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ON THE HILBERT GEOMETRY OF SIMPLICIAL TITS
SETS

by Xin NIE (*)

Abstract. — The moduli space of convex projective structures on a simplicial
hyperbolic Coxeter orbifold is either a point or the real line. Answering a question
of M. Crampon, we prove that in the latter case, when one goes to infinity in the
moduli space, the entropy of the Hilbert metric tends to 0.
Résumé. — L’espace des modules de structures projectives convexes sur un

orbifold simplicial hyperbolique est soit un point soit la droite réelle. En répondant
à une question de M. Crampon, nous prouvons que dans ce dernier cas, quand on
tend vers l’infini dans l’espace des modules, l’entropie de la métrique de Hilbert
tend vers 0.

1. Statements of results

A (real) projective structure on an orbifold X is a maximal atlas with
charts taking values in the real projective space Pn and with transition
functions taking values in the group of projective transformations.
An extensively studied class of projective structures is given by the fol-

lowing construction. An open subset Ω ⊂ Pn is said to be properly convex
if it is a bounded convex subset of an affine chart Rn ⊂ Pn. Let X = X̃/Π
be an orbifold, where X̃ is a manifold homeomorphic to Rn and Π is a
group acting properly discontinuously on X̃. A convex projective struc-
ture on X consists of a faithful representation ρ : Π → PGL(n + 1,R)
and a ρ-equivariant homeomorphism from X̃ to a properly convex open set
Ω ⊂ Pn.

Keywords: convex projective structure, reflection group, Hilbert geometry, volume
entropy.
Math. classification: 20F67, 51F15, 53C60.
(*) The research leading to these results has received funding from the European
Research Council under the European Community’s seventh Framework Programme
(FP7/2007-2013)/ERC grant agreement.
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The convex set Ω is determined by ρ because Ω is the convex hull of any
ρ(Π)-orbit in Ω [13], so the moduli space of convex projective structures is
defined as the subset in the moduli space of representations

P(X) ⊂ Hom
(
Π,PGL(n+ 1,R)

)
/PGL(n+ 1,R)

consisting of those ρ ∈ Hom(Π,PGL(n + 1,R)) which arise from convex
projective structures. It is known that P(X) is an open and closed subset
in the moduli space of representations [2] and is homeomorphic to R16g−16

when X is a closed oriented surface of genus g [7].
In this article we investigate the case where X is a hyperbolic simplicial

Coxeter orbifold, i.e. X = Hn/Γ, where Hn is the real hyperbolic n-space
and Γ ⊂ Isom(Hn) is generated by orthogonal reflections with respect to
the faces of a bounded n-simplex P ⊂ Hn with totally geodesic faces, such
that P is a fundamental domain of Γ.
The angle between the ith and jth face of such a simplex P must be

π/mij for some integer mij > 2 (where 0 6 i < j 6 n). The Coxeter
diagram J associated to P is a graph with nodes labelled by 0, 1, · · · , n,
such that i and j are joint by an edge with weight mij if mij > 3 and are
not joint by any edge if mij = 2. J determines P up to isometry, hence
determines the orbfold X, which we denote from now on by XJ .
The J ’s occurring in this way are the hyperbolic Coxeter diagrams, which

are classified by F. Lannér [10] as in Figure 1.1. In particular, they exist
only when n 6 4. We divide them into two classes: circular and non-circular
ones.
The following result should be well known to specialists and is stated in

[6] in the two-dimensional case.

Proposition 1.1. — Let J be a hyperbolic Coxeter diagram, then

P(XJ) ∼=
{

R+ if J is circular,
a point otherwise.

A proof of Proposition 1.1 is given in Section 3 below.
For a circular hyperbolic Coxeter diagram J , we prove a result on how

the convex set Ω deforms as ρ goes to 0 or +∞ in P(XJ) ∼= R+.

Proposition 1.2. — Let P be a simplex in Pn. Let XJ = Hn/Γ be a
hyperbolic simplicial Coxeter orbifold given by a circular diagram J . Then
there exists a one-parameter family of representations {ρt}t∈R+ of Γ into
PGL(n+ 1,R) such that

(1) ρt sends generators of Γ to projective reflections with respect to
face of P .

ANNALES DE L’INSTITUT FOURIER



HILBERT GEOMETRY OF SIMPLICIAL TITS SETS 1007

non-circular circular

Figure 1.1. All hyperbolic Coxeter diagrams. Here each edge without
specified weight has weight 3.

(2) ρt yields a convex projective structure on XJ , where the properly
convex set is Ωt :=

⋃
γ∈Γ ρt(P ). The map R+ → P(XJ), t 7→ [ρt] is

bijective.
(3) The convex set Ωt converges to the simplex P with respect to the

Hausdorff topology as t tends to 0 or to +∞.

See Figure 1.2 for a 2-dimensional example of Proposition 1.2.
Our main result is concerned with metric properties of the above family

of convex sets. Any properly convex open set Ω ⊂ Pn carries a canonical
Finsler metric dΩ, called the Hilbert metric, which is invariant under pro-
jective transformations preserving Ω. In particular, if Ω is an ellipsoid, then
(Ω, dΩ) is isometric to the real hyperbolic n-space Hn.
Consider the convex set Ωt from Proposition 1.2. We denote the Hilbert

metric on it by dt. By projective invariance, dt induces a metric on XJ .
From Proposition 1.2 we can readily deduce some simple geometric prop-
erties of the family of metrics {dt}. For example, the diameter of (XJ , dt)
tends to infinity as t→ 0 or t→ +∞. The purpose of this paper is to study
a more subtle quantity, the entropy, as defined below.

Definition 1.3. — Let (X̃, d) be a metric space and Γ be a group acting
properly discontinuously on X̃ by isometries. Given a base point x0 ∈ X̃,

TOME 65 (2015), FASCICULE 3
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Figure 1.2. Deformation of Ωt when t tends to 0 and +∞.

the (exponential) growth rate of the orbit Γ.x0 is defined as

δ(X̃, d,Γ, x0) = lim
R→+∞

1
R

log #
(
Γ.x0 ∩B(x0, R)

)
,

ANNALES DE L’INSTITUT FOURIER



HILBERT GEOMETRY OF SIMPLICIAL TITS SETS 1009

where B(x0, R) is the ball of radius R centered at x0.

This notion originally arose from the case where (X̃, d) is the universal
cover of a compact non-positively curved Riemaniann manifold X and Γ =
π1(X). In this case the above growth rate is independent of the choice of x0
and equals the topological entropy of the geodesic flow on the unit tangent
bundle of X [11]. This result easily generalizes to geodesic flows of compact
convex projective manifolds endowed with the Hilbert metric, see [4]. For
this reason, we refer to the orbit growth rate as the entropy and omit x0
in the notation.
For any properly convex open set Ω ⊂ Pn acted upon by a discrete group

Γ ⊂ PGL(n + 1,R) with compact fundamental domain, M. Crampon [4]
proved that the entropy is bounded from above

δ(Ω, dΩ,Γ) 6 n− 1

and the equality is achieved if and only if Ω is an ellipsoid. He then asked
whether δ(Ω, dΩ,Γ) has a lower bound.
Our main result gives a negative answer:

Theorem 1.4. — Let XJ = Hn/Γ be a hyperbolic simplicial Coxeter
orbifold where J is a circular diagram. Let ρt and Ωt be given by Proposi-
tion 1.2 and dt be the Hilbert metric on Ωt. Then

δ(Ωt, dt,Γ)→ 0 as t→ 0 or t→ +∞.

The main ingredient in the proof of Theorem 1.4 is the following result,
which is a manifestation of the reflectional symmetries of the metric spaces
(Ωt, dt).

Lemma 1.5. — There exists a constant C depending only on the Coxeter
diagram J , such that if A and B are two k-dimensional cells of the simplex
P and E = A ∩B is a (k − 1)-dimensional cell, where 1 6 k 6 n− 1, then
we have

Cdt(x, y) > dt(x,E) + dt(y,E)
for any x ∈ A, y ∈ B and t ∈ R+.

As another consequence of Lemma 1.5, we construct families of convex
projective structures on surfaces which answer Crampon’s question and
have some other curious properties.

Corollary 1.6. — On an oriented closed surface of genus g > 2, there
exists an one-parameter family of convex projective structures such that
when the parameter goes to infinity, the entropy of Hilbert metric tends to
0, whereas the systole and constant of Gromov hyperbolicity tends to +∞.

TOME 65 (2015), FASCICULE 3
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Recall that for a metrized manifold (X, d), the systole is defined as the
infimum of lengths of homotopically non-trivial closed curves on X. Let X̃
be the universal covering of X, then the constant of Gromov hyperbolicity
is defined to be the supremum of sizes of geodesic triangles in X̃. Here
the “size" of a geodesic triangle ∆ is the minimal perimeter of all geodesic
triangles inscribed in ∆ (c.f. [5]).
Corollary 1.6 raises the problem of studying the entropy as a function

on the moduli space of convex projective structures P(Σ) for a closed hy-
perbolic surface Σ. The Teichmüller space T (Σ) is naturally contained in
P(Σ) and the entropy is identically 1 on T (Σ), while Corollary 1.6 provides
a curve transverse to T (Σ) along which the entropy tends to 0. Recently,
using a different method, T. Zhang [16] constructed higher-dimensional
submanifold of P(Σ) transverse to T (Σ) along which the entropy tends to
0 as well.

The paper is organized as follows. After recalling some backgrounds
about reflection groups in Section 2, we prove Proposition 1.1 and 1.2 in
Section 3. In Section 4 we prove Theorem 1.4 and Corollary 1.6 assuming
Lemma 1.5. Finally we prove Lemma 1.5 in Section 5.

Acknowledgements
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Pierre et Marie Curie. The author is grateful to Gilles Courtois for his
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here. We also thank the referee for useful comments.

2. Preliminaries

In this section we recall some well known facts about reflection groups
and Tits set. See [3, 14] for details.

A projective transformation s ∈ PGL(n + 1,R) is called a reflection if
it is conjugate to ± diag(−1, 1, · · · , 1). The fixed point set of a reflection
s is Fix(s) = F t f for some hyperplan F in Pn and some point f /∈ F .
Reflections are in one-to-one correspondence with pairs (f, F ) with f /∈ F .

Let P be a n-dimesnional simplex in Pn with faces Pi, where i = 0, · · · , n.
We choose a reflection si with respect to each Pi. We are interested in the
group Γ ⊂ PGL(n + 1,R) generated by the si’s and call it a simplicial
reflection group, and call P the fundamental simplex. Since simplices in Pn

ANNALES DE L’INSTITUT FOURIER



HILBERT GEOMETRY OF SIMPLICIAL TITS SETS 1011

are conjugate to each other by projective transformations, when studying
Γ up to conjugacy, we can assume

P = {[x0 : · · · : xn] ∈ Pn | xi > 0,∀i},

whose faces are

Pi = {[x0 : · · · : xn] | xi = 0, xk > 0,∀k 6= i}.

Γ is determined by f1, · · · , fn ∈ Pn, where fi /∈ Pi is a fixed point of si.
Suppose fi = [a0i : · · · : ani]. We can assume aii = 1 since fi /∈ Pi. We
record these fi’s by the matrix A = (aij) with 1 on diagonals and denote
the resulting reflection group by ΓA.

Let H+ ⊂ PGL(n+1,R) be the subgroup consisting of positive diagonal
matrices λ = diag(λ0, · · · , λn), λi > 0. So H+ is the identity component of
the stabilizer of P . Given λ ∈ H+ and a reflection group ΓA as above, the
conjugate λΓAλ

−1 is just ΓλAλ−1 . Put

Mn+1 = {A = (aij) ∈ R(n+1)×(n+1) | aii = 1 for any i}.

The quotientMn+1/H
+ by conjugation action is the moduli space of sim-

plicial reflection groups. We now proceed to discuss discreteness of such
groups.
By a Coxeter diagram with n nodes we mean a collection of integers

J = (mij), where i, j ∈ {0, · · · , n} are distinct, such that 2 6 mij 6 ∞.
Note that mij = ∞ is allowed. J is a “diagram" because we view it as a
graph with

• n nodes labelled by 0, 1, · · · , n,
• at most one weigted edge joining any two nodes i and j: no edge if
mij = 2 and an edge of weight mij if mij > 3.

The Coxeter diagram J = (mij) determines an abstract Coxeter group
WJ through the presentation

WJ :=
〈
τ0, · · · , τn

∣∣ (τiτj)mij = τ2
i = 1, ∀ i 6= j

〉
.

By convention, (τiτj)∞ = 1 means τiτj has infinite order.
The Cartan matrix of J , denoted by CJ , is defined as the symmetric

matrix whose diagonal entries are 1 and the (i, j)-entry is − cos(π/mij)
(where i 6= j).
We have the following sufficient condition on A ∈ Mn+1 which ensures

that ΓA is discrete. This is a special case of Theorem 1.5 in [3].

Theorem (Tits, Vinberg). — Let A = (aij) ∈ Mn+1. Let P ◦ be the
interior of the fundamental simplex P . The translates γ(P ◦), γ ∈ ΓA are

TOME 65 (2015), FASCICULE 3
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pairwise disjoint if and only if there is a Coxeter diagram J = (mij) such
that A satisfies the following condition, referred to as Condition (J):

aij = aji = 0 if mij = 2,

aij < 0 and aijaji = cos2(π/mij) if 3 6 mij <∞,

aij < 0 and aijaji > 1 if mij =∞.

(J)

Furthermore, when Condition (J) is satisfied, the following assertions
hold.

(1) Let fi be the point in Pn whose homogeneous coordinates are given
by the ith column of A. Let si ∈ PGL(n + 1,R) be the reflection
fixing Pi and fi. Then there is an isomorphism ρA : WJ → ΓA
defined on generators by

ρA(τi) = si.

(2) The Tits set ΩA of the reflection group ΓA, defined by

ΩA =
⋃
γ∈ΓA

γ(P ),

is either the whole Pn (this occurs if and only if WJ is finite) or a
convex subset in some affine chart of Pn.

(3) ΩA is open if and only if the stabilizer in ΓA of each vertex of P is
finite.

We letMJ ⊂Mn+1 denote the set of matrices satisfying Condition (J).
Note that the H+-action onMn+1 preservesMJ .

There are only a few choices of J for which ΩA (where A ∈MJ) is open
and is not the whole Pn, so that ΩA/ΓA is a convex projective orbifold. In-
deed, ΩA 6= Pn and ΩA being open are respectively equivalent to following
two constraints on the Cartan matrix CJ .
(a) CJ is not positively definite.
(b) Every proper principle submatrix of CJ is positively definite.

Such CJ ’s are completely classified. The corresponding J ’s are divided into
classes (c.f. [14]):

• Euclidean Coxeter diagrams, i.e. the J ’s satisfying conditions
(a) and (b) with CJ degenerate. In this case CJ has corank 1 and
there is a faithful representation WJ → Isom(En) realizing WJ

as an Euclidean reflection group. All such J ’s are enumerated by
H.S.M.Coxeter himself. It follows from a result of Margulis and

ANNALES DE L’INSTITUT FOURIER



HILBERT GEOMETRY OF SIMPLICIAL TITS SETS 1013

Vinberg ([12] Lemma 8) that the Tits set ΩA (A ∈ MJ) in this
case is either an open simplex containing P or an affine chart.

• Hyperbolic Coxeter diagrams, i.e. the J ’s satisfying conditions
(a) and (b) with CJ non-degenerate. In this case CJ has signature
(1, n) and there is a faithful representation ρ0 : WJ → Isom(Hn)
which realizeWJ as a hyperbolic simplicial reflection group. F. Lan-
nér [10] enumerated all hyperbolic Coxeter diagrams as in Figure 1.1
above (c.f. [14]). Note that they exist only for dimension n 6 4.
Since WJ is a word-hyperbolic group, a theorem of Benoist [1] says
that ΩA (A ∈ MJ) is strictly convex, i.e. ∂ΩA does not contain
any line segment. These ΩA’s are our main concern in the follow-
ing sections. Historically, they provide the first “non-trivial" exam-
ples of convex projective structures [15]. See Figure 1.2 for some
2-dimensional examples.

3. Deformation of simplicial Tits sets

We fix a hyperbolic Coxeter diagram J and consider WJ as a hyperbolic
reflection group with fundamental simplex P ⊂ Hn. Put XJ = Hn/WJ .
The goal of this section is to prove Proposition 1.1 and Proposition 1.2.
The hyperbolic n-spaceHn is a ball in Pn (the Klein-Beltrami model). Let

P0, · · · , Pn be the faces of P and Li be the hyperplane in Pn containing
Pi. Consider a faithful representation ρ : WJ → PGL(n + 1,R) which
defines a convex projective structure, i.e. there is some convex open set
Ωρ and a ρ-equivariant homeomorphism Φ : Hn → Ωρ. Since ρ(τi) has
order 2, its fixed point set in Pn is the disjoint union of a k-dimensional
subspace and a (n − k)-dimensional subspace. On the other hand, ρ(τi)
fixes pointwisely Φ(Li), a (n − 1)-dimensional submanifold of Ωρ, so we
conclude that Φ(Li) is a hyperplan and ρ(τi) is a reflection. ρ(WJ) is thus
a simplicial projective reflection group. But the discussions in the previous
section implies that such groups, up to conjugacy, correspond to matrices
A ∈MJ up to conjugation by H+. Therefore we get an identification

P(XJ) =MJ/H
+.

We now need to determined the latter quotient. To this end, for a (n+
1) × (n + 1) matrix A = (aij) and a cyclically ordered multi-index I =
(i1, · · · , ik) (where i1, · · · , ik ∈ {0, · · · , n}), we put

A(I) = ai1i2ai2i3 · · · aik−1ikaiki1 .

TOME 65 (2015), FASCICULE 3
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In particular, A(i) = aii, A(i, j) = aijaji. Let |I| = k denote the length of
I.

Let Mn+1 denote the set of (n + 1) × (n + 1) real matrices with 1 on
diagonals. Consider the subset

M◦n+1 = {A = (aij)∈Mn+1 | for any i 6= j, aij = 0 if and only if aji = 0}.

Lemma 3.1. — Suppose A,B ∈ M◦n+1. Then A = λBλ−1 for some
positive diagonal matrix λ = diag(λ0, · · · , λn), λi > 0 if and only if A(I) =
B(I) for any multi-index I with |I| > 2.

Proof. — The “only if" part is immediate and we only treat the “if" part.
We say that A is irreducible if it cannot be brought into block-diagonal

form by a permutation of basis. For a multi-index I = (ij) of length 2, the
equality A(ij) = B(ij) implies that aij = 0 if only if bij = 0. Therefore,
after a permutation of basis if necessary, we can assume that A and B are
both block-diagonal with irreducible blocks and that the rth block of A has
the same size as the rth block of B. Such A and B are conjugate through
a diagonal matrix if and only if their blocks are, so we can assume that A
and B are irreducible.

We look for λ0, · · · , λn > 0 such that λiaijλ−1
j = bij , or equivalently,

(3.1) λi
λj

= bij
aij

for all i 6= j such that aij 6= 0

Put λ0 = 1 to begin. Irreducibility implies that for each i∈{0, 1, 2, · · · , n}
there is sequence of distinct indices 0, i1, i2, · · · , ik, i, such that a0i1 , ai1i2 ,· · · ,
aik−1ik , aiki are all non-zero. Since

λi = λi
λik

λik
λik−1

· · · λi1
λ0
,

in view of of Eq.(3.1) which we need to fulfill, we set

(3.2) λi = biik
aiik

bikik−1

aikik−1

· · · bi11

ai11
.

Let us check the so-defined λi does not depend on the choice of the sequence
of indices, namely,

(3.3) biik
aiik

bikik−1

aikik−1

· · · bi10

ai10
= bijm

aijm

bjmjm−1

ajmjm−1

· · · bj10

aj10

for another sequence 0, j1, j2, · · · , jm, i. Using the hypothesis

A(i, j) = aijaji = bijbji = B(i, j),

ANNALES DE L’INSTITUT FOURIER
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we can write the right-hand side of Eq.(3.3) as
ajmi

bjmi

ajm−1jm

bjm−1jm

· · · a1j1

b1j1

.

This coincides the left-hand side because of the equality A(I) = B(I) for
I = (1, j1, · · · , jm, i, ik, ik−1, · · · , i1). A similar equality shows that the λi’s
defined by Eq.(3.2) satisfy (3.1). �

Proof of Proposition 1.1. — The hyperbolic Coxeter diagram J = (mij)
is not circular if and only if A(I) = 0 for any A ∈ MJ and any multi-
index I with |I| > 3. But we also have A(i, j) = aijaji = cos2(π/mij) by
definition of MJ . Therefore, for any given I with |I| > 2, A(I) has the
same value for any A ∈MJ . Lemma 3.1 implies that elements inMJ are
conjugate to each other through H+.
If J is circular, then any A ∈ MJ looks like the following one (where

n = 4):

A =


1 a01 0 0 a04
a10 1 a12 0 0
0 a21 1 a23 0
0 0 a32 1 a34
a40 0 0 a43 1

 .

Again, given i and j, the value of A(i, j) is the same for any A ∈ MJ .
The only two non-zero A(I)’s for |I| > 3 are

A(0, 1, · · · , n) = a01 · · · an−1,nan0 ,

A(n, n− 1, · · · , 0) = an,n−1 · · · a10a0n.

They determine each other because the product is a constant

A(0, 1, · · · , n) ·A(n, n− 1, · · · , 0)

= cos2
(

π

m01

)
cos2

(
π

m12

)
· cos2

(
π

mn0

)
.

Therefore, Lemma 3.1 implies that A ∈ MJ is determined up to H+-
conjugacy by A(0, 1, · · · , n), which is always positive (resp. negative) if n
is odd (resp. even). Thus we get a homeomorphism

P(XJ) =MJ/H
+ → R+

[A] 7→ |A(0, 1, · · · , n)|
�

In order to study how the Tits set ΩA deforms when [A] goes to 0 or
+∞ in P(XJ) ∼= R+, we need the following lemma, which bounds ΩA by
a simplex.

TOME 65 (2015), FASCICULE 3
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Lemma 3.2. — Let J be a circular hyperbolic Coxeter diagram and let
A ∈MJ . Let fi ∈ Pn be the point with coordinates given by the ith column
of A. Then there is a simplex with vertices f0, · · · , fn which contains the
Tits set ΩA.

Proof. — The arguments given here are illustrated in the two-dimen-
sional case by Figure 3.1. Let Li be the hyperplane in Pn spanned by
f0, · · · , fi−1, fi+1, · · · , fn and let Hi = {[x0, · · · , xn] | xi = 0} be the
hyperplane containing the face Pi. Assume by contradiction that Ω := ΩA
is not contained in any simplex with vertices f0, · · · , fn, or equivalently, Ω
meets some Li, say, L0.
Recall that Ω is preserved by the group ΓA, which is in turn generated by

s0, · · · , sn, where si is the reflection with fixed points Fix(si) = fi tHi. In
general, a reflection s with Fix(s) = ftH stabilizes any projective subspace
containing f . It follows that L0 is stabilized by the subgroup Γ0 ⊂ ΓA
generated by s1, · · · , sn. Γ0 is a finite group because J is hyperbolic.

Figure 3.1. Proof of Lemma 3.2.

We claim that the vertex p0 = [1 : 0, · · · , 0] of P is not in L0. Indeed,
on one hand, since J is circular, each column of A ∈ MJ has at least two
non-zero off-diagonal entries. In other words, each fi lies outside at least
two Hj ’s, thus

Fix(Γ0) = (f1 ∪H1) ∩ · · · ∩ (fn ∪Hn) = H1 ∩ · · · ∩Hn = {p0}.

i.e. p0 is the only fixed point of Γ0. On the other hand, Γ0 preserves the
affine chart A0 = Pn\L0 and hence has fixed points in A0, namely, barycen-
ters of orbits. Thus p0 ∈ A0 and the claim is proved.

ANNALES DE L’INSTITUT FOURIER
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To finish the contradiction argument, we put

C =
⋃

x∈Ω∩L0

[p0, x],

where [p0, x] is the segment joining p0 and x within Ω. In other words,
C is the cone over p0 generated by Ω ∩ L0. We consider A0 as a vector
space with origin p0. Properly convexity of Ω implies that C is a properly
convex cone in A0 (i.e. a cone whose projectivization is a properly convex
subset of P(A0)). Since Γ0 preserves C, taking the barycenter of a non-zero
Γ0-orbit in C gives a fixed point of Γ0 different from p0, contradicting the
fact Fix(Γ0) = {p0} which we have established above. �

Proof of Proposition 1.2. — We only consider the n = 3 case to simplify
the notations. Thus we fix a circular hyperbolic Coxeter diagram J = (mij)
with nodes {0, 1, 2, 3}. Any A ∈MJ has the form

A =


1 a01 0 a03
a10 1 a12 0
0 a21 1 a23
a30 0 a32 1


with aij < 0 and aijaji = cos2(π/mij).
We define a one-parameter family of matrices {At}t∈R ⊂MJ by

At =


1 −t cos2( π

m01
) 0 −t−1

−t−1 1 −t cos2( π
m12

) 0
0 −t−1 1 −t cos2( π

m23
)

−t cos2( π
m30

) 0 −t−1 1

 .

Since |At(0, 1, 2, 3)| = t4, by the proof of Proposition 1.1, every A ∈MJ

isH+-conjugate to a unique At. We claim that the family of representations

ρt := ρAt : WJ → PGL(n+ 1,R) , t ∈ R+

given by the Tits-Vinberg theorem is the required one.
To see this, let fi(t) be the point in Pn with coordinates given by the

ith column of At and let p0 = [1 : 0 : 0 : 0], · · · , p3 = [0 : 0 : 0 : 1] be the
vertices of P . We see from the above expression of At that

lim
t→0

fi(t) = pi+1, lim
t→+∞

fi(t) = pi−1,

where the indices are counted mod 4. Therefore the simplex bounding Ωt =
ΩAt

given by Lemma 3.2 converges to P in the Hausdorff topology, hence
so does Ωt. �
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4. Metric geometry of simplicial Tits sets

The Hilbert metric dΩ on a properly convex open set Ω ⊂ Pn is defined as
follows. Take any affine chart Rn containing the closure Ω. For x, y ∈ Ω, let
x′, y′ be the points on the boundary ∂Ω such that x′, x, y, y′ lie consecutively
on the segment [x′, y′]. We then put

(4.1) dΩ(x, y) = 1
2 log [x′, x, y, y′],

where [x′, x, y, y′] = (x′−y)(y′−x)
(x′−x)(y′−y) is the cross-ratio.

See [8] for basic properties of dΩ. A crucial property which we will use
implicitly several times below is that geodesics in (Ω, dΩ) are straight lines.
We proceed to study the geometry of the Hilbert metric dt := dΩt

on
the Tits set Ωt produced by Proposition 1.2 and studied in the previous
section. The goal of this section is to prove Theorem 1.4 and Corollary 1.6,
admitting Lemma 1.5.
Observe that Ωt is a simplicial complex whose k-cells are translates of

the k-cells of P by the WJ -action. We denote the k-skeleton of Ωt by Ω(k)
t

and let d(k)
t be the geodesic metric on Ω(k)

t induced by dt, i.e.

d
(k)
t (x, y) = min{lt(γ) | γ ⊂ Ω(k)

t is a piecewise geodesic joining x and y}.

Here lt(γ) is the length of γ measured under dt. In particular, (Ω(1)
t , d

(1)
t )

is a metric graph, whereas d(n)
t is just dt itself.

Lemma 1.5 implies that these metrics are uniformly equivalent to each
other:

Lemma 4.1. — Suppose 2 6 k 6 n. There is a constant C depending
only on J such that for any t ∈ R+ and x, y ∈ Ω(k−1)

t , we have

(4.2) d
(k)
t (x, y) 6 d(k−1)

t (x, y) 6 Cd(k)
t (x, y)

As a result, iterating the above inequality for k = 2, · · · , n, we get

dt(x, y) 6 d(1)
t (x, y) 6 C ′dt(x, y)

for a constant C ′ depending only on J .

Proof. — The first “6" in (4.2) follows immediately from the definition
of the d(k)

t ’s.
We prove the second “6" in (4.2). Let c : [0, 1] → Ω(k)

t be a piecewise
geodesic joining x, y ∈ Ω(k−1)

t such that the length of c equals d(k)
t (x, y).

Let t0, t1, t2, · · · , tr ∈ [0, 1] with t0 = 0 and tr = 1 be such that each
c([ti−1, ti]) lies in a single k-cell and that the c(ti)’s are in Ω(k−1)

t . Since
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c is length-minimizing, each c[ti−1, ti] must be a segment, whose length
equals the distance between the two end points. Thus if we could prove

d
(k−1)
t (c(ti−1), c(ti)) 6 Cd(k)

t (c(ti−1), c(ti))

then we can take the sum over 1 6 i 6 r and use the triangle inequality to
obtain

d
(k−1)
t (x, y) 6 Cd(k)

t (x, y).
Therefore, we can assume that both x and y lie on the boundary of a

k-cell. Since each k-cell is isometric to some sub-cell of P , it is sufficient to
prove that, for any k-dimensional sub-cell F of P we have

d
(k−1)
t (x, y) 6 Cd(k)

t (x, y) = Cdt(x, y).

for t ∈ R+ and x, y ∈ F .
If x, y both lie on the same (k − 1)-dimensional sub-cell of F , then we

have d(k)
t (x, y) = d

(k−1)
t (x, y) and there is nothing to prove. So we assume

that x and y belong to (k−1)-dimensional sub-cells A and B, respectively.
E = A∩B is a (k−2)-dimensional sub-cell. Let x0, y0 be a point in E nearest
to x, y, respectively, i.e. dt(x,E) = dt(x, x0) and dt(y,E) = dt(y, y0).
The three segments [x, x0], [x0, y0] and [y0, y] lie in Ω(k−1)

t and form a
piecewise segment joining x, y, so the definition of d(k−1)

t implies

(4.3) d
(k−1)
t (x, y) 6 dt(x, x0) + dt(x0, y0) + dt(y0, y).

By the triangle inequality, we have

(4.4) dt(x0, y0) 6 dt(x0, x) + dt(x, y) + dt(y, y0).

(4.3) and (4.4) gives

d
(k−1)
t (x, y) 6 2(dt(x, x0) + dt(y, y0)) + dt(x, y)

= 2(dt(x,E) + dt(y,E)) + dt(x, y)

Now we apply Lemma 1.5, and conclude that

d
(k−1)
t (x, y) 6 (2C + 1)dt(x, y)

this is the required inequality. �

Proof of Theorem 1. — Note that each vertex of the simplex P lies on
different orbits of WJ , so the vertex set Ω(0)

t is the union of n + 1 orbits.
Hence, fixing any vertex v0, we have the follow expression for the entropy
δt = δ(Ωt, dt,WJ):

δt = lim
R→∞

1
R

log #{v ∈ Ω(0)
t |dt(v, v0) 6 R}.
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We shall compare δt with the entropy δ
(1)
t = δ(Ω(1)

t , d
(1)
t ,WJ) of the

metric graph (Ω(1)
t , d

(1)
t ), which is defined by

δ
(1)
t = lim

R→∞

1
R

log #{v ∈ Ω(0)
t |d

(1)
t (v, v0) 6 R}

The comparison of d(1)
t and dt given by Lemma 4.1 implies there is a con-

stant C ′ depending only on J such that

δ
(1)
t 6 δt 6 C

′δ
(1)
t .

So it is sufficient to prove

δ
(1)
t → 0 as t→ 0 or t→ +∞.

To this end, let m(t) be the minimal length of edges of P under dt. We
have seen in Proposition 1.2 that Ωt approaches the simplex P when t→ 0
or +∞. Using the expression of Hilbert metric (4.1) one can see the length
of each edge of P tends to +∞, thus m(t)→ +∞.

On the other hand, a WJ -invariant geodesic metric on the graph Ω(1)
t is

uniquely determined by lengths of the edges of P and is monotone with
respect to each of these lengths. Therefore, if we let d′ be the metric on the
graph defined by setting all edge lengths to be 1, then we have d(1)

t > m(t)d′.
This allows us to compare the entropy δ

(1)
1 defined by d

(1)
t with the one

defined by d′:

δ
(1)
t 6

1
m(t)δ(Ω

(1)
t , d′,WJ).

But the right-hand side tends to 0 because δ(Ω(1)
t , d′,WJ) is a constant. �

Proof of Corollary 1.6. — Let Σ be a surface with genus > 2. We claim
that there are integers p, q, r > 3 with 1

p + 1
q + 1

r < 1 and a subgroup Π
of finite index in the (p, q, r)-triangle group ∆ = ∆p,q,r such that Π acts
freely on the hyperbolic plan H2 with quotient H2/Π ∼= Σ. Restricting the
one-parameter family of representations ρt : ∆ → PGL(n + 1,R) given
by Proposition 1.1 and 1.2 to Π, we obtain an one-parameter family of
convex projective structures on Σ. We shall show that this family fulfils
the requirements.
Since Π ⊂ ∆ has finite index, the entropy δ(Ωt, dt,Π) of the convex

projective surface equals the entropy δ(Ωt, dt,∆) which tends to 0 by The-
orem 1.4.
Lemma 1.5 implies that for any t, every triangle inscribed in the funda-

mental triangle P has perimeter greater than 1
C times the perimeter of P
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(measure by dt). But the latter perimeter tends to +∞ because of conver-
gence of Ωt to P . Thus the constant of Gromov hyperbolicity of Ωt tends
to +∞.
To show that the systole tends to +∞, we take a homotopically non-

trivial closed curve c which is the shortest under dt. The image of c under
the orbifold covering map Σ ∼= H2/Π → H2/∆ ∼= P is a closed billiard
trajectory in the triangle P which hits each of the three sides. The same
argument as in the previous paragraph shows that the length of c goes to
+∞.

Finally, we prove the claim using an explicit constructions as indicated
by the above picture. The boldfaced 10-gon consists of ten fundamental
domains of the triangle group ∆ = ∆5,5,5. We take the five elements in ∆
indicated by the arrows, each of them pushing the 10-gon to an adjacent
one. One checks that the group Π generated by them has the 10-gon as a
fundamental domain. The quotient H2/Π is a surface obtained by pairwise
gluing edges of the 10-gon. A calculation of Euler characteristic shows H2/Π
have genus 2. Since closed surfaces of higher genus covers the surface of
genus 2, by taking subgroups of Π, we conclude that all surfaces of genus> 2
is the quotient of H2 by some subgroup of ∆, and the claim is proved. �

5. Proof of Lemma 1.5

To begin with, we need the following fact concerning the cellular struc-
ture of Ωt. Looking at Figure 1.2, one observes that the 1-skeleton of Ωt con-
sists of straight lines. More generally, in higher dimensions, the k-skeleton
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Ω(k)
t is also a union of k-dimensional subspaces(1) , or equivalently, the k-

dimensional subspace L containing some k-cell must be an union of k-cells.
This can be proved using the fact that the tangent space of a vertex in Ωt
has the structure of a finite Coxeter complex, and it is well known that the
above assertion holds for finite Coxeter complexes (see e.g. [9]). We omit
the details.
We first present a proof of Lemma 1.5 for the 2-dimensional case, where

the main idea is most transparent.
Proof of Lemma 1.5 for n = 2. — We may assume

WJ = 〈 τ1, τ2, τ3 | (τ1τ2)p = (τ2τ3)q = (τ3τ1)r = τ2
1 = τ2

2 = τ2
3 = 1 〉.

Suppose x and y lie on the sides A and B of a triangle P in P2, respec-
tively. Denote the common vertex of A and B by E. We need to prove
that

Cdt(x, y) > dt(x,E) + dt(y,E), ∀t

Put s1 = ρt(τ1) and s2 = ρt(τ2). So s1 and s2 are reflections with respect
to A and B, respectively, whereas s1s2 is a rotation of order p.

s1

s2

x

y

s2HxL

s2s1HyL s2s1s2HxL

y'=s2s1s2s1HyLE

Figure 5.1. p = 5

s1

s2

x

y

s2HxL

s2s1HyL

s2s1s2HxLE

Figure 5.2. p = 4

If p is odd, we put
y′ = s2s1s2 · · · s1︸ ︷︷ ︸

p−1 reflections

(y).

(1)By a “subspace" of Ωt, we mean the intersection of a projective subspace of Pn with
Ωt.
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Then y′ lies on the opposite half ray of the geodesic ray ~Ex (see Figure
5.1). On the other hand, the successive images of [x, y] by the sequence of
projective transforms

s2, s2s1, s2s1s2, · · · , s2s1s2 · · · s1︸ ︷︷ ︸
p−1

consititue a piecewise geodesic γ joining x and y′. γ consists of p pieces,
each one with the same length dt(x, y). Thus we have

p dt(x, y) > dt(x, y′) > dt(x,E).

When p is even, we obtain the above inequality with x′ = s2s1 · · · s2(x)
replacing y′ in the same way (see Figure 5.2).
Interchanging the roles of x and y, we get

p dt(x, y) > dt(y,E)

and conclude that

2p dt(x, y) > dt(x,E) + dt(y,E).

�

In order to tackle higher-dimensional cases, we first introduce a termi-
nology. Let E be a (k − 1)-cell of Ωt. Two k-cells are said to be E-colinear
if they lie on the same k-dimensional subspace and their intersection is E.
As explained at the beginning of this section, the k-dimensional subspace
of Ωt containing a k-cell A is a union of k-cells, so for any (k − 1)-sub-cell
E of A, there is a unique k-cell in Ωt which is E-colinear to A.

The crucial point of the above proof in dimension 2 is the following fact:
let V be the k-cell E-colinear to A. Then we can connect x ∈ A and some
point in V by a curve piecewise isometric to the segment [x, y], where the
number of pieces is bounded by a combinatorial constant.
In higher dimensions, if this fact still holds, we would immediately get

the required inequality as in the two-dimensional case, because the distance
from x to any point of V is greater than the distance from x to E.
However, the situation is more delicate: the cell V which is E-colinear to

A may not be a translate of A or B and this prevents us from constructing
a curve going from x to V which is piecewise isometric to [x, y].

In this situation, our alternative strategy is to take a cell A′ = ρt(γ)A,
the translate of A by some γ ∈ WJ , such that A′ and V are contained in
the same top-dimensional cell. Now we can go from x to A′ along a curve
piecewise isometric to [x, y]. To prove Lemma 1.5, we then need to show
that the distance from x to A′ is greater than the distance from x to E.
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We will develop some lemmas concerning distance comparison in Hilbert
geometry in order to carry out this strategy. But before going into that, the
reader might find it useful to keep in mind the following typical example
of the above situation. Take n = 3 and k = 1, so that E is a vertex while
A and V are edges. Assume that the sub-diagram of J corresponding to E
(2) is

◦ ◦ ◦
where the first two nodes form the sub-diagram corresponding to A. The
3-cells containing E then form the configuration of the barycentric subdi-
vision of a tetrahedron, as partly shown in the picture below.

Here P is the tetrahedron abcE, while A and V are the segments [a,E]
and [v,E], respectively. We can takeA′ to be either [a1, E], [a2, E] or [a3, E].

We now discuss distance comparison in Hilbert geometry. Using the def-
inition of Hilbert metrics Eq.(4.1), it is easy to check that if a properly
convex set Ω ⊂ Pn is strictly convex (c.f. the last paragraph of Section 2),
then the Hilbert metric dΩ has the following property. Let L ⊂ Ω be a
subspace and x ∈ Ω \ L. Among all points of L, there is a unique x0 ∈ L
whose distance to x is minimal. We call x0 the projection of x on L, and
denote it by x0 = Pr(x, L).

Let L ⊂ Ω be a hyperplane, i.e. a subspace of codimension 1. We say that
Ω have reflectional symmetry s with respect to L if s ∈ PGL(n+ 1,R) is a
reflection preserving Ω and fixing each point of L. In this case, the triangle
inequality and the fact that geodesics with respect to dΩ are straight lines
yield a simple characterization of projections,

(5.1) Pr(x, L) = [x, s(x)] ∩ L.

(2)Given a sub-cell E of the simplex P , the sub-diagram of J corresponding to E is
the Coxeter diagram consisting of nodes i satisfying E ⊂ Pi and all the weighted edges
joining these nodes.
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Lemma 5.1. — Let Ω ⊂ Pn be a properly strictly convex open set with
reflectional symmetry s with respect to a hyperplane L. Then for any x, y ∈
Ω, we have

dΩ(Pr(x, L),Pr(y, L)) 6 dΩ(x, y).

In particular, if x ∈ L, then for any y ∈ Ω we have

dΩ(x,Pr(y, L)) 6 dΩ(x, y).

Figure 5.3. dΩ(x0, y0) 6 dΩ(x, y)

Proof. — Denote x0 = Pr(x, L) and y0 = Pr(y, L). The reflection s has
another fixed point p ∈ Pn outside L. We have x0 = xp ∩ L and y0 =
yp ∩ L. Therefore the four points x, y, x0, y0 lie on the plane pxy, which is
preserved by s. So we are reduced to the 2-dimensional case by restricting
the consideration to Ω0 = pxy ∩ Ω and L0 = pxy ∩ L.
Suppose that L0 intersects ∂Ω0 at x′0 and y′0, see Figure 5.3. Since Ω0

has reflectional symmetry with respect to L0, the lines px′0 and py′0 are
tangent to Ω. Let x′′0 (resp. y′′0 ) be the intersection of px′0 (resp. py′0) with
xy. It is a basis fact from projective geometry that we have an equality of
cross-ratios

[x′0 , x0 , y0 , y
′
0] = [x′′0 , x , y , y′′0 ].

Since x′ and y′ lie strictly inside the segment [x′′0 , y′′0 ], we have

[x′0 , x0 , y0 , y
′
0] = [x′′0 , x , y , y′′0 ] 6 [x′ , x , y , y′].

It follows that dΩ(x0, y0) 6 dΩ(x, y). �
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The next lemma, which strengthens the above one in the case where
there are several reflectional symmetries, is the main nontrivial ingredient
that we need to add to above two-dimensional proof of Lemma 1.5 in order
to generalize it to higher dimensions.

Lemma 5.2. — Let Ω ⊂ Pn be a properly strictly convex open set with
reflectional symmetries s1, · · · , sm (m 6 n−1) with respect to hyperplanes
L1, L2, · · · , Lm, such that the si’s generate a finite group Γ ⊂ PGL(n +
1,R). Assume that W = L1 ∩ · · · ∩ Lm has dimension n−m ( i.e. the Li’s
are in general position) and W ∩ Ω 6= ∅. Let D be a Γ-invariant convex
subset of Ω. Then for any x ∈W ∩ Ω and any x′ ∈ D, there is some point
x0 in W ∩D such that

dΩ(x, x0) 6 dΩ(x, x′)

Proof. — Fix x ∈W ∩Ω and x′ ∈W ∩D. We can choose an affine chart
A ⊂ Pn, an origin x0 ∈ A (so as to consider A as a vector space) and a
Euclidean scalar product on A such that

(1) A contains the closure of Ω;
(2) L1, · · · , Lm are linear subspaces of A, or equivalently, x0 ∈W ;
(3) Γ preserves the Euclidean scalar product;
(4) x′ ∈W⊥, where W⊥ is the orthogonal complement of W .
Our aim is to show that the origin x0 is contained in D and satisfies the

required inequality. Let us denote x0 simply by 0.
We will mainly work on the subspace W⊥ of A. Each L′i = Li ∩W⊥ is

a subspace of W⊥ of codimension 1, and the intersection L′1 ∩ · · · ∩ L′m is
trivial. Since D ∩W⊥ is invariant by Γ and is convex, the barycenter of
the Γ-orbit of x lies in D ∩W⊥ and is fixed by Γ. But L′1 ∩ · · · ∩L′m = {0}
implies that the only fixed point of Γ in W⊥ is 0, thus 0 ∈ D as required.

We proceed to prove dΩ(x, 0) 6 dΩ(x, x′). Put

Ci(θ) = {y ∈W⊥|∠(y, L′i) > θ or y = 0}

where ∠(y, L′i) is the Euclidean angle between the 1-dimensional subspace
spanned by y and the subspace L′i. Namely, Ci(θ) consists of points in W⊥
which are away from L′i by an angle θ. We take θ small enough so that

(5.2) C1(θ) ∪ · · · ∪ Cm(θ) = W⊥.

Condition (3) above implies that the restriction of the reflection si to
W⊥ is just the Euclidean reflection with respect to L′i. So it follows from
Eq.(5.1) that for any y ∈ W⊥, the projection Pr(y, Li) coincides with the
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Euclidean projection (within W⊥) of y on L′i. Therefore, by definition of
Ci(θ), any y ∈ Ci(θ) verifies

(5.3) |Pr(y, Li)| 6 |y| cos θ

We construct a sequence of points y0, y1, y2, · · · ∈ W⊥ ∩D converging
to 0 as follows. Put x′ = y0. Assume by recurrence that we already have
yk. By Eq.(5.2), there is some ik ∈ {1, · · · ,m} such that yk ∈ Cik . We then
put

yk+1 = Pr(yk, Lik ).
The inequality (5.3) yields

|yk| 6 |yk−1| cos θ 6 · · · 6 |y0|(cos θ)k.

Hence limk→∞ yk = 0.
On the other hand, Lemma 5.1 yields

dΩ(x, yk) 6 dΩ(x, yk−1) 6 · · · 6 dΩ(x, y0) = dΩ(x, x′).

Therefore, by continuity of the metric dΩ, we conclude that

dΩ(x, 0) = lim
k→∞

dΩ(x, yk) 6 dΩ(x, x′).

�

Return to the specific convex set Ωt. For any cell V of Ωt, we let St(V )
denote the union of all closed n-cells containing V (“St" for “star-like" or
“saturated").

Lemma 5.3. — St(V ) is a convex subset of Ωt.

Proof. — Let F be a (n − 1)-cell on the boundary of St(V ) and let L
be the hyperplane containing F . L does not contain V , so V is contained
in one of the two “half-spaces" in Ωt bounded by L. Using the fact that L
is an union of (n − 1)-cells, we conclude the whole St(V ) lie in the same
half-space as V . Therefore, St(V ) is an intersection of half-spaces, hence is
convex. �

With the above preparations, we can finally give the proof of Lemma 1.5
in arbitrary dimensions.

Proof of Lemma 1.5. — Fix a hyperbolic Coxeter diagram J . The Cox-
eter group is

WJ = 〈 τ0, · · · , τn | (τiτj)mij = τ2
i = 1,∀i 6= j 〉.

By definition of hyperbolic Coxeter diagrams, for any I $ {0, · · · , n}, the
subgroup WI generated by {τi}i∈I is finite. The word-length of σ ∈ WI ,
denoted by l(σ), is defined as the minimum of the integer k such that
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σ = τi1 · · · τik for some i1, · · · , ik ∈ I. We define the word-length-diameter
of WI as

diam(WI) = max
σ∈WI

l(σ)

and put
C = max

I$J
diam(WI) .

We only need to show that

C dt(x, y) > dt(x,E)

because if this is true, exchanging the roles of x and y gives Cdt(x, y) >
dt(y,E) and the required inequality follows.
Let V be the k-cell which is E-colinear to A. Let γ ∈ StabWJ

(E) be such
that P ′ = ρt(γ)P contains V . We denote A′ = ρt(γ)A and x′ = ρt(γ)x.
We first show that there is a curve joining x and x′ which is piecewise

isometric to [x, y] with at most C pieces.
Denote si = ρt(τi). Let JE ⊂ {0, 1, · · · , n} be the set of indices of those

Pi such that E ⊂ Pi. Then JE has n − k + 1 elements and StabWJ
(E) is

generated by {si}i∈JE
.

We can write γ = τi1 · · · τim , with i1, · · · , im ∈ JE andm 6 diam(WJE
) 6

C. Then ρt(γ) = si1si2 · · · sim . Consider the sequence of segments

si1([x, y]), si1si2([x, y]), · · · , si1si2 · · · sim([x, y]).

The k-cell A contains the (k − 1)-cell E, so A has only one vertex a lying
outside E. Similarly B has only one vertex b outside E. Each face Pi of P
must contain at least one of the two points a and b. Hence a face containing
E also contains either A or B. It follows that if i ∈ JE then si fixes either x
or y. Therefore, each segment in the above sequence shares at least one end
point with the next one. So the union of these segments is connected, and
we can extract a subset of these segments to form a curve joining x and x′
which is piecewise isometric to [x, y]. The number of pieces is bounded by
C.
Next, using the triangle inequality, we conclude that

Cdt(x, y) > dt(x, x′).

So it remains to be shown that

(5.4) dt(x, x′) > dt(x,E).

To this end, we use Lemma 5.2. Let St(V ) be the convex set D in
Lemma 5.2, which contains x′ (in the above example St(V ) is the tetrahe-
dron a1a2a3E). Let JA ⊂ {0, 1, · · · , n} be the set of indices of those faces Pi
which contain A and let Li be the hyperplane containing Pi. W = ∩i∈JA

Li
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is the k-dimensional subspace containing A and V (in the above example
W is the line passing through a, E and v). For each i ∈ JA, the reflection si
preserves St(V ) since V ⊂ Li. Thus the hypothesis of Lemma 5.2 is verified
and we conclude that there is x0 ∈ V = St(V ) ∩W such that

dt(x, x′) > dt(x, x0).

The union A ∪ V is convex because it is the intersection of St(E) and a
k-dimensional subspace. So [x, x0] intersects E at some point x1 and we
have

dt(x, x0) > dt(x, x1) > dt(x,E)
Hence we have obtained (5.4), and the proof is complete. �
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