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KOTTWITZ-RAPOPORT AND p-RANK STRATA IN
THE REDUCTION OF SHIMURA VARIETIES OF PEL

TYPE

by Philipp HARTWIG

Abstract. — We study the reduction of certain integral models of Shimura
varieties of PEL type with Iwahori level structure. On these spaces we have the
Kottwitz-Rapoport and the p-rank stratification. We show that the p-rank is con-
stant on a KR stratum, generalizing a result of Ngô and Genestier. We prove an
abstract, uniform formula for the p-rank on a KR stratum. In the symplectic and
in the unitary case we derive explicit formulas for its value. We apply these formu-
las to the question of the density of the ordinary locus and to the question of the
dimension of the p-rank 0 locus.
Résumé. — Nous étudions la réduction de certains modèles entiers des variétés

de Shimura de type PEL à structure de niveau Iwahori. Sur ces espaces on a la
stratification de Kottwitz-Rapoport et la stratification de p-rang. Nous montrons
que le p-rang est constant sur un strate de Kottwitz-Rapoport, généralisant un
résultat de Ngô et Genestier. Nous montrons une formule abstraite, uniforme pour
le p-rang sur un strate de Kottwitz-Rapoport. Dans les cas symplectique et unitaire
nous trouvons des formules explicites pour sa valeur. Nous appliquons ces formules
à la question de la densité du lieu ordinaire et à la question de la dimension du
lieu de p-rang 0.

1. Introduction

In [24] Rapoport and Zink construct integral models for certain Shimura
varieties of PEL type. These integral models have since been an object
of intense study and our paper is concerned with their geometric special
fiber. One strategy for studying the geometry of these special fibers is to
make use of different natural stratifications on them. So far this strategy

Keywords: Abelian varieties, p-rank stratification, Kottwitz-Rapoport stratification,
Iwahori decomposition, ordinary locus, Hilbert-Blumenthal modular varieties, affine
Deligne-Lusztig varieties.
Math. classification: 14G35, 14K10.
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has been particularly successful in the case of the Siegel modular variety
with Iwahori level structure AI : For example it has been used by Ngô
and Genestier to prove the density of the ordinary locus in AI , see [16],
and it has been used by Görtz and Yu to obtain various results about the
geometry of the supersingular locus in AI , see [5] and [6]. In both cases the
Kottwitz-Rapoport stratification, first introduced by Ngô and Genestier in
loc. cit., plays a crucial role. However beyond the Siegel case not much
is known about this stratification. The aim of this paper is to study the
Kottwitz-Rapoport stratification in the general PEL setup and to use it to
obtain results about the geometry of the special fibers of the Rapoport-Zink
integral models in other cases than the Siegel case.
Let us now give a more detailed overview of the content of this paper.

Fix a rational prime p 6= 2 and a PEL datum B = (B, ∗, V, (·, ·) , J) with
auxiliary data Bp = (OB ,L), see Section 2.1. The datum B gives rise to
a reductive group G over Q and a conjugacy class h of homomorphisms
ResC/R Gm → GR. Fix a compact open subgroup Cp ⊂ G(Apf ). From Cp

and Bp one obtains a compact open subgroup C ⊂ G(Af ) and thus a
Shimura datum (G, h,C). In [24, Section 6], Rapoport and Zink construct
from B, Bp and Cp an integral model A = ACp of the Shimura variety
associated with (G, h,C). Concretely A is defined as a moduli space of
abelian schemes with additional structure.
In order to study properties of the scheme A, Rapoport and Zink in-

troduce the so-called local model(1) M loc. It is defined purely in terms of
linear algebra and therefore easier to investigate than A. The schemes A
and M loc are related via an intermediate object Ã fitting into the so called
local model diagram

Ã
ϕ̃

��

ψ̃

!!
A M loc.

Étale locally on A, there is a section s : A → Ã of ϕ̃ such that the compo-

sition A s−→ Ã ψ̃−→M loc is étale. Consequently A inherits any property from
M loc which is local for the étale topology. In particular, questions about
singularities of A or the flatness of A can equivalently be studied for M loc.

(1)The local models introduced by Rapoport and Zink have come to be called “naive
local models” because they fail to be flat in general. We have chosen to omit the word
“naive” from their name since the question of flatness is not relevant for the purposes of
this paper. But the reader should be warned that this is not completely consistent with
the terminology used in the more recent literature.
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The PEL datum also gives rise to an affine smooth group scheme Aut(L),
and Aut(L) acts on both Ã andM loc. The map ϕ̃ is an Aut(L)-torsor, while
the map ψ̃ is Aut(L)-equivariant. Denote by F an algebraic closure of Fp.
Via the local model diagram, the decomposition ofM loc(F) into Aut(L)(F)-
orbits induces the Kottwitz-Rapoport (or KR) stratification

A(F) =
∐

x∈Aut(L)(F)\M loc(F)

Ax,

which was first introduced by Ngô and Genestier in [16].
Assume for the rest of this introduction that we are in the Iwahori case

(i.e. that L is complete in the sense of Definition 2.4.2). In all explicit cases
studied thus far (cf. the discussion in [22, §3.3]), the Aut(L)(F)-orbits in
M loc(F) are intimately related to Schubert cells in a suitable affine flag
variety. In order to observe this relationship one first constructs an embed-
ding of the geometric special fiber M loc

F of M loc into an affine flag variety
F . This embedding is constructed on a case-by-case basis, using a suitable
realization of the affine flag variety as a moduli space of lattice chains. (Let
us mention though that recently a purely group-theoretic definition of a
local model was given in [23] by Pappas and Zhu; for this local model the
special fiber is canonically contained in an affine flag variety.) In analogy
with the Bruhat decomposition of the classical flag variety, indexed by the
finite Weyl group W , the affine flag variety admits the Iwahori decompo-
sition F(F) =

∐
x∈W̃ Cx into Schubert cells Cx, indexed by the extended

affine Weyl group W̃ . It then turns out in each of these explicit cases that
M loc

F ⊂ F is a disjoint union of Schubert cells and that the decomposition
M loc(F) =

∐
Cx⊂M loc(F) Cx coincides with the decomposition of M loc(F)

into Aut(L)(F)-orbits. As in the case of the Bruhat decomposition, many
properties of the Iwahori decomposition are easily expressed by combina-
torial properties of the corresponding index element in W̃ . Notably, the
dimension of Cx is given by the length `(x) of x in W̃ , and the closure
relation between Schubert cells is expressed by the Bruhat order on W̃ . We
conclude that the same statements hold for the KR stratification on A(F).
Let us explain in detail one case in which this convenient combinatorial

behavior of the KR stratification was fruitfully exploited. For B = Q, the
moduli problem A specializes to the Siegel moduli space AI of principally
polarized abelian varieties with Iwahori level structure. In [6], Görtz and Yu
compute the dimension of the p-rank 0 locus in AI , and this computation
was later generalized in [9] by Hamacher to the case of all p-rank strata. The
method is the same in both cases: Determine all KR strata contained in a
given p-rank stratum and compute the maximum of their dimensions. For

TOME 65 (2015), FASCICULE 3



1034 Philipp HARTWIG

this method to work one of course needs to know that a p-rank stratum
is indeed the union of the KR strata contained in it. Thus both papers
depend crucially on the result [16, Théorème 4.1] of Ngô and Genestier,
which states that indeed the p-rank is constant on a KR stratum in AI ,
and also provides an explicit formula for the p-rank on a given KR stratum.
The subject of this paper is to generalize the result of Ngô and Genestier

on the relationship between the KR and the p-rank stratification to more
general PEL data. Let us give an outline of the structure of this paper and
of the results that we have obtained.
In Sections 2.1 through 2.3, we recall the construction of the local model

diagram. We then show the following result.

Theorem 1.0.1. — Let B be an arbitrary PEL datum. If L is complete
(in the sense of Definition 2.4.2), then the p-rank is constant on a KR
stratum.

Before being able to state our next result, we need some more notation.
Denote by OK = W (F) the Witt ring of F, by K the fraction field of
OK and by σ the Frobenius on K. Denote by D the diagonalizable affine
group with character group Q over K. For b ∈ G(K) denote by νb : D →
GK the corresponding Newton map. By definition, the group GK acts on
VK and thus νb gives rise to a representation of D on VK . Consider the
corresponding weight decomposition VK = ⊕χ∈QVχ and define

νb,0 := dimK V0.

Denote by I the stabilizer of L ⊗ OK in G(K). For b ∈ G(K) and x ∈
I\G(K)/I we denote by Xx(b) = {g ∈ G(K)/I | g−1bσ(g) ∈ IxI} the
affine Deligne-Lusztig variety associated with b and x.
By interpreting the KR stratification in terms of the relative position

of L ⊗ OK to its image under Frobenius, we show that the KR strata are
precisely the fibers of a canonical map γ : A(F) → I\G(K)/I. Denote by
Perm ⊂ I\G(K)/I the image of γ, and for x ∈ Perm by Ax = γ−1(x) the
corresponding KR stratum.

Theorem 1.0.2. — Let x ∈ Perm and let b ∈ G(K). Assume that
Xx(b) 6= ∅. Then the p-rank on Ax is constant with value νb,0.

It is conjectured that the non-emptiness of Xx(b) implies the non-
emptiness of the intersection of Ax with the Newton stratum Nb asso-
ciated with b, compare Remark 2.5.17. Our result can be seen as providing
further evidence for this conjecture.

ANNALES DE L’INSTITUT FOURIER
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In Sections 3 through 7 we turn to the aforementioned interpretation of
the KR stratification in terms of the affine flag variety. Section 3 deals with
the case of the symplectic group. Section 5 (resp. 6, resp. 7) deals with the
case of a unitary group associated with a ramified (resp. inert, resp. split)
quadratic extension. Let us note that the embedding of M loc

F into an affine
flag variety has a long history. In particular we want to emphasize that we
have greatly profited from the expositions by Pappas and Rapoport in [19],
[20], [21], and by Smithling in [26], [28]. We have decided to repeat part of
their discussions, on the one hand for the convenience of the reader, and
on the other to provide several proofs and details that have been omitted
in loc. cit.
Our discussion is quite similar in all cases. We begin with describing

in detail the PEL datum at hand, including the Hodge structure and the
resulting determinant morphism. We proceed by making explicit the def-
inition of the local model and investigate its base-change to F. We then
recall the definition of the affine flag variety as a suitable quotient of loop
groups and prove in detail that it can be realized as a moduli space of lat-
tice chains. We conclude the discussion of the local model by embedding it
into the affine flag variety and proving that the Aut(L)-orbits on M loc(F)
are precisely the Schubert cells contained in M loc(F). We then prove an
explicit formula for the p-rank on a KR stratum.
Using these explicit formulas and the aforementioned combinatorial

structure of the KR stratification, we prove the following geometric results.

1.1. Density of the ordinary locus

It is an interesting question whether the ordinary locus lies dense in AF.
In the case of hyperspecial level structure, this question has been studied
in detail by Wedhorn in [31], who shows that one should work with the µ-
ordinary locus instead of the (classical) ordinary locus, and that the former
is open and dense.
We focus on the case of Iwahori level structure. In the corresponding

Siegel case AI , the result [16, Corollaire 4.3] of Ngô and Genestier answers
this question affirmatively. On the other hand, Stamm obtains in [29] a
negative answer in the two-dimensional Hilbert-Blumenthal case. The fol-
lowing result generalizes these two results and explains the general pattern,
thereby answering a question by M. Rapoport.

Theorem 1.1.1 (Corollary 3.11.2). — Assume that B is the symplectic
PEL datum associated with a totally real extension F/Q (see Section 3.2

TOME 65 (2015), FASCICULE 3



1036 Philipp HARTWIG

for a detailed description of B). Assume (without loss of generality) that
there is only a single prime of OF dividing p. Then the ordinary locus lies
dense in AF if and only if p is totally ramified in OF .

Unlike in the case of hyperspecial level structure mentioned above, the
non-density of the ordinary locus occurring in Theorem 1.1.1 does not stem
from using the wrong notion of ordinariness, but rather should be seen as
a natural phenomenon.

1.2. Dimension of the p-rank 0 locus

As mentioned above, Görtz and Yu use [16, Théorème 4.1] to compute
the dimension of the p-rank 0 locus in AI , see [6, Theorem 8.8]. By copying
their approach and using our formula for the p-rank on a KR stratum in
the split unitary case, we obtain the following result.

Theorem 1.2.1 (Theorem 7.5.7). — Assume that B is the unitary PEL
datum of signature (r, n − r) associated with an imaginary quadratic ex-
tension of Q in which p splits (see Section 7.1 for a detailed description of
B). Denote by A(0) ⊂ A(F) the subset where the p-rank of the underlying
abelian variety is equal to 0. Then

dimA(0) = min
(
(r − 1)(n− r), r(n− r − 1)

)
.

1.3. The Hilbert-Blumenthal case

As an illustrative example, we look in Section 3.12 at the case of the
Hilbert-Blumenthal modular varieties. Without any additional work, we
obtain the following result.

Theorem 1.3.1 (Theorem 3.12.3). — Let g > 2 and let A be the
Hilbert-Blumenthal modular variety with Γ0(p)-level structure associated
with a totally real extension of degree g of Q. Denote by A(0) ⊂ AF and
A(g) ⊂ AF the subsets where the p-rank of the underlying abelian variety
is equal to 0 and g, respectively. Then

AF = A(0) qA(g).

The ordinary locus A(g) is the union of only two KR strata Ax1 and Ax2 .
Consequently we have

AF = Ax1 ∪ Ax2 ∪ A(0).

ANNALES DE L’INSTITUT FOURIER
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Here Ax denotes the closure of the KR stratum Ax in AF.
Each of AF,Ax1 ,Ax2 and A(0) is equidimensional of dimension 2g.
Furthermore, we have

Ax1 ∩ Ax2 ⊂ A(0).

Taking g = 2, we recover the result [29, Theorem 2 (p. 408)] of Stamm.
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Notation

We fix once and for all a rational prime p 6= 2 and an algebraic closure
F of Fp.

Let n ∈ N>1.
• For elements x1, . . . , xn of some set and k1, . . . kn ∈ N, we denote

by (x(k1)
1 , . . . , x

(kn)
n ) the tuple

(x1, . . . , x1︸ ︷︷ ︸
k1-times

, , . . . , xn, . . . , xn︸ ︷︷ ︸
kn-times

).

For a tuple x ∈ Zn, we denote by x(i) its i-th entry.
• For an element w of Sn, the symmetric group on n letters, we denote
by Aw = (δiw(j))ij the corresponding permutation matrix.

• We write

J̃2n =
(

0 Ĩn
−Ĩn 0

)
, where Ĩn = anti-diag(1, . . . , 1).

TOME 65 (2015), FASCICULE 3



1038 Philipp HARTWIG

Let R be a ring and let R→ R′ be an R-algebra.
• We denote the dual of various objects over R by a superscript
·∨ = ·∨,R.

• We often denote the base-change from R to R′ by a subscript ·R′ .
• If G is a functor on the category of R′-algebras, we denote by

ResR′/RG the functor on the category of R-algebras with
(ResR′/RG)(S) = G(S ⊗R R′).

• If F is a functor on the category of R((u))-algebras (resp. R[[u]]-
algebras), we denote by LF = Lu F (resp. L+ F = L+

u F ) the func-
tor on the category of R-algebras with LF (S) = F (S((u))) (resp.
L+ F (S) = F (S[[u]])).

• For λ ∈ Zn, we write uλ = diag(uλ(1), . . . , uλ(n)) ∈ GLn(R((u))).

2. The general case

We assume that the reader is familiar with at least the definitions of
[24, 3.1-3.27] and [24, 6.1-6.9]. The required results on orders in semisimple
algebras can all be found in Reiner’s excellent [25]. In Sections 2.1 through
2.3 we recall from [24] the general setup of integral models of PEL-type
Shimura varieties and their local models.

2.1. PEL data

A PEL datum consists of the following objects.
(1) A finite-dimensional semisimple Q-algebra B.
(2) A positive(2) involution ∗ on B.
(3) A finitely generated left B-module V . We assume that V 6= 0.
(4) A symplectic form (·, ·) : V × V → Q on the underlying Q-vector

space of V , such that for all v, w ∈ V and all b ∈ B the relation

(bv, w) = (v, b∗w)

is satisfied.
(5) An element J ∈ EndB⊗R(V ⊗ R) with J2 + 1 = 0 such that the

bilinear form (·, J ·)R : VR × VR → R is symmetric and positive
definite.

(2)By this we mean that the involution on B ⊗ R arising from ∗ via base-change is a
positive involution in the sense of [13, §2].

ANNALES DE L’INSTITUT FOURIER
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We also fix the following data.
(a) A Z-order OB in B such that OB ⊗ Zp is a maximal Zp-order in

B ⊗Qp. We assume that OB ⊗ Zp is stable under ∗.
(b) A self-dual multichain L of OB ⊗ Zp-lattices in V ⊗Qp.

Denote by G the group on the category of Q-algebras with

G(R) =
{
g ∈ GLB⊗R(V ⊗R) | ∃c = c(g) ∈ R×

(
∀x, y ∈ V ⊗R
(gx, gy)R = c (x, y)R

)}
Note that for g ∈ G(R), the unit c(g) ∈ R× is indeed uniquely determined
in view of the assumption V 6= 0 and the perfectness of (·, ·), justifying the
notation. We also denote by c : G→ Gm,Q the resulting morphism.
Let Λ ∈ L. We deviate slightly from the notation of [24] in writing

Λ∨ = {x ∈ VQp | (x,Λ)Qp ⊂ Zp} (in loc. cit. the notation Λ∗ is used
instead). We denote by (·, ·)Λ : Λ×Λ∨ → Zp the restriction of (·, ·)Qp . It is a
perfect pairing and induces an isomorphism Λ∨ ∼−→ HomZp(Λ,Zp) = Λ∨,Zp
of OB ⊗ Zp-modules, justifying the notation. For Λ ⊂ Λ′ in L we denote
by ρΛ′,Λ : Λ → Λ′ the inclusion. For b ∈ (B ⊗ Qp)× in the normalizer of
OB⊗Zp, denote by Λb the OB⊗Zp-module obtained from Λ by restriction
of scalars with respect to the morphism OB ⊗Zp → OB ⊗Zp, x 7→ b−1xb,
and let ϑΛ,b : Λb → bΛ be the isomorphism given by multiplication with b.
Then (Λ, ρΛ′,Λ, ϑΛ,b, (·, ·)Λ) is a polarized multichain of OB ⊗ Zp-modules
of type (L) which, by abuse of notation, we also denote by L.

Let B ⊗ Qp = B1 × · · · × Bm be the decomposition into simple factors.
It induces a decomposition

(2.1.1) OB ⊗ Zp = OB1 × · · · × OBm

and each OBi is a maximal Zp-order in Bi.
We also get a decomposition V ⊗Qp = V1×· · ·×Vm into left Bi-modules

Vi. Denote by Li the projection of L to Vi. It is a chain of OBi-lattices in
Vi. For Λ ∈ L we denote by Λ = Λ1× · · · ×Λm, Λi ∈ Li the corresponding
decomposition.
Denote by VC,±i the (±i)-eigenspace of JC. Complex conjugation induces

an isomorphism VC,i → VC,−i and consequently

(2.1.2) dimC VC,i = dimC VC,−i = 1
2 dimQ V.

Let us quickly recall from [24, 3.23] the determinant morphism. See [10,
2.3] for a more detailed discussion. Let R be a ring, A a (not necessarily
commutative) R-algebra and letM be a left A-module which is finite locally

TOME 65 (2015), FASCICULE 3
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free as an R-module. Denote by V = VA the functor on the category of R-
algebras with V (S) = A ⊗R S. We define a morphism detM,A = detM :
V → A1

R on S-valued points by

detM (S) : A⊗R S → S, x 7→ detS(MS
x·−→MS).

For x ∈ A denote by χR(x|M) the characteristic polynomial of M x·−→ M

over R. Below we will phrase the determinant condition using characteristic
polynomials. This is warranted by the following statement.

Proposition 2.1.1. — Let A be a (not necessarily commutative) R-
algebra and let M and N be A-modules which are finite locally free over
R. Let A0 ⊂ A be a generating set of A as an R-module. Then detM = detN
if and only if for all a ∈ A0 we have χR(a|M) = χR(a|N) .

Proof. — Clear by the existence of Amitsur’s formula [1, Theorem A],
which, in a suitable sense, expresses the characteristic polynomial of a linear
combination of endomorphisms in terms of the characteristic polynomials
of the summands. �

As VC,−i is a B ⊗ C-module we get a morphism detVC,−i : VB⊗C → A1
C.

Consider the reflex field E = Q(trC(b ⊗ 1|VC,−i); b ∈ B). The morphism
detVC,−i is defined over OE . Fix a place Q of OE lying over p.

2.2. Polarized L-sets of abelian varieties

Definition 2.2.1. — Let R be an OEQ-algebra. A polarized L-set of
abelian varieties over R is a pair (A, λ), where A = (AΛ, %Λ′,Λ) is an L-set
of abelian varieties over R in the sense of [24, Definition 6.5], and where
λ : A → A∨ is a principal polarization in the sense of [24, Definition 6.6].
We say that (A, λ) is of determinant detVC,−i if for all Λ ∈ L we have an
equality

detLieAΛ = detVC,−i ⊗OER
of morphisms VOB⊗R → A1

R.
We denote by A the functor on the category of OEQ -algebras with A(R)

the set of isomorphism classes of polarized L-sets of abelian varieties of
determinant detVC,−i over R.

Remark 2.2.2. — After additionally imposing a suitable level structure
away from p in the definition of A, we may (and will) assume that A is
representable by a quasi-projective scheme over OEQ , see [24, Definition
6.9] and the discussion following it. We have decided not to include this

ANNALES DE L’INSTITUT FOURIER



KOTTWITZ-RAPOPORT AND p-RANK STRATA 1041

level structure in our notation as it is of no importance for the question of
the p-rank on a KR stratum.

Let R be a ring. For an abelian scheme A/R, we denote by HdR
1 (A/R)

the first de Rham homology of A. It is part of a canonical short exact
sequence

(2.2.1) 0→ ωA∨ → HdR
1 (A/R)→ Lie(A)→ 0,

where ωA∨ ⊂ HdR
1 (A/R) denotes the Hodge filtration. All terms of (2.2.1)

are finite locally free R-modules. We have rkRHdR
1 (A/R) = 2 dimRA and

rkR Lie(A) = rkR ωA∨ = dimRA.

Definition 2.2.3. — We denote by Ã the functor on the category of
OEQ -algebras with Ã(R) the set of isomorphism classes of pairs (A, γ),
where A is a polarized L-set of abelian varieties of determinant detVC,−i

over R and
γ : HdR

1 (A) ∼−→ L⊗R
is an isomorphism of polarized multichains of OB⊗R-modules of type (L).
Denote by ϕ̃ : Ã → A the morphism given on R-valued points by Ã(R)→

A(R), (A, γ) 7→ A.

Aut(L) acts from the left on Ã via g ·(A, γ) = (A, g◦γ) and ϕ̃ is invariant
for this action.

Proposition 2.2.4 ([18, Theorem 2.2]). — The morphism ϕ̃ : Ã → A is
an Aut(L)-torsor for the étale topology. In particular ϕ̃(F) is an Aut(L)(F)-
torsor in the set-theoretic sense.

2.3. The local model diagram and the KR stratification

We will use the following obvious variant of [24, Definition 3.27].

Definition 2.3.1. — The local model M loc is the functor on the cate-
gory of OEQ -algebras with M loc(R) the set of tuples (tΛ)Λ∈L of OB ⊗ R-
submodules tΛ ⊂ ΛR satisfying the following conditions for all Λ ⊂ Λ′ in
L.

(1) We have ρΛ′,Λ,R(tΛ) ⊂ tΛ′ , so that we get a commutative diagram

tΛ //

��

tΛ′

��
ΛR

ρΛ′,Λ,R// Λ′R.

TOME 65 (2015), FASCICULE 3
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(2) The quotient ΛR/tΛ is a finite locally free R-module.
(3) We have an equality

detΛR/tΛ = detVC,−i ⊗OER

of morphisms VOB⊗R → A1
R.

(4) Under the pairing (·, ·)Λ,R : ΛR × Λ∨R → R, the submodules tΛ and
tΛ∨ pair to zero.

(5) We have ϑΛ,b,R(tΛ) = tbΛ for all b ∈ (B ⊗ Qp)× that normalize
OB ⊗ Zp.

Remark 2.3.2. — We have added the natural condition 2.3.1(5), which
seems to be missing from [24, Definition 3.27].

Remark 2.3.3. — By definition, M loc is a closed subscheme of a finite
product of Grassmannians. In particular M loc is a projective scheme over
SpecOEQ .

Remark 2.3.4. — Let R be an OEQ-algebra and (tΛ)Λ ∈ M loc(R). For
Λ ∈ L the decomposition Λ = Λ1× · · ·×Λm induces a decomposition tΛ =
tΛ,1 × · · · × tΛ,m into OBi ⊗ R-submodules tΛ,i ⊂ Λi,R. Let i ∈ {1, . . . ,m}
and let Λ ⊂ Λ′ in L with Λi = Λ′i. From condition 2.3.1(1) we conclude
that tΛ,i ⊂ tΛ′,i. From condition 2.3.1(3) we conclude that tΛ,i and tΛ′,i
both have the same rank over R. Thus tΛ,i = tΛ′,i in view of 2.3.1(2).
Consequently we may unambiguously write tΛi = tΛ,i.
We conclude that the family (tΛ)Λ∈L is determined by the tuple of fam-

ilies (
(tΛ1)Λ1∈L1 , . . . , (tΛm)Λm∈Lm

)
.

All conditions of Definition 2.3.1 with the exception of condition (4) trans-
late into independent conditions on the individual (tΛi).

Definition 2.3.5. — Denote by ψ̃ : Ã →M loc the morphism given on
R-valued points by

Ã(R)→M loc(R),
((AΛ), (γΛ)) 7→ (γΛ(ωA∨Λ ))Λ.

Aut(L) acts from the left on M loc via (ϕΛ) · (tΛ) = (ϕΛ(tΛ)) and ψ̃ is
equivariant for this action.
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Definition 2.3.6. — The diagram

Ã
ϕ̃

��

ψ̃

!!
A M loc

of OEQ -schemes is called the local model diagram.

Remark 2.3.7 ([24, Chapter 3], cf. [18, Theorem 2.2]). — The morphisms
ϕ̃ and ψ̃ are smooth of the same relative dimension. There is, étale locally
on A, a section s : A → Ã of ϕ̃, such that the composition ψ̃◦s : A →M loc

is étale.

Consider the decomposition

M loc(F) =
∐

x∈Aut(L)(F)\M loc(F)

M loc
x

into Aut(L)(F)-orbits.

Remark 2.3.8. — Let x ∈ Aut(L)(F)\M loc(F). The subset M loc
x ⊂

M loc(F) is locally closed, and we equip it with the reduced scheme struc-
ture. By [24, Theorem 3.16] the F-group Aut(L)F is smooth and affine.
Thus M loc

x is a smooth quasi-projective variety over F.

For x ∈ Aut(L)(F)\M loc(F), we define Ãx = ψ̃(F)−1(M loc
x ) and Ax =

ϕ̃(F)(Ãx). It follows from Proposition 2.2.4 that theAx are pairwise disjoint
and cover A(F) as x runs through Aut(L)(F)\M loc(F).

Definition 2.3.9. — The decomposition

A(F) =
∐

x∈Aut(L)(F)\M loc(F)

Ax

is called the Kottwitz-Rapoport (or KR) stratification on A.

Remark 2.3.10. — By Remark 2.3.7 there is, étale locally onAF, an étale
morphism β : AF →M loc

F withAx=β−1(M loc
x ) for x ∈ Aut(L)(F)\M loc(F).

Hence the subset Ax ⊂ A(F) is locally closed, and after equipping it with
the reduced scheme structure, Ax is a smooth variety over F.

2.4. The p-rank on a KR stratum

Lemma 2.4.1. — Let A/Qp be a finite simple algebra and let OA ⊂ A

be a maximal Zp-order. Then all simple left OA-modules and all simple
right OA-modules have the same finite cardinality.
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Proof. — By [25, Theorem 17.3] there exist a finite division algebra
D/Qp, an integer n ∈ N and an isomorphism A ' Mn×n(D) inducing
an isomorphism OA ' Mn×n(OD). Here OD ⊂ D denotes the unique
maximal Zp-order, see [25, Theorem 12.8].
Denote by p ⊂ OD the unique maximal ideal and by k = OD/p the cor-

responding residue field, see [25, Theorem 13.2]. By loc. cit. every simple
left (resp. right) OD-module is isomorphic to k. Hence by Morita equiva-
lence (see [25, §§16]) every simple left (resp. right) Mn×n(OD)-module is
isomorphic to kn = Mn×1(k) (resp. kn = M1×n(k)). �

Definition 2.4.2. — The multichain L is called complete if for any two
neighbors Λ ⊂ Λ′ in L, the quotient Λ′/Λ is a simple OB ⊗ Zp-module.

For a finite commutative group scheme G/F, we denote by Ge,u the
étale unipotent and by Gi,m the infinitesimal multiplicative part of G. Let
rke,u(G) := rk(Ge,u) and rki,m(G) := rk(Gi,m).

Lemma 2.4.3. — Assume that L is complete. Let (AΛ, %Λ′,Λ) be an L-
set of abelian varieties over F and let Λ ⊂ Λ′ be neighbors in L. Then
K = ker %Λ′,Λ is either étale unipotent or infinitesimal multiplicative or
infinitesimal unipotent.

Proof. — The decomposition (2.1.1) induces a decomposition K = K1×
· · · × Km into finite locally free group schemes Ki with actions OBi →
End(Ki).
As Λ and Λ′ are neighbors, there is a unique i0 ∈ {1, . . . ,m} with Λi0 (

Λ′i0 , and as L is complete we know that Λ′i0/Λi0 is a simple left OBi0 -
module. Let N = |Λ′i0/Λi0 |. By the definition of an L-set of abelian varieties
we know that Ki = 0 for i 6= i0 and that G := Ki0 has rank N over F.

The action OBi0 → EndG induces on G(F) the structure of a left OBi0 -
module, and as |G(F)| 6 rkG = N , Lemma 2.4.1 implies |G(F)| ∈ {0, N}.
As |G(F)| = rk(Ge,u), we conclude that Ge,u ∈ {0, G}.
Denote by D(G) the Cartier dual of G. We also obtain on D(G)(F) the

structure of a right OBi0 -module and we analogously obtain thatD(G)e,u ∈
{0, D(G)}. As D(G)e,u = D(Gi,m), it follows that Gi,m ∈ {0, G}. �

Definition 2.4.4. — Let A/F be an abelian variety. Denote by [p]A :
A→ A the multiplication by p and by A[p] the kernel of [p]A. The integer
logp rke,uA[p] is called the p-rank of A.

Proposition 2.4.5. — Assume that L is complete. Let (AΛ, %Λ′,Λ) be
an L-set of abelian varieties over F. Let Λ ∈ L and choose a sequence
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p−1Λ = Λ(0) ) Λ(1) ) · · · ) Λ(k) = Λ of neighbors Λ(j−1) ) Λ(j) in L.
Define

Je,u = {j ∈ {1, . . . , k} | ker %Λ(j−1),Λ(j) is étale}.

Then the p-rank of AΛ is equal to∑
j∈Je,u

logp |Λ(j−1)/Λ(j)|.

Proof. — By the definition of an L-set of abelian varieties, there is a
periodicity isomorphism θp−1Λ,p : Ap−1Λ

∼−→ AΛ such that

[p]AΛ = θp−1Λ,p ◦
k∏
j=1

%Λ(j−1),Λ(j) .

This implies

rke,uAΛ[p] =
k∏
j=1

rke,u ker %Λ(j−1),Λ(j) .

Lemma 2.4.3 and the definition of an L-set of abelian varieties yield

rke,u ker %Λ(j−1),Λ(j) =
{
|Λ(j−1)/Λ(j)| if j ∈ Je,u,
1 otherwise.

�

Proposition 2.4.6. — Let A = (AΛ, %Λ′,Λ) ∈ A(F), choose a lift Ã ∈
Ã(F) of A under ϕ̃(F) and let (tΛ) = ψ̃(F)(Ã) ∈ M loc

x . Let Λ ⊂ Λ′ in L.
Then

(2.4.1)
ker %Λ′,Λ is multiplicative

⇔ ρΛ′,Λ,F(tΛ) = tΛ′

and

(2.4.2)
ker %Λ′,Λ is étale

⇔ Λ′F = im ρΛ′,Λ,F + tΛ′ .

Proof. — In view of the definition of ψ̃, the stated equivalences amount
to well-known characterizations of the respective conditions on ker %Λ′,Λ in
terms of the Hodge filtration inside the de Rham homology. �

Corollary 2.4.7. — Let x ∈ Aut(L)(F)\M loc(F) and (AΛ, %Λ′,Λ),
(A′Λ, %′Λ′,Λ) ∈ Ax. Let Λ ⊂ Λ′ in L. Then ker %Λ′,Λ is étale if and only
if ker %′Λ′,Λ is étale.

TOME 65 (2015), FASCICULE 3



1046 Philipp HARTWIG

Proof. — For (tΛ) ∈ M loc(F), the condition Λ′F = im ρΛ′,Λ,F + tΛ′ is
clearly invariant under the Aut(L)(F)-action on M loc(F). The claim there-
fore follows from (2.4.2). �

Theorem 2.4.8. — Assume that L is complete.
Let x ∈ Aut(L)(F)\M loc(F) and (AΛ, %Λ′,Λ), (A′Λ, %′Λ′,Λ) ∈ Ax. Let Λ,Λ′ ∈
L. Then the p-ranks of AΛ and A′Λ′ coincide. In other words, the p-rank is
constant on a KR stratum.

Proof. — The p-rank of an abelian variety is an isogeny invariant by [15,
p. 147], so that it suffices to treat the case Λ = Λ′. The statement then
follows from Proposition 2.4.5 and Corollary 2.4.7. �

2.5. A formula for the p-rank on a KR stratum

Denote by K the completion of the maximal unramified extension of Qp
and by OK the valuation ring of K. We identify the residue field of K with
F. We denote by σ the Frobenius automorphism on K, inducing the usual
Frobenius F→ F, x 7→ xp on the residue field. By abuse of notation we also
denote by σ the morphism G(σ) : G(K)→ G(K).

2.5.1. A p-divisible group analogue

Let Y/F be a p-divisible group. We denote by D(Y ) the covariant Dieu-
donné module of Y , see for example [2]. It is a free OK-module, equipped
with a σ-linear endomorphism FD and a σ−1-linear endomorphism VD, sat-
isfying FD ◦VD = FD ◦VD = p. Let Y, Y ′ be p-divisible groups over F and let
λ : Y → (Y ′)∨ be a morphism. It induces a pairing (·, ·)λ : D(Y )×D(Y ′)→
OK satisfying

(2.5.1) (FDx, y)λ = σ (x, VDy)λ , x ∈ D(Y ), y ∈ D(Y ′).

We denote by (D(Y ), FD, VD) the reduction of D(Y ), FD, VD) modulo p.
If A/F is an abelian variety, let D(A) = D(A[p∞]).

Proposition 2.5.1 ([17, Corollary 5.11]). —
(1) Let A/F be an abelian variety. There is a canonical isomorphism

(2.5.2) ι = ιA : D(A) ∼−→ HdR
1 (A),
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inducing an isomorphism of short exact sequences

(2.5.3)

0 // imVD
//

'

��

D(A) //

'ι

��

Lie(A[p∞])

'
��

// 0

0 // ωA∨ // HdR
1 (A) // Lie(A) // 0.

(2) Let A = (AΛ) ∈ A(F). For Λ ∈ L let ιΛ = ιAΛ : D(AΛ)→ HdR
1 (AΛ)

be the isomorphism from (2.5.2). The resulting morphism

(2.5.4) ι = (ιΛ)Λ : (D(AΛ))Λ
∼−→ (HdR

1 (AΛ))Λ

is an isomorphism of polarized multichains of OB ⊗ F-modules of
type (L).

In complete analogy with [24, Definition 6.5] and Definition 2.2.1 we have
the notion of a polarized L-set Y = (YΛ, %Λ′,Λ, λΛ) of p-divisible groups
of determinant detVC,−i over F. We further obtain a set Ap-div(F) of iso-
morphism classes of such Y . In analogy with Definition 2.2.3, denote by
Ãp-div(F) the set of isomorphism classes of pairs (Y, γ), where Y is as above
and γ : D(Y ) ∼−→ L⊗F is an isomorphism of polarized multichains ofOB⊗F-
modules of type (L). We have the canonical map ϕ̃p-div(F) : Ãp-div(F) →
Ap-div(F), (Y, γ) 7→ Y , and the morphism ψ̃p-div(F) : Ãp-div(F)→M loc(F),
(Y, γ) 7→ γ(imVD).

Ãp-div(F)
ϕ̃p-div(F)

yy

ψ̃p-div(F)

%%
Ap-div(F) M loc(F)

By Proposition 2.5.1 we obtain maps δ : A(F) → Ap-div(F), A 7→ A[p∞]
and δ̃ : Ã(F) → Ãp-div(F), (A, γ) 7→ (A[p∞], γ ◦ ι), and the following
diagrams commute.

Ã(F)

ϕ̃(F)
��

δ̃ // Ãp-div(F)

ϕ̃p-div(F)
��

A(F) δ // Ap-div(F),

Ã(F)

ψ̃(F)
��

δ̃ // Ãp-div(F)

ψ̃p-div(F)
��

M loc(F) M loc(F).

In absolute analogy with Definition 2.3.9, we obtain a decomposition

Ap-div(F) =
∐

x∈Aut(L)(F)\M loc(F)

Ap-div,x,
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which we call theKR stratification onAp-div(F). For x∈Aut(L)(F)\M loc(F)
we have Ax = δ−1(Ap-div,x). We define as in Definition 2.4.4 the p-rank of
a p-divisible group over F. The proof of Theorem 2.4.8 then carries over
without any changes to show the following statement.

Theorem 2.5.2. — Assume that L is complete. Then the p-rank is
constant on a KR stratum in Ap-div(F).

2.5.2. The map α : Ap-div(F)→ BI(G)

Lemma 2.5.3. — Let M and M′ be polarized multichains of OB ⊗
OK-modules of type (L). Then the canonical map Isom(M,M′)(OK) →
Isom(M,M′)(F) is surjective. In particularM andM′ are isomorphic.

Proof. — Let I = Isom(M,M′). Clearly I is representable by an affine
scheme over OK . By [24, Theorem 3.16] we know that the base-change
I⊗OKOK/pn is in particular formally smooth over OK/pn for every n ∈ N.
This easily implies the surjectivity of I(OK) → I(F) in view of I(OK) =
limn∈N I(OK/pn). The second claim follows, as I(F) 6= ∅ by loc. cit. �

For g ∈ G(K), we denote by g · (L ⊗ OK) the tuple (g(Λ⊗OK))Λ∈L of
OB ⊗OK-submodules of V ⊗K. Let

I := {g ∈ G(K) | g · (L ⊗OK) = L ⊗OK}
= {g ∈ G(K) | ∀Λ ∈ L : g(Λ⊗OK) = Λ⊗OK}

and
I0 := {g ∈ I | c(g) = 1}.

Our notation for these groups is motivated by the Iwahori case (i.e. the
case where L is complete), cf. Remark 2.5.19. But note that we have not
yet specialized to this case.

Lemma 2.5.4. — We have I = O×KI0. In particular, any g ∈ I satisfies
c(g) ∈ O×K .

Proof. — Let g ∈ I and Λ ∈ L. Then Λ is in particular an OK-lattice in
the K-vector space VK and the fact that g restricts to an automorphism of
Λ implies that det(g) ∈ O×K . The equation det(g)2 = c(g)dimQ V then yields
c(g) ∈ O×K . As OK is strictly Henselian of residue characteristic different
from 2, there is an x ∈ O×K with x2 = c(g). Then x−1g ∈ I0, as desired. �

Lemma 2.5.5. — Let g ∈ I0. Then g restricts to an automorphism gΛ :
Λ⊗OK → Λ⊗OK for each Λ ∈ L. The assignment g 7→ (gΛ)Λ defines an
isomorphism I0

∼−→ Aut(L)(OK).
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Proof. — If (ϕΛ) ∈ Aut(L)(OK), then ϕΛ⊗OK K is an element of G(K)
which is independent of Λ. This provides an inverse to the map in question.

�

Proposition 2.5.6 ([24, 3.23]). — Let Y = (YΛ, %Λ′,Λ, λΛ) ∈ Ap-div(F).
For Λ ∈ L let EΛ : D(YΛ) × D(YΛ∨) → OK be the pairing induced by λΛ.
Then (D(YΛ))Λ, equipped with the pairings (EΛ)Λ, is a polarized multichain
of OB ⊗OK-modules of type (L).

Define equivalence relations ∼ and ∼I on G(K) by

x ∼ y :⇔ ∃g ∈ G(K) : y = gxσ(g)−1,

x ∼I y :⇔ ∃i ∈ I : y = ixσ(i)−1

and denote by B(G) = G(K)/ ∼ and BI(G) = G(K)/ ∼I the correspond-
ing quotients. For an element b ∈ G(K), we denote by [b] its equivalence
class in B(G).
Let (YΛ) ∈ Ap-div(F). By Lemma 2.5.3 there is an isomorphism ϕ =

(ϕΛ)Λ : (D(YΛ))Λ
∼−→ L⊗OK of polarized multichains of OB⊗OK-modules

of type (L). Let Λ ∈ L. Then FΛ = ϕΛ◦FD◦ϕ−1
Λ is a σ-linear endomorphism

of Λ ⊗ OK . By functoriality of the Dieudonné module, the base-change
FΛ ⊗OK K : V ⊗K → V ⊗K is independent of Λ and we simply denote it
by F. In the same way, we obtain from the morphisms VD on the Dieudonné
modules a σ−1-linear endomorphism V of V ⊗K .

Let b = F ◦ (idV ⊗ σ)−1. Then b is a B ⊗ K-linear endomorphism of
V ⊗ K, and in view of (2.5.1) we have b ∈ G(K), with c(b) = p. If ϕ′ :
(D(YΛ))Λ

∼−→ L⊗OK is another isomorphism, we have ϕ′ = i ◦ ϕ for some
i ∈ I0, and the resulting element b′ ∈ G(K) will satisfy b′ = ibσ(i)−1. In
this way we obtain a well-defined map α : Ap-div(F)→ BI(G).

The canonical projection G(K)→ I\G(K)/I factors through BI(G), so
that we obtain a map BI(G) can.−−→ I\G(K)/I. Denote by γ the composition
Ap-div(F) α−→ BI(G) can.−−→ I\G(K)/I. Denote by Perm ⊂ I\G(K)/I the
image of γ. By abuse of notation, we also denote by γ : Ap-div(F)→ Perm
the induced map.
Denote byBI(G)Perm ⊂ BI(G) the preimage of Perm under the canonical

map BI(G) can.−−→ I\G(K)/I. By abuse of notation, we also denote by α :
Ap-div(F) → BI(G)Perm the induced map. The situation is visualized by
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the following commutative diagram, in which the square is cartesian.

BI(G) can. // I\G(K)/I

Ap-div(F)

γ

88
α // BI(G)Perm

can. //

⋃
Perm

⋃

The following two results show that the map α : Ap-div(F)→ BI(G)Perm is
very close to being a bijection. Our proofs are based on the discussion of
the Siegel case by Hoeve in [11, Chapter 7].

Proposition 2.5.7. — The map α : Ap-div(F) → BI(G)Perm is surjec-
tive.

Proof. — Let b ∈ BI(G)Perm and pick any representative b ∈ G(K) of b.
By (2.5.1) and Lemma 2.5.4 there is a unit v ∈ O×K with c(b) = vp. Using
Lang’s Lemma in combination with an approximation argument, we find
a u ∈ O×K with v = (uσ(u)−1)2. After replacing b by u−1bσ(u), we may
assume that c(b) = p.
Define F = b◦(idV ⊗σ) and V = pF−1. Let Λ ∈ L. Then Λ⊗OK is stable

under F andV, and we denote by FΛ andVΛ the induced endomorphisms of
Λ⊗OK . Dieudonné theory implies that the chain ((Λ⊗OK ,FΛ,VΛ), ρΛ′,Λ)
is of the form D(Y ) for an L-set Y = (YΛ, %Λ′,Λ) of p-divisible groups of
determinant detVC,−i over F.

From c(b) = p, we obtain

(FΛx, y)Λ,OK = σ (x,VΛ∨y)Λ,OK , x ∈ Λ⊗OK , y ∈ Λ∨ ⊗OK ,

compare (2.5.1). Dieudonné theory then implies that (·, ·)Λ,OK is induced
by an isomorphism λλ : YΛ → Y ∨Λ∨ , and the tuple λ = (λΛ) provides us
with a polarization of Y . The isomorphism class of (Y, λ) is the desired
preimage of b under α. �

Proposition 2.5.8. — Let Y = (YΛ, %Λ′,Λ, λΛ) and Y ′ = (Y ′Λ, %′Λ′,Λ, λ′Λ)
be two points of Ap-div(F). Then α(Y ) = α(Y ′) if and only if there exist
both an isomorphism φ = (φΛ) : (YΛ, %Λ′,Λ) → (Y ′Λ, %′Λ′,Λ) of L-sets of p-
divisible groups over F and a unit u ∈ Z×p such that the following diagram
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commutes for all Λ ∈ L.

YΛ
φΛ //

uλΛ

��

Y ′Λ

λ′Λ
��

Y ∨Λ∨ Y ′∨Λ∨ .
φ∨Λ∨oo

Proof. — Choose isomorphisms ϕ : D(Y ) ∼−→ L⊗OK and ϕ′ : D(Y ′) ∼−→
L⊗OK , and denote by b and b′ the resulting elements of G(K) as above. If
α(Y ) = α(Y ′), there is an i ∈ I with b′ = ibσ(i)−1. We have seen above that
c(b) = p = c(b′), so that c(i) = σ(c(i)). By Lemma 2.5.4 and [12, Lemma
1.2], the element u := c(i) lies in Z×p . As in Lemma 2.5.5 we consider i
as a tuple of endomorphisms (Λ ⊗ OK → Λ ⊗ OK)Λ∈L. The composition
ϕ′−1 ◦ i ◦ ϕ corresponds under Dieudonné theory to the desired morphism
φ. Similarly for the converse. �

2.5.3. The map γ and the KR stratification

Proposition 2.5.9. — Two points Y, Y ′ ∈ Ap-div(F) lie in the same
KR stratum if and only if γ(Y ) = γ(Y ′).

Proof. — The map G(K) → G(K), g 7→ pσ−1(g−1) descends to a well-
defined bijection τ : I\G(K)/I → I\G(K)/I, and it suffices to show the
corresponding statement for the composition Ap-div(F) γ−→ I\G(K)/I τ−→
I\G(K)/I instead of γ.
Let Y = (YΛ)Λ ∈ Ap-div(F). Choose an isomorphism ϕ : (D(YΛ))Λ

∼−→ L⊗
OK and denote by F andV the resulting endomorphisms of V ⊗K, as above.
Let b ∈ G(K) with F = b◦(idV ⊗σ). We have V = pσ−1(b−1)◦(idV ⊗σ−1),
so that V(Λ⊗OK) = pσ−1(b−1)(Λ⊗OK), Λ ∈ L.
For Λ ∈ L, denote by πΛ : Λ ⊗ OK → Λ ⊗ F the canonical projection.

For a tuple M = (MΛ)Λ∈L of OB ⊗ OK-submodules pΛ ⊗ OK ⊂ MΛ ⊂
Λ⊗OK further write π(M) = (πΛ(MΛ))Λ. Note thatM and π(M) mutually
determine each other.
By definition the KR stratum that Y ∈ Ap-div(F) lies in is given by

the Aut(L)(F)-orbit of the point π
(
(V(Λ⊗OK))Λ

)
∈M loc(F). By Lemma

2.5.3, Lemma 2.5.4 and Lemma 2.5.5, this orbit is equal to

π
(
{ipσ−1(b−1) · (L ⊗OK) | i ∈ I}

)
.

We conclude by noting that for an element g ∈ G(K), the set {ig·(L⊗OK) |
i ∈ I} and the image of g in I\G(K)/I mutually determine each other. �
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Definition 2.5.10. — For x ∈ Perm, we denote by Ap-div,x = γ−1(x)
and Ax = δ−1(Ap-div,x) the corresponding KR stratum in Ap-div(F) and
A(F), respectively.

Remark 2.5.11 (Compare [11, 11.3]). — The normalization of Defini-
tion 2.5.10 amounts to indexing the KR stratification by the relative po-
sition of L ⊗ OK to its image under Frobenius. This seems to be the nat-
ural normalization in the current context, see in particular Remark 2.5.17
below. In the context of affine flag varieties however, to be explained in
the following sections, the natural normalization seems to be by the rela-
tive position of L ⊗ OK to its image under Verschiebung, see for example
Remark 3.9.4. This amounts to replacing the map γ by the composition
A(F) γ−→ I\G(K)/I g 7→pσ−1(g−1)−−−−−−−−−→ I\G(K)/I, as we have for example done
in the proof of Proposition 2.5.9.
Let us note that for the question of the p-rank on a KR stratum both

normalizations yield the same results.

Denote by rp : Ap-div(F)→ N the map with rp((YΛ)Λ) equal to the com-
mon p-rank of the YΛ. In view Proposition 2.5.9, Theorem 2.5.2 amounts
to the following statement.

Theorem 2.5.12. — Assume that L is complete.
The map rp : Ap-div(F)→ N factors through Ap-div(F) γ−→ Perm.

2.5.4. The Newton stratification

The canonical projection G(K)→ B(G) factors through BI(G), so that
we get a map BI(G) can.−−→ B(G). Denote by β the composition Ap-div(F) α−→
BI(G) can.−−→ B(G).

Definition 2.5.13. — Let b ∈ B(G). We define Np-div,b := β−1(b) ⊂
Ap-div(F) and Nb := (β ◦ δ)−1(b) ⊂ A(F), and call it the Newton stratum
associated with b in Ap-div(F) and A(F), respectively.

Denote by D the diagonalizable affine group with character group Q over
K. Let b ∈ G(K). We denote by νb : D → GK the corresponding New-
ton map, defined in [12, 4.2].(3) The morphism νb makes VK into a rep-
resentation of D and we consider the corresponding weight decomposition
VK = ⊕χ∈QVχ. We define

νb,0 := dimK V0.

(3)Note that the discussion in loc. cit. still remains valid for not necessarily connected
reductive groups over Qp.

ANNALES DE L’INSTITUT FOURIER



KOTTWITZ-RAPOPORT AND p-RANK STRATA 1053

If g ∈ G(K), we know that νgbσ(g)−1 = Int(g) ◦ νb, where Int(g) : G(K)→
G(K), h 7→ ghg−1, and consequently νb,0 = νgbσ(g)−1,0. Thus the map
G(K)→ N, b 7→ νb,0 factors through B(G), and we also denote by B(G)→
N, b 7→ νb,0 the resulting map.

Proposition 2.5.14. — The map rp : Ap-div(F)→ N factors as

Ap-div(F) β−→ B(G) b 7→νb,0−−−−→ N.

In other words, for b ∈ B(G) the p-rank on Nb is constant with value νb,0.

Proof. — This follows from the fact that for a p-divisible group Y/F the
isotypical component of slope 0 in D(Y ) ⊗OK K comes precisely from the
étale part of Y , see for instance [2, IV]. �

Assume from now on that L is complete. We can summarize the
above discussion in the following commutative diagram, with the dotted
arrow coming from Theorem 2.5.12.

(2.5.5)

Ap-div(F)

γ

&& &&

rp

::

α // //

β &&

BI(G)Perm
can. // //

can.
��

Perm

��
B(G)

b7→νb,0 // N

Definition 2.5.15. — Let b ∈ G(K) and x ∈ I\G(K)/I. The affine
Deligne-Lusztig variety associated with b and x is defined by

Xx(b) = {g ∈ G(K)/I | g−1bσ(g) ∈ IxI}.

Proposition 2.5.16. — Let x ∈ Perm and b ∈ G(K). Then the follow-
ing equivalence holds.

Xx(b) 6= ∅ ⇔ Ap-div,x ∩Np-div,[b] 6= ∅.

Proof. — Follows from the definitions and Proposition 2.5.7. �

Remark 2.5.17. — Let x ∈ Perm and let b ∈ G(K). Although not
established in full generality, it is expected that the following equivalence
holds, see [7, Proposition 12.6].

(2.5.6) Xx(b) 6= ∅ ⇔ Ax ∩N[b] 6= ∅.

The difficulty in proving this equivalence lies in the construction of a suit-
able L-set of abelian varieties with prescribed L-set of p-divisible groups.
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For recent progress in the unramified case due to Viehmann and Wedhorn
see [30].

Theorem 2.5.18. — Let x ∈ Perm and let b ∈ G(K). Assume that
Xx(b) 6= ∅. Then the p-rank on Ap-div,x (and a fortiori on Ax) is constant
with value ν[b],0.

Proof. — Clear from Proposition 2.5.16, Theorem 2.5.12 and Proposition
2.5.14. �

Remark 2.5.19. — We expect that I ⊂ G(K) is an Iwahori subgroup.
This is true in the situations to be studied in the following sections, and
would provide a more natural view on the set I\G(K)/I occurring above
as we could then identify it with a suitable Iwahori-Weyl group, see [20,
Appendix]. Proving this statement seems to require a case-by-case analysis.
The case of a ramified unitary group has been studied in [21, §1.2], and the
case of an even, split orthogonal group has been investigated in [27, §4.3].

2.6. A combinatorial lemma

The following combinatorial result explains the relationship between the
abstract formula of Theorem 2.5.18 and the more concrete formulas of the
following sections.

Let n ∈ N and consider the canonical semidirect product W̃ := SnnZn.
To avoid any confusion of the product inside W̃ and the canonical action of
Sn on Zn, we will always denote the element of W̃ corresponding to λ ∈ Zn
by uλ.
Let Ξ be a finite cyclic group of order f with generator σ. We have the

shift
∏
ξ∈Ξ W̃ →

∏
ξ∈Ξ W̃ , (xξ)ξ 7→ (xσ−1ξ)ξ. By abuse of notation, we

simply denote it by σ.

Lemma 2.6.1. — Let (wξ)ξ ∈
∏
ξ∈Ξ Sn and (λξ)ξ ∈

∏
ξ∈Ξ Zn. Assume

that for all ξ ∈ Ξ and all 1 6 i 6 n, the following statement holds.

(2.6.1) λξ(i) > 0 and (λξ(i) = 0⇒ wξ(i) 6 i).

Let x = (wξuλξ)ξ ∈
∏
ξ∈Ξ W̃ . Choose N ∈ N>1 such that

∏Nf−1
k=0 σk(x) ∈∏

ξ∈Ξ Zn. Consider the element

ν = (νξ)ξ := 1
Nf

Nf−1∏
k=0

σk(x)

of
∏
ξ∈Ξ Q>0. Then for each 1 6 i 6 n, the following statements are equiv-

alent.
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(1) ∃ξ ∈ Ξ : νξ(i) = 0.
(2) ∀ξ ∈ Ξ : νξ(i) = 0.
(3) ∀ξ ∈ Ξ : (wξ(i) = i and λξ(i) = 0). �

3. The symplectic case

3.1. Number fields

We first fix some notation concerning number fields. Let K/Q be a num-
ber field; note that this use of K differs from Section 2.5. We will always
denote by OK the ring of integers of K. If P is a nonzero prime of OK , we
will always denote by kP = OK/P its residue field and by ρP : OK → kP
the corresponding residue morphism. We further denote by KP the com-
pletion of K with respect to P and by OKP the valuation ring of KP .

Let K0/Q be a number field and assume that pOK0 = Pe00 for a single
prime P0 of OK0 and some e0 ∈ N. Denote by Σ0 the set of all embed-
dings K0 ↪→ C. Fix a finite Galois extension L/Q with K0 ⊂ L and write
G = Gal(L/Q) and H0 = Gal(L/K0). Fix a prime Q of OL lying over
P0 and denote by GQ ⊂ G the corresponding decomposition group. Our
assumption that P0 is the only prime of OK0 lying over p implies that
G = GQH0.
Lemma 3.1.1. — There is a unique map γ0 = γP0 : Σ0 → Gal(kP0/Fp)

satisfying

(3.1.1) ∀σ ∈ Σ0∀a ∈ OK0 : ρQ(σ(a)) = γ0(σ)(ρP0(a)).

It is surjective and all its fibers have cardinality e0.
Proof. — Left to the reader. �

Let K/K0 be a quadratic extension with K ⊂ L. Denote by Σ the set
of all embeddings K ↪→ C and write H = Gal(L/K). Denote by ∗ the
non-trivial element of Gal(K/K0). Assume that P0OK = P+P− for two
distinct primes P+,P− of OK , say Q∩OK = P+. Consequently P− = P∗+.
Denote by α : G → Σ the restriction map. Fix a lift τ∗ ∈ G of ∗ under
α. Define subsets Σ± ⊂ Σ by Σ+ = α(GQH) and Σ− = α(GQτ∗H). Then
Σ = Σ+ q Σ−. We identify kP± with kP0 via the isomorphism induced by
the inclusion OK0 ⊂ OK
Lemma 3.1.2. — There are unique maps γ± : Σ± → Gal(kP0/Fp) sat-

isfying

(3.1.2) ∀σ ∈ Σ±∀a ∈ OK : ρQ(σ(a)) = γ0(σ|K0)(ρP±(a)).
Proof. — Left to the reader. �
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3.2. The PEL datum

Let g, n ∈ N>1. We start with the PEL datum consisting of the following
objects.

(1) A totally real field extension F/Q of degree g.
(2) The identity involution idF on F .
(3) A 2n-dimensional F -vector space V .
(4) The symplectic form (·, ·) : V × V → Q on the underlying Q-vector

space of V constructed as follows: Fix once and for all a symplectic
form (·, ·)′ : V × V → F and a basis E′ = (e′1, . . . , e′2n) of V such
that (·, ·)′ is described by the matrix J̃2n with respect to E′. Define
(·, ·) = trF/Q ◦ (·, ·)′.

(5) The F ⊗R-endomorphism J of V ⊗R described by the matrix −J̃2n
with respect to E′.

Remark 3.2.1. — Denote by GSp(·,·)′ the F -group of symplectic simili-
tudes with respect to (·, ·)′, and by c : GSp(·,·)′ → Gm the factor of simili-
tude. Then the reductive Q-group G associated with the above PEL datum
fits into the following cartesian diagram.

G

c

��

� � // ResF/Q GSp(·,·)′

c

��
Gm,Q �

� // ResF/Q Gm,F .

We assume that pOF = Pe for a single prime P of OF . Denote by f = [kP :
Fp] the corresponding inertia degree, so that g = ef . We have F ⊗Qp = FP
and OF ⊗ Zp = OFP . Fix once and for all a uniformizer π of OF ⊗ Z(p).

Denote by C = COFP |Zp the inverse different of the extension FP/Qp. Fix
a generator δ of C over OFP and define a basis (e1, . . . , e2n) of VQp over FP
by ei = e′i, en+i = δe′n+i, 1 6 i 6 n.

Let 0 6 i < 2n. We denote by Λi the OFP -lattice in VQp with basis

Ei = (π−1e1, . . . , π
−1ei, ei+1, . . . , e2n).

For k ∈ Z we further define Λ2nk+i = π−kΛi and we denote by E2nk+i
the corresponding basis obtained from Ei. Then L = (Λi)i is a complete
chain of OFP -lattices in V . For i ∈ Z, the dual lattice Λ∨i := {x ∈ VQp |
(x,Λi)Qp ⊂ Zp} of Λi is given by Λ−i. Consequently the chain L is self-dual.

Let i ∈ Z. We denote by ρi : Λi → Λi+1 the inclusion, by ϑi : Λ2n+i → Λi
the isomorphism given by multiplication with π and by (·, ·)i : Λi×Λ−i →
Zp the restriction of (·, ·)Qp . Then (Λi, ρi, ϑi, (·, ·)i)i is a polarized chain of
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OFP -modules of type (L), which, by abuse of notation, we also denote by
L.

Denote by 〈·, ·〉i : Λi×Λ−i → OFP the restriction of the pairing δ−1(·, ·)′Qp .
It is the perfect pairing described by the matrix J̃2n with respect to the
bases Ei and E−i.

3.3. The determinant morphism

Denote by Σ the set of all embeddings F ↪→ C. The canonical isomor-
phism

(3.3.1) F ⊗ C =
∏
σ∈Σ

C

induces a decomposition V ⊗C =
∏
σ∈Σ Vσ into C-vector spaces Vσ, and the

morphism JC decomposes into the product of C-linear maps Jσ : Vσ → Vσ.
Each Jσ induces a decomposition Vσ = Vσ,i ⊕ Vσ,−i, where Vσ,±i denotes
the ±i-eigenspace of Jσ. From the explicit description of J in terms of B
above one sees that both Vσ,i and Vσ,−i have dimension n over C.

The (−i)-eigenspace V−i of JC is given by V−i =
∏
σ∈Σ V−i,σ. As

dimC V−i,σ = n for all σ, there is an isomorphism V−i ' (
∏
σ C)n of

∏
σ C-

modules and hence the OF ⊗C-module corresponding to V−i under (3.3.1)
is isomorphic to OnF ⊗C. In particular, the morphism detV−i : VOF⊗C → A1

C
is defined over Z.

3.4. The local model

For the chosen PEL datum, Definition 2.3.1 amounts to the following.

Definition 3.4.1. — The local model M loc is the functor on the cat-
egory of Zp-algebras with M loc(R) the set of tuples (ti)i∈Z of OF ⊗ R-
submodules ti ⊂ Λi,R satisfying the following conditions for all i ∈ Z.

(a) ρi,R(ti) ⊂ ti+1.
(b) The quotient Λi,R/ti is a finite locally free R-module.
(c) We have an equality

detΛi,R/ti = detV−i ⊗R

of morphisms VOF⊗R → A1
R.

(d) Under the pairing (·, ·)i,R : Λi,R × Λ−i,R → R, the submodules ti
and t−i pair to zero.

(e) ϑi(t2n+i) = ti.
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3.5. The geometric special fiber of the local model

For i ∈ Z, denote by Λi the F[u]/ue-module (F[u]/ue)2n and by Ei its
canonical basis. Denote by 〈·, ·〉i : Λi×Λ−i → F[u]/ue the pairing described
by the matrix J̃2n with respect to Ei and E−i. Denote by ϑi : Λ2n+i → Λi
the identity morphism. For k ∈ Z and 0 6 i < 2n, let ρ2n+i : Λ2n+i →
Λ2n+i+1 be the morphism described by the matrix diag(1(i), u, 1(2n−i−1))
with respect to E2nk+i and E2nk+i+1.

Definition 3.5.1. — Let Me,n be the functor on the category of F-
algebras withMe,n(R) the set of tuples (ti)i∈Z of R[u]/ue-submodules ti ⊂
Λi,R satisfying the following conditions for all i ∈ Z.

(a) ρi,R(ti) ⊂ ti+1.
(b) The quotient Λi,R/ti is finite locally free over R.
(c) For all P ∈ R[u]/ue, we have

χR(P |Λi,R/ti) =
(
T − P (0)

)ne
in R[T ].

(d) t⊥,〈·,·〉i,Ri = t−i.
(e) ϑi(t2n+i) = ti.

Denote byS the set of all embeddings kP ↪→ F. Our choice of uniformizer
π induces a canonical isomorphism

(3.5.1) OF ⊗ F =
∏
σ∈S

F[u]/(ue).

Let i ∈ Z. From (3.5.1) we obtain an isomorphism

(3.5.2) Λi,F =
∏
σ∈S

Λi

by identifying the basis Ei,F with the product of the bases Ei. Under this
identification, the morphism ρi,F decomposes into the morphisms ρi, the
pairing 〈·, ·〉i,F decomposes into the pairings 〈·, ·〉i and the morphism ϑi,F

decomposes into the morphisms ϑi.
Let R be an F-algebra and let (ti)i∈Z be a tuple of OF ⊗R-submodules

ti ⊂ Λi,R. Then (3.5.2) induces decompositions ti =
∏
σ∈S ti,σ intoR[u]/ue-

submodules ti,σ ⊂ Λi,R.
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Proposition 3.5.2. — The morphism M loc
F →

∏
σ∈SM

e,n given on
R-valued points by

(3.5.3)
M loc

F (R)→
∏
σ∈S

Me,n(R),

(ti) 7→ ((ti,σ)i)σ
is an isomorphism of functors on the category of F-algebras.

Proof. — The only point requiring an argument is the transition from
(·, ·)i to 〈·, ·〉i. It is warranted by the perfectness of the pairingOFP×OFP →
Zp, (x, y) 7→ trFP/Qp(δxy). �

3.6. The affine Grassmannian and the affine flag variety for GLn

Let R be an F-algebra and let n ∈ N.

Definition 3.6.1. — A lattice in R((u))n is an R[[u]]-submodule L ⊂
R((u))n satisfying the following conditions for some N ∈ N.

(1) uNR[[u]]n ⊂ L ⊂ u−NR[[u]]n.
(2) u−NR[[u]]n/L is a finite locally free R-module.

The following statement is well-known. See for example [10, Proposition
4.5.5] for a proof.

Proposition 3.6.2. — Let L be a lattice in R((u))n. Then L is a finite
locally free R[[u]]-module of rank n.

Definition 3.6.3. — Denote by G the functor on the category of F-
algebras with G(R) the set of lattices in R((u))n.

Denote by Λ̃0 = R[[u]]n the standard lattice. Clearly L GLn(R) acts on
G(R) by multiplication from the left, and the stabilizer of Λ̃0 for this action
is given by L+ GLn(R). Consequently we get an injective map

φ(R) : L GLn(R)/L+ GLn(R)→ G(R)

g 7→ gΛ̃0.

It is equivariant for the left action by L GLn.

Proposition 3.6.4. — The map φ identifies G with both the Zariski
and the fpqc sheafification of the presheaf L GLn/L+ GLn.
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Proof. — By Proposition 3.6.2 it is clear that any lattice lies in the im-
age of φ Zariski locally on R. It follows that φ is the Zariski sheafifica-
tion of the presheaf L GLn/L+ GLn. The fact that G is already an fpqc
sheaf implies formally that φ is also the fpqc sheafification of the presheaf
L GLn/L+ GLn. �

Definition 3.6.5. — The Zariski sheafification of the presheaf
L GLn/L+ GLn is called the affine Grassmannian for GLn.

By Proposition 3.6.4 the functor G provides a realization of the affine
Grassmannian for GLn.

Definition 3.6.6. — A (complete, periodic) lattice chain in R((u))n is
a tuple (Li)i∈Z of lattices Li in R((u))n satisfying the following conditions
for each i ∈ Z.

(1) Li ⊂ Li+1.
(2) (completeness) Li+1/Li is a locally free R-module of rank 1.
(3) (periodicity) Ln+i = u−1Li.

Definition 3.6.7. — Denote by F the functor on the category of F-
algebras with F(R) the set of (complete, periodic) lattice chains in R((u))n.

Denote by (e1, . . . , en) the standard basis of R((u))n over R((u)). For
0 6 i < n we denote by Λ̃i the lattice in R((u))n with basis

Ẽi =
〈
u−1e1, . . . , u

−1ei, ei+1, . . . , en
〉
.

For k ∈ Z we further define Λ̃nk+i = u−kΛ̃i and we denote by Ẽnk+i
the corresponding basis obtained from Ẽi. Then L̃ = (Λ̃i)i is a (complete,
periodic) lattice chain in R((u))n, called the standard lattice chain.

In complete analogy with [24, p. 131], we have for an F[[u]]-algebra R the
notion of a chain M = (Mi, %i : Mi → Mi+1, θi : Mn+i

∼−→ Mi)i∈Z of R-
modules of type (L̃) (cf. [10, Definition 7.5.1]). The proof of [24, Proposition
A.4] then carries over without any changes to show the following result.

Proposition 3.6.8. — Let R be an F[[u]]-algebra such that the image
of u in R is nilpotent. Then any two chains M,N of R-modules of type
(L̃) are isomorphic locally for the Zariski topology on R. Furthermore the
functor Isom(M,N ) is representable by a smooth affine scheme over R.

Proposition 3.6.9. — Let R be an F-algebra and letM,N be chains of
R[[u]]-modules of type (L̃). Then the canonical map Isom(M,N )(R[[u]])→
Isom(M,N )(R[[u]]/um) is surjective for all m ∈ N>1. In particularM and
N are isomorphic locally for the Zariski topology on R.
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Proof. — Analogous to the proof of Lemma 2.5.3. �

Remark 3.6.10. — Let R be an F-algebra and let (Li)i ∈ F(R). For
i ∈ Z denote by %i : Li → Li+1 the inclusion and by θi : Ln+i → Li the
isomorphism given by multiplication with u. Then (Li, %i, θi) is a chain of
R[[u]]-modules of type (L̃).

Remark 3.6.11. — The group L GLn(R) acts on F(R) via g · (Li)i =
(gLi)i. Denote by I(R) the stabilizer of L̃ for this action. One checks that
I(R) ⊂ GLn(R[[u]]) is equal to the preimage of B(R) under the reduction
map GLn(R[[u]]) → GLn(R), u 7→ 0. Here B(R) ⊂ GLn(R) denotes the
subgroup of upper triangular matrices.

We obtain for each F-algebra R an injective map

L GLn(R)/I(R) φ(R)−−−→ F(R),

g 7−−−→ g · L̃.

Proposition 3.6.12. — The morphism φ identifies F with both the
Zariski and the fpqc sheafification of the presheaf L GLn/I.

Proof. — Let R be an F-algebra and letM ∈ F(R). We considerM as
a chain of R[[u]]-modules of type (L̃) as in Remark 3.6.10. By Proposition
3.6.9, the chains L̃ andM are isomorphic locally for the Zariski topology
on R. Such an isomorphism L̃ →M is given by multiplication with a single
g ∈ GLn(R((u))). ConsequentlyM lies in the image of φ Zariski locally on
R. The fact that F is already an fpqc sheaf implies formally that φ is also
the fpqc sheafification of the presheaf L GLn/I. �

Definition 3.6.13. — The Zariski sheafification of the presheaf
L GLn/I is called the affine flag variety for GLn.

By Proposition 3.6.12 the functor F provides a realization of the affine
flag variety for GLn.

3.7. The affine flag variety

This section deals with the affine flag variety for the symplectic group.
Our discussion loosely follows the one in [19, §10-11]. Note though that
in loc. cit. there is a minor problem with the definition of the notion of
self-duality for lattice chains, see Remark 3.7.8 below. We have learned the
correct formulation of this definition from [26, §4.2], which deals with the
case of a ramified unitary group.
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Let R be an F-algebra. Let 〈̃·, ·〉 be the symplectic form on R((u))2n

described by the matrix J̃2n with respect to the standard basis of R((u))2n

over R((u)). We denote by Sp = Sp2n the symplectic group and by GSp =
GSp2n the group of symplectic similitudes with respect to 〈̃·, ·〉.

For a lattice Λ in R((u))2n we define Λ∨ := {x ∈ R((u))2n | 〈̃x,Λ〉 ⊂
R[[u]]}. Recall from Section 3.6 the standard lattice chain L̃ = (Λ̃i)i in
R((u))2n. Note that (Λ̃i)∨ = Λ̃−i for all i ∈ Z. We denote by 〈̃·, ·〉i : Λ̃i ×
Λ̃−i → R[[u]] the restriction of 〈̃·, ·〉.
In complete analogy with [24, Definition 3.14], we have for an F[[u]]-

algebra R the notion of a polarized chain M = (Mi, %i : Mi → Mi+1, θi :
M2n+i

∼−→ Mi, Ei : Mi ×M−i → R)i∈Z of R-modules of type (L̃) (cf. [10,
Definition 5.5.1]). The proof of [24, Proposition A.21] then carries over
without any changes to show the following result.
Proposition 3.7.1. — Let R be an F[[u]]-algebra such that the image

of u in R is nilpotent. Then any two polarized chainsM,N of R-modules of
type (L̃) are isomorphic locally for the Zariski topology on R. Furthermore
the functor Isom(M,N ) is representable by a smooth affine scheme over
R.
Proposition 3.7.2. — Let R be an F-algebra and letM,N be polar-

ized chains of R[[u]]-modules of type (L̃). Then the canonical map
Isom(M,N )(R[[u]]) → Isom(M,N )(R[[u]]/um) is surjective for all m ∈
N>1. In particularM and N are isomorphic locally for the Zariski topol-
ogy on R.
Proof. — Analogous to the proof of Lemma 2.5.3. �

The following definition is a straightforward variant of [26, §4.2].
Definition 3.7.3. — Let R be an F-algebra and let (Li)i be a lattice

chain in R((u))2n.
(1) Let r ∈ Z. The chain (Li)i is called r-self-dual if

∀i ∈ Z : L∨i = urL−i.

Denote by F (r)
Sp the functor on the category of F-algebras with

F (r)
Sp (R) the set of r-self-dual lattice chains in R((u))2n.

(2) The chain (Li)i is called self-dual if Zariski locally on R there is an
a ∈ R((u))× such that

(3.7.1) ∀i ∈ Z : L∨i = aL−i.

We denote by FGSp the functor on the category of F-algebras with
FGSp(R) the set of self-dual lattice chains in R((u))2n.
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Note that L̃ ∈ F (0)
Sp (R).

Lemma 3.7.4. — Let R be a ring and let a ∈ R((u))×. Then Zariski
locally on R, there are integers n 6 n0, nilpotent elements an, an+1, . . . ,

. . . , an0−1 ∈ R, a unit an0 ∈ R× and elements an0+1, an0+2, . . . ∈ R such
that a =

∑∞
i=n aiu

i.
If SpecR is connected, such integers and elements exist globally on R.

Remark 3.7.5. — Let R be a reduced F-algebra such that SpecR con-
nected. Then

FGSp(R) =
⋃
r∈Z
F (r)

Sp (R).

Proof. — This follows immediately from Lemma 3.7.4. �

Remark 3.7.6. — Let R be an F-algebra and let (Li)i ∈ F (0)
Sp (R). For

i ∈ Z denote by %i : Li → Li+1 the inclusion, by θi : L2n+i → Li the
isomorphism given by multiplication with u and by Ei : Li × L−i → R[[u]]
the restriction of 〈̃·, ·〉. Then (Li, %i, θi, Ei) is a polarized chain of R[[u]]-
modules of type (L̃).

Recall from Remark 3.6.11 the subfunctor I ⊂ L GL2n. We define a
subfunctor IGSp = IGSp2n of L GSp = L GSp2n by IGSp = L GSp2n ∩ I. We
consider all of these functors as functors on the category of F-algebras.

The proof of the following result is similar to and therefore based on the
proof of [20, Theorem 4.1].

Proposition 3.7.7. — The natural action of L GL2n on F (cf. Remark
3.6.11) restricts to an action of L GSp on FGSp. Consequently we obtain
an injective map

L GSp(R)/IGSp(R) φ(R)−−−→ FGSp(R),

g 7−−−→ g · L̃

for each F-algebra R. The morphism φ identifies FGSp with both the Zariski
and the fpqc sheafification of the presheaf L GSp/IGSp.

Proof. — Let R be an F-algebra and letM = (Li)i ∈ FGSp(R). Working
Zariski locally on R we may assume that there is an a ∈ R((u))× such that
(3.7.1) holds. Choose any h ∈ GSp(R((u))) with factor of similitude a, e.g.
h = diag(a(n), 1(n)). An easy computation shows that hM ∈ F (0)

Sp (R). We
see as in the proof of Proposition 3.6.12 that Zariski locally on R, there is a
g ∈ Sp(R((u))) with hM = gL̃. ConsequentlyM = h−1gL̃ lies in the image
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of φ Zariski locally on R. As FGSp is clearly a Zariski sheaf, it follows that
FGSp is indeed the Zariski sheafification of the presheaf L GSp/IGSp.
To see that FGSp is also the fpqc sheafification of L GSp/IGSp, it suf-

fices to show that FGSp is an fpqc sheaf. Let (Li)i be a lattice chain in
R((u))2n. Assume that fpqc locally on R there is an a ∈ R((u))× such
that (3.7.1) holds. The scalar a gives rise to a well-defined element of
(LGm/L+ Gm)fpqc(R), where (LGm/L+ Gm)fpqc denotes the fpqc sheafi-
fication of the presheaf LGm/L+ Gm. By Proposition 3.6.4 any element of
(LGm/L+ Gm)fpqc(R) can be represented in LGm(R) Zariski locally on R,
so that the scalar a exists in fact Zariski locally on R. �

Remark 3.7.8. — Let us note that there seems to exist a misconception
surrounding the notion of self-duality for lattice chains. In the literature
one finds the following definition: Let R be an F-algebra. A lattice chain
(Li)i ∈ F(R) is called (naively) self-dual if for each i ∈ Z there is a j ∈ Z
such that L∨i = Lj . It is then claimed that the fpqc local L GSp-orbit of L̃
(in the sense of Proposition 3.7.7) is precisely the set of (naively) self-dual
lattice chains. This is wrong in both directions, as shown by the following
easy examples.
• Let n = 1 and a ∈ R((u))×. The chain (Li)i = aL̃ satisfies L∨i =
a−2L−i, i ∈ Z. Assume there is a j ∈ Z with L∨0 = Lj . Then a−2L0 = Lj
and hence a−2Λ̃0 = Λ̃j . Projecting this equality inside R((u))2 to its first
components yields the existence of a k ∈ Z with a−2R[[u]] = ukR[[u]], so
that uka2 ∈ R[[u]]×. If for example R = F[x]/x2 and a = 1 + xu−1, such
a k does not exist.

• Conversely one easily sees that for n > 2, the (naively) self-dual chain
(Λ̃i+1)i∈Z does not lie in the L GSp(R)-orbit of L̃ (unless R = {0}).

Definition 3.7.9. — The Zariski sheafification of the presheaf
L GSp/IGSp is called the affine flag variety for GSp.

By Proposition 3.7.7 the functor FGSp provides a realization of the affine
flag variety for GSp.

3.8. Embedding the local model into the affine flag variety

Let R be an F-algebra. We consider an R[u]/ue-module as an R[[u]]-
module via the canonical projection R[[u]] → R[u]/ue. For i ∈ Z denote
by αi : Λ̃i → Λi,R the morphism described by the identity matrix with
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respect to Ẽi and Ei. It induces an isomorphism Λ̃i/ueΛ̃i
∼−→ Λi,R. Clearly

the following diagrams commute.

Λ̃i

αi

��

⊂ Λ̃i+1

αi+1

��
Λi,R

ρi,R // Λi+1,R

Λ̃i × Λ̃−i
〈̃·,·〉i //

αi×α−i
��

R[[u]]

��
Λi,R × Λ−i,R

〈·,·〉i,R // R[u]/ue

Λ̃i

αi

��

Λ̃2n+i

α2n+i

��

u·oo

Λi,R Λ2n+i,R
ϑi,Roo

The following proposition allows us to consider Me,n as a subfunctor of
F (−e)

Sp .

Proposition 3.8.1 ([19, §11]). — There is an embedding α : Me,n ↪→
F (−e)

Sp given on R-valued points by

Me,n(R)→ F (−e)
Sp (R),

(ti)i 7→ (α−1
i (ti))i.

It induces a bijection from Me,n(R) onto the set of those (Li)i ∈ F (−e)
Sp (R)

satisfying the following conditions for all i ∈ Z.
(1) ueΛ̃i ⊂ Li ⊂ Λ̃i.
(2) For all P ∈ R[u]/ue, we have

χR(P |Λ̃i/Li) = (T − P (0))ne

in R[T ]. Here Λ̃i/Li is considered as an R[u]/ue-module using (1).

Proof. — Let (ti)i ∈Me,n(R) and set (Li)i = (α−1
i (ti))i. It is clear that

this defines a periodic lattice chain in R((u))2n. Let i ∈ Z. We have

(3.8.1) rkR(Λ̃i+1/Λ̃i) + rkR(Λ̃i/Li) = rkR(Λ̃i+1/Li+1) + rkR(Li+1/Li),

as both sides are equal to rkR(Λ̃i+1/Li). We conclude from condition
3.5.1(c) that rkR(Λ̃i/Li) = ne = rkR(Λ̃i+1/Li+1). Thus (3.8.1) amounts
to the equation rkR(Λ̃i+1/Λ̃i) = rkR(Li+1/Li), so that the chain (Li)i is
complete.
From 〈ti, t−i〉i,R = 0 we deduce that ˜〈Li, L−i〉 ⊂ ueR[[u]] and hence that

u−eL−i ⊂ L∨i .
From ueΛ̃i ⊂ Li on the other hand we deduce ueL∨i ⊂ Λ̃−i. By definition,

we know that ˜〈Li, ueL∨i 〉 ⊂ ueR[[u]], which implies 〈ti, α−i(ueL∨i )〉i = 0.
Consequently α−i(ueL∨i ) ⊂ t−i, which shows that ueL∨i ⊂ L−i. Hence also
L∨i ⊂ u−eL−i.
This proves the existence of the map α. Its injectivity as well as the

characterization of its image are immediate. �
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Note that L = (Λi, ρi, ϑi, 〈·, ·〉i)i is a polarized chain of F[u]/ue-modules
of type (L̃). In fact L = L̃ ⊗F[[u]] F[u]/ue. Let R be an F-algebra. There is
an obvious action of Aut(L)(R[u]/ue) on Me,n(R), given by (ϕi) · (ti) =
(ϕi(ti)). The canonical morphism R[[u]] → R[u]/ue induces a morphism
Aut(L̃)(R[[u]]) → Aut(L)(R[u]/ue) and we thereby extend this
Aut(L)(R[u]/ue)-action on Me,n(R) to an Aut(L̃)(R[[u]])-action.

Lemma 3.8.2. — Let R be an F-algebra and let t ∈Me,n(R). We have
Aut(L̃)(R[[u]]) · t = Aut(L)(R[u]/ue) · t.

Proof. — The map Aut(L̃)(R[[u]]) → Aut(L)(R[u]/ue) is surjective by
Proposition 3.7.2. �

Define a subfunctor ISp = ISp2n of L Sp2n by ISp = L Sp2n ∩ IGSp.

Lemma 3.8.3. — We have IGSp(F) = F[[u]]×ISp(F).

Proof. — Let g ∈ IGSp(F). Clearly c(g) ∈ F[[u]]×. As charF 6= 2, there is
an x ∈ F[[u]]× with x2 = c(g). Then x−1g ∈ ISp(F). �

Lemma 3.8.4. — Let g ∈ ISp(F). Then g restricts to an automorphism
gi : Λ̃i → Λ̃i for each i ∈ Z. The assignment g 7→ (gi)i defines an isomor-
phism ISp(F) ∼−→ Aut(L̃)(F[[u]]).

Proof. — Analogous to the proof of Lemma 2.5.5. �

Proposition 3.8.5. — Let t ∈Me,n(F). Then α induces a bijection

Aut(L)(F[u]/ue) · t ∼−→ IGSp(F) · α(t).

Consequently we obtain an embedding

Aut(L)(F[u]/ue)\Me,n(F) ↪→ IGSp(F)\FGSp(F).

Proof. — The composition Me,n(F) α−→ F (−e)
Sp (F) ⊂ FGSp(F) is equivari-

ant for the Aut(L̃)(F[[u]])-action on Me,n(F), the ISp(F)-action on FGSp(F)
and the isomorphism ISp(F) ∼−→ Aut(L̃)(F[[u]]) of Lemma 3.8.4. It there-
fore induces a bijection Aut(L̃)(F[[u]]) · t ∼−→ ISp(F) · α(t). We conclude by
applying Lemmata 3.8.2 and 3.8.3. �

Consider α′ : Me,n(F) ↪→ FGSp(F) φ(F)−1

−−−−→ L GSp(F)/IGSp(F).

Proposition 3.8.6. — Let t ∈Me,n(F). Then α′ induces a bijection

Aut(L)(F[u]/ue) · t ∼−→ IGSp(F) · α′(t).

Consequently we obtain an embedding

Aut(L)(F[u]/ue)\Me,n(F) ↪→ IGSp(F)\GSp(F((u)))/IGSp(F).
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Proof. — Clear from Proposition 3.8.5, as the isomorphism φ(F) is in
particular IGSp(F)-equivariant. �

Let R be an F-algebra and (ϕi)i ∈ Aut(L)(R). The decomposition (3.5.2)
induces for each i a decomposition of ϕi : Λi,R

∼−→ Λi,R into the product of
R[u]/ue-linear automorphisms ϕi,σ : Λi,R

∼−→ Λi,R. The following statement
is then clear (cf. the proof of Proposition 3.5.2).

Proposition 3.8.7. — Let R be an F-algebra. The following map is an
isomorphism, functorial in R.

Aut(L)(R)→
∏
σ∈S

Aut(L)(R[u]/ue),

(ϕi)i 7→ ((ϕi,σ)i)σ.

Consider the composition

α̃ : M loc(F) (3.5.3)−−−−→
∏
σ∈S

Me,n(F)
∏

σ
α′

−−−−→
∏
σ∈S

L GSp(F)/IGSp(F).

For σ ∈ S denote by α̃σ : M loc(F)→ L GSp(F)/IGSp(F) the corresponding
component of α̃.

Theorem 3.8.8. — Let t ∈M loc(F). Then α̃ induces a bijection

Aut(L)(F) · t ∼−→
∏
σ∈S

IGSp(F) · α̃σ(t).

Consequently we obtain an embedding

Aut(L)(F)\M loc(F) ↪→
∏
σ∈S

IGSp(F)\GSp(F ((u)))/IGSp(F).

Proof. — The isomorphism M loc(F) (3.5.3)−−−−→
∏
σ∈SM

e,n(F) is equivari-
ant for the Aut(L)(F) action onM loc(F), the

∏
σ∈S Aut(L)(F[u]/ue) action

on
∏
σ∈SM

e,n(F) and the isomorphism of Lemma 3.8.7. The statement
thus follows from Proposition 3.8.6. �

3.9. The extended affine Weyl group

Let T be the maximal torus of diagonal matrices in GSp2n and let N be
its normalizer. We denote by W̃ = N(F((u)))/T (F[[u]]) the extended affine
Weyl group of GSp with respect to T . Setting

W = {w ∈ S2n | ∀i ∈ {1, . . . , 2n} : w(i) + w(2n+ 1− i) = 2n+ 1}
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and

X = {(a1, . . . , a2n) ∈ Z2n | a1 + a2n = a2 + a2n−1 = · · · = an + an+1},

the group homomorphism υ : W nX → N(F((u))), (w, λ) 7→ Awu
λ induces

an isomorphism W nX
∼−→ W̃ . We use it to identify W̃ with W nX and

consider W̃ as a subgroup of GSp(F((u))) via υ.
To avoid any confusion of the product inside W̃ and the canonical action

of S2n on Z2n, we will always denote the element of W̃ corresponding to
λ ∈ X by uλ.

Recall from [5, §2.5-2.6] the notion of an extended alcove (xi)2n−1
i=0 for

GSp2n. Also recall the standard alcove (ωi)2n−1
i=0 . As in loc. cit. we identify

W̃ with the set of extended alcoves by using the standard alcove as a base
point.
Write e = (e(2n)).

Definition 3.9.1 (Cf. [14], [5, Definition 2.4]). — An extended alcove
(xi)2n−1

i=0 is called permissible if it satisfies the following conditions for all
i ∈ {0, . . . , 2n− 1}.

(1) ωi 6 xi 6 ωi + e, where 6 is to be understood componentwise.
(2)

∑2n
j=1 xi(j) = ne− i.

Denote by Perm the set of all permissible extended alcoves.

Proposition 3.9.2. — The inclusion N(F((u))) ⊂ GSp(F((u))) induces
a bijection W̃ ∼−→ IGSp(F)\GSp(F((u)))/IGSp(F). In other words,

GSp(F((u))) =
∐
x∈W̃

IGSp(F)xIGSp(F).

Under this bijection, the subset

Aut(L)(F[u]/ue)\Me,n(F) ⊂ IGSp(F)\GSp(F((u)))/IGSp(F)

of Proposition 3.8.6 corresponds to the subset Perm ⊂ W̃ .

Proof. — The first statement is the well-known Iwahori decomposition.
The second statement follows easily from the explicit description of the
image of α in Proposition 3.8.1. �

Corollary 3.9.3. — Under the identifications of Theorem 3.8.8, the
set
∏
σ∈S Perm constitutes a set of representatives of Aut(L)(F)\M loc(F).

Remark 3.9.4. — In the normalization of Corollary 3.9.3 we have in-
dexed the KR stratification by the relative position of L ⊗ F to its image
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under Verschiebung, compare Remark 2.5.11. The normalization of Corol-
lary 3.9.3 therefore differs from the one of Definition 2.5.10 by the auto-
morphism

∏
σ∈S Perm→

∏
σ∈S Perm, (xσ) 7→ (uex−1

σ ).

3.10. The p-rank on a KR stratum

Recall from Section 2.3 the scheme A/Zp associated with our choice of
PEL datum, and the KR stratification

A(F) =
∐

x∈Aut(L)(F)\M loc(F)

Ax.

We have identified the occurring index set with
∏
σ∈S Perm in Corollary

3.9.3. We can then state the following result.

Theorem 3.10.1. — Let x = (xσ)σ ∈
∏
σ∈S Perm. Write xσ = wσu

λσ

with wσ ∈W, λσ ∈ X. Then the p-rank on Ax is constant with value

g · |{1 6 i 6 2n | ∀σ ∈ S(wσ(i) = i and λσ(i) = 0)}|.

Remark 3.10.2. — For F = Q, we recover the result [16, Théorème 4.1]
of Ngô and Genestier.

Proof of Theorem 3.10.1. — Let 1 6 i 6 2n and x ∈ Perm. Write
x = wuλ with w ∈W,λ ∈ X. By Propositions 2.4.5 and 2.4.6 it suffices to
show the following equivalence.

Λ̃i = x(Λ̃i) + Λ̃i−1 ⇔ (w(i) = i and λ(i) = 0).

Consider the subset S = {ukej | k ∈ Z, 1 6 j 6 2n} of F((u))2n. Then
x induces a permutation of S, namely x(ukej) = uλ(j)+kew(j). We have
Λ̃i∩S = Λ̃i−1∩Sq{u−1ei}, and x ∈ Perm implies x(Λ̃i−1∩S) ⊂ Λ̃i−1∩S.
Consequently u−1ei ∈ x(Λ̃i ∩ S) if and only if x(u−1ei) = u−1ei, which in
turn is equivalent to (w(i) = i and λ(i) = 0), as desired. �

3.11. The density of the ordinary locus

Denote by 6 and ` the partial order and the length function on W̃

defined in [5, §2.1], respectively. We extend 6 and ` to
∏
σ∈S W̃ by setting

(xσ)σ 6 (x′σ)σ :⇔ (∀σ ∈ S : xσ 6 x′σ) and `((xσ)σ) =
∑
σ `(xσ).
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Lemma 3.11.1. — Let x ∈
∏
σ∈S Perm. The smooth F-variety Ax is

equidimensional of dimension `(x). Furthermore the closure Ax of Ax in
AF is given by

(3.11.1) Ax =
∐
y6x

Ay.

Proof. — As in Remark 2.3.10 there is, étale locally on AF, an étale mor-
phism β : AF → M loc

F with Ax = β−1(M loc
x ). In Theorem 3.8.8 we have

identified M loc
x with the Schubert cell Cx ⊂

∏
σ∈S GSp2n(F((u)))/IGSp(F)

corresponding to x. The statements therefore follow from well-known prop-
erties of Schubert cells once we know that all KR strata are non-empty. This
is true in the Siegel case by Genestier’s result [3, Proposition 1.3.2], in the
case that p is unramified in F by the result [4, Theorem 2.5.2(1)] of Goren
and Kassaei, and in the ramified case by a yet to be published result of Yu
[32]. �

Our next goal is to generalize the result [16, Corollaire 4.3] of Ngô and
Genestier on the density of the ordinary locus. Denote by A(ng) ⊂ A(F)
the subset where the p-rank of the underlying abelian variety is equal to
ng. By the determinant condition imposed in the definition of A this is
precisely the ordinary locus in A(F).

Corollary 3.11.2. — The ordinary locus A(ng) is dense in A(F) if and
only if p is totally ramified in F .

Proof. — Let µ = (e(g), 0(g)) ∈ X. Our subset Perm ⊂ W̃ is precisely
the set denoted by Perm(µ) in [8]. By [8, Theorem 10.1], we have

(3.11.2) Perm(µ) = Adm(µ),

where Adm(µ) := {x ∈ W̃ | ∃w ∈W : x 6 uw(µ)}.
Write M = {x ∈ W̃ | ∃w ∈ W : x = uw(µ)}. Then (3.11.2) im-

plies that
∏
σ∈S M is precisely the subset of maximal elements for 6 in∏

σ∈S Perm. Denote by ∆M ⊂
∏
σ∈S M the diagonal. By Theorem 3.10.1

we have A(ng) =
∐
x∈∆M

Ax. The statement therefore follows from (3.11.1)
by noting that ∆M =

∏
σ∈S M if and only if p is totally ramified in F . �

3.12. An explicit example: Hilbert-Blumenthal modular
varieties

In this section we use the explicit case of the Hilbert-Blumenthal modular
varieties to illustrate how Theorem 3.10.1 and the KR stratification in
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general yield results about the geometry of the moduli spaces A. We also
compare these results to some of those obtained by Stamm in [29].
Assume from now on that p is inert in OF , so that we have e = 1 and

f = g. Assume also that dimF V = 2, so that n = 1.
Let us start with a discussion of the index set

∏
σ∈S Perm of the KR

stratification. From Definition 3.9.1 one immediately obtains that the sub-
set Perm ⊂ W̃ is given by Perm = {u(1,0), u(0,1), (1, 2)u(1,0)}. To put this set
into a group theoretic perspective, we recall the setup described in [5, §2.1]
in this easy special case. Consider the elements τ = (1, 2)u(1,0), s1 = (1, 2)
and s0 = (1, 2)u(1,−1) of W̃ . The subgroup Wa of W̃ generated by s0
and s1 is a Coxeter group on the generators s0 and s1, and we denote
by 6 and ` the corresponding Bruhat order and length function on Wa,
respectively. Denoting by Ω the cyclic subgroup of W̃ generated by τ , we
have W̃ = Wa o Ω. The extension of 6 and ` to W̃ is given by w′τ ′ 6
w′′τ ′′ ⇔ (w′ 6 w′′ and τ ′ = τ ′′) and `(w′τ ′) = `(w′), for w′, w′′ ∈ Wa and
τ ′, τ ′′ ∈ Ω. We extend 6 and ` to

∏
σ∈S W̃ as in Section 3.11.

We see that
Perm = {s1τ, s0τ, τ} ⊂Waτ.

The Bruhat order on Perm is determined by the non-trivial relations τ 6
s1τ and τ 6 s0τ , while the length function on Perm is given by `(τ) = 0
and `(s1τ) = `(s0τ) = 1.
Let us state Theorem 3.10.1 in this special case. Denote by A(0) ⊂ A(F)

and A(g) ⊂ A(F) the subsets where the p-rank of the underlying abelian
variety is equal to 0 and g, respectively.

Proposition 3.12.1. — We have

A(F) = A(0) qA(g).

The ordinary locus A(g) is the union of only two KR strata, namely those
corresponding to the elements ((s1τ)(g)) = (s1τ, s1τ, . . . , s1τ) and
((s0τ)(g)) = (s0τ, s0τ, . . . , s0τ) of

∏
σ∈S Perm. The p-rank on all other KR

strata is equal to 0.

Lemma 3.12.2. — The maximal elements in
∏
σ∈S Perm for the Bruhat

order are precisely the elements of length 2g in
∏
σ∈S Perm. The set of these

maximal elements is given by
∏
σ∈S{s1τ, s0τ}. �

From the preceding results, we obtain without any additional work the
following theorem.

Theorem 3.12.3. — Let g > 2. Then

AF = A((s1τ)(g)) ∪ A((s0τ)(g)) ∪ A(0).
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Each of A((s1τ)(g)),A((s0τ)(g)) and A(0) is equidimensional of dimension 2g,
and hence so is AF.
More precisely, A(0) is the union

A(0) =
⋃

x∈
∏

σ∈S
{s1τ,s0τ}

x6=((s1τ)(g)),((s0τ)(g))

Ax

of 2g − 2 closed subsets, all equidimensional of dimension 2g.
Furthermore, we have

A((s1τ)(g)) ∩ A((s0τ)(g)) ⊂ A(0).

Taking g = 2, we recover [29, Theorem 2 (p. 408)]. Note that for g =
2, the set A(0) is precisely the supersingular locus in AF, because a 2-
dimensional abelian variety is supersingular if and only if its p-rank is
equal to zero.

4. The unitary PEL datum

Let n ∈ N>1. In Sections 5 through 7 we will be concerned with the PEL
datum consisting of the following objects.

(1) An imaginary quadratic extension F/F0 of a totally real extension
F0/Q. Let g0 = [F0 : Q] and g = [F : Q], so that g = 2g0.

(2) The non-trivial element ∗ of Gal(F/F0).
(3) An n-dimensional F -vector space V .
(4) The symplectic form (·, ·) : V × V → Q on the underlying Q-vector

space of V constructed as follows: Fix once and for all a ∗-skew-
hermitian form (·, ·)′ : V × V → F (i.e. (av, bw)′ = ab∗ (v, w)′

and (v, w)′ = − (w, v)′∗ for v, w ∈ V, a, b ∈ F ). Define (·, ·) =
trF/Q ◦ (·, ·)′.

(5) The element J ∈ EndB⊗R(V ⊗ R) to be defined separately in each
case, see Sections 5.1, 6.1 and 7.1.

Remark 4.0.1. — Denote by GU(·,·)′ the F0-group given on R-valued
points by GU(·,·)′(R) = {g ∈ GLF⊗F0R

(V ⊗F0 R) | ∃c = c(g) ∈ R×∀x, y ∈
V ⊗F0R : (gx, gy)′R = c (x, y)′R}. Then the reductive Q-group G associated
with the above PEL datum fits into the following cartesian diagram.

G

c

��

� � // ResF0/Q GU(·,·)′

c

��
Gm,Q �

� // ResF0/Q Gm,F0 .
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5. The ramified unitary case

5.1. The PEL datum

We start with the PEL datum defined in Section 4. We assume that
pOF0 = (P0)e0 for a single prime P0 of OF0 and that P0OF = P2 for a
prime P of OF . Write e = 2e0, so that pOF = Pe. Denote by f = [kP0 : Fp]
the corresponding inertia degree, so that g = ef and g0 = fe0. Fix once
and for all uniformizers π0 of OF0 ⊗ Z(p) and π of OF ⊗ Z(p), satisfying
π2 = π0. We have π∗ = −π.

For typographical reasons, we denote the ring of integers in FP byOP and
the ring of integers in (F0)P0 by OP0 . Denote by C = COP |Zp , C0 = COP0 |Zp
and C′ = COP |OP0

the corresponding inverse differents. Then C0 = (π−k0 )
for some k ∈ N. The extension FP/(F0)P0 is tamely ramified, so that
C′ = (π−1). The equality C = C′ · C0 then implies that C = (π−2k−1)
and we denote by δ = π−2k−1 the corresponding generator of C. It satisfies
δ∗ = −δ. Consequently the form δ−1 (·, ·)′Qp : VQp×VQp → FP is ∗-hermitian
and we assume that it splits, i.e. that there is a basis (e1, . . . , en) of VQp
over FP such that (ei, en+1−j)′Qp = δδij for 1 6 i, j 6 n. Here we denote
by δij the Kronecker delta.
Let 0 6 i < n. We denote by Λi the OP -lattice in VQp with basis

Ei = (π−1e1, . . . , π
−1ei, ei+1, . . . , en).

For k ∈ Z we further define Λnk+i = π−kΛi and we denote by Enk+i the
corresponding basis obtained from Ei. Then L = (Λi)i is a complete chain of
OP -lattices in VQp . For i ∈ Z, the dual lattice Λ∨i := {x ∈ VQp | (x,Λi)Qp ⊂
Zp} of Λi is given by Λ−i. Consequently the chain L is self-dual.
Let i ∈ Z. We denote by ρi : Λi → Λi+1 the inclusion, by ϑi : Λn+i → Λi

the isomorphism given by multiplication with π and by (·, ·)i : Λi×Λ−i →
Zp the restriction of (·, ·)Qp . Then (Λi, ρi, ϑi, (·, ·)i)i is a polarized chain of
OFP -modules of type (L), which, by abuse of notation, we also denote by
L.

Denote by 〈·, ·〉i : Λi×Λ−i → OP the restriction of the ∗-hermitian form
δ−1 (·, ·)′Qp , and by Hi the matrix describing 〈·, ·〉i with respect to Ei and
E−i. We have

(5.1.1) Hi = anti-diag((−1)ai,1 , . . . , (−1)ai,n)

for some ai,1, . . . , ai,n ∈ Z/2Z.
Denote by Σ0 the set of all embeddings F0 ↪→ R and by Σ the set of all

embeddings F ↪→ C. For each σ ∈ Σ0, we denote by τσ,1, τσ,2 ∈ Σ the two
embeddings with τσ,j

∣∣
F0

= σ. Of course we have τσ,2 = τσ,1 ◦ ∗.
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We obtain isomorphisms

F ⊗Q R =
∏
σ∈Σ0

C, F 3 x 7→ (τσ,1(x))σ,(5.1.2)

F ⊗Q C =
∏
σ∈Σ0

C× C, F 3 x 7→ (τσ,1(x), τσ,2(x))σ(5.1.3)

of R- and C-algebras, respectively.
The isomorphism (5.1.2) induces a decomposition V ⊗ R =

∏
σ∈Σ0

Vσ
into C-vector spaces Vσ and (·, ·)′R decomposes into the product of skew-
hermitian forms (·, ·)′σ : Vσ × Vσ → C, σ ∈ Σ0. For each σ ∈ Σ0, there are
rσ, sσ ∈ N with rσ + sσ = n and a basis Bσ of Vσ over C such that (·, ·)′σ
is described by the matrix Dσ = diag(i(rσ ), (−i)(sσ)) with respect to Bσ.
Denote by Jσ the endomorphism of Vσ described by the matrix Dσ with
respect to Bσ. We complete the description of the PEL datum by defining
J :=

∏
σ∈Σ0

Jσ ∈ EndB⊗R(V ⊗ R).

5.2. The determinant morphism

The isomorphism (5.1.3) induces a decomposition V ⊗C =
∏
σ∈Σ0

(Vτσ,1×
Vτσ,2) into C-vector spaces Vτσ,j . The basis Bσ of Vσ induces bases Bτσ,j of
Vτσ,j over C, and the endomorphism Jσ,C decomposes into the product of
endomorphisms Jτσ,j of Vτσ,j . We find that Jτσ,1 is described by the matrix
Dσ with respect to Bτσ,1 , while Jτσ,2 is described by the matrix −Dσ with
respect to Bτσ,2 .
Denote by V−i the (−i)-eigenspace of JC. From the explicit description

of the Jτσ,j with respect to the Bτσ,j , one concludes that V−i is the OF ⊗C-
module corresponding to the

∏
σ∈Σ0

C×C-module
∏
σ∈Σ0

Csσ ×Crσ under
(5.1.3).
Let E′ be the Galois closure of F inside C and choose a prime Q′ of E′

over P. In absolute analogy to (5.1.3), we have a decomposition

(5.2.1) F ⊗Q E
′ =

∏
σ∈Σ0

E′ × E′.

LetM be the OF ⊗E′-module corresponding to the
∏
σ∈Σ0

E′×E′-module∏
σ∈Σ0

(E′)sσ×(E′)rσ under (5.2.1). From the present discussion we obtain
an identificationM⊗E′C = V−i of OF ⊗C-modules. Let B be a basis ofM
over E′ and denote byM0 the OF ⊗OE′ -module generated by B. ThenM0
is an OF ⊗ OE′ -stable OE′ -lattice M0 in M . In particular, the morphism
detV−i : VOF⊗C → A1

C descends to the morphism detM0 : VOF⊗OE′ → A1
OE′ .
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5.3. The geometric special fiber of the determinant morphism

We write S = Gal(kP/Fp) = Gal(kP0/Fp). We fix once and for all an
embedding ιQ′ : kQ′ ↪→ F. We consider F as an OE′ -algebra via the com-
position OE′

ρQ′−−→ kQ′
ιQ′
↪→ F. Also ιQ′ induces an embedding ιP : kP ↪→ F

and thereby an identification of the set of all embeddings kP ↪→ F with S.
Our choice of uniformizer π induces a canonical isomorphism

OF ⊗ F =
∏
σ∈S

F[u]/(ue).(5.3.1)

Proposition 5.3.1. — Let x ∈ OF and let (pσ)σ ∈
∏
σ∈S F[u]/(ue) be

the element corresponding to x⊗ 1 under (5.3.1). Then

χF(x|M0 ⊗OE′ F) =
∏
σ∈S

(
T − pσ(0)

)ne0
in F[T ].

Proof. — Reduce χOE′ (x|M0) modulo Q′, using Lemma 3.1.1. �

Denote by E = Q(trC(x ⊗ 1|V−i); x ∈ F ) the reflex field and define
Q = Q′ ∩ OE . The morphism detV−i is defined over OE .

5.4. The local model

For the chosen PEL datum, Definition 2.3.1 amounts to the following.

Definition 5.4.1. — The local model M loc is the functor on the cat-
egory of OEQ -algebras with M loc(R) the set of tuples (ti)i∈Z of OF ⊗ R-
submodules ti ⊂ Λi,R satisfying the following conditions for all i ∈ Z.

(a) ρi,R(ti) ⊂ ti+1.
(b) The quotient Λi,R/ti is a finite locally free R-module.
(c) We have an equality

detΛi,R/ti = detV−i ⊗OER

of morphisms VOF⊗R → A1
R.

(d) Under the pairing (·, ·)i,R : Λi,R × Λ−i,R → R, the submodules ti
and t−i pair to zero.

(e) ϑi(tn+i) = ti.
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5.5. The geometric special fiber of the local model

For i ∈ Z, denote by Λi the free F[u]/ue-module (F[u]/ue)n and by Ei its
canonical basis. Consider the F-automorphism ∗ : F[u]/ue → F[u]/ue, u 7→
−u. Denote by 〈·, ·〉i : Λi × Λ−i → F[u]/ue the ∗-sesquilinear form de-
scribed by the matrix Hi of (5.1.1) with respect to Ei and E−i. Denote
by ϑi : Λn+i → Λi the identity morphism. For k ∈ Z and 0 6 i < n,
let ρnk+i : Λnk+i → Λnk+i+1 be the morphism described by the matrix
diag(1(i), u, 1(n−i−1)) with respect to Enk+i and Enk+i+1.

Definition 5.5.1. — Define a functor Me,n on the category of F-alge-
bras withMe,n(R) the set of tuples (ti)i∈Z of R[u]/ue-submodules ti ⊂ Λi,R
satisfying the following conditions for all i ∈ Z.

(a) ρi,R(ti) ⊂ ti+1.
(b) The quotient Λi,R/ti is finite locally free over R.
(c) For all P ∈ R[u]/ue, we have

χR(P |Λi,R/ti) =
(
T − P (0)

)ne0
in R[T ].

(d) t⊥,〈·,·〉i,Ri = t−i.
(e) ϑi(tn+i) = ti.

Let i ∈ Z. From (5.3.1) we obtain an isomorphism

(5.5.1) Λi,F =
∏
σ∈S

Λi

by identifying the basis Ei,F with the product of the bases Ei. Under this
identification, the morphism ρi,F decomposes into the morphisms ρi, the
pairing 〈·, ·〉i,F decomposes into the pairings 〈·, ·〉i and the morphism ϑi,F

decomposes into the morphisms ϑi.
Let R be an F-algebra and let (ti)i∈Z be a tuple of OF ⊗R-submodules

ti ⊂ Λi,R. Then (5.5.1) induces decompositions ti =
∏
σ∈S ti,σ intoR[u]/ue-

submodules ti,σ ⊂ Λi,R. The following statement is then clear (cf. the proof
of Proposition 3.5.2).

Proposition 5.5.2. — The morphism M loc
F →

∏
σ∈SM

e,n given on
R-valued points by

(5.5.2)
M loc

F (R)→
∏
σ∈S

Me,n(R),

(ti) 7→ ((ti,σ)i)σ
is an isomorphism of functors on the category of F-algebras.
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5.6. The affine flag variety

This section deals with the affine flag variety for the ramified unitary
group. Our discussion is based on and has greatly profited from [20], [21]
and [26], [28].

Let R be an F-algebra. Consider the extension R[[u]]/R[[u0]] with u0 = u2.
Also consider the R((u0))-automorphism ∗̃ : R((u)) → R((u)), u 7→ −u. Let
〈̃·, ·〉 be the ∗̃-hermitian form on R((u))n described by the matrix Ĩn with
respect to the standard basis of R((u))n over R((u)). For a lattice Λ in
R((u))n we define Λ∨ := {x ∈ R((u))n | 〈̃x,Λ〉 ⊂ R[[u]]}. Recall from Section
3.6 the standard lattice chain L̃ = (Λ̃i)i in R((u))n. Note that (Λ̃i)∨ = Λ̃−i
for all i ∈ Z. We denote by 〈̃·, ·〉i : Λ̃i × Λ̃−i → R[[u]] the restriction of 〈̃·, ·〉.
It is the perfect ∗̃-sesquilinear pairing described by the matrix Hi of (5.1.1)
with respect to Ẽi and Ẽ−i.

In complete analogy with [24, Definition A.41], we have for an F[[u0]]-
algebra R the notion of a polarized chain M = (Mi, %i : Mi → Mi+1, θi :
Mn+i

∼−→Mi, Ei : Mi ×M−i → F[[u]]⊗F[[u0]] R)i∈Z of F[[u]]⊗F[[u0]] R-modules
of type (L̃) (cf. [10, Definition 6.6.1]). The proof of [24, Proposition A.43]
then carries over without any changes to show the following result.

Proposition 5.6.1. — Let R be an F[[u0]]-algebra such that the image
of u0 in R is nilpotent. Then any two polarized chainsM,N of F[[u]]⊗F[[u0]]

R-modules of type (L̃) are isomorphic locally for the étale topology on R.
Furthermore the functor Isom(M,N ) is representable by a smooth affine
scheme over R.

Proposition 5.6.2. — Let R be an F-algebra and letM,N be polar-
ized chains of F[[u]] ⊗F[[u0]] R[[u0]]-modules of type (L̃). Then the canonical
map Isom(M,N )(R[[u0]]) → Isom(M,N )(R[[u0]]/um0 ) is surjective for all
m ∈ N>1. In particular M and N are isomorphic locally for the étale
topology on R.

Proof. — Analogous to the proof of Proposition 3.7.2. �

Denote by U = Un and GU = GUn the F((u0))-groups given on R-valued
points by

U(R) = {g ∈ GLn(F((u))⊗F((u0)) R) | gtĨng∗̃ = Ĩn}

and

GU(R) =
{
g ∈ GLn(F((u))⊗F((u0)) R) | ∃c = c(g) ∈ R× : gtĨng

∗̃ = cĨn

}
.
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Definition 5.6.3 ([26, §4.2], [28, §6.2]). — Let R be an F-algebra and
let (Li)i be a lattice chain in R((u))n.

(1) Let r ∈ Z. The chain (Li)i is called r-self-dual if

∀i ∈ Z : L∨i = ur0L−i.

Denote by F (r)
U the functor on the category of F-algebras with

F (r)
U (R) the set of r-self-dual lattice chains in R((u))n.

(2) The chain (Li)i is called self-dual if Zariski locally on R there is an
a ∈ R((u0))× such that

(5.6.1) ∀i ∈ Z : L∨i = aL−i.

Denote by FGU the functor on the category of F-algebras with
FGU(R) the set of self-dual lattice chains in R((u))n.

Note that L̃ ∈ F (0)
U (R).

Remark 5.6.4. — Let R be a reduced F-algebra such that SpecR is
connected. Then

FGU(R) =
⋃
r∈Z
F (r)

U (R).

Proof. — This follows directly from Lemma 3.7.4. �

Remark 5.6.5. — Let R be an F-algebra and let (Li)i ∈ F (0)
U (R). For

i ∈ Z denote by %i : Li → Li+1 the inclusion, by θi : Ln+i → Li the
isomorphism given by multiplication with u and by Ei : Li × L−i → R[[u]]
the restriction of 〈̃·, ·〉. Then (Li, %i, θi, Ei) is a polarized chain of F[[u]]⊗F[[u0]]

R[[u0]]-modules of type (L̃).

Note that for an F-algebra R, the canonical maps

F[[u]]⊗F[[u0]] R[[u0]]→ R[[u]],
F((u))⊗F((u0)) R((u0))→ R((u))

are isomorphisms. Consequently we can consider Lu0 GU and Lu0 U as sub-
functors of Lu GLn. Recall from Remark 3.6.11 the subfunctor I ⊂ L GLn.
We define a subfunctor IGU of Lu0 GU by IGU = Lu0 GU ∩ I.

Proposition 5.6.6. — The natural action of Lu GLn on F (cf. Remark
3.6.11) restricts to an action of Lu0 GU on FGU. Consequently we obtain
an injective map

Lu0 GU(R)/IGU(R) φ(R)−−−→ FGU(R),

g 7−−−→ g · L̃
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for each F-algebra R. The morphism φ identifies FGU with both the étale
and the fpqc sheafification of the presheaf Lu0 GU/IGU.

Proof. — Let R be an F-algebra. We claim that every a ∈ R((u0))× lies
in the image of the map c : GU(R((u0))) → R((u0))× étale locally on R.
Assuming this, one can proceed exactly as in the proof of Proposition 3.7.7.
To prove the claim, first note that for b ∈ R((u)), the matrix bIn ∈

GU(R((u0))) satisfies c(bIn) = bb̃∗. Lemma 3.7.4 implies that Zariski locally
on R, the element a is of the form a = uk0υ(1 + n) for some k ∈ Z, a unit
υ ∈ R[[u0]]× and a nilpotent element n ∈ R((u0)). Consequently it suffices
to show that each of uk0 , υ and 1 + n is of the form bb̃∗ for some b ∈ R((u))
étale locally on R.

As 2 ∈ R×, one easily sees that υ is a square in R[[u0]]× whenever υ(0) is
a square in R×, which is the case étale locally on R. For b =

√
−1uk, one

has bb̃∗ = uk0 . Finally, 1 + n is a square in R((u0))×; this follows from the
Taylor expansion of

√
1 + x if one notes that

(1/2
l

)
∈ Z[ 1

2 ] for all l ∈ N. �

Definition 5.6.7. — The étale sheafification of the presheaf
Lu0 GU/IGU is called the affine flag variety for GU.

By Proposition 5.6.6 the functor FGU provides a realization of the affine
flag variety for GU.

5.7. Embedding the local model into the affine flag variety

Let R be an F-algebra. We consider an R[u]/ue-module as an R[[u]]-
module via the canonical projection R[[u]] → R[u]/ue. For i ∈ Z denote
by αi : Λ̃i → Λi,R the morphism described by the identity matrix with
respect to Ẽi and Ei. It induces an isomorphism Λ̃i/ueΛ̃i

∼−→ Λi,R. Clearly
the following diagrams commute.

Λ̃i

αi

��

⊂ Λ̃i+1

αi+1

��
Λi,R

ρi,R // Λi+1,R

Λ̃i × Λ̃−i
〈̃·,·〉i //

αi×α−i
��

R[[u]]

��
Λi,R × Λ−i,R

〈·,·〉i,R // R[u]/ue

Λ̃i

αi

��

Λ̃n+i

αn+i

��

u·oo

Λi,R Λn+i,R.
ϑi,Roo

The following proposition allows us to consider Me,n as a subfunctor of
F (−e0)

U .
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Proposition 5.7.1 ([21, §3.3],[26, §4.4-5.1], [28, §6.4-7.1]). — There is
an embedding α : Me,n ↪→ F (−e0)

U given on R-valued points by

Me,n(R)→ F (−e0)
U (R),

(ti)i 7→ (α−1
i (ti))i.

It induces a bijection fromMe,n(R) onto the set of those (Li)i ∈ F (−e0)
U (R)

satisfying the following conditions for all i ∈ Z.
(1) ueΛ̃i ⊂ Li ⊂ Λ̃i.
(2) For all P ∈ R[u]/ue, we have

χR(P |Λ̃i/Li) = (T − P (0))ne0

in R[T ]. Here Λ̃i/Li is considered as an R[u]/ue-module using (1).

Proof. — Identical to the proof of Proposition 3.8.1. �

Note that L = (Λi, ρi, ϑi, 〈·, ·〉i)i is a polarized chain of F[[u]] ⊗F[[u0]]

F[u0]/ue00 -modules of type (L̃). In fact L = L̃⊗F[[u0]] F[u0]/ue00 . Let R be an
F-algebra. There is an obvious action of Aut(L)(R[u0]/ue00 ) on Me,n(R),
given by (ϕi) · (ti) = (ϕi(ti)). The canonical morphism R[[u0]]→ R[u0]/ue00
induces a morphism Aut(L̃)(R[[u0]])→ Aut(L)(R[u0]/ue00 ) and we thereby
extend this Aut(L)(R[u0]/ue00 )-action on Me,n(R) to an Aut(L̃)(R[[u0]])-
action.

Lemma 5.7.2. — Let R be an F-algebra and let t ∈Me,n(R). We have
Aut(L̃)(R[[u0]]) · t = Aut(L)(R[u0]/ue0) · t.

Proof. — The map Aut(L̃)(R[[u0]])→ Aut(L)(R[u0]/ue00 ) is surjective by
Proposition 5.6.2. �

Define a subfunctor IU of Lu0 U by IU = Lu0 U ∩ IGU.

Lemma 5.7.3. — We have IGU(F) = F[[u0]]×IU(F).

Proof. — Analogous to the proof of Lemma 3.8.3, noting that for g ∈
IGU(F) one has c(g) ∈ F[[u0]]×. �

Lemma 5.7.4. — Let g ∈ IU(F). Then g restricts to an automorphism
gi : Λ̃i

∼−→ Λ̃i for each i ∈ Z. The assignment g 7→ (gi)i defines an isomor-
phism IU(F) ∼−→ Aut(L̃)(F[[u0]]).

Proof. — Analogous to the proof of Lemma 2.5.5. �

Proposition 5.7.5. — Let t ∈Me,n(F). Then α induces a bijection

Aut(L)(F[u0]/ue00 ) · t ∼−→ IGU(F) · α(t).
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Consequently we obtain an embedding

Aut(L)(F[u0]/ue00 )\Me,n(F) ↪→ IGU(F)\FGU(F).

Proof. — Analogous to the proof of Proposition 3.8.5. �

Consider α′ : Me,n(F) ↪→ FGU(F) φ(F)−1

−−−−→ Lu0 GU(F)/IGU(F).

Proposition 5.7.6. — Let t ∈Me,n(F). Then α′ induces a bijection

Aut(L)(F[u0]/ue00 ) · t ∼−→ IGU(F) · α′(t).

Consequently we obtain an embedding

Aut(L)(F[u0]/ue00 )\Me,n(F) ↪→ IGU(F)\GU(F((u0)))/IGU(F).

Proof. — Clear from Proposition 5.7.5, as the isomorphism φ(F) is in
particular IGU(F)-equivariant. �

Let R be an F-algebra and (ϕi)i ∈ Aut(L)(R). The decomposition (5.5.1)
induces for each i a decomposition of ϕi : Λi,R

∼−→ Λi,R into the product of
R[u]/ue-linear automorphisms ϕi,σ : Λi,R

∼−→ Λi,R. The following statement
is then clear (cf. the proof of Proposition 3.5.2).

Proposition 5.7.7. — Let R be an F-algebra. The following map is an
isomorphism, functorial in R.

Aut(L)(R)→
∏
σ∈S

Aut(L)(R[u0]/ue00 ),

(ϕi)i 7→ ((ϕi,σ)i)σ∈S.

Consider the composition

α̃ : M loc(F) (5.5.2)−−−−→
∏
σ∈S

Me,n(F)
∏

σ
α′

−−−−→
∏
σ∈S

Lu0 GU(F)/IGU(F).

For σ ∈ S denote by α̃σ : M loc(F)→ Lu0 GU(F)/IGU(F) the corresponding
component of α̃.

Theorem 5.7.8. — Let t ∈M loc(F). Then α̃ induces a bijection

Aut(L)(F) · t ∼−→
∏
σ∈S

IGU(F) · α̃σ(t).

Consequently we obtain an embedding

Aut(L)(F)\M loc(F) ↪→
∏
σ∈S

IGU(F)\GU(F ((u0)))/IGU(F).

Proof. — Identical to the proof of Theorem 3.8.8. �
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5.8. The Iwahori-Weyl group

As in [26, 3.2],[28, 3.2], we denote by S the standard diagonal maximal
split torus in GU. Denote by T the centralizer and by N the normalizer of S
in GU. By the discussion in [26, 3.4], [28, 5.4], the Kottwitz homomorphism
for T is given by

κT : T (F((u0)))→ Zn, diag(x1, . . . , xn) 7→ (valu(x1), . . . , valu(xn)).

Consequently the kernel T
(
F((u0))

)
1 of κT is equal to T (F((u0)))∩Dn(F[[u]]),

with the intersection taking place in GLn(F((u))). Here Dn ⊂ GLn denotes
the subgroup of diagonal matrices. By definition, the Iwahori-Weyl group(4)

of GU with respect to S is given by W̃ := N(F((u0)))/T (F((u0)))1.
Set

W = {w ∈ Sn | ∀i ∈ {1, . . . , n} : w(i) + w(n+ 1− i) = n+ 1}

and

X = {(x1, . . . , xn) ∈ Zn | ∃r ∈ Z∀i ∈ {1, . . . , n} : xi + xn+1−i = 2r}.

We identify W with a subgroup of U(F((u0))) via W 3 w 7→ Aw. One
easily sees that N(F((u0))) = W nT (F((u0))). The Kottwitz homomorphism
κT induces an isomorphism T (F((u0)))/T (F((u0)))1

∼−→ X and we thereby
identify W̃ with W nX.
To avoid any confusion of the product inside W̃ and the canonical action

of Sn on Zn, we will always denote the element of W̃ corresponding to
λ ∈ X by uλ.

Recall from [5, §2.5] the notion of an extended alcove (xi)n−1
i=0 for GLn.

An extended alcove for GU is an extended alcove (xi)n−1
i=0 for GLn such

that

∃r ∈ Z∀i ∈ {0, . . . , n}∀j ∈ {1, . . . , n} : xi(j) + xn−i(n+ 1− j) = 2r − 1.

Here xn = x0 + (1(n)).
Also recall the standard alcove (ωi)n−1

i=0 . As in the linear case treated in
loc. cit., we identify W̃ with the set of extended alcoves for GU by using
the standard alcove as a base point.
Write e = (e(n)).

Definition 5.8.1 (Cf. [14]). — An extended alcove (xi)n−1
i=0 for GU is

called permissible if it satisfies the following conditions for all i ∈ {0, . . . , n−
1}.

(4)Following Rapoport, we use the term “Iwahori-Weyl group” instead of “extended
affine Weyl group” in the non-split case.
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(1) ωi 6 xi 6 ωi + e, where 6 is to be understood componentwise.
(2)

∑n
j=1 xi(j) = ne0 − i.

Denote by Perm the set of all permissible extended alcoves for GU.

Proposition 5.8.2. — The inclusion N(F((u0))) ⊂ GU(F((u0))) induces
a bijection W̃ ∼−→ IGU(F)\GU(F((u0)))/IGU(F). In other words,

GU(F((u0))) =
∐
x∈W̃

IGU(F)xIGU(F).

Under this bijection, the subset

Aut(L)(F[u0]/ue00 )\Me,n(F) ⊂ IGU(F)\GU(F((u0)))/IGU(F)

of Proposition 5.7.6 corresponds to the subset Perm ⊂ W̃ .

Proof. — The first statement is discussed in [26, 4.4], [28, 6.4]. The sec-
ond statement follows easily from the explicit description of the image of
α in Proposition 5.7.1. �

Corollary 5.8.3. — Under the identifications of Theorem 5.7.8, the
set
∏
σ∈S Perm constitutes a set of representatives of Aut(L)(F)\M loc(F).

Remark 5.8.4. — As explained in Remark 3.9.4, the normalization of
Corollary 5.8.3 differs from the one of Definition 2.5.10 by the automor-
phism

∏
σ∈S Perm→

∏
σ∈S Perm, (xσ) 7→ (uex−1

σ )

5.9. The p-rank on a KR stratum

Recall from Section 2.3 the scheme A/OEQ associated with our choice
of PEL datum, and the KR stratification

A(F) =
∐

x∈Aut(L)(F)\M loc(F)

Ax.

We have identified the occurring index set with
∏
σ∈S Perm in Corollary

5.8.3 . We can then state the following result.

Theorem 5.9.1. — Let x = (xσ)σ ∈
∏
σ∈S Perm. Write xσ = wσu

λσ

with wσ ∈W, λσ ∈ X. Then the p-rank on Ax is constant with value

g · |{1 6 i 6 n | ∀σ ∈ S(wσ(i) = i and λσ(i) = 0)}|.

Proof. — The proof is identical to the one of Theorem 3.10.1. �
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6. The inert unitary case

6.1. The PEL datum

We start with the PEL datum defined in Section 4. We assume that
pOF0 = (P0)e for a single prime P0 of OF0 and that P0OF = P for a
single prime P of OF . Denote by f0 = [kP0 : Fp] and f = [kP : Fp] the
corresponding inertia degrees, so that f = 2f0. We fix once and for all a
uniformizer π of OF0 ⊗ Z(p). Then π is also a uniformizer of OF ⊗ Z(p).

Denote by C = COFP |Zp the corresponding inverse different. Choose a
generator δ of C satisfying δ∗ = −δ. Consequently the form δ−1 (·, ·)′Qp :
VQp ×VQp → FP is ∗-hermitian and we assume that it splits, i.e. that there
is a basis (e1, . . . , en) of VQp over FP such that (ei, en+1−j)′Qp = δδij for
1 6 i, j 6 n. Here we denote by δij the Kronecker delta.
Let 0 6 i < n. We denote by Λi the OFP -lattice in VQp with basis

Ei = (π−1e1, . . . , π
−1ei, ei+1, . . . , en).

For k ∈ Z we further define Λnk+i = π−kΛi and we denote by Enk+i
the corresponding basis obtained from Ei. Then L = (Λi)i is a complete
chain of OFP -lattices in VQp . For i ∈ Z, the dual lattice Λ∨i := {x ∈ VQp |
(x,Λi)Qp ⊂ Zp} of Λi is given by Λ−i. Consequently the chain L is self-dual.

Let i ∈ Z. We denote by ρi : Λi → Λi+1 the inclusion, by ϑi : Λn+i → Λi
the isomorphism given by multiplication with π and by (·, ·)i : Λi×Λ−i →
Zp the restriction of (·, ·)Qp . Then (Λi, ρi, ϑi, (·, ·)i)i is a polarized chain of
OFP -modules of type (L), which, by abuse of notation, we also denote by
L = Linert.
Denote by 〈·, ·〉i : Λi × Λ−i → OFP the restriction of the ∗-hermitian

form δ−1 (·, ·)′Qp . It is the ∗-sesquilinear form described by the matrix Ĩn
with respect to Ei and E−i.
Denote by Σ0 the set of all embeddings F0 ↪→ R and by Σ the set of all

embeddings F ↪→ C. Also write S = Gal(kP/Fp) and S0 = Gal(kP0/Fp).
Let E′ be the Galois closure of F inside C and choose a prime Q′ of

E′ over P. Consider the maps γ : Σ → S and γ0 : Σ0 → S0 of Lemma
3.1.1. For each σ ∈ S0 we denote by τσ,1, τσ,2 ∈ S the two elements with
τσ,j
∣∣
kP0

= σ.
Let σ ∈ Σ0 and j ∈ {1, 2}. There is a unique τσ,j ∈ Σ with τσ,j

∣∣
F0

= σ

satisfying

(6.1.1) γ(τσ,j) = τγ0(σ),j .
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Exactly as in Section 5, we define for each σ ∈ Σ0 integers rσ, sσ with
rσ + sσ = n, and using these the element J ∈ EndB⊗R(V ⊗ R). Denote by
V−i the (−i)-eigenspace of JC. As before, we construct an OF⊗OE′ -module
M0 which is finite locally free over OE′ , such that M0 ⊗OE′ C = V−i as
OF ⊗ C-modules.

6.2. The geometric special fiber of the determinant morphism

Let σ ∈ S0. We define

rσ =
∑

σ′∈γ−1
0 (σ)

rσ′ and sσ =
∑

σ′∈γ−1
0 (σ)

sσ′ .

As the fibers of γ0 have cardinality e, it follows that rσ + sσ = ne.
We fix once and for all an embedding ιQ′ : kQ′ ↪→ F. We consider F as

an OE′ -algebra with respect to the composition OE′
ρQ′−−→ kQ′

ιQ′
↪→ F. Also

ιQ′ induces an embedding ιP : kP ↪→ F and thereby an identification of the
set of all embeddings kP ↪→ F with S.

Our choice of uniformizer π induces a canonical isomorphism

(6.2.1) OF ⊗ F =
∏
σ∈S0

F[u]/(ue)× F[u]/(ue).

Here in the component F[u]/(ue) × F[u]/(ue) corresponding to σ ∈ S0,
the first factor is supposed to correspond to τσ,1 and the second factor is
supposed to correspond to τσ,2.

Proposition 6.2.1. — Let x ∈ OF and let
(
(qτσ,1 , qτσ,2)

)
σ
∈∏

σ∈S0
F[u]/(ue) × F[u]/(ue) be the element corresponding to x ⊗ 1 un-

der (6.2.1). Then

χF(x|M0 ⊗OE′ F) =
∏
σ∈S0

(
T − qτσ,1(0)

)sσ(
T − qτσ,2(0)

)rσ
in F[T ].

Proof. — Reduce χOE′ (x|M0) modulo Q′, using (6.1.1). �

Denote by E = Q(trC(x ⊗ 1|V−i); x ∈ F ) the reflex field and define
Q = Q′ ∩ OE . The morphism detV−i is defined over OE .
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6.3. The local model

For the chosen PEL datum, Definition 2.3.1 amounts to the following.

Definition 6.3.1. — The local model M loc = M loc,inert is the functor
on the category of OEQ-algebras with M loc(R) the set of tuples (ti)i∈Z of
OF ⊗ R-submodules ti ⊂ Λi,R, satisfying the following conditions for all
i ∈ Z.

(a) ρi,R(ti) ⊂ ti+1.
(b) The quotient Λi,R/ti is a finite locally free R-module.
(c) We have an equality

detΛi,R/ti = detV−i ⊗OER

of morphisms VOF⊗R → A1
R.

(d) Under the pairing (·, ·)i,R : Λi,R × Λ−i,R → R, the submodules ti
and t−i pair to zero.

(e) ϑi(tn+i) = ti.

6.4. The geometric special fiber of the local model

For i ∈ Z, denote by Λi the free F[u]/ue-module (F[u]/ue)n and by Ei its
canonical basis. Denote by ϑi : Λn+i → Λi the identity morphism. Consider
the map ∗ : F[u]/ue×F[u]/ue → F[u]/ue×F[u]/ue, (a, b) 7→ (b, a). Let Λi,1
and Λi,2 be two copies of Λi and denote by 〈·, ·〉i,1 : Λi,1×Λ−i,2 → F[u]/ue

(resp. 〈·, ·〉i,2 : Λi,2 × Λ−i,1 → F[u]/ue) the perfect bilinear map described
by the matrix Ĩn with respect to Ei,1 and E−i,2 (resp. Ei,2 and E−i,1).
Consider the pairing

〈·, ·〉i : (Λi,1 × Λi,2)× (Λ−i,1 × Λ−i,2)→ F[u]/ue × F[u]/ue,(
(x1, x2), (y1, y2)

)
7→
(
〈x1, y2〉i,1 , 〈x2, y1〉i,2

)
.

It is a perfect ∗-sesquilinear pairing.
For k ∈ Z and 0 6 i < n, let ρnk+i : Λnk+i → Λnk+i+1 be the morphism

described by the matrix diag(1(i), u, 1(n−i−1)) with respect to Enk+i and
Enk+i+1.

Definition 6.4.1. — Let r, s ∈ N with r + s = ne. Define a functor
Me,n,r on the category of F-algebras withMe,n,r(R) the set of tuples (ti)i∈Z
of R[u]/ue-submodules ti ⊂ Λi,R satisfying the following conditions for all
i ∈ Z.
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(a) ρi,R(ti) ⊂ ti+1.
(b) The quotient Λi,R/ti is a finite locally free R-module.
(c) For all P ∈ R[u]/ue, we have

χR(P |Λi,R/ti) =
(
T − P (0)

)s
in R[T ].

(d) ϑi(tn+i) = ti.

Let i ∈ Z. From (6.2.1) we obtain an isomorphism

(6.4.1) Λi,F =
∏
σ∈S0

Λi,1 × Λi,2

by identifying the basis Ei,F with the product of the bases Ei. Under this
identification, the morphism ρi,F decomposes into the morphisms ρi, the
pairing 〈·, ·〉i,F decomposes into the pairings 〈·, ·〉i and the morphism ϑi,F

decomposes into the morphisms ϑi.
Let R be an F-algebra and let (ti)i∈Z be a tuple of OF ⊗R-submodules

ti ⊂ Λi,R. Then (6.4.1) induces decompositions ti =
∏
σ∈S0

ti,τσ,1 × ti,τσ,2
into R[u]/ue-submodules ti,τσ,j ⊂ Λi,j,R. The following statement is then
clear (cf. the proof of Proposition 3.5.2).

Proposition 6.4.2. — The morphism Φ1 : M loc
F →

∏
σ∈S0

Me,n,rσ

given on R-valued points by

M loc
F (R)→

∏
σ∈S0

Me,n,rσ (R),

(ti) 7→
(
(ti,τσ,1)i

)
σ

is an isomorphism of functors on the category of F-algebras.

Remark 6.4.3. — For symmetry reasons, also the morphism Φ2 : M loc
F →∏

σ∈S0
Me,n,sσ given on R-valued points by

M loc
F (R)→

∏
σ∈S0

Me,n,sσ (R),

(ti) 7→
(
(ti,τσ,2)i

)
σ

is an isomorphism of functors on the category of F-algebras.
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The morphism
∏
σ∈S0

Me,n,rσ →
∏
σ∈S0

Me,n,sσ making commutative
the diagram ∏

σ∈S0
Me,n,rσ

��

M loc
F

Φ1
88

Φ2 &&∏
σ∈S0

Me,n,sσ

is given by on R-valued points by

(6.4.2)

∏
σ∈S0

Me,n,rσ (R)→
∏
σ∈S0

Me,n,sσ (R),

((ti,σ)i)σ 7→ ((t⊥,〈·,·〉−i,1,R−i,σ )i)σ.

6.5. Embedding the local model into the affine flag variety

Recall from Section 3.6 the realization F of the affine flag variety for
GLn. Let R be an F-algebra. We consider an R[u]/ue-module as an R[[u]]-
module via the canonical projection R[[u]] → R[u]/ue. For i ∈ Z, denote
by αi : Λ̃i → Λi,R the morphism described by the identity matrix with
respect to Ẽi and Ei. It induces an isomorphism Λ̃i/ueΛ̃i

∼−→ Λi,R. Clearly
the following diagrams commute.

Λ̃i

αi

��

⊂ Λ̃i+1

αi+1

��
Λi,R

ρi,R // Λi+1,R,

Λ̃i

αi

��

Λ̃n+i

αn+i

��

u·oo

Λi,R Λn+i,R.
ϑi,Roo

Let r, s ∈ N with r+s = ne. The following proposition allows us to consider
Me,n,r as a subfunctor of F .

Proposition 6.5.1 ([19, §4]). — There is an embedding α : Me,n,r ↪→
F given on R-valued points by

Me,n,r(R)→ F(R),

(ti)i 7→ (α−1
i (ti))i.

It induces a bijection from Me,n,r(R) onto the set of those (Li)i ∈ F(R)
satisfying the following conditions for all i ∈ Z.

ANNALES DE L’INSTITUT FOURIER



KOTTWITZ-RAPOPORT AND p-RANK STRATA 1089

(1) ueΛ̃i ⊂ Li ⊂ Λ̃i.
(2) For all P ∈ R[u]/ue, we have

χR(P |Λ̃i/Li) =
(
T − P (0)

)s
in R[T ]. Here Λ̃i/Li is considered as an R[u]/ue-module using (1).

Proof. — Analogous to the proof of Proposition 3.8.1. �

Let R be an F-algebra. Denote by 〈̃·, ·〉 : R((u))n × R((u))n → R((u)) the
bilinear form described by the matrix Ĩn with respect to the standard basis
of R((u))n over R((u)). Further denote by 〈̃·, ·〉i : Λ̃i × Λ̃−i → R[[u]] the
restriction of 〈̃·, ·〉. Note that the diagram

Λ̃i × Λ̃−i
〈̃·,·〉i //

αi×α−i
��

R[[u]]

��
Λi,1,R × Λ−i,2,R

〈·,·〉i,1,R // R[u]/ue

commutes. For a lattice Λ in R((u))n we define Λ∨ := {x ∈ R((u))n | 〈̃x,Λ〉 ⊂
R[[u]]}.

As in Remark 6.5.10, the morphism Ψ : Me,n,r → Me,n,s given on R-
valued points by

Me,n,r(R)→Me,n,s(R),

(ti)i 7→ (t⊥,〈·,·〉−i,1,R−i )i
is an isomorphism.

Proposition 6.5.2. — The following diagram commutes.

Me,n,r �
� α //

Ψ
��

F

(Li)i 7→(ueL∨−i)i
��

Me,n,s �
� α // F .

Proof. — Similar to the proof of the duality statement in the proof of
Proposition 3.8.1. �

Note that L = (Λi, ρi, ϑi) is a chain of F[u]/ue-modules of type (L̃).
In fact L = L̃ ⊗F[[u]] F[u]/ue. Let R be an F-algebra. There is an obvious
action of Aut(L)(R[u]/ue) on Me,n,r(R), given by (ϕi) · (ti) = (ϕi(ti)).
The canonical morphism R[[u]]→ R[u]/ue induces a map Aut(L̃)(R[[u]])→
Aut(L)(R[u]/ue) and we thereby extend this Aut(L)(R[u]/ue)-action on
Me,n,r(R) to an Aut(L̃)(R[[u]])-action.
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Lemma 6.5.3. — Let R be an F-algebra and let t ∈Me,n,r(R). We have
Aut(L̃)(R[[u]]) · t = Aut(L)(R[u]/ue) · t.

Proof. — The map Aut(L̃)(R[[u]]) → Aut(L)(R[u]/ue) is surjective by
Proposition 3.6.9. �

Lemma 6.5.4. — Let g ∈ I(F). Then g restricts to an automorphism gi :
Λ̃i
∼−→ Λ̃i for each i ∈ Z. The assignment g 7→ (gi)i defines an isomorphism

I(F) ∼−→ Aut(L̃)(F[[u]]).

Proof. — Clear (cf. the proof of Lemma 2.5.5). �

Proposition 6.5.5. — Let t ∈Me,n,r(F). Then α induces a bijection

Aut(L)(F[u]/ue) · t ∼−→ I(F) · α(t).

Consequently we obtain an embedding

Aut(L)(F[u]/ue)\Me,n,r(F) ↪→ I(F)\F(F).

Proof. — Analogous to the proof of Proposition 3.8.6. �

Consider α′ : Me,n,r(F) ↪→ F(F) φ(F)−1

−−−−→ L GLn(F)/I(F).

Proposition 6.5.6. — Let t ∈Me,n,r(F). Then α′ induces a bijection

Aut(L)(F[u]/ue) · t ∼−→ I(F) · α′(t).

Consequently we obtain an embedding

(6.5.1) Aut(L)(F[u]/ue)\Me,n,r(F) ↪→ I(F)\GLn(F((u)))/I(F).

Proof. — Clear from Proposition 6.5.5, as the isomorphism φ(F) is in
particular I(F)-equivariant. �

Denote by τ the adjoint involution for 〈̃·, ·〉 on GLn(F((u))), so that for
g ∈ GLn(F((u))) we have 〈̃gx, y〉 = 〈̃x, gτ 〉, x, y ∈ F((u))n.

Proposition 6.5.7. — The vertical maps in the following diagram are
well-defined bijections and the diagram commutes.

Aut(L)(F[u]/ue)\Me,n,r(F) �
� (6.5.1) //

Ψ
��

I(F)\GLn(F((u)))/I(F)

g 7→ue(gτ )−1

��
Aut(L)(F[u]/ue)\Me,n,s(F) �

�(6.5.1) // I(F)\GLn(F((u)))/I(F).

Proof. — In view of Proposition 6.5.2 it suffices to note the following
statement, which follows from a short computation: Let Λ be a lattice in
F((u))n and let g ∈ GLn(F((u))). Then (gΛ)∨ = (gτ )−1(Λ∨). �
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Let R be an F-algebra and ϕ = (ϕi)i ∈ Aut(L)(R). The decomposition
(6.4.1) induces for each i a decomposition of ϕi : Λi,R

∼−→ Λi,R into the
product of R[u]/ue-linear automorphisms ϕi,τσ,j : Λi,j,R

∼−→ Λi,j,R. The
following statement is then clear (cf. the proof of Proposition 3.5.2).

Proposition 6.5.8. — Let R be an F-algebra. The following map is an
isomorphism, functorial in R.

Aut(L)(R)→
∏
σ∈S0

Aut(L)(R[u]/ue),

(ϕi)i 7→ ((ϕi,τσ,1)i)σ.

Consider the composition

α̃1 : M loc(F) Φ1−−→
∏
σ∈S0

Me,n,rσ (F)
∏

σ
α′

−−−−→
∏
σ∈S0

L GLn(F)/I(F).

For σ ∈ S0 denote by α̃1,σ : M loc(F)→ L GLn(F)/I(F) the corresponding
component of α̃1.

Theorem 6.5.9. — Let t ∈M loc(F). Then α̃1 induces a bijection

Aut(L)(F) · t ∼−→
∏
σ∈S0

I(F) · α̃1,σ(t).

Consequently we obtain an embedding

ι1 : Aut(L)(F)\M loc(F) ↪→
∏
σ∈S0

I(F)\GLn(F((u)))/I(F).

Proof. — Identical to the proof of Theorem 3.8.8. �

Remark 6.5.10. — In the same way, the composition

α̃2 : M loc(F) Φ2−−→
∏
σ∈S0

Me,n,sσ (F)
∏

σ
α′

−−−−→
∏
σ∈S0

L GLn(F)/I(F)

induces an embedding

ι2 : Aut(L)(F)\M loc(F) ↪→
∏
σ∈S0

I(F)\GLn(F((u)))/I(F).
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By Proposition 6.5.7 the following diagram commutes.∏
σ∈S0

I(F)\GLn(F((u)))/I(F)

(gσ)σ 7→(ue(gτσ)−1)σ

��

Aut(L)(F)\M loc(F)

ι1
44

ι2 **∏
σ∈S0

I(F)\GLn(F((u)))/I(F)

6.6. The extended affine Weyl group

Let T be the maximal torus of diagonal matrices in GLn and let N be
its normalizer. We denote by W̃ = N(F((u)))/T (F[[u]]) the extended affine
Weyl group of GLn with respect to T . Setting W = Sn and X = Zn, the
group homomorphism υ : W n X → N(F((u))), (w, λ) 7→ Awu

λ induces
an isomorphism W nX

∼−→ W̃ . We use it to identify W̃ with W nX and
consider W̃ as a subgroup of GLn(F((u))) via υ.
To avoid any confusion of the product inside W̃ and the canonical action

of Sn on Zn, we will always denote the element of W̃ corresponding to
λ ∈ X by uλ.

Recall from [5, §2.5] the notion of an extended alcove (xi)n−1
i=0 for GLn.

Also recall the standard alcove (ωi)i. As in loc. cit. we identify W̃ with the
set of extended alcoves by using the standard alcove as a base point.
Let r, s ∈ N with r + s = ne and write e = (e(n)).

Definition 6.6.1 (Cf. [14], [5, Definition 2.4]). — An extended alcove
(xi)n−1

i=0 is called r-permissible if it satisfies the following conditions for all
i ∈ {0, . . . , n− 1}.

(1) ωi 6 xi 6 ωi + e, where 6 is to be understood componentwise.
(2)

∑n
j=1 xi(j) = s− i.

Denote by Permr the set of all r-permissible extended alcoves.

Proposition 6.6.2. — The inclusion N(F((u))) ⊂ GLn(F((u))) induces
a bijection W̃ ∼−→ I(F)\GLn(F((u)))/I(F). In other words,

GLn(F((u))) =
∐
x∈W̃

I(F)xI(F).

Under this bijection, the subset

Aut(L)(F[u]/ue)\Me,n,r(F) ⊂ I(F)\GLn(F((u)))/I(F)
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of (6.5.1) corresponds to the subset Permr ⊂ W̃ .

Proof. — The first statement is the well-known Iwahori decomposition.
The second statement follows easily from the explicit description of the
image of α in Proposition 6.5.1. �

Corollary 6.6.3. — With respect to the embedding ι1 of
Theorem 6.5.9, the set

∏
σ∈S0

Permr̄σ constitutes a set of representatives
of Aut(L)(F)\M loc(F).

The following lemma will be used below.

Lemma 6.6.4. — Let x ∈ W̃ . Write x = wuλ with w ∈ W, λ ∈ X.
Define w′ ∈W and λ′ ∈ X by

w′(i) = n+ 1− w(n+ 1− i), 1 6 i 6 n

and
λ′(i) = e− λ(n+ 1− i), 1 6 i 6 n.

Let x′ = w′uλ
′ . Then x′ = ue(xτ )−1.

Proof. — This is an easy computation. �

6.7. The p-rank on a KR stratum

Recall from Section 2.3 the scheme A/OEQ associated with our choice
of PEL datum, and the KR stratification

A(F) =
∐

x∈Aut(L)(F)\M loc(F)

Ax.

We have identified the occurring index set with
∏
σ∈S0

Permrσ in Corollary
6.6.3. We can then state the following result.

Theorem 6.7.1. — Let x = (xσ)σ ∈
∏
σ∈S0

Permrσ . Write xσ = wσu
λσ

with wσ ∈ W, λσ ∈ X and define elements w′σ ∈ W and λ′σ ∈ X as in
Lemma 6.6.4. Then the p-rank on Ax is constant with value

g ·

∣∣∣∣∣
{

1 6 i 6 n

∣∣∣∣∣∀σ ∈ S0

(
wσ(i) = w′σ(i) = i and

λσ(i) = λ′σ(i) = 0

)}∣∣∣∣∣ .
Proof. — Follows from Proposition 6.5.7 and Lemma 6.6.4 by the argu-

ments of the proof of Theorem 3.10.1. �
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7. The split unitary case

7.1. The PEL datum

We start with the PEL datum defined in Section 4. We assume that
pOF0 = (P0)e for a single prime P0 of OF0 and that P0OF = P+P−
for two distinct primes P± of OF . Consequently P− = (P+)∗. Denote by
f0 = [kP0 : Fp] the corresponding inertia degree. We fix once and for all a
uniformizer π0 of OF0 ⊗ Z(p).
For typographical reasons, we denote the ring of integers in (F0)P0 by

OP0 . The inclusion OF0 ↪→ OF induces identifications

(7.1.1)
OF ⊗ Zp = OP0 ×OP0 ,

F ⊗Qp = (F0)P0 × (F0)P0 .

Here the first (resp. second) factor is always supposed to correspond to P+
(resp. P−). Under (7.1.1), the base-change F ⊗ Qp → F ⊗ Qp of ∗ takes
the simple form (F0)P0 × (F0)P0 → (F0)P0 × (F0)P0 , (a, b) 7→ (b, a).
The identification (7.1.1) further induces a decomposition V ⊗ Qp =

V+ × V− into (F0)P0-vector spaces V±. The pairing (·, ·)′Qp decomposes
into its restrictions (·, ·)± : V± × V∓ → (F0)P0 . Both (·, ·)+ and (·, ·)−
are perfect (F0)P0-bilinear pairings and they are related by the equation
(v, w)+ = − (w, v)− , v ∈ V+, w ∈ V−.
Denote by C0 = COP0 |Zp the corresponding inverse different and fix a

generator δ0 of C0. We fix bases (e1,±, . . . , en,±) of V± over (F0)P0 such
that (ei,+, en+1−j,−)+ = δ0δij for 1 6 i, j 6 n. Here we denote by δij the
Kronecker delta.
Let 0 6 i < n. We denote by Λi,± the OP0 -lattice in V± with basis

Ei,± = (π−1
0 e1,±, . . . , π

−1
0 ei,±, ei+1,±, . . . , en,±).(7.1.2)

For k ∈ Z we further define Λnk+i,± = π−k0 Λi,± and we denote by Enk+i,±
the corresponding basis obtained from Ei,±. Then L± = (Λi,±)i is a com-
plete chain of OP0-lattices in V±.
Let i ∈ Z. We denote by ρi,± : Λi,± → Λi+1,± the inclusion and by

ϑi,± : Λn+i,± → Λi,± the isomorphism given by multiplication with π0.
Then (Λi,±, ρi,±, ϑi,±) is a chain of OP0 -modules of type (L±) which, by
abuse of notation, we also denote by L±.
For (i, j) ∈ Z × Z we define Λ(i,j) := Λi,+ × Λj,−. Then Λ(i,j) is an
OF ⊗ Zp-lattice in VQp . A basis E(i,j) of Λ(i,j) over OF ⊗ Zp is given by
the diagonal in Ei,+ × Ej,−. Then L = (Λi,j)(i,j) is a complete multichain
of OF ⊗Zp-lattices in VQp . For (i, j) ∈ Z×Z the dual lattice Λ∨(i,j) := {x ∈
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VQp |
(
x,Λ(i,j)

)
Qp
⊂ Zp} of Λ(i,j) is given by Λ(−j,−i). Consequently the

multichain L is a self-dual.
Let (i, j) ∈ Z × Z. We denote by ρ(i,j),+ : Λ(i,j) → Λ(i+1,j), ρ(i,j),− :

Λ(i,j) → Λ(i,j+1) and ρ(i,j) : Λ(i,j) → Λ(i+1,j+1) the inclusions. We denote
by ϑ(i,j),+ : Λ(n+i,j) → Λ(i,j) (resp. ϑ(i,j),− : Λ(i,n+j) → Λ(i,j), resp. ϑ(i,j) :
Λ(n+i,n+j) → Λ(i,j)) the isomorphism given by multiplication with π0 in the
first (resp. second, resp. first and second) component. We further denote
by (·, ·)(i,j) : Λ(i,j) × Λ(−j,−i) → Zp the restriction of (·, ·)Qp .
We find that (L+,L−), equipped with ((·, ·)(i,j))(i,j), is a polarized mul-

tichain of OF ⊗ Zp-modules of type (L), which, by abuse of notation, we
also denote by L = Lsplit.
Denote by 〈·, ·〉(i,j) : Λ(i,j)×Λ(−j,−i) → OP0 ×OP0 the restriction of the

∗-hermitian form (δ−1
0 ,−δ−1

0 ) (·, ·)′Qp . It is the ∗-sesquilinear form described
by the matrix Ĩn with respect to E(i,j) and E(−j,−i).

Denote by Σ0 the set of all embeddings F0 ↪→ R and by Σ the set of
all embedding F ↪→ C. The inclusion OF0 ↪→ OF induces an identification
of kP±/Fp with kP0/Fp. We write S0 = Gal(kP0/Fp) and also identify
Gal(kP±/Fp) with S0. Let E′ be the Galois closure of F inside C and
choose a prime Q′ of E′ over P+. Consider the decomposition Σ = Σ+qΣ−
and the maps γ0 : Σ0 → S0, γ± : Σ± → S0 of Lemma 3.1.2. For σ ∈ Σ0
we denote by τσ,± the unique lift of σ to Σ±. Exactly as in Section 5, we
define for each σ ∈ Σ0 integers rσ, sσ with rσ + sσ = n,(5) and using these
the element J ∈ EndB⊗R(V ⊗ R). Denote by VC,−i the (−i)-eigenspace of
JC. As before, we construct an OF ⊗OE′ -module M0 which is finite locally
free over OE′ , such that M0 ⊗OE′ C = VC,−i as OF ⊗ C-modules.

7.2. The geometric special fiber of the determinant morphism

For σ ∈ S0 we write

rσ =
∑

σ′∈γ−1
0 (σ)

rσ′ and sσ =
∑

σ′∈γ−1
0 (σ)

sσ′ .

As the fibers of γ0 have cardinality e, it follows that rσ + sσ = ne.
We fix once and for all an embedding ιQ′ : kQ′ ↪→ F. We consider F as

an OE′ -algebra with respect to the composition OE′
ρQ′−−→ kQ′

ιQ′
↪→ F. Also

ιQ′ induces an embedding ιP0 : kP0 ↪→ F and thereby an identification of
the set of all embeddings kP0 ↪→ F with S0.

(5) In Section 5 we have written τσ,1 and τσ,2 instead of τσ,+ and τσ,−, respectively.

TOME 65 (2015), FASCICULE 3



1096 Philipp HARTWIG

Consider the isomorphism

(7.2.1) OF ⊗ F =
∏
σ∈S0

F[u]/(ue)× F[u]/(ue)

obtained from (7.1.1) and our choice of uniformizer π0.

Proposition 7.2.1. — Let x ∈ OF and let
(
(qσ,+, qσ,−)

)
σ
∈∏

σ∈S0
F[u]/(ue) × F[u]/(ue) be the element corresponding to x ⊗ 1 un-

der (7.2.1). Then

χF(x|M0 ⊗OE′ F) =
∏
σ∈S0

(
T − qσ,+(0)

)sσ(
T − qσ,−(0)

)rσ
in F[T ].

Proof. — Reduce χOE′ (x|M0) modulo Q′, using (3.1.2). �

Denote by E = Q(trC(x ⊗ 1|V−i); x ∈ F ) the reflex field and define
Q = Q′ ∩ OE . The morphism detV−i is defined over OE .

7.3. The local model

For the chosen PEL datum, Definition 2.3.1 amounts to the following.

Definition 7.3.1. — The local model M loc = M loc,split is the functor
on the category of OEQ-algebras with M loc(R) the set of tuples
(t(i,j))(i,j)∈Z×Z of OF ⊗ R-submodules t(i,j) ⊂ Λ(i,j),R satisfying the fol-
lowing conditions for all (i, j) ∈ Z× Z.

(a) ρ(i,j),+,R(t(i,j)) ⊂ t(i+1,j) and ρ(i,j),−,R(t(i,j)) ⊂ t(i,j+1).
(b) The quotient Λ(i,j),R/t(i,j) is a finite locally free R-module.
(c) We have an equality

detΛ(i,j),R/t(i,j) = detV−i ⊗OER

of morphisms VOF⊗R → A1
R.

(d) Under the pairing (·, ·)(i,j),R : Λ(i,j),R × Λ(−j,−i),R → R, the sub-
modules t(i,j) and t(−j,−i) pair to zero.

(e) ϑ(i,j),+,R(t(n+i,j)) = t(i,j) and ϑ(i,j),−,R(t(i,n+j)) = t(i,j).

Remark 7.3.2. — Let R be anOEQ-algebra and let (t(i,j))(i,j)∈M loc(R).
For (i, j) ∈ Z × Z, the decomposition (7.1.1) induces a decomposition
t(i,j) = t(i,j),+ × t(i,j),− into OP0 ⊗Zp R-submodules t(i,j),+ ⊂ Λi,+,R and
t(i,j),− ⊂ Λj,−,R. As in Remark 2.3.4 one sees that t(i,j),+ (resp. t(i,j),−)
is independent of j (resp. i). Writing ti,+ = t(i,j),+ and tj,− = t(i,j),−, the
tuple (t(i,j))(i,j) is determined by the pair of tuples ((ti,+)i, (tj,−)j).
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Recall from Section 6 the chain Linert and the functor M loc,inert. The
identifications (6.2.1) and (7.2.1), together with our choices of bases, give
rise to a canonical identification of the tuple (Λ(i,i),F, ρ(i,i),F, ϑ(i,i),F,

(·, ·)(i,i),F)i with the chain Linert ⊗Zp F.
We can then state the following result.

Proposition 7.3.3. — (1) The morphism M loc,split
F → M loc,inert

F
given on R-valued points by

M loc,split
F (R)→M loc,inert

F (R),
(t(i,j))(i,j) 7→ (t(i,i))i

is an isomorphism.
(2) The morphism Aut(Lsplit)F →Aut(Linert)F given onR-valued points

by

Aut(Lsplit)F(R)→ Aut(Linert)F(R),
(ϕ(i,j))(i,j) 7→ (ϕ(i,i))i

is an isomorphism.

Proof. — Clear in view of Remark 7.3.2 and Propositions 6.2.1, 7.2.1. �
Consequently all the statements about M loc,inert

F from Section 6 are also
valid for M loc,split

F .

7.4. The p-rank on a KR stratum

Recall from Section 2.3 the scheme A/OEQ associated with our choice
of PEL datum, and the KR stratification

A(F) =
∐

x∈Aut(L)(F)\M loc(F)

Ax.

We have identified the occurring index set with
∏
σ∈S0

Permrσ in Corollary
6.6.3. We can then state the following result.

Theorem 7.4.1. — Let x = (xσ)σ ∈
∏
σ∈S0

Permrσ . Write xσ = wσu
λσ

with wσ ∈W, λσ ∈ X. Then the p-rank on Ax is constant with value

g0 · |{1 6 i 6 n | ∀σ ∈ S0(wσ(i) = i and λσ(i) = 0)}|
+ g0 · |{1 6 i 6 n | ∀σ ∈ S0(wσ(i) = i and λσ(i) = e)}|.
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Proof. — Define elements w′σ ∈ W and λ′σ ∈ X as in Lemma 6.6.4. Let
t = (t(i,j))(i,j) ∈ M loc(F) and let (ti,±)i be the two associated tuples of
Remark 7.3.2. Let (i, j) ∈ Z× Z. We have the following equivalences.

Λ(i,j),F = im ρ(i−1,j),+,F + t(i,j) ⇔ Λi,+,F = im ρi−1,+,F + ti,+,

Λ(i,j),F = im ρ(i,j−1),−,F + t(i,j) ⇔ Λj,−,F = im ρj−1,−,F + tj,−.

Assume now that t lies in the Aut(Linert)(F)-orbit corresponding to x under
the identifications of Corollary 6.6.3. Consider the chain of neighbors

Λ(0,0) ⊂ Λ(1,0) ⊂ · · · ⊂ Λ(n,0) ⊂ Λ(n,1) ⊂ · · · ⊂ Λ(n,n) = π−1
0 Λ(0,0),

and let 1 6 i 6 n. By Propositions 2.4.5 and 2.4.6, the claim of the theorem
follows once we can show the following equivalences.

Λi,+,F = im ρi−1,+,F + ti,+ ⇔ ∀σ ∈ S0(wσ(i) = i and λσ(i) = 0),
Λi,−,F = im ρi−1,−,F + ti,− ⇔ ∀σ ∈ S0(w′σ(i) = i and λ′σ(i) = 0).

These equivalences follow from Proposition 6.5.7 and Lemma 6.6.4 by the
arguments of the proof of Theorem 3.10.1. �

7.5. An application to the dimension of the p-rank 0 locus

Assume from now on that F0 = Q, so that F/Q is an imaginary quadratic
extension in which p splits. We write r = ridQ and s = sidQ , so that n = r+s.
Also write In = {1, . . . , n}.

Note that the moduli problem A is a special case of the “fake unitary
case” considered in [7]. Concretely, the moduli problem defined in [7, §5.2]
specializes to A for D = F .

Denote by ` : W̃ → N the length function defined in [5, §2.1].

Lemma 7.5.1. — Let x ∈ Permr. The smooth F-variety Ax is equidi-
mensional of dimension `(x).

Proof. — We know from [7, Lemma 13.1] that Ax is non-empty. The rest
of the proof is identical to the one of Lemma 3.11.1. �

Let us state Theorem 7.4.1 in this special case.

Theorem 7.5.2. — Let x ∈ Permr. Write x = wuλ with w ∈W,λ ∈ X.
Then the p-rank on Ax is constant with value |Fix(w)|, where Fix(w) =
{i ∈ In | w(i) = i}.
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We want to use this result to compute the dimension of the p-rank 0
locus in AF. We do this by copying the approach of [6, §8].

Denote by Perm(0)
r the subset of those x ∈ Permr such that the p-rank

on Ax is equal to 0. Denote by Wn,r the subset of those w ∈ W satisfying
Fix(w) = ∅ and

(7.5.1) |{i ∈ In | w(i) < i}| = r.

Lemma 7.5.3 (Cf. [6, Lemma 8.1]). — The canonical projection W̃ →
W induces a bijection Perm(0)

r →Wn,r. Its inverse is given by w 7→ uλ(w)w

with

λ(w)(i) =
{

0, if w−1(i) > i

1, if w−1(i) < i
, i ∈ In.

Proof. — This is an easy combinatorial consequence of Theorem 7.5.2
and the interpretation of Permr in terms of extended alcoves, see Section
6.6. �

Define for σ ∈ Sn the following sets and natural numbers.

Aσ = {(i, j) ∈ (In)2 | i < j < σ(j) < σ(i)}, aσ = |Aσ|,

Ãσ = {(i, j) ∈ (In)2 | σ(j) < σ(i) < i < j}, ãσ = |Ãσ|,

Bσ = {(i, j) ∈ (In)2 | σ(i) < i < j < σ(j)}, bσ = |Bσ|,

B̃σ = {(i, j) ∈ (In)2 | i < σ(i) < σ(j) < j}, b̃σ = |B̃σ|,

Nσ = aσ + ãσ + bσ + b̃σ.

Note that Nσ = Nσ−1 in view of the obvious identities aσ = ãσ−1 and
bσ = b̃σ−1 .

Proposition 7.5.4. — Let uλw ∈ Perm(0)
r , w ∈ W,λ ∈ X. Then

`(uλw) = Nw.

Proof. — Denote by ei the i-th standard basis vector of Zn. The positive
roots β > 0 of GLn are given by βij = ei − ej , 1 6 i < j 6 n. Denote by
〈·, ·〉 the standard symmetric pairing on Zn, determined by 〈ei, ej〉 = δij .
By [6, (8.1)] the following Iwahori-Matsumoto formula holds.

(7.5.2) `(uλw) =
∑
β>0

w−1β>0

| 〈β, λ〉 |+
∑
β>0

w−1β<0

| 〈β, λ〉+ 1|.

Using Lemma 7.5.3, the equality `(uλw) = Nw−1 readily follows. �
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Define

Nn,r := min
(
(r − 1)(n− r), r(n− r − 1)

)
=
{

(r − 1)(n− r), if r 6 n/2,
r(n− r − 1), if r > n/2.

Proposition 7.5.5. — Let σ ∈Wn,r. Then Nσ 6 Nn,r.

Proof. — Consider the set M = {(n, r, i0) ∈ N3 | 1 6 r 6 n − 1, 2 6
i0 6 n} and equip it with the lexicographical ordering <, which is a well-
ordering on M . For (n, r, i0) ∈M we define Wn,r,i0 = {σ ∈Wn,r | min{2 6
i 6 n | σ(i) < i} = i0}. Denote by P(n, r, i0) the following statement.

∀σ ∈Wn,r,i0 : Nσ 6 Nn,r.

We will prove it by induction on (n, r, i0).
Let (n, r, i0) ∈ M, σ ∈ W(n,r,i0) and assume that P(n′, r′, i′0) is true for

all (n′, r′, i′0) ∈ M with (n′, r′, i′0) < (n, r, i0). Set σ′ = σ ◦ (i0 − 1, i0). We
distinguish the following four cases.
Case 1: σ(i0) < i0 − 1 and σ(i0 − 1) > i0.
Case 2: σ(i0) = i0 − 1 and σ(i0 − 1) > i0.
Case 3: σ(i0) < i0 − 1 and σ(i0 − 1) = i0.
Case 4: σ(i0) = i0 − 1 and σ(i0 − 1) = i0.
We use the example of Case 2 to illustrate how to proceed. So assume

that σ(i0) = i0 − 1 and σ(i0 − 1) > i0.
We read off the following identities.

aσ = aσ′ ,

ãσ = ãσ′ + |{j ∈ In | σ(j) < i0 − 1 < i0 < j}|,
bσ = bσ′ + |{j ∈ In | i0 − 1 < i0 < j < σ(j)}|,

b̃σ = b̃σ′ + |{i ∈ In | i < σ(i) < i0 − 1 < i0}|.

Identifying {1, . . . , î0 − 1, . . . , n} with {1, . . . , n− 1}, we consider the re-
striction σ′

∣∣
{1,...,î0−1,...,n} as an element of Wn−1,r−1,j0 for some j0. By

induction hypothesis we know that Nσ′ = Nσ′|{1,...,î0−1,...,n}
6 Nn−1,r−1.

In view of Nn,r − Nn−1,r−1 > n − r − 1 it therefore suffices to show the
following two inequalities.

i0 − 2 > |{j ∈ In | σ(j) < i0 − 1 < i0 < j}|+ |{i ∈ In | i < σ(i) < i0 − 1}|,
n− r − (i0 − 1) > |{j ∈ In | i0 < j < σ(j)}|.

For the first inequality, it suffices to note that σ maps both sets in question
into Ii0−2. On the other hand, by the definition of i0 we have Ii0−1 ⊂ {i ∈
In | i < σ(i)}, so that (7.5.1) implies the second inequality. �
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Proposition 7.5.6. — We have

max
σ∈Wn,r

Nσ = Nn,r.

Proof. — It suffices to show that there is a σ ∈ Wn,r satisfying Nσ =
Nn,r. As Wn,r → Wn,n−r, σ 7→ σ−1 is a bijection and as Nσ = Nσ−1 , we
may assume that r 6 n/2. One easily checks that

σ = (1, 2)(3, 4) · · · (2(r − 1)− 1, 2(r − 1))(2r − 1, 2r, 2r + 1, . . . , n) ∈Wn,r

satisfies Nσ = (r − 1)(n− r) = Nn,r. �

Denote by A(0) ⊂ A(F) the subset where the p-rank of the underlying
abelian variety is equal to 0. It is a closed subset and we equip it with
the reduced scheme structure. From the discussion above we obtain the
following result.

Theorem 7.5.7. — dimA(0) = min
(
(r − 1)(n− r), r(n− r − 1)

)
.
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