2 ∧ ω
ω3 >

( (α+ εω + i∂∂̄uε)3

ω3

) 2
3 ·
(ω3

ω3

) 1
3

implies

(B.6)
∫
X

α2 ∧ ω > Uε
2
3

∫
X

ω3 −O(ε) = (c0 +O(ε)) 2
3 (
∫
X

ω3) 1
3 −O(ε).

Then c0 > 0 yields the existence of some positive constant c′ such that∫
X

α2 ∧ ω > c′.

And this concludes our claim that Mε > 0 for ε small enough. With these
preparations, the proof of Remark 1.5 when n = 3 is the same as Theo-
rem 1.4. Similarly, we can also prove the case when n < 3. �
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