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POTENTIAL THEORY ON ALMOST COMPLEX
MANIFOLDS

by F. Reese HARVEY & H. Blaine LAWSON (*)

Abstract. — On almost complex manifolds the pseudo-holomorphic curves
have been much more intensely studied than their “dual” objects, the plurisubhar-
monic functions. These functions are standardly defined by requiring that the re-
striction to each pseudo-holomorphic curve be subharmonic. In this paper plurisub-
harmonic functions are defined by applying the viscosity approach to a version of
the complex hessian which exists intrinsically on any almost complex manifold.
Three theorems are proven. The first is a restriction theorem which establishes the
equivalence of our definition with the “standard” definition. In the second theorem,
using our “viscosity” definitions, the Dirichlet problem is solved for the complex
Monge-Ampère equation in both the homogeneous and inhomogeneous forms. Fi-
nally, it is shown that the plurisubharmonic functions considered here agree in a
precise way with the plurisubharmonic distributions. In particular, this proves a
conjecture of Nefton Pali.
Résumé. — Sur les variétés presque complexes, historiquement on a étu-

dié les courbes pseudo-holomorphes beaucoup plus intensément que leurs objets
« duals », les fonctions pluri-sousharmoniques. Ces fonctions sont définies en gé-
néral par la condition que les restrictions aux courbes pseudo-holomorphes soient
sous-harmoniques. Dans cet article les fonctions pluri-sousharmoniques sont défi-
nies en utilisant la théorie de viscosité avec une version du hessien complexe qui
existe sur toutes les variétés presque complexes. Trois théorèmes sont démontrés.
Le premier est un théorème de restriction qui établit l’équivalence de notre dé-
finition avec la définition « standard ». Dans le deuxième théorème, en utilisant
nos définitions de viscosité, le problème de Dirichlet pour l’équation Monge-Ampère
complexe est résolu dans les deux cas, homogène et inhomogène. Finalement, on dé-
montre que les fonctions pluri-sousharmoniques considerées ici coïncident de façon
précise avec les distributions pluri-sousharmoniques. En particulier, cela démontre
une conjecture de Nefton Pali.

Keywords: Almost complex manifold, pseudo-holomorphic curve, plurisubharmonic func-
tion, viscosity solution, Dirichlet problem, complex Monge-Ampère equation, pluripo-
tential theory.
Math. classification: 32Q60, 32U05, 35J57.
(*) Partially supported by the N.S.F.
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Introduction

The purpose of this paper is to develop an intrinsic potential theory
on a general almost complex manifold (X, J). Our methods are based on
results established in [3] [4] [6]. In particular, we study an extension, to this
general situation, of the classical notion of a plurisubharmonic function. For
smooth functions ϕ many equivalent definitions of plurisubharmonicity are
available. Several are given in Section 2. For instance, one can require that
i∂∂ϕ > 0, or H(ϕ) > 0 where the complex hessian H(ϕ)(V,W ) ≡ ( 1

2VW +
1
2WV − i

2J [V,W ])(ϕ) is a bilinear form on T1,0X. Its real form H ≡ ReH
is computed in Section 4 to be H(ϕ)(v, v) = (vv+ (Jv)(Jv) +J [v, Jv])(ϕ),
yielding a third equivalent condition H(ϕ) > 0.
At any given point x ∈ X, each of these equivalent definitions only

depends on the reduced 2-jet of ϕ at x. Consequently, one obtains a subset
F (J) ⊂ J2(X) of the 2-jet bundle of X, which consists of the J-plurisub-
harmonic jets.
For an upper semi-continuous function u on X, the previous definitions

cannot be applied directly to u. However, they can be applied to a smooth
“test function” ϕ for u at x. (See Section 3 for more details.) This yields
our general definition of F (J)-plurisubharmonic functions.
Our first main result is the Restriction Theorem 5.2 which states that:

if u is F (J)-plurisubharmonic and (X ′, J ′) is an almost complex submani-
fold of (X, J), then the restriction of u to X ′ is F (J ′)-plurisubharmonic.

An upper semi-continuous function u on (X, J), with the property that
its restriction to each pseudo-holomorphic curve in X is subharmonic, will
be called standardly plurisubharmonic (Definition 6.1). On such curves
the complex structure is integrable and all of the many definitions of sub-
harmonic are well known to agree. Consequently, the special case of our
restriction theorem, where X ′ has dimension one, states that each F (J)-
plurisubharmonic function is plurisubharmonic in the standard sense. The
converse is also true due to the classical theorem of Nijenhuis and Woolf,
that there exist pseudo-holomorphic curves through any point of X with
any prescribed tangent line. This gives our first main result, the equivalence
of the two notions of plurisubharmonicity (Theorem 6.2).
The second main result, Theorem 7.5, solves the Dirichlet problem for

F (J)-harmonic functions in the general almost complex setting. Here the
usefulness of the F (J)-notion over the standard notion is striking. The
result applies simultaneously to both the homogeneous and the inhomo-
geneous equations, and the proof rests on basic results in [4]. The main
statement is essentially the following. Fix a real volume form λ on X which
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is orientation compatible with J . Let Ω ⊂ X be a compact domain with
smooth boundary ∂Ω. Fix a continuous functions f ∈ C(Ω) with f > 0.
Given ϕ ∈ C(∂Ω), the Dirichlet Problem asks for existence and uniqueness
of J-plurisubharmonic viscosity solutions u ∈ C(Ω) to the equation

(i∂∂u)n = fλ.

with boundary values u
∣∣
∂Ω = ϕ. Existence and Uniqueness are established

whenever Ω has a strictly J-plurisubharmonic defining function. See The-
orem 7.5 for full details. This extends a classical theorem of Bedford and
Taylor for domains in Cn [1] to general almost complex manifolds.

At the end of Section 7 we discuss some other equivalent notions of
F (J)-harmonic functions.

The hard work in proving the restriction theorem occurs in [7] while the
hard work in solving the Dirichlet problem occurs in [4]. In both cases, the
key to being able to apply these results to almost complex manifolds is
the local coordinate expression given in Proposition 4.5, which states that
the subequation F (J) is locally jet equivalent to the standard constant
coefficient case on local charts in R2n = Cn equipped with a standard
complex structure. The methods must be adapted somewhat unless f ≡ 0
or f > 0 (see Section 7).

On any almost complex manifold there is also the notion of a plurisub-
harmonic distribution. It has been proved by Nefton Pali [9] that if u is
plurisubharmonic in the standard sense, then u is in L1

loc(X) and defines
a plurisubharmonic distribution. Pali conjectures that the converse is also
true and proves a partial result in this direction. In Section 8 we prove
the full conjecture, thereby showing that on any almost complex manifold
all three notions of plurisubharmonicity (standard, viscosity and distribu-
tional) are equivalent.
The argument given in Section 8 reduces this nonlinear result to a cor-

responding result for linear elliptic subequations. This technique applies
to any convex subequation which is “second-order complete” in a certain
precise sense. In an appendix, linear elliptic operators L with smooth co-
efficients and no zero-order term are discussed. The notions of a viscosity
L-subharmonic function and an L-subharmonic distribution are shown to
be equivalent. First we show that an upper semi-continuous function is
L-subharmonic in the viscosity sense if and only if it is L-subharmonic
in the “classical” sense of being “sub-the-L-harmonics”. Such functions
are known to be L1

loc and to give an L-subharmonic distribution (Theo-
rem A.6). Conversely, any L-subharmonic distribution has a unique upper
semi-continuous, L1

loc representative which is “classically” subharmonic. It
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174 F. Reese HARVEY & H. Blaine LAWSON

is important not only that this representative be unique but also that it can
be obtained canonically from the L1

loc-class of the function by taking the
essential upper semi-continuous regularization ũ(x) = ess lim supy→x u(y).
Thus the choice of upper semi-continuous function in the L1

loc-class is
independent of the operator L. (It is actually the smallest upper semi-
continuous representative.) This fact is essential for the arguments of Sec-
tion 8.
The proof for this linear case combines techniques from distributional

potential theory, classical potential theory and viscosity potential theory.
It appears that there is no specific reference for this particular result, so
we have included an appendix which outlines the theory. (Also see Section
9 in [5].)

Note 1. — We note that when (X, J) is given a hermitian metric, there
is a notion of “metric” plurisubharmonic functions, defined via the hermit-
ian symmetric part of the riemannian hessian (cf. [4]). For metrics with
the property that every holomorphic curve in (X, J) is minimal (e.g., if
the Käher form is closed), these “metric” plurisubharmonic functions are
standard (Theorem 9.3). However in Section 9 examples are given which, in
the general case, strongly differentiate the metric notion from the intrinsic
notion of plurisubharmonicity studied in this paper.

Note 2. — In the first appearance of this article we solved the Dirichlet
problem for f ≡ 0 (and the methods also applied to f > 0). Shortly after-
ward Szymon Pliś posted a paper which also studied the Dirichlet problem
on almost complex manifolds [10]. His result, which is the analogue in the
almost complex case of a main result in [2], is quite different from ours.
He considered the case f > 0, assumed all data to be smooth, and estab-
lished complete regularity of the solution. Our result holds for arbitrary
continuous boundary data, and interior regularity is known to fail.
Pliś subsequently posted a second version of [10] which offered an alter-

native proof of our result by taking a certain limit of his solutions. He also
established Lipschitz continuity of the solution under restrictive hypotheses
on the boundary data. In the current version of this paper we allow f > 0.

It is assumed throughout that J is of class C∞, however for all results
which do not involve distributions, C2 is sufficient.
The authors are indebted to Nefton Pali and Jean-Pierre Demailly for

useful conversations and comments regarding this paper. We would also like
to thank Mike Crandall, Hitoshi Ishii, Andrzej Swiech and Craig Evans for
helpful discussions regarding the Appendix.
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1. Preliminaries

1.1. Almost Complex Structures

Let (X, J) be an almost complex manifold. Then there is a natural de-
composition

TX ⊗R C = T1,0 ⊕ T0,1

where T1,0 and T0,1 are the i and −i-eigenspaces of J respectively. The
projections of TX ⊗R C onto these complex subspaces are given explicitly
by π1,0 = 1

2 (I − iJ) and π0,1 = 1
2 (I + iJ).

The dual action of J on T ∗X shall be denoted by J as well. (For α ∈
T ∗xX, (Jα)(V ) ≡ α(JV ) for V ∈ TxX.) Then again we have a natural
decomposition

T ∗X ⊗R C = T 1,0 ⊕ T 0,1

into the i and −i-eigenspaces of J respectively with projections again given
explicitly by π1,0 = 1

2 (I − iJ) and π0,1 = 1
2 (I + iJ). Moreover, we have

(T1,0)∗ = T 1,0 and (T0,1)∗ = T 0,1

There is also a bundle splitting

(1.1) ΛkT ∗X ⊗R C =
⊕
p+q=k

Λp,qX

where Λp,qX is the i(p − q)-eigenspace of J acting as a derivation on
Λ∗T ∗X ⊗R C. Let Ep,qX denote the smooth sections of Λp,qX. Then there
are natural operators

∂ : Ep,q(X) → Ep+1,q(X) and ∂ : Ep,q(X) → Ep,q+1(X)

defined by restriction and projection of the exterior derivative d. Under
complex conjugation one has that

Λp,qX = Λq,pX

and in particular each Λp,pX is conjugation-invariant and decomposes into
a real and imaginary part. Let Λp,pR X denote the real part.
A pseudo-holomorphic map Φ : (X ′, J ′) → (X,J) between almost com-

plex manifolds is a smooth map whose differential Φ∗ satisfies Φ∗J ′ = JΦ∗
at every point. Thus the pull-back Φ∗ : Λ∗T ∗X → Λ∗T ∗X ′ is also compati-
ble with the almost complex structures (acting as derivations) and therefore
preserves the bigrading in (1.1). It follows that:
(1.2)
The operators ∂ and ∂ commute with the pullback Φ∗ on smooth forms.
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176 F. Reese HARVEY & H. Blaine LAWSON

1.2. 2-Jets

Denote by J
2(X) the vector bundle of 2-jets on an arbitrary smooth

manifold X, and let Jx(u) ∈ J2
x(X) denote the 2-jet of a smooth function

u at x. The bundle J2(X) of reduced 2-jets is defined to be the quotient of
J

2(X) by the trivial line bundle corresponding to the value of the function
u. We will be primarily interested in the space of reduced 2-jets in this paper
(and so we have chosen a simpler notation for it). The bundle Sym2(T ∗X)
of quadratic forms on TX has a natural embedding as a subbundle of
J2(X) via the hessian at critical points. Namely, if u is a function with a
critical point at x, then V (W (u)) = W (V (u)) + [V,W ](u) = W (V (u)) is a
well defined symmetric bilinear form (Hessxu)(V,W ) on TxX for arbitrary
vector fields V,W defined near x.
Thus there is a short exact sequence of bundles

(1.3) 0 −→ Sym2(T ∗X) −→ J2(X) −→ T ∗X −→ 0.

However, for functions u with (du)x 6= 0, there is no natural definition of
Hessxu, i.e., the sequence (1.3) has no natural splitting. There is a natural
cone bundle P(X) ⊂ Sym2(T ∗X) ⊂ J2(X) defined by
(1.4)
Px(X) ≡ {H∈Sym2(T ∗xX) : H>0} ∼= {Jx(u) : u(x)=0 and u>0 near x}

In local coordinates x ∈ RN for X, the first and second derivatives
comprise the reduced 2-jet Jx(u) of a function u. That is,

(1.5) Jx(u) ∼= (Dxu,D
2
xu) ∈ RN × Sym2(RN ) def= J2(RN ) ≡ J2

where Dxu ≡ ( ∂u∂x1
(x), · · · , ∂u

∂xN
(x)) and D2

xu ≡
(

∂2u
∂xi∂xj

(x)
)
.

The isomorphism (1.5) says that J2
x(X) ∼= RN × Sym2(RN ) = J2(RN ).

The standard notation (p,A) ∈ RN×Sym2(RN ) will be used for coordinates
(p,A) = (Du,D2u) on J2(RN ).
Using these coordinates, we have

(1.6) Sym2
x(T ∗X) ∼= {(0, A) : A ∈ Sym2(RN )} ⊂ J2

and

(1.7) Px(X) ∼= {(0, A) : A > 0} ⊂ J2

2. The Complex Hessian

Suppose (X, J) is an almost complex manifold. Note that for any real-
valued C2-function u we have d∂u = ∂

2
u + ∂∂u + ε2,0 where ε2,0 is a
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continuous (2,0)-form. Taking the complex conjugate and adding terms
gives ddu = 0, which, after taking (2, 0)- and then (1, 1)-components, gives
us that ε2,0 = −∂2u and

∂∂u = −∂∂u.

Definition 2.1. — The i∂∂-hessian of a smooth real-valued function u
on X is obtained by applying the intrinsically defined real operator

(2.1) i∂∂ : C∞(X) −→ Γ(X,Λ1,1
R X),

From (1.2) we conclude the following.

Proposition 2.2. — The i∂∂-hessian operator commutes with pull-
back under any pseudo-holomorphic map between almost complex mani-
folds.

There is a second useful way of looking at i∂∂u. Recall that a (complex-
valued) bilinear form B on a complex vector space is hermitian if B(V,W )
is complex linear in the first variable and complex anti-linear in the second
variable. It is further called symmetric if it satisfies

B(V,W ) = B(W,V ).

When, in addition, B(V, V ) > 0 for all V , we say B is positive and de-
note this by B > 0. Let HSym2(T1,0X) denote the bundle of hermitian
symmetric forms on T1,0X.
Recall the bundle isomorphism

(2.2) Λ1,1
R X ∼= HSym2(T1,0X)

sending
β ∈ Λ1,1

R X to B(V,W ) ≡ −iβ(V,W ).
We say β > 0 if B > 0.

Definition 2.3. — Under the isomorphism (2.2) the i∂∂-hessian of u
becomes the complex hessian H(u) of u. Namely

(2.3) H(u)(V,W ) = (∂∂u)(V,W )

is a section of HSym2(T1,0X), and

H : C∞(X) −→ Γ(X,HSym2(T1,0X))

will be called the complex hessian operator.

The complex hessian can be computed in various ways. The main formula
we employ is the following.

TOME 65 (2015), FASCICULE 1



178 F. Reese HARVEY & H. Blaine LAWSON

Proposition 2.4. — For u ∈ C∞(X) and each V,W ∈ Γ(X,T1,0),

(2.4) H(u)(V,W ) =
( 1

2VW + 1
2WV − i

2J [V,W ]
)

(u)

Remark 2.5. — We can express (2.4) more succinctly by saying that:
for each V,W ∈ Γ(X,T1,0), H(V,W ) is the second-order scalar differential
operator

(2.4)′ H(V,W ) = 1
2VW + 1

2WV − i
2J [V,W ]

Proof. — First recall that for arbitrary sections V and W of TX ⊗R C
and any complex 1-form α, the exterior derivative of α satisfies:

(dα)
(
V,W

)
= V

(
α(W )

)
−W (α(V ))− α

(
[V,W ]

)
.

Now assume that V and W are both of type 1, 0 and take α = ∂u. Then
α(W ) = W (u) while α(V ) = 0. Since (∂∂u)(V,W ) = (dα)(V,W ), we have

(2.5) (∂∂u)(V,W ) = V
(
W (u)

)
−∂u

(
[V,W ]

)
= V

(
W (u)

)
− [V,W ]0,1(u).

Take α = −∂u and note that α(W ) = 0 while α(V ) = −V (u). Since
−(∂∂u)(V,W ) = −(dα)(V,W ), we have

(2.6) −(∂∂u)(V,W ) = W (V (u))+∂u
(
[V,W ]

)
= W (V (u))+[V,W ]1,0(u).

Finally, using Jdu = i(∂u − ∂u), or equivalently that J = i on T1,0X and
J = −i on T0,1X, we see that the average of these last two formulas for
H(u)(V,W ) is given by (2.4). �

3. F (J)-plurisubharmonic Functions

It is natural, and useful, to have a definition of plurisubhamonic func-
tions on (X, J) expressed purely in terms of the 2-jets of those functions.
Specifically, one would like such functions, when smooth, to be defined by
constraining their 2-jets to a subset F (J) ⊂ J2(X) of the 2-jet bundle, and
then pass to general upper semi-continuous functions by viscosity tech-
niques. In this section we give such a definition using the complex hessian
H. First, for smooth functions the concept is straightforward.

Definition 3.1. — A smooth real-valued function u on X is called
F (J)-plurisubharmonic if H(u) > 0, i.e., the hermitian symmetric bilin-
ear form Hx(u) is positive semi-definite at all points x ∈ X. Moreover, if
Hx(u) > 0 is positive definite at all points x ∈ X, we say that u is strictly
F (J)-plurisubharmonic.
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Proposition 2.4 implies that at a point x ∈ X, Hx(u) depends only on
Jx(u), the reduced 2-jet of u at x. In particular, the condition Hx(u) > 0
(equivalently i∂∂u > 0) depends only on the jet Jx(u) of u at x. Hence we
can define plurisubharmonicity for a jet J ∈ J2

x(X) as follows.

Definition 3.2. — A jet J ∈ J2
x(X) is said to be F (J)-plurisubhar-

monic if for any smooth function u with Jx(u) = J, we have

(3.1) Hx(u) > 0.

The set of F (J)-plurisubharmonic jets on X will be denoted by F (J).

We are now in a position to broaden the notion of F (J)-plurisubharmoni-
city to the level of generality encountered in classical complex function
theory. Namely we consider functions u ∈ USC(X), the space of upper semi-
continuous functions on X taking values in [−∞,∞). Take u ∈ USC(X)
and fix x ∈ X. A function ϕ which is C2 in a neighborhood of x is called
a test function for u at x if u− ϕ 6 0 near x and u− ϕ = 0 at x.

Definition 3.3. — A function u ∈ USC(X) is F (J)-plurisubharmonic
if for each x ∈ X and each test function ϕ for u at x, one has

Hx(ϕ) > 0, i.e. Jxϕ ∈ Fx(J).

Note that u ≡ −∞ is F (J)-plurisubharmonic since there exist no test
functions for u at any point.

Definition 3.3 should be an extension of Definition 3.1 when u is smooth.
For this to be true the following Positivity Condition for F (where P(X)
is defined by (1.4))

(P) F + P(X) ⊂ F

must be satisfied for F = F (J). (See Proposition 2.3 in [4] for the details.)

Proposition 3.4. — Each fibre Fx(J) of F (J) is a convex cone, with
vertex at the origin, containing the convex cone Px(X). In particular, F (J)
satisfies the Positivity Condition (P).

Proof. — It is easy to see that each fibre Fx(J) is a convex cone with
vertex at the origin in J2

x(X) since Hx(u) is linear in u. It remains to show
that Fx(J) contains Px(X) as defined by (1.4). Recall that each vector field
V of type 1, 0 is of the form V = v − iJv where v is a real vector field. If
x is a critical point of ϕ, then it is easy to compute from (2.4) that at x

(3.2) H(ϕ)(V, V ) = v(v(ϕ)) + (Jv)(Jv(ϕ))

TOME 65 (2015), FASCICULE 1



180 F. Reese HARVEY & H. Blaine LAWSON

for all such 1, 0 vector fields V = v − iJv. Now suppose that ϕ(x) = 0 and
that ϕ > 0 near the point x. Then by elementary calculus

(3.3) (dϕ)(x) = 0 and v(v(ϕ))(x) > 0 ∀ v ∈ Γ(X,TX).

Combining (3.2) and (3.3) proves that Px(X) ⊂ Fx(J). �

Definition 3.5. — A subset F ⊂ J2(X) which satisfies both the Posi-
tivity Condition (P) and the Topological Condition:

(T) (i) F = IntF (ii) Fx = IntFx (iii) IntFx = (IntF )x

is called a subequation (cf. Def 3.9 in [4]). This condition (T) for F (J) is
a consequence of a jet equivalence for the complex hessian which is given
in the next section.

Definition 3.6. — A function u ∈ USC(X) is called F -subharmonic
on X if for each x ∈ X and each test function ϕ for u at x, we have
J2
x(ϕ) ∈ Fx. The set of such functions is denoted F (X).

Starting with classical potential theory on Cn as motivation, many of
the important results concerning plurisubhamonic functions on Cn were
extended to general constant coefficient subequations in euclidean space in
one of our first papers on the subject [3]. Most of these results were then
generalized to any subequation F on a manifold [4]. One can view this
paper as coming full circle back to the complex setting by using viscosity
methods to prove a new result in the almost complex case.

4. A Local Coordinate Expression for the Real Form of
the Complex Hessian

The point of this section is to establish a formula for the complex hessian
in a real coordinate system on X. We begin by reviewing some standard
algebra. The space HSym2(T1,0) of hermitian symmetric bilinear forms on
T1,0 has an alternate description. Recall the standard isomorphism on com-
plex vector spaces

(4.1) (T, J) ∼= (T1,0, i)

given by mapping a real tangent vector v ∈ T to V = 1
2 (v − iJv) with

inverse v = 2ReV .
A real symmetric bilinear form B ∈ Sym2

R(T ) is said to be hermitian
(or J-hermitian) if B(Jv, Jv) = B(v, v) for all v ∈ T . Let HSym2

R(T )
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denote the subspace of Sym2
R(T ) consisting of J-hermitian forms. Now (4.1)

induces a (renormalized) isomorphism

(4.2) HSym2
R(T ) ∼= HSym2(T1,0),

given by mapping B ∈ HSym2(T1,0) to its real form B ∈ HSym2
R(T ) defined

by

(4.3) B(v, w) ≡ ReB(v − iJv, w − iJw).

Of course, it is enough to define the quadratic form

(4.3)′ B(v, v) ≡ B(v − iJv, v − iJv)

which is real-valued and determines (4.3) by polarization. From (4.3)′ it is
obvious that

(4.4) B > 0 ⇐⇒ B > 0.

Now given any B ∈ Sym2
R(T ), the hermitian symmetric part of B is

defined to be the element

(4.5) BJ(v, v) ≡ B(v, v) +B(Jv, Jv)

which belongs to HSym2
R(T ). (Usually one inserts a 1

2 in (4.5), but here it
is cleaner not to do so.)
Combining this algebra with (2.2) and adding J to the notation, we have

three isomorphic vector spaces

(4.6) Λ1,1(T (J)) ∼= HSym2(T1,0(J)) ∼= HSym2
R(T (J)).

It is important that the last vector space HSym2
R(T (J)) is a real vector

subspace of Sym2
R(T (J)). We have denoted a triple of elements that cor-

resond under these isomorphisms by β, B and B respectively. Note that
β > 0 ⇐⇒ B > 0 ⇐⇒ B > 0.

We now apply this to the case of the complex hessian of a function
ϕ at a point x ∈ X where β = i∂∂ϕ and B = H(ϕ). The third element
B ≡ H(ϕ) ∈ HSym2

R(Tx(Jx)) is called the real form of the complex hessian.
Note that

(4.7) i∂∂ϕ > 0 ⇐⇒ H(ϕ) > 0 ⇐⇒ H(ϕ) > 0.

The formula (2.4) provides a formula for H(ϕ).

Lemma 4.1. — The real form H(ϕ) of the complex hessian H(ϕ) is
given by the polarization of the real quadratic form

(4.8) H(ϕ)(v, v) =
{
vv + (Jv)(Jv) + J ([v, Jv])

}
ϕ
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defined for all real vector fields v (where the vector fields act on functions
in the standard way).

Proof. — As an operator on ϕ, H(v, v) is given by

H(v, v) = H(v − iJv, v − iJv),

which can be expanded out using (2.4)′ to yield (4.8). �

In euclidean space RN with coordinates t = (t1, ..., tN ), let p = Dϕ

(evaluated at t), and let D2ϕ denote both the second derivative matrix
A ≡ (( ∂2ϕ

∂ti∂tj
)) as well as the quadratic form

A(v, v) = (D2ϕ)(v, v) =
N∑

i,j=1

∂2ϕ

∂ti∂tj
(t) vivj where v ≡

N∑
j=1

vj
∂

∂tj
.

A calculation gives the following.

Proposition 4.2. — Suppose that J is an almost complex structure
on an open subset X ⊂ R2n. Let v be a constant coefficient vector field on
X ( i.e., v =

∑
j vj

∂
∂tj

where the vj ’s are constants). Then
(4.9)
H(ϕ)(v, v) = (D2ϕ)(v, v)+(D2ϕ)(Jv, Jv)+(Dϕ)

{
(∇JvJ)(v)−(∇vJ)Jv

}
(where ∇vJ denotes the standard directional derivative of the matrix-
valued function J). Equivalently,

(4.9)′ H(ϕ) = (A+ E(p))J

where p ≡ Dϕ, A ≡ D2ϕ and the section E ∈ Γ(X,Hom R(Cn,Sym2
R(Cn)))

is defined by

(4.10) E(p)(v, v) ≡ 〈(∇JvJ)(v), p〉

where 〈·, ·〉 is the standard real inner product on Cn.

Proof. — By (4.8)

(Hϕ)(v, v) = (D2ϕ)(v, v)+(D2ϕ)(Jv, Jv)+(Dϕ)
{

(∇JvJ)(v)+J [v, Jv]
}
.

Now [v, Jv] = (∇vJ)v, and J2 = −I implies that (∇vJ)J + J(∇vJ) = 0.
Hence we have J [v, Jv] = J(∇vJ)v = −(∇vJ)Jv, which proves (4.9). To
prove (4.9)′, note that AJ(v, v) = A(v, v) + A(Jv, Jv) and that E(p)J =
〈(∇JvJ)(v), p〉 − 〈(∇vJ)(Jv), p〉. �

Remark. — Using the conventions v =
∑
vjej , Jv =

∑
vjJjkek where

ej = ∂
∂tj

, the reader may wish to derive (4.9) and (4.9)′ from (4.8) using
matrices.
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We now continue with the linear algebra. Consider a finite dimensional
real vector space T of dimension 2n with two almost complex structures J
and J0, inducing the same orientation on X. Think of J0 as “standard” or
“background” data. Assume we are given g ∈ GL+(T ) such that

J = gJ0g
−1

Extend g as usual to GLC(T ⊗C). The induced action on Sym2
R(T ) is given

by

(4.11) (g∗B)(v, w) = B(gv, gw)

The next result is more than we need but it should clarify the algebra.

Lemma 4.3. — Consider elements

α∈Λ1,1
R (T, J), H∈HSym2(T1,0(J)), and H∈HSym2

R(T, J) ⊂ Sym2
R(T ).

Then the pull-backs by g satisfy

g∗α ∈ Λ1,1
R (T, J0), g∗H ∈ HSym2(T1,0(J0)),

and g∗H ∈ HSym2
R(T, J0) ⊂ Sym2

R(T ).

Moreover, if the three elements α,H and H correspond to each other under
the isomorphisms (4.6), then so do the elements g∗α, g∗H and g∗H. Any one
of the six is > 0 if and only if all six are > 0. Finally, for any B ∈ Sym2

R(T )

(4.12) (g∗B)J0 = g∗
(
BJ
)
.

Proof. — Since Jg = gJ0, we have g∗J∗ = J∗0 g
∗. Finally, to prove (4.12)

note that (g∗B)J0 = g∗B+J∗0 g∗B = g∗B+g∗J∗B = g∗(B+J∗B) = g∗(BJ)
using (4.5). �

Applying this to the complex hessian H(ϕ) and its real form H(ϕ), yields

(4.13) H(ϕ) > 0 ⇐⇒ (g∗H(ϕ))J0 > 0.

Example 4.4 (The Standard Complex Structure on Cn). — Let J0 de-
note the standard complex structure “i” on Cn. With V ≡

∑n
j=1 cj

∂
∂zj

the

complex hessian H0 is given by H0(ϕ)(V, V ) =
∑n
j,k=1

(
∂2ϕ

∂zj∂z̄k

)
cjck. The

real form H0 of this complex hessian can be most succinctly expressed as

(4.14) H0ϕ = (D2ϕ)J0 = D2ϕ+ J∗0D
2ϕ

since ∇J0 ≡ 0. That is, H0 is simply the J0-hermitian symmetric part of
the second derivative D2ϕ.
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Now the subequation F (J0) on an open subsetX of Cn is easily computed
to be

F (J0) = X × Cn × PC where

PC ≡ {A ∈ Sym2
R(Cn) : AJ0 = A+ J∗0A > 0}

By this definition of PC the equivalence (4.13) can be rewritten as

(4.13)′ H(ϕ) > 0 ⇐⇒ g∗H(ϕ) ∈ PC.

Sometimes it is convenient to refer to the subequation F (J0) simply as
PC since

(4.15) ϕ is J0-subharmonic on X ⇐⇒ (D2ϕ)(x) ∈ PC ∀x ∈ X.

We now assume our euclidean space R2n to be equipped with a standard
complex structure J0 and write Cn = (R2n, J0) as above. We further assume
that our variable almost complex structure J can be written in the form
J = gJ0g

−1 for a smooth map g : X → GL+
R (R2n). (This can be arranged

in a neighborhood of any point x ∈ X by choosing J0 = Jx.) The next
result describes F (J) in these coordinates as a perturbation of the standard
subequation PC. It is the key to the two main theorems in this paper.

Proposition 4.5. — Suppose g : X → GL+
R (R2n) defines an almost

complex structure J ≡ gJ0g
−1 on an open subset X ⊂ Cn. Let H denote

the complex hessian for J . Then

(4.16) H(ϕ) > 0 ⇐⇒ g∗D2ϕ+ g∗E(Dϕ) ∈ PC

where E is defined by (4.10).

Proof. — By (4.9)′, H(ϕ) is the J-hermitian part of D2ϕ + E(Dϕ).
Hence, by Lemma 4.3, g∗H(ϕ) is the J0-hermitian part of g∗(D2ϕ+E(Dϕ)).
Therefore,

g∗H(ϕ) ∈ PC ⇐⇒ g∗
(
D2ϕ+ E(Dϕ)

)
∈ PC.

Combining this with (4.13)′ completes the proof of (4.16). �

5. Restriction of F (J)-plurisubharmonic Functions

In this section we prove (in Theorem 5.2) that the restriction of an F (J)-
plurisubharmonic function to an almost complex submanifold is also pluri-
subharmonic (as a function on the submanifold). The difficulty of this result
is somewhat surprising. First we establish some easier facts.
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Proposition 5.1. — Suppose Φ : (X ′, J ′) → (X, J) is a pseudo-holo-
morphic map.

(1) If u ∈ C2(X) is F (J)-plurisubharmonic on (X,J), then u ◦ Φ is
F (J ′)-plurisubharmonic on (X ′, J ′).

(2) If j ∈ Fx(J), then Φ∗(j) ∈ Fx′(J ′) where x = Φ(x′), that is,

Φ∗ (F (J)) ⊂ F (J ′).

Proof. — Since Φ∗ commutes with i∂∂, the pull-back of a smooth F (J)-
plurisubharmonic function is F (J ′)-plurisubharmonic. The proof of (2) is
similar. �

Now we state the more difficult result.

Theorem 5.2 (Restriction). — Suppose that (X ′, J ′) is an almost com-
plex submanifold of (X,J). If u ∈ USC(X) is F (J)-plurisubharmonic on
X, then u

∣∣
X′ is F (J ′)-plurisubharmonic on X ′.

Proof. — Since the result is local, we may choose coordinates which
reduce us to the following situation. Suppose that J is an almost com-
plex structure on a neighborhood X of the origin in Cn, which agrees
with the standard complex structure J0 at z = 0. Suppose further that
X ′ = (Cm × {0})∩X is a J-almost-complex submanifold. By shrinking X
if necessary we can find a smooth mapping g : X → GL+

R (Cn) with

(5.1) g(0) = Id and J = gJ0g
−1 on X.

Block the transformation g as

g =
(
g11 g12
g21 g22

)
with respect to Cn = Cm × Cn−m.

Because of the next result, we can choose g such that

(5.2) g21 ≡ 0 on the submanifold X ′.

Lemma 5.3. — By further shrinking X if necessary, the mapping g can
be chosen to be of the form

g = I + f with f complex antilinear.

With this choice, f is unique and f21(≡ g21) ≡ 0 on X ′.

Proof. — Recall that each g ∈ EndR(Cn) has a unique decomposition
g = h+f1 with h ∈ EndC(Cn) complex linear, and f1 ∈ EndC(Cn) complex
anti-linear. Since h(0) = I , we may assume, by shrinking X, that h(x)

TOME 65 (2015), FASCICULE 1



186 F. Reese HARVEY & H. Blaine LAWSON

is invertible for each x ∈ X. Define f ≡ f1h
−1. Then (since h and J0

commute), we have

J = gJ0g
−1 = gh−1J0hg

−1 = gh−1J0(gh−1)−1 and gh−1 = I + f.

This proves the first assertion.
For the uniqueness statement, suppose that J = (I+f1)J0(I+f1)−1 = (I+

f2)J0(I+f2)−1 with both f1 and f2 complex anti-linear. Then (I+f2)−1(I+
f1) commutes with J0, i.e., is complex linear. However, the complex anti-
linear part of (I+f2)−1(I+f1) = (I−f2

2 )−1(I−f2)(I+f1) is (I+f2
2 )−1(f1−

f2), and so f1 − f2 ≡ 0.
It remains to prove the last assertion. To begin we block J with respect to

the splitting Cn = Cm×Cn−m as above. Then sinceX ′ is an almost complex
submanifold, the component J21 must vanish along X ′. Therefore, the 21-
component of Jg equals J22g21 = J22f21, while the 21-component of gJ0
equals g21i = f21i = −if21. Since Jg = gJ0, this proves that (J22 + i)f21 =
0. Finally, J22(0) = i, so that f21 = 0 along X ′ near the origin. �

Note. — The last two statements can be seen in another way. An almost
complex structure J0 on a real vector space T is equivalent to a decomposi-
tion T ⊗RC = T1,0⊕T0,1 with T0,1 = T1,0. Another complex structure J on
T , inducing the same orientation, has a similar decomposition, and T1,0(J)
is the graph in T1,0 ⊕ T0,1 of a unique complex linear map f : T1,0 → T0,1
(or equivalently, a J0-anti-linear map f : T → T ). Suppose now that S ⊂ T
is a J-complex subspace which is also J0-invariant. Then S1,0(J) = S1,0
and so f

∣∣
S1,0

= 0. This is the condition that f21 = 0.

Completion of the Proof of Theorem 5.2. — We apply Proposition 4.5.
First note that (4.16) can be restated, using p = Du and A = D2u as

(4.16)′ (p,A) ∈ Fx(J) ⇐⇒ g(x)t(A+ Ex(p))g(x) ∈ PC(Cn)

Set Lx(p) ≡ gt(x)Ex(p)g(x).

Lemma 5.4. — If p = (p′, p′′) ∈ Cn = Cm × Cn−m, then for x ∈ X ′ ≡
Cm × {0}, Lx((0, p′′)) ∈ Sym2

R(Cn) vanishes when restricted to X ′ as a
quadratic form.

Proof. — Suppose that v is a vector field tangent to X ′ along X ′. Then
since X ′ is an almost complex submanifold, the vector field Jv also has
this property. It now follows directly from (4.10) that if p = (0, p′′), then
E(p)(v, v) ≡ 0 along X ′. In other words the component

E11(0, p′′) ≡ 0 along X ′.
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This together with (5.2) implies that

L11(0, p′′) ≡ 0 along X ′.

�

The hypotheses (7.12) of the Restriction Theorem 8.1 in [7] are now
established. To check this, note first that the matrix function h in (7.12) of
[7] equals our gt. Hence, by (5.2) we have h12 = g21 = 0 on X ′ as required.
The g in (7.12) of [7] is taken to be the identity, so its (12)-component
vanishes on X ′. The last part of (7.12) in [7] is exactly Lemma 5.4 above.
Theorem 5.2 now follows from Theorem 8.1 in [7]. �

For 1-dimensional almost complex manifolds Theorem 5.2 has a converse,
which we investigate in the next section.

6. The Equivalence of F (J)-plurisubharmonic Functions
and Standard Plurisubharmonic Functions

In complex dimension one, each almost complex structure is integrable,
i.e., each almost complex manifold (Σ, J) of real dimension 2 is a Riemann
surface. There are many equivalent definitions for subharmonic functions
on a Riemann surface, and Definition 3.3 is one of these. We assume these
facts without further discussion.
A “standard” definition of a plurisubharmonic function on a complex

manifold makes perfect sense on an almost complex manifold.

Definition 6.1. — An upper semi-continuous function u on an almost
complex manifold (X, J) is said to be plurisubharmonic in the standard
sense if its restriction to each holomorphic curve Σ in X is subharmonic.

The Restriction Theorem 5.2 implies the forward implication in the next
result. The abundance of holomorphic curves on an almost complex mani-
fold will be used to prove the reverse implication.

Theorem 6.2. — Given u ∈ USC(X, J) on an almost complex manifold
(X,J),

u is F (J)-plurisubharmonic
⇐⇒ u is plurisubharmonic in the standard sense.

Consequently, we may simply call these functions J-plurisubharmonic.
The set of all such functions on X will be denoted by PSHJ(X).
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In this section we shall replace the notation F (J) by FX to emphasize
the manifold and to suppress confusion with notation for 2-jets. The jet
version of Theorem 6.2 can be stated as follows.
Lemma 6.3.

J ∈ FXz ⇐⇒

i∗(J) ∈ FΣ
ζ for all holomorphic curves i : Σ→ X with i(ζ) = z.

Proof. — (⇒): This is the special case of Proposition 5.1(2) saying that
i∗(FXz ) ⊂ FΣ

ζ .
(⇐): Pick a smooth function ϕ with Jz(ϕ) ≡ J. Assume that i∗Σ(J) ∈ FΣ

ζ

for all iΣ : Σ→ X and iΣ(ζ) = z. We must show that Hz(V, V )(ϕ) > 0 for
all V ∈ (T1,0X)z. By [8] there exists i : Σ→ X with i(ζ) = z and i∗( ∂∂ζ ) =
V . Hence, Hz(V, V )(ϕ) = Hz(i∗( ∂∂ζ ), i∗( ∂∂ζ ))(ϕ) = Hζ( ∂∂ζ ,

∂
∂ζ )(ϕ ◦ i) which

is > 0 since Jζ(ϕ ◦ i) = i∗(Jzϕ) ∈ FΣ
ζ . �

Proof of Theorem 6.2. — As noted above we only need to prove ⇐.
Assume that u ∈ USC(X) and that u ◦ i is subharmonic on Σ for each
holomorphic curve i : Σ→ X. Pick a point z ∈ X and a test function ϕ for
u at z. Suppose i : Σ → X is a pseudo-holomorphic curve with i(ζ) = z.
Obviously, ϕ ◦ i is a test function for u ◦ i at ζ. Since u ◦ i is subharmonic,
Jζ(ϕ ◦ i) ∈ FΣ

ζ . By Lemma 6.3 this is enough to imply that Jz(u) ∈ FXz ,
since i∗(Jz(ϕ)) = Jζ(ϕ ◦ i). �

There are advantages to using the concept of F (J)-plurisubharmonic
over the standard one on an almost complex manifold. This is apparent for
example, in Section 7 on the Dirichlet Problem.
We conclude this section by mentioning a more elementary application

illustrating the abundance of plurisubharmonic functions locally. We say
that a system of local coordinates z = (z1, ..., zn) on X is standard at
x ∈ X if z(x) = 0 and Jx ∼= J0(= i).

Proposition 6.4. — Suppose z is a local coordinate system for (X, J)
which is standard at x. Then the function u(z) = |z|2 is strictly F (J)-pluri-
subharmonic on a neighborhood of x.

Proof. — By (4.9), we see that, since Du0 = 0, the real form of the
J-hermitian hessian at the origin is H(u)0 = 2I. Hence, H(u) is positive
definite in a neighborhood of 0. �

Corollary 6.5. — Each point of an almost complex manifold has
a neighborhood system of domains with strictly pseudo-convex smooth
boundaries.
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More precisely, these boundaries are strictly F (J)-convex in the sense of
[4].

7. The Dirichlet Problem

In this section we consider the Dirichlet problem for the subequation
F (J) and for the more general “inhomogeneous” subequation F (J, f) de-
fined by adding the condition (i∂∂u)n > fλ where λ is a fixed volume
form on X and f ∈ C(X) satisfies f > 0. Recall that by Definition 3.1,
Fx(J) = {J2

xu : i∂∂u > 0 for u smooth near x}, which we state more
succinctly by saying

(7.1) F (J) is defined by i∂∂u > 0.

We now fix a (real) volume form λ on X compatible with the orientation
induced by J . Then each f ∈ C(X) with f > 0 determines a subequation

(7.2) F (J, f) defined by i∂∂u > 0 and (i∂∂u)n > fλ.

For simplicity we abbreviate F ≡ F (J, f).

Definition 7.1. — A smooth function u on (X, J) is F -harmonic if
J2
x(u) ∈ ∂Fx for each point x ∈ X.

Example 7.2 (The Standard Model). — In the model case (X, J) =
(Cn, J0) with λ = λ0 = 2n× the standard volume form on Cn and f0 > 0
a continuous function, we have

(7.3) D2u ∈ F(J0, f0) ⇐⇒ i∂∂u > 0 and (i∂∂u)n > f0λ0,

where the second inequality can be rewritten as

detC
(
∂2u

∂z∂z

)
> f0.

Furthermore,

(7.4) D2u ∈ ∂F(J0, f0) ⇐⇒ i∂∂u > 0 and (i∂∂u)n = f0λ0,

where the equality can be rewritten as

detC
(
∂2u

∂z∂z

)
= f0.
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This model subequation F ≡ F(J0, f0) ⊂ Sym2(R2n) is pure second-
order, but not constant coefficient unless f0 is constant. Rewriting (7.3)
using jet coordinates we have that

(7.3)′ A ∈ Fx(J0, f0) ⇐⇒ AC > 0 and detC (AC) > f0(x)

The notion of F -harmonicity can be extended to u ∈ USC(X) as follows.
Define the Dirichlet dual of F to be the set

(7.5) F̃ = ∼ (−IntF ) = − (∼ IntF ) .

One can show that F̃ is also a subequation, i.e., it is a closed subset of the
(reduced) 2-jet bundle J2(X) satisfying conditions (P) and (T) (cf. [4] and
Definition 3.5 above).
Note that

(7.6) F ∩
(
−F̃
)

= F ∩ (∼ IntF ) = ∂F.

For any subequation F the notion of an upper semi-continuous F -sub-
harmonic function is defined by using test functions (see Definition 3.6),
and Definition 7.1 can be extended to continuous functions as follows.

Definition 7.3. — A function u ∈ C(X) is F -harmonic if u is F -
subharmonic and −u is F̃ -subharmonic on X.

The dual F̃ of F ≡ F (J, f) is defined fibre-wise by:

either (1) i∂∂(−u) > 0 and
(
i∂∂(−u)

)n
6 f(x)λ

or (2) i∂∂(−u) 6> 0.
(7.7)

Now suppose that Ω is an open set in X with smooth boundary ∂Ω and
that Ω = Ω ∪ ∂Ω is compact.

Definition 7.4. — We say that uniqueness holds for the F -Dirichlet
problem (DP) on Ω if given ϕ ∈ C(∂Ω) and v, w ∈ C(Ω) with v and w

both F -harmonic on Ω, then

v = w = ϕ on ∂Ω ⇒ v = w on Ω.

We say that existence holds for (DP) on Ω if given ϕ ∈ C(∂Ω), the
Perron function

U ≡ sup
F(ϕ)

u where F(ϕ) ≡
{
u ∈ USC(Ω) ∩ F (Ω) : u

∣∣
∂Ω 6 ϕ

}
satisfies

(1) U ∈ C(Ω), (2) U is F -harmonic on Ω and (3) U = ϕ on ∂Ω.
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Theorem 7.5 (The Dirichlet Problem). — For the subequation F =
F (J, f) on an almost complex manifold (X, J), we have the following.
Uniqueness holds for the F -Dirichlet problem on (Ω, ∂Ω) if the almost

complex manifold (X, J) supports a C2 strictly F (J)-plurisubharmonic
function.
Existence holds for the F -Dirichlet problem if (Ω, ∂Ω) has a strictly F (J)-

plurisubharmonic defining function.

Corollary 7.6. — On any almost complex manifold (X, J) each point
has a fundamental neighborhood system of domains (Ω, ∂Ω) for which both
existence and uniqueness hold for the Dirichlet problem.

Proof. — The idea is to apply the results of [4] to the subequations F =
F (J, f) despite the lack of a riemannian metric. Proposition 4.5 above states
that F (J) is locally jet equivalent to PC = F(J0), the standard constant
coefficient subequation on Cn, while, more generally, Proposition 7.8 below
states that F (J, f) is locally jet-equivalent to F(J0, f0), the subequation
described in Example 7.2.
Uniqueness. — This is a standard consequence of comparison.

Theorem 7.7 (Comparison). — If (X, J) supports a C2 strictly J-
plurisubharmonic function, then comparison holds for F ≡ F (J, f), that
is, for all u ∈ F (X), v ∈ F̃ (X), and compact subsets K ⊂ X:

u+ v 6 0 on ∂K ⇒ u+ v 6 0 on K.

Proof. — Section 10 in [4] contains a proof that any subequation F which
is locally affinely jet equivalent to a constant coefficient subequation F
must satisfy local weak comparison. Even though F(J0, f0) is not constant
coefficient, it is sufficiently close that the Theorem on Sums used in [4]
can be used to prove local weak comparison for F (J, f). This is done in
Proposition 7.9 below. Theorem 8.3 in [4] states that local weak comparison
implies weak comparison on X. Thus,

Weak comparison holds for F (J, f)
on any almost complex manifold (X, J).

(7.8)

It is easy to see that under fibre-wise sum

(7.9) F (J, f) + F (J) ⊂ F (J, f),

that is, the convex cone subequation F (J) is a monotonicity cone for
F (J, f).
Theorem 9.5 in [4] states that if there exists a C2 strictly F (J)-plurisub-

harmonic function on X, then the strict approximation property holds for
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F (J, f) on X. Finally, Theorem 9.2 in [4] states that for any subequation F ,
if both weak comparison and strict approximation hold, then comparison
holds on X. Modulo proving Propositions 7.8 and 7.9 below, this completes
the proof of comparison. �

Existence. — This is a consequence of Theorem 12.4 in [4], since it is
straightforward to see from the definition that strict boundary convexity
for F (J) is the same as strict boundary convexity for F (J, λ). �

In the case F = F (J, f), if w is C2 and (i∂∂w)n 6 fλ, i.e., J2w /∈ IntF ,
then v ≡ −w ∈ F̃ (X) and comparison applies to v, u for any u ∈ F (X). In
other words, u 6 w on ∂K ⇒ u 6 w on K. Therefore, as a special case
of comparison we have the following.

For all u which are J psh and satisfy (i∂∂u)n > fλ

in the viscosity sense, if w ∈ C2(X) satisfies (i∂∂w)n 6 fλ
and u 6 w on ∂K, then u 6 w on K.

(7.10)

Local Jet-Equivalence with the Standard Model

Recall the standard model in Example 7.2.

Proposition 7.8. — Choose local coordinates in R2n ∼= Cn as in Sec-
tion 4 above. In these coordinates the subequation F (J, f) is locally jet-
equivalent to the standard model subequation F(J0, f0) defined by

detC
(
∂2u

∂z∂z

)
> f0 and ∂2u

∂z∂z
> 0,

Here f0 = βf where β > 0 is a smooth function, independent of f .

By the definition of jet-equivalence this Proposition states that there
exists a GL+(R2n)-valued smooth function h and a (R2n)∗ × Sym2(R2n)-
valued smooth function L such that, with jet coordinates p = Du and
A = D2u,

(7.11) (p,A) ∈ Fx(J, f) ⇐⇒ h(x)Aht(x) + Lx(p) ∈ Fx(J0, f0).

Proof. — We recall the linear algebra from §4 (cf. Lemma 4.3) which
involves a finite dimensional real vector space T of dimension 2n with two
almost complex structures J and J0, and two volume forms λ and λ0, all
of which are orientation compatible. (We think of J0 and λ0 as “standard”
or “background” data.) Assume we are given g ∈ GL+(T ) such that

J = gJ0g
−1
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Let PC(T, J) ⊂ Sym2
R(T ) consist of all H ∈ Sym2

R(T ) such that:

(1) H is J−hermitian, i.e., J∗H = H and (2) H > 0.

Technically speaking, PC(T, J) is not a subequation, but it can be used to
define F (J) by setting

Fx(J) ≡ {J2
xϕ : Hx(ϕ) ∈ PC(T, J)}.

Using this notion we have, as a restatement of Proposition 4.5, where A ≡
D2
xϕ and p ≡ Dxϕ, that

(7.12) (p,A) ∈ Fx(J) ⇐⇒ g(x) (A+ J∗0A) gt(x) + Lx(p) ∈ PC(Cn, J0)

where Lx(p) ≡ g(x)(Ex(p) + J∗0Ex(p))gt(x) with E defined by (4.8). This
is the statement that F (J) and F (J0) are jet-equivalent.
Now with the notation of Lemma 4.3, set α = i∂∂ϕ, H ≡ H(ϕ) and H ≡

H(ϕ). Then H ′ ≡ g∗H = g(x) (A+ J∗0A) gt(x) +Lx(p) is the expression in
(7.12), and (7.12) is the statement that H ′ > 0 and H ′ is J0-hermitian.

Let β > 0 be defined by

(7.13) g∗λ = βλ0.

Then g∗(fλ) = fβλ0 = f0λ0 where f0 ≡ βf . Therefore,

(7.14) αn > fλ ⇐⇒ (g∗α)n > f0λ0 ⇐⇒ detCA′C > f0

where A′C ∈ Mn(C) is the matrix representative of α′ = g∗α ∈ Λ1,1(T, J0)
with respect to any volume-compatible (i.e., λ0-compatible) basis of
T1,0(J0). This completes the proof of Proposition 7.8. �

Local Weak Comparison

The Theorem on Sums can be used to prove a weaker form of comparison
for F ≡ F(J0, f) defined by:

(7.15) A ∈ Fx ⇐⇒ AC > 0 and detCAC > f(x),

as well as for F ≡ F (J, f) defined by:

(7.16) (p,A) ∈ Fx ⇐⇒ g(x)Agt(x) + Lx(p) ∈ Fx.

even though the model F(J0, f) is not constant coefficient.
A notion of strictness which is uniform is employed. Given c > 0, define

Fc by

(7.17) A ∈ Fcx ⇐⇒ B(A; c) ⊂ Fx
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where B(A; c) denotes the ball in Sym2
R(Cn) about A of radius c. Define

F c by

(7.18) (p,A) ∈ F cx ⇐⇒ g(x)Agt(x) + Lx(p) ∈ Fcx.

Thus F is jet-equivalent to F, and F c is jet-equivalent to Fc. Fix an open
set U ⊂ Cn.

Proposition 7.9. — If u ∈ F c(U) and v ∈ F̃ (U), then u + v satisfies
the maximum principle.

Proof. — If the maximum principle fails for u+v, then (by [4], Theorem
C.1) the following quantities exist and have the stated properties:

(1) zε = (xε, yε) → (x0, x0),

(2) (pε, Aε) ∈ F cxε and (qε, Bε) ∈ F̃yε ,

(3) pε = xε − yε
ε

= −qε and |xε − yε |2

ε
→ 0,

(4) − 3
ε
I 6

(
Aε 0
0 Bε

)
6

3
ε

(
I −I
−I I

)
.

It is straightforward to show that

(7.19) (q,B) ∈ F̃y ⇐⇒ g(y)Bgt(y) + Ly(q) ∈ F̃y.

(More generally, see Lemma 6.14 in [4].) Thus (2) can be written as
(2)′ A′ε ≡ g(xε)Aεgt(xε) + Lxε(pε) ∈ Fcxε , and

B′ε ≡ g(yε)Bεgt(yε) + Lyε(qε) ∈ F̃yε .

By definition of the dual, we have B′ε ∈ F̃yε if −B′ε /∈ IntFyε , that is:

(2)′′ either (i) −B′ε /∈ PC

or (ii) −B′ε ∈ PC but detC (−B′ε)C 6 f(yε).

Recall that PC ≡ {B : BC > 0}.
The calculation on page 442 of [4] proves that there exist Pε > 0 and a

number Λ > 0 such that

(7.20) g(xε)Aεgt(xε) + g(yε)Bεgt(yε) + Pε = Λ
ε
|xε − yε|2.

Setting Aε′′ ≡ A′ε + Pε, this proves

(5) −B′ε = Aε
′′ − Λ

ε
|xε − yε|2 − Lxε(pε)− Lyε(qε).

By positivity, A′ε ∈ Fcxε ⇒ Aε
′′ ∈ Fcxε , so that

(6) dist
(
Aε
′′,∼ Fxε

)
> c.
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This implies

(6)′ (i) dist
(
Aε
′′,∼ PC) > c and

(ii) detC
(
Aε
′′)

C > f(xε) +
(
c/
√
n
)n

The second inequality requires proof. Abbreviate x = xε. It suffices to
show that each point on the hypersurface Γ defined by detCAC = (f 1

n (x) +
(c/
√
n))n is distance 6 c from the hypersurface Γ′ defined by detCBC =

f(x). Note that B0 ≡ f
1
n (x)I ∈ Γ′ and the unit normal to Γ′ at B0 is

N = (1/
√
n)I. Set A0 = B0 + cN = (f 1

n (x) + (c/
√
n))I. Then detCA0 =

(f 1
n (x) + (c/

√
n))n so that A0 ∈ Γ. Note that dist(A0,Γ′) = c and other

points A ∈ Γ have smaller distance to Γ′. Therefore, dist(A,Γ′) > c implies
detCA > (f 1

n (x) + (c/
√
n))n > f(x) + (c/

√
n)n.

Suppose now that case (i) of (2)′′ holds, i.e., −B′ε /∈ PC. Then by (6)′(i)
we have ‖Aε′′ +B′ε‖ = dist

(
Aε
′′,−B′ε

)
> c. By (5),

(7.21) ‖Aε′′ +B′ε‖ = Λ‖I‖ |xε − yε|
2

ε
+
∥∥∥∥(Lxe − Lyε)

(
xε − yε

ε

)∥∥∥∥ .
This converges to zero as ε→ 0 by (3), so that this case (i) cannot occur

for ε > 0 small.
Finally, suppose Case (ii) of (2)′′ holds. By (6)′(ii) first and then (2)′′(ii)

we have:
(7.22)
c

1
n 6 detC

(
Aε
′′)

C−f(xε) 6 detC
(
Aε
′′)

C−detC
(
−Bε′

)
C +f(yε)−f(xε),

where (Aε′′)C > 0 and (−Bε′)C > 0. Again by (5) and (3), as ε → 0, the
RHS of (7.22) approaches zero, so this case cannot occur. This completes
the proof of the Comparison Theorem 7.7. �

Functions Which are Sub-the-Harmonics

With regard to the subequation F (J), since we have a notion of F (J)-
harmonic functions (Definition 7.3), one can also consider functions that
are “sub” these harmonics.

Definition 7.10. — A function u ∈ USC(X) is said to be sub-the-
F (J)-harmonics if for each compact set K ⊂ X and each F (J)-harmonic
function h on a neighborhood of K,

u 6 h on ∂K ⇒ u 6 h on K.
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Comparison for F (J) on K implies that each F (J)-subharmonic is also
sub-the-F (J)-harmonics. Since F (J)-subharmonicity is a local property,
the converse is an elementary consequence of local existence which follows
as in Remark 9.7 and Theorem 9.2 in [5]. This proves the following.

Theorem 7.11. — Given a function u ∈ USC(X),
u is F (J)-subharmonic ⇐⇒ u is sub-the-F (J)-harmonics.

In the language of [5] this says that F (J)visc = F (J)classical.

F -Maximal Equals F -Harmonic

There is a difference in the meaning of “solution” for our subequation
F = F (J, f), depending on whether one is grounded in pluripotential theory
or viscosity theory.

Definition 7.12. — A function u ∈ F (X) is F -maximal if for each
compact set K ⊂ X

v 6 u on ∂K ⇒ v 6 u on K
for all v ∈ USC(K) which are F -subharmonic on IntK

The maximality property for u is equivalent to comparison holding for
the function w ≡ −u (that is, v + w satisfies the zero maximum principle
for all functions v which are F -subharmonic).
Now comparison holds for F (J) and Perron functions U are F (J)-har-

monic on small balls. These facts can be used to show that following.

Proposition 7.13. — Given a function u ∈ F (X),
u is F (J)-harmonic ⇐⇒ u is F (J)-maximal.

8. Distributionally Plurisubharmonic Functions

So far we have discussed three notions of plurisubharmonicity on an
almost complex manifold: the viscosity notion, the standard notion using
restriction to holomorphic curves, and the notion of being sub-the-F (J)-
harmonics. In all three cases we start with the same object – an upper
semi-continuous function u. Theorem 6.2 states that these first two notions
are equal, while Theorem 7.7 states that the first and third notions are the
same. There is a yet another definition of plurisubharmonicity which starts
with a distribution u ∈ D′(X). (Let v > 0 stipulate that v is a non-negative
measure.)
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Definition 8.1. — A distribution u ∈ D′(X) on an almost complex
manifold (X, J) is distributionally J-plurisubharmonic on X if

(8.1) H(V, V )(u) > 0 for all V ∈ Γcpt(X,T1,0)

or equivalently

(8.2) H(v, v)(u) > 0 for all v ∈ Γcpt(X,TX).

This distributional notion can not be “the same”, but it is equivalent in
a sense we now make precise. In what follows we implicitly assume that
an F (J)-plurisubharmonic function u ∈ USC(X) is not ≡ −∞ on any
component of X.

Theorem 8.2.
(a) Suppose u is F (J)-plurisubharmonic. Then u ∈ L1

loc(X) ⊂ D′(X),
and u is distributionally J-plurisubharmonic.
(b) Suppose u ∈ D′(X) is distributionally J-plurisubharmonic. Then

u ∈ L1
loc(X), and there exists a unique upper semi-continuous representa-

tive ũ of the L1
loc-class u which is F (J)-plurisubharmonic. Moreover,

ũ(x) = ess lim sup
y→x

u(y).

Remark. — In light of Theorem 6.2, statement (a) above is equivalent
to a result of Nefton Pali (Thm. 3.9 in [9]), and statement (b) provides a
proof of his Conjecture 1 (p. 333 in [9]). Pali proves his conjecture under
certain assumptions on the distribution u (Thm. 4.1 in [9]).

Both notions of plurisubharmonicity in this theorem can be reformulated
using a family of “Laplacians”. To begin we consider the standard com-
plex structure on Cn. Recall (Example 4.4) that the standard subequation
PC ⊂ Sym2

R(Cn) is the set of real quadratic forms (equivalently symmet-
ric matrices) with non-negative J0-hermitian symmetric part. The starting
point is the following characterization of PC. Assume A ∈ Sym2

R(Cn). Then

(8.3) A ∈ PC ⇐⇒ 〈A,B〉 > 0 ∀B ∈ HSym2(Cn) with B > 0.

The proof is left to the reader.
Each positive definite B ∈ Sym2

R(RN ) defines a linear second-order op-
erator

(8.4) ∆Bu = 〈D2u,B〉

which we call the B-Laplacian.
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For C2-functions u, the equivalence (8.3) can be restated as a character-
ization of plurisubharmonic functions.
(8.3)′
u is psh ⇐⇒ ∆Bu > 0 ∀B ∈ HSym2(Cn) with B > 0.

Let

(8.5) HB ≡ {A ∈ Sym2
R(Cn) : 〈A,B〉 > 0}

be the subequation associated to the differential operator ∆B . Then (8.3)
can be restated as

(8.3)′′ PC =
⋂{

HB : B ∈ HSym2(Cn) with B > 0
}
.

Adopting the standard viscosity definition (using C2-test functions) for
HB-subharmonic upper semi-continuous functions u, it is immediate from
(8.3)′′ that for a C2-function ϕ, which is a test function for u, we have

(8.6) D2
xϕ ∈ PC ⇐⇒ D2

xϕ ∈ HB ∀B ∈ HSym2(Cn) with B > 0.

This proves the following.

Proposition 8.3. — An upper semi-continuous function u defined on
an open subset X of Cn is PC-plurisubharmonic if and only if it is ∆B-
subharmonic for every B-Laplacian, where B ∈ HSym2(Cn) with B > 0.

This proposition can be extended to F (J)-plurisubharmonic functions on
any almost complex manifold (X, J), because of Proposition 4.5
(jet-equivalence). Suppose that g : X → GL+

R (R2n) defines an almost
complex structure J = gJ0g

−1 as in Proposition 4.5, and let E : X →
Hom R(Cn,Sym2

R(Cn)) be defined as in (4.8).

Definition 8.4. — Given B ∈ HSym2(Cn) with B > 0, define the
B-Laplacian by

(8.7) LBu = 〈gBgt, D2u〉+ 〈Et(gBgt), Du〉.

Theorem 8.5. — An upper semi-continuous function u on X is F (J)-
plurisubharmonic if and only if it is viscosity LB-subharmonic for all B ∈
HSym2(Cn) with B > 0.

Proof. — Apply (4.15) and Definition 8.4. �

The parallel to Theorem 8.5 for distributional subharmonicity is also
true. The proof is left to the reader.

Definition 8.6. — A distribution u ∈ D′(X) is distributionally LB-
subharmonic if LBu is a non-negative measure on X.
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Theorem 8.7. — A distribution u ∈ D′(X) on an almost complex man-
ifold (X,J) is distributionally J-plurisubharmonic if and only if locally,
with LB defined by (8.7), u is distributionally LB-subharmonic for each
B ∈ HSym2(Cn) with B > 0.

Combining Theorems 8.5 and 8.7 reduces Theorem 8.2 to the linear ana-
logue for LB . This theorem is treated in the Appendix – completing the
proof of Theorem 8.2.

Corollary 8.8. — The concept of distributional J-plurisubharmoni-
city on an almost complex manifold (X, J) is equivalent to the notion of
standard J-plurisubharmonicity.

Proof. — Apply Theorem 8.2 and the restriction Theorem 5.2. �

9. The Non-Equivalence of Hermitian and Standard
Plurisubharmonic Functions

Whenever an almost complex manifold (X, J) is given a hermitian met-
ric, i.e., a riemannian metric 〈·, ·〉 such that Jx is orthogonal for all x, there
is an induced notion of hermitian plurisubharmonicity defined via the rie-
mannian hessian (cf. [4]). If the associated Kähler form ω(v, w) = 〈Jv,w〉
is closed, then the hermitian plurisubharmonic functions agree with the
intrinsic ones studied in this paper. However, in general they are not the
same. Proofs of these two assertions form the content of this section.
To begin we recall that on a riemannian manifold (X, 〈·, ·〉) each smooth

function ϕ has a riemannian hessian Hessϕ which is a section of Sym2(T ∗X)
defined on (real) vector fields v and w by

(Hessϕ)(v, w) = vwϕ− (∇vw)ϕ.

where ∇ denotes the Levi-Civita connection. If we are given J , orthogonal
with respect to 〈·, ·〉, then

(9.1) (HessCϕ)(v, w) ≡ (Hessϕ)(v, w) + (Hessϕ)(Jv, Jw)

is a well defined hermitian symmetric form on (TX, J), i.e., a section of
HSym2

R(TX). A function ϕ ∈ C2(X) is then defined to be hermitian
plurisubharmonic if HessCxϕ > 0 for all x ∈ X. This notion carries over
to arbitrary upper semi-continuous functions, and these have been used to
study complex Monge-Ampere equations in this setting (see [4]).
The natural question is: How are these hermitian psh-functions related

to the intrinsic ones? In one important case they coincide.
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Theorem 9.1. — Suppose that (X, J, 〈·, ·〉) is an almost complex her-
mitian manifold whose associated Kähler form is closed. Then the space
of hermitian plurisubharmonic functions on X coincides with the space of
standard plurisubharmonic functions.

Remark 9.2. — Manifolds of this type are important in symplectic
topology. Suppose that (X,ω) is a given symplectic manifold and J is an
almost complex structure on X such that

ω(v, Jv) > 0 for all tangent vectors v 6= 0.

(Such J always exist.) Then we can define an associated hermitian metric
by 〈v, w〉 = 1

2{ω(v, Jw) + ω(w, Jv)}. The triple (X, J, ω) is sometimes
called a Gromov manifold.

By a standard calibration argument, Theorem 9.1 is a direct consequence
of the following more general result.

Theorem 9.3. — Suppose that (X, J, 〈·, ·〉) is an almost hermitian man-
ifold in which all holomorphic curves are minimal surfaces (mean curvature
0). Then the space of hermitian plurisubharmonic functions on X coincides
with the space of standard plurisubharmonic functions.

Proof. — By Definition 8.4 we have

(9.2) H(ϕ)(v, v) = {vv + (Jv)(Jv) + J([v, Jv])}ϕ,

which combined with Definition 8.1 above gives the identity

(9.3) H(ϕ)(v, v) = (HessCϕ)(v, v) + {∇vv +∇Jv(Jv) + J([v, Jv])}ϕ.

Consider now the restriction of H(ϕ) to a holomorphic curve Σ, and sup-
pose the vector field v is tangent to Σ along Σ. Then Jv and J [Jv, v] are
also tangent to Σ along Σ. As we know the restriction of H(ϕ) to Σ agrees
with the intrinsic hessian on Σ and is given by the formula (9.2).

We now consider the restriction of the RHS of (9.3). The tangential
part ∇Tv v ≡ (∇vv)T is the intrinsic Levi-Civita connection on Σ. This
connection is torsion-free and preserves J , i.e., ∇TJ = 0. (It preserves J
since it preserves the metric and J is just rotation by π/2.) Thus
∇Tv v +∇TJv(Jv) + J([v, Jv]) = ∇Tv v +∇TJv(Jv) + J(∇Tv (Jv)−∇TJvv)

= ∇Tv v +∇TJv(Jv) + (∇Tv (J2v)−∇TJvJv)
= 0.

Hence, equation (9.3) becomes

(9.4) H(ϕ)(v, v) = (HessCϕ)(v, v) + {∇Nv v +∇NJv(Jv)}ϕ
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where ∇Nv v ≡ ∇vv −∇Tv v. This gives the following.

Lemma 9.4. — If v is a vector field tangent to a holomorphic curve Σ,
then along Σ we have

(9.5) H(ϕ)(v, v) = (HessCϕ)(v, v) + |v|2HΣ · ϕ

where HΣ is the mean curvature vector field of Σ in the given hermitian
metric.

Proof. — By definition, the second fundamental form of Σ is Bv,v =
∇Nv v. Also by definition HΣ = trB = Be,e+BJe,Je for a (any) unit tangent
vector e at the point. Formula (9.5) now follows from (9.4). �

Suppose now that all holomorphic curves are minimal. Then since every
tangent vector v on X is tangent to a holomorphic curve by [8], Lemma
9.4 implies that the subequations defined by H(ϕ) > 0 and HessC(ϕ) > 0
are the same. This completes the proof of Theorem 9.3. �

Now in general things are not so nice. Here are some examples which
show that the notions of hermitian and standard plurisubharmonicity are
essentially unrelated.

Example 9.5. — Consider

C2 = R4

with coordinates X = (z, w) = (x, y, u, v) and with the hermitian metric

(9.6) ds2 = |dX|2

(1 + |X|2)2

This is just the spherical metric in stereographic projection. Consider the
holomorphic curves

(9.7) Σx = {(x, 0)} × C ⊂ C× C

Think of these on the 4-sphere. They lie in the geodesic 3-sphere corre-
sponding to the 3-plane {x-axis }×C. They form a family of round 2-spheres
of constant mean curvature which are ⊥ to the geodesic corresponding to
the x-axis, and which fill out the 3-sphere. The mean curvature vector of
Σx is

HΣ
x = φ(x) ∂

∂x
where

xφ(x) > 0 for x 6= 0.
Now consider the plurisubharmonic function

u(z, w) = |f(z)|2
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where f is holomorphic. Since u is constant on the curve Σx we have ∆Σu =
0 and by formula (9.5) we have

trTpΣ {Hessu} = −HΣ · u.

Now choose f(z) = z so that u = |z|2 = x2 + y2. Then

trTpΣ {Hessu} = −2xφ(x) < 0.

We conclude that:
Not every standard plurisubharmonic function on C2

is hermitian plurisubharmonic for this hermitian metric.
Conversely, we now show that

Not every hermitian plurisubharmonic function on C2, with this metric,
is plurisubharmonic in the standard sense.

Our example is local. To facilitate computation we make the following
change of coordinates. Consider S4 ⊂ R5 (standardly embedded) and let
Φ : S4 → R4 denote stereographic projection, where R4 = C2 is our space
above. Fix a point (a, 0, 0, 0) ∈ R4 (a > 0). Then there is a unique rotation
R of S4 about the (y, u, v)-plane (i.e., a rotation of the (x, {vertical}) 2-
plane) which carries Φ−1(a, 0, 0, 0) to the south pole (−1, 0, 0, 0, 0, ). Let
Ψ = Φ ◦ R ◦ Φ−1 be the change of coordinates. Note that Ψ(a, 0, 0, 0) =
(0, 0, 0, 0).

Since R is an isometry, the metric (9.6) is unchanged by this transfor-
mation.
Of course the complex structure on C2 has been conjugated. In particular

the holomorphic curve Σa in (9.7) has been transformed to the round 2-
sphere passing through the origin:

(9.8) Σ ≡ {(x, 0, u, v) : (x− r)2 + u2 + v2 = r2}

where r = r(a) > 0.
Consider now the function

u(x, y, u, v) = 1
2
(
x2 + y2 + u2 + v2)− Cx

for C > 0. At the origin 0 ∈ R4 the hermitian hessian (= the riemannian
4-sphere hessian) agrees with the standard coordinate hessian (since all the
Christoffel symbols Γkij vanish at 0). Thus

Hess0u = Id,

and we conclude that u is hermitian plurisubharmonic in a neighborhood
of 0.

ANNALES DE L’INSTITUT FOURIER



POTENTIAL THEORY ON ALMOST COMPLEX MANIFOLDS 203

On the other hand, the Laplace-Beltrami operator on Σ satisfies

∆Σu = trTΣ(Hessu) +HΣ · u

where HΣ is the mean curvature vector of the 2-sphere Σ. Since HΣ =
(2/r) ∂

∂x , we conclude that

(9.9) (∆Σu)0 = 2− 2
r
C < 0

if C > r. The conformal structure on Σ is the one induced from S4. Hence
(9.9) implies that u

∣∣
Σ is strictly superharmonic on a neighborhood of 0,

and the assertion above is proved.

To Summarize. — On the hermitian complex manifold (C2, ds2) not
every standard plurisubharmonic function is hermitian plurisubharmonic,
and conversely, not every hermitian plurisubharmonic function is plurisub-
harmonic in the standard sense.

Final Remark. — The riemannian hessian is a bundle map

(9.10) Hess : J2(X) −→ Sym2(T ∗X)

and, as such, splits the fundamental exact sequence 0 → Sym2(T ∗X) →
J2(X)→ T ∗X → 0. The importance of this for nonlinear equations on rie-
mannian manifolds is the following. Each constant coefficient pure second-
order subequation F0 ⊂ Sym2(Rn), which is O(n)-invariant, naturally
induces a sub-fibre-bundle F0 ⊂ Sym2(T ∗X), and therefore determines
F ⊂ J2(X) by

F = Hess−1(F0).
The situation is analogous on an almost complex manifold (X, J). The

real form of the complex hessian is a bundle map

(9.11) H : J2(X) −→ HSym2(T ∗X) ⊂ Sym2(T ∗X).

Any F0 ⊂ HSym2(Cn) which is GLC(n)-invariant and satisfies F0 + PC ⊂
F0 naturally induces a sub-fibre-bundle F0 ⊂ HSym2(T ∗X), and therefore
determines F ⊂ J2(X) by

F = H−1(F0).

In both cases the resulting subequation is locally jet-equivalent to a con-
stant coefficient equation.

There is “overlap” here corresponding to the cases HessC(ϕ) > 0 and
H(ϕ) > 0 discussed above. As shown in Example 9.5, for general hermitian
metrics these two subequations are not the same.
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We note that the map (9.11) can be used to understand the polar cone
F (J)0⊂J2(X) (the lower 2-jet bundle). It is the image of PC⊂HSym2(TX)
under the dual map Hess∗ : HSym2(TX)→ J2(X).
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Appendix A. The Equivalence of the Various Notions
of Subharmonic for Reduced Linear Elliptic Equations

Consider the reduced linear operator

Lu(x) = a(x) ·D2u(x) + b(x) ·Du(x)

where a and b are C∞ on an open set X ⊂ Rn, and a > 0 is positive
definite at each point. A C2-function u on X is said to be L-subharmonic if
Lu > 0 and L-harmonic if Lu = 0. These notions can be generalized using
two completely different kinds of “test functions”.

Definition A.1. — A function u ∈ USC(X) is L-subharmonic in the
viscosity sense if for every x ∈ X and every test function ϕ for u at x,
Lϕ(x) > 0 (cf. §3). Let SHvisc(X) denote the set of these.
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Definition A.2. — A distribution u ∈ D′(X) is L-subharmonic in the
distributional sense if (Lu)(ϕ) ≡ u(Ltϕ) > 0 for every non-negative test
function ϕ ∈ C∞cpt(X), or equivalently, if Lu > 0, i.e., Lu is a positive
measure on X. Let SHdist(X) denote the set of these.

We say that u is viscosity L-harmonic if both u and −u are viscosity L-
subharmonic. We say that u is distributionally L- harmonic if Lu = 0 as a
distribution. In both cases there is a well developed theory of L-harmonics
and L-subharmonics.
For example, the L-harmonics, both distributional and viscosity, are

smooth. This provides the proof that the two notions of L-harmonic are
identical. It is not as straightforward to make statements relating SHvisc(X)
to SHdist(X) since they are composed of different objects. The bridge is
partially provided by the following third definition of L-subharmonicity.

Definition A.3. — A function u ∈ USC(X) is classically L-subhar-
monic if for every compact set K ⊂ X and every L-harmonic function ϕ

defined on a neighborhood of K, we have

(1) u 6 ϕ on ∂K ⇒ u 6 ϕ on K.

Let SHclass(X) denote the set of these.

We always assume that u is not identically −∞ on any connected com-
ponent of X.

In both the viscosity case and the distributional case a great number of
results have been established including the following.

Theorem A.4.

SHvisc(X) = SHclass(X)

Theorem A.5.

SHdist(X) ∼= SHclass(X)

Note that Theorem A.4 can be stated as an equality since elements of
both SHvisc(X) and SHclass(X) are a priori in USC(X). By contrast, The-
orem A.5 is not a precise statement until the isomorphism/equivalence is
explicitly described.
Theorem A.5 requires careful attention, especially since in applications

(such as the one in this paper) the isomorphism sending u ∈ SHdist(X)
to ũ ∈ SHclass(X) is required to produce the same upper semi-continuous
function ũ ∈ USC(X) independent of the operator L.

Separating out the two directions we have:
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Theorem A.6. — If u ∈ SHclass(X), then u ∈ L1
loc(X) ⊂ D′(X) and

Lu > 0, that is, u ∈ SHdist(X).

Theorem A.7. — Suppose u ∈ SHdist(X). Then u ∈ L1
loc(X). More-

over, there exists an upper semi-continuous representative ũ of the L1
loc-

class u with ũ ∈ SHclass(X). Furthermore,

ũ(x) ≡ ess lim
y→x

u(y) ≡ lim
r↘0

ess sup
Br(x)

u

is the unique such representative.

The precise statements, Theorem A.6 and Theorem A.7, give meaning
to Theorem A.5.

Finally we outline some of the proofs.
Outline for Theorem A.4. — Assume u ∈ SHvisc(X) and h is harmonic

on a neighborhood of a compact set K ⊂ X with u 6 h on ∂K. Since ϕ is
a test function for u at x0 if an only if ϕ − h is a test function for u − h
at x0, we have u− h ∈ SHvisc(X). Since the maximum principle applies to
u− h, we have u 6 h on K.
Now suppose u /∈ SHvisc(X). Then there exists x0 ∈ X and a test func-

tion ϕ for u at x0 with (Lϕ)(x0) < 0. We can assume (cf. [4, Prop. A.1])
that ϕ is a quadratic and

u− ϕ 6 −λ|x− x0|2 for |x− x0| 6 ρ and
= 0 at x0

for some λ, ρ > 0. Set ψ ≡ −ϕ + ε where ε = λρ2. Then ψ is (strictly)
subharmonic on a neighborhood of x0. Let h denote the solution to the
Dirichlet Problem on B ≡ Bρ(x0) with boundary values ψ. Since h is the
Perron function for ψ

∣∣
∂B

and ψ is L-subharmonic on B, we have ψ 6 h

on B. Hence, −h(x0) 6 −ψ(x0) = ϕ(x0)− ε < u(x0). However, on ∂B we
have u 6 ϕ− λρ2 = −ψ = −h. Hence, u /∈ SHclass(X). �

Outline for Theorem A.6. — This theorem is part of classical potential
theory, and a proof can be found in [15], which also treats the hypo-elliptic
case. For fully elliptic operators L we outline the part of the proof showing
that u ∈ L1

loc(X).
Consider u ∈ SHclass(X). Fix a ball B ⊂ X, and let P (x, y) be the

Poisson kernel for the operator L on B (cf. [13]). Then we claim that for
x ∈ IntB,

(A.1) u(x) 6
∫
∂B

P (x, y)u(y)dσ(y)
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where σ is standard spherical measure. To see this we first note that for
ϕ ∈ C(∂B), the unique solution to the Dirichlet problem for an L-harmonic
function on B with boundary values ϕ is given by h(x) =

∫
∂B

P (x, y)ϕ(y)
dσ(y). Since u ∈ SHclass(X) we conclude that

u(x) 6
∫
∂B

P (x, y)ϕ(y)dσ(y)

for all ϕ ∈ C(∂B) with u
∣∣
∂B
6 ϕ. The inequality (A.1) now follows since

u
∣∣
∂B

is u.s.c., and u
∣∣
∂B

= inf{ϕ ∈ C(∂B) : u 6 ϕ}.
Note that the integral (A.1) is well defined (possibly = −∞) since u is

bounded above.
Consider a family of concentric balls Br(x0) in X for r0 6 r 6 r0 + κ

and suppose x ∈ Br0 . Then for any probability measure ν on the interval
[r0, r0 + κ] we have

(A.2) u(x) 6
∫

[r0,r0+κ]

∫
∂Br

Pr(x, y)u(y)dσ(y) dν(r)

where Pr denotes the Poisson kernel for the ball Br. Let E ⊂ X be the set
of points x such that u is L1 in a neighborhood of x. Obviously E is open.
Using (A.2) we conclude that if x /∈ E then u ≡ −∞ in a neighborhood
of x (cf. Thm. 1.6.9 in [16]). Hence both E and its complement are open.
Since we assume that u is not ≡ −∞ on any connected component of X,
we conclude that u ∈ L1

loc(X).
It remains to show that Lu > 0. This is exactly Theorem 1 on page 136

of [15]. �

Outline for Theorem A.7. — In a neighborhood of any point x0 ∈ X

the distribution u ∈ SHdist(X) is the sum of an L-harmonic function and
a Green’s potential

(A.3) v(x) =
∫
G(x, y)µ(y)

where µ > 0 is a non-negative measure with compact support. Here G(x, y)
is the Green’s kernel for a ball B about x0. It suffices to prove Theorem A.7
for Green’s potentials v given by (A.3). The fact that v ∈ L1(B) is a stan-
dard consequence of the fact that G ∈ L1(B×B) with singular support on
the diagonal. Since G(x, y) 6 0, (A.3) defines a point-wise function v(x)
near x0 with values in [−∞, 0]. By replacing G(x, y) with the continuous
kernel Gn(x, y), defined to be the maximum of G(x, y) and −n, the integrals
vn(x) =

∫
Gn(x, y)µ(y) provide a decreasing sequence of continuous func-

tions converging to v. Hence, v is upper semi-continuous. The maximum
principle states that v ∈ SHclass(X).
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Finally we prove that if u ∈ L1
loc(X) has a representative v ∈ SHclass(X),

then v = ũ. Since

(A.4) ess sup
Br(x)

u = esssup
Br(x)

v 6 sup
Br(x)

v,

and v is upper semi-continuous, it follows that ũ(x) 6 v(x).
Applying (A.2) to v and using the fact that

∫
Pr(x, y)dσ(y) = 1 (since 1

is L-harmonic) yields

v(x0) 6 1
κ

∫
[0,κ]

∫
∂Br

Pr(x0, y)v(y)dσ(y) dr

6

(
ess sup

Bκ

v

)
1
κ

∫
[0,κ]

∫
∂Br

Pr(x0, y)dσ(y) dr

= ess sup
Bκ

v = ess sup
Bκ

u

proving that v(x0) 6 ũ(x0). �

Remark A.8. — The construction of ũ above is quite general and enjoys
several nice properties, which we include here. To any function u ∈ L1

loc(X)
we can associate its essential upper semi-continuous regularization:

ũ(x) = ess lim
y→x

u(y) ≡ lim
r↘0

ess sup
Br(x)

u

This clearly depends only on the L1
loc-class of u.

Lemma A.9. — For any u ∈ L1
loc(X), the function ũ is upper semi-

continuous. Furthermore, for any v ∈ USC(X) representing the L1
loc-class

u, we have ũ 6 v, and if x ∈ X is a Lebesgue point for u with value u(x),
then u(x) 6 ũ(x).

Proof. — To show that ũ is upper semi-continuous, i.e., lim supy→x ũ(y)6
ũ(x), it suffices to show that

sup
Br(x)

ũ 6 ess sup
Br(x)

u

and then let r ↘ 0. However, if Bρ(y) ⊂ Br(x), then

ũ(y) = lim
ρ→0

esssup
Bρ(y)

u 6 ess sup
Br(x)

u.

Letting r ↘ 0 in (A.4) proves that ũ(x) 6 v(x).
For the last assertion of the lemma suppose that x is a Lebesgue point

for u with value u(x), i.e., by definition

lim
r→0

1
|Br(x)|

∫
|u(y)− u(x)| dy = 0,
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and hence the value u(x) must be the limit of the means

u(x) = lim
r→0

1
|Br(x)|

∫
u(y) dy 6 lim

r→0
ess sup

Br(x)
u = ũ(x).

�

Remark A.10. — Theorem A.4 holds for any linear operator L with
a > 0 provided that

• L-harmonic functions are smooth,
• The maximum principle holds for u ∈ SHvisc(X),
• The Perron function gives the unique solution for the Dirichlet prob-
lem for L.

Some Historical/Background Remarks. — The equivalence of SHvisc(X)
and SHdist(X) for linear elliptic operators has been addressed by Ishii [18],
who proves the result for continuous functions but leaves open the case
where u ∈ SHvisc(X) is a general upper semi-continuous function and the
case where u ∈ SHdist(X) is a general distribution. The proof that “classical
implies distributional” appears in [15] where the result is proved for even
more general linear hypoelliptic operators L. Other arguments that “viscos-
ity implies distributional” are known to Hitoshi Ishii and to Andrzej Swiech.
A treatment of mean value characterizations of L-subharmonic functions
(again for subelliptic L) can be found in [11]. A general introduction to
viscosity theory appears in [12]. A good discussion of the Greens kernel
appears in [13], and the explicit construction of the Hadamard parametrix
is found in 17.4 of [17].

The arguments outlined here are presented in more detail and for general
convex subequations on manifolds in [14].
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