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TWISTED COTANGENT SHEAVES AND A
KOBAYASHI-OCHIAI THEOREM FOR FOLIATIONS

by Andreas HÖRING

Abstract. — Let X be a normal projective variety, and let A be an ample
Cartier divisor on X. Suppose that X is not the projective space. We prove that the
twisted cotangent sheaf ΩX⊗A is generically nef with respect to the polarisation A.
As an application we prove a Kobayashi-Ochiai theorem for foliations: if F ( TX

is a foliation such that detF ≡ iF A, then iF is at most the rank of F .
Résumé. — Soit X une variété projective normale et A un diviseur de Cartier

ample sur X. Supposons que X n’est pas l’espace projectif. Nous montrons que
le faisceau cotangent tordu ΩX ⊗ A est génériquement nef par rapport à la pola-
risation A. Comme conséquence nous obtenons un théorème de Kobayashi-Ochiai
pour les feuilletages : si F ( TX est un feuilletage tel que detF ≡ iF A, alors iF
est au plus le rang de F .

1. Introduction

Let X be a smooth complex projective variety of dimension n. A classical
theorem of Kobayashi and Ochiai [21] characterises the projective space as
the unique variety having an ample Cartier divisor A such that KX +
(n + 1)A is trivial and hyperquadrics as the varieties such that KX + nA

is trivial. This result can be seen as the starting point of the adjunction
theory of projective manifolds, combined with the minimal model program
this theory gives us very precise information about the relation between
the positivity of the canonical divisor KX and some polarisation A on X.
The aim of this paper is to prove a basic result relating the positivity of
the cotangent sheaf ΩX to a polarisation:

Theorem 1.1. — Let X be a normal projective variety of dimension n,
and let A be an ample Cartier divisor on X. Then one of the following
holds:
Keywords: Cotangent sheaf, foliations, Kobayashi-Ochiai theorem.
Math. classification: 14F10, 37F75, 14M22, 14E30, 14J40.



2466 Andreas HÖRING

a) We have (X,OX(A)) ' (Pn,OPn(1)); or
b) The twisted cotangent sheaf ΩX ⊗A is generically nef with respect

to A.
If the twisted cotangent sheaf ΩX⊗A is not generically ample with respect
to A, one of the following holds:

c) There exists a normal projective variety Y of dimension at most
n− 1 and a vector bundle V on Y such that X ′ := P(V ) admits a
birational morphism µ : X ′ → X such that OX′(µ∗A) ' OP(V )(1);
or

d) (X,OX(A)) ' (Qn,OQn(1)) where Qn ⊂ Pn+1 is a (not necessarily
smooth) quadric hypersurface.

As an application we obtain a bound for the index of a Q-Fano distribu-
tion:

Corollary 1.2. — Let X be a normal projective variety, and let A be
an ample Cartier divisor on X. Let F ( TX be a subsheaf of rank r > 0
such that detF is Q-Cartier and detF ≡ iFA. Then we have iF 6 r.

Indeed if we had iF > r, then ΩX⊗A→ F∗⊗A would be a quotient with
antiample determinant, in particular ΩX ⊗A would not be generically nef
with respect to A, in contradiction to the first part of Theorem 1.1. This
Kobayashi-Ochiai theorem for foliations generalises similar results obtained
recently by Araujo and Druel [3, Thm. 1.1, Sect. 4]. Note that the method
of proof is quite different: while the work of Araujo and Druel is based on
the geometry of the general log-leaf, Theorem 1.1 improves a semipositivity
result for ΩX ⊗ A proven in [18]. The proof of this semipositivity results
relies on comparing the positivity of a foliation F ⊗A along a very general
curve C ⊂ X with the positivity of a relative canonical divisor KX′/Y +
rµ∗A (cf. Section 3). The advantage of this technique is that we can make
weaker assumptions on the variety X or the foliation F , the disadvantage is
that we do not get any information about the singularities of the foliation F .
For the description of the boundary case in Corollary 1.2 we therefore follow
closely the arguments in [3, Thm. 4.11]:

Theorem 1.3. — Let X be a normal projective variety, and let A be
an ample Cartier divisor on X. Let F ( TX be a foliation of rank r > 0
such that detF is Q-Cartier and detF ∼Q rA.
Then X is a generalised cone, more precisely there exists a normal pro-

jective variety Y and an ample line bundleM on Y such that X ′ := P(M⊕
O⊕r

Y ) admits a birational morphism µ : X ′ → X such that µ∗TX′/Y = F
and OX′(µ∗A) ' OP(M⊕O⊕r

Y
)(1).

ANNALES DE L’INSTITUT FOURIER



TWISTED COTANGENT SHEAVES 2467

This statement generalises a classical theorem of Wahl [28, 11] on ample
line bundles contained in the tangent sheaf. If X is smooth, then Corol-
lary 1.2 and Theorem 1.3 are special cases of the characterisation of the pro-
jective space and hyperquadrics by Araujo, Druel and Kovács [5, Thm. 1.1].
Vice versa, Theorem 1.1 yields a weak version of [5, Thm. 1.2], [27, Thm. 1.1]
for normal varieties:

Corollary 1.4. — Let X be a normal projective variety of dimen-
sion n, and let A be an ample Cartier divisor on X. Suppose that for some
positive m ∈ N we have

H0(X, ((TX ⊗A∗)⊗m)∗∗) 6= 0.

Then one of the following holds:
a) There exists a normal projective variety Y of dimension at most

n− 1 and a vector bundle V on Y such that X ′ := P(V ) admits a
birational morphism µ : X ′ → X such that OX′(µ∗A) ' OP(V )(1);
or

b) (X,OX(A)) ' (Qn,OQn(1)) where Qn ⊂ Pn+1 is a (not necessarily
smooth) quadric hypersurface.

Indeed if ΩX⊗A is generically ample, then (ΩX⊗A)⊗m is generically am-
ple for every positive m ∈ N by [24, Cor. 6.1.16]. In particular its dual does
not have any non-zero global section, in contradiction to the assumption.
Thus the second part of Theorem 1.1 applies.

Acknowledgements. — I would like to thank Frédéric Han for patiently
answering my questions about Schur functors. The author was partially
supported by the A.N.R. project “CLASS”. This work was done while
the author was a member of the Institut de Mathématiques de Jussieu
(UPMC).

2. Basic results

We work over the complex numbers, topological notions always refer to
the Zariski topology. If V is a locally free sheaf of OX -modules on a vari-
ety X, we denote by P(V ) the projectivisation in the sense of Grothendieck
and by OP(V )(1) its tautological line bundle.
We will frequently use the terminology and results of the minimal model

program (MMP) as explained in [23] or [9]. For some standard definitions
concerning the adjunction theory of (quasi-)polarised varieties we refer
to [13, 7, 17].
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2468 Andreas HÖRING

Definition 2.1. — Let X be a normal projective variety of dimension
n polarised by an ample Cartier divisor H. Let F be a torsion-free sheaf
on X. A MR-general curve C ⊂ X is an intersection

D1 ∩ · · · ∩Dn−1

for general Dj ∈ |mH| where m � 0 such that the Harder-Narasimhan
filtration of F|C is the restriction of the Harder-Narasimhan filtration of F
with respect to H.

The abbreviation MR stands for Mehta-Ramanathan, alluding to the
well-known fact [25, 12] that for m ∈ N sufficiently high the Harder-
Narasimhan filtration commutes with restriction to a general complete in-
tersection curve.
Let X be a normal projective variety, and let F be a coherent sheaf that

is locally free in codimension one. A MR-general curve C is contained in
the open set where X is smooth and F is locally free, in particular F|C is
a vector bundle.

Definition 2.2. — Let X be a normal projective variety of dimension
n, and let F be a coherent sheaf onX that is locally free in codimension one.
The sheaf F is generically nef (resp. ample) with respect to a polarisation
H if its restriction to a MR-general curve C is a nef (resp. ample) vector
bundle.

Remark 2.3. — Since the Harder-Narasimhan filtration of a torsion free
sheaf F commutes with restriction to C, the sheaf F is generically nef with
respect to H if and only if

µH(Fk/Fk−1) > 0,

where Fk/Fk−1 is the last graded piece of the Harder-Narasimhan filtration
and µH(.) the slope with respect to H.

The following definition is a slight modification of the definition of a
generalised cone [7, 1.1.8]:

Definition 2.4. — Let F be a normal projective variety, and let A be
an ample Cartier divisor on F . We say that F , or more precisely the po-
larised variety (F,OF (A)), has a cone structure if there exists a normal pro-
jective varietyG, an ample vector bundleM onG, and a positive d ∈ N such
that the projectivised vector bundle F ′ := P(M⊕O⊕d

G ) admits a birational
morphism µ : P(M ⊕O⊕d

G )→ F such that OF ′(µ∗A) ' OP(M⊕O⊕d
G

)(1).

Cone structures appear naturally in the classification of normal projec-
tive varieties such that KX is not necessarily Q-Cartier:

ANNALES DE L’INSTITUT FOURIER



TWISTED COTANGENT SHEAVES 2469

Lemma 2.5. — Let F be a normal projective variety of dimension r that
is rationally connected, and let A be an ample Cartier divisor on F . Let
σ : F̃ → F be a desingularisation. Suppose that we have

(2.1) κ(F̃ ,K
F̃

+ jσ∗A) = −∞

for every j ∈ Q such that 0 6 j < r. Then the polarised variety (F,OF (A))
is isomorphic to one of the following varieties:

a) (Pr,OPr (1)); or
b) (Qr,OQr (1)) where Qr ⊂ Pr+1 is a normal quadric hypersurface;

or
c) (P(V ),OP(V )(1)) where V is an ample vector bundle on P1; or
d) F has a cone structure over P1.

If we have κ(F̃ ,K
F̃

+ rσ∗A) = −∞, then (F,OF (A)) is isomorphic to
(Pr,OPr (1)).

Proof. — Note first that K
F̃

+ jσ∗A is not pseudoeffective for every
0 6 j < r. Indeed ifK

F̃
+jσ∗A is pseudoeffective for j < r thenK

F̃
+j′σ∗A

is big for every j < j′ < r, in contradiction to (2.1).
Using the terminology of [17, 2] we will run a K

F̃
+ (r − ε)σ∗A-MMP

F̃ := F̃0 99K F̃1 99K · · · 99K F̃s

where 0 < ε � 1
2 . Its outcome is a quasi-polarised variety (F̃s,OF̃s

(As))
with terminal singularities admitting an elementary contraction of fibre
type ψ : F̃s → G such that K

F̃s
+ (r − ε)As is ψ-antiample. Let Γ be the

extremal ray contracted by the first step of this MMP. If the correspond-
ing elementary contraction is birational, we know by [2, Prop. 3.6] that
σ∗A · Γ = 0. Since A is ample this implies that every fibre of the extremal
contraction is contained in a σ-fibre. Thus by the rigidity lemma there ex-
ists a morphism F̃1 → F . Arguing inductively we see that there exists a
birational morphism ν : F̃s → F such that As ' ν∗A. Note that ν is an
isomorphism if and only if As is ample.
We will now use the classification results of [2, Prop. 3.5], [7, Table 7.1].

Note that the nefvalue of the generalised cone Cr(P2,OP2(2)) over the
Veronese surface (P2,OP2(2)) is r − 1

2 < r − ε [7, Table 7.1], so it is not
isomorphic to (F̃s,OF̃s

(As)). Thus we obtain that (F̃s,OF̃s
(As)) is one of

the following quasi-polarised varieties:
a) (Pr,OPr (1)); or
b) (Qr,OQr (1)) where Qr ⊂ Pr+1 is a hyperquadric; or
c) a (Pr−1,OPr−1(1)) bundle over P1.

TOME 64 (2014), FASCICULE 6



2470 Andreas HÖRING

The first two cases correspond to the first two cases in the statement.
In the third case we have F̃s ' P(V ) with V := ψ∗(OF̃s

(As)) nef and
big. If V is not ample, F has a cone structure, otherwise F̃s ' F is a
projective bundle. This proves the first statement, the second statement is
an immediate consequence of the classification obtained in the first part.

�

Lemma 2.6. — LetXC be a normal projective variety of dimension r+1,
and let A be a Cartier divisor on XC . Let pC : XC → C be a fibration onto
a smooth curve C such that A is pC-ample. Suppose moreover that the
general fibre (F,OF (A)) is isomorphic to (Qr,OQr (1)) where Qr ⊂ Pr+1 is
a quadric hypersurface.
Then XC → C is a quadric bundle, i.e. the variety XC has at most

canonical singularities and there exists a Cartier divisor M on C such that

(2.2) KXC/C + rA ' p∗CM.

Proof. — Note first that up to replacing A by A+p∗CD forD a sufficiently
ample divisor on C we can suppose without loss of generality that A is
ample. Let ν : X̃C → XC be the canonical modification of XC , that is X̃C

is the unique normal projective variety with at most canonical singularities
such that K

X̃C
is ν-ample [22, Thm.1.31]. Since a normal quadric has at

most canonical singularities, we see that ν is an isomorphism over the
generic point of C. Thus the restriction of K

X̃C
+ rν∗A to the general fibre

of pC ◦ ν is trivial.
Suppose first that K

X̃C
+ rν∗A is not (pC ◦ ν)-nef. Then there exists a

Mori contraction ψ : X̃C → X ′C contracting an extremal ray Γ such that
(K

X̃C
+ rν∗A) · Γ < 0. Since K

X̃C
+ rν∗A is (pC ◦ ν)-pseudoeffective, the

contraction ψ is birational. Since (K
X̃C

+ rν∗A) · Γ < 0 we know by [1,
Thm. 2.1, II,i] that all the ψ-fibres have dimension strictly larger than r

unless ν∗A · Γ = 0. Since dimXC = r + 1 we see that ν∗A · Γ = 0. The
divisor A being ample this implies that the ψ-fibres are contained in the
ν-fibres. Yet K

X̃C
is ν-ample, a contradiction.

Thus K
X̃C

+ rν∗A is (pC ◦ ν)-nef and trivial on the general fibre. By a
well-known application of Zariski’s lemma [6, Lemma 8.2] this implies that

K
X̃C

+ rν∗A ' ν∗p∗CM

for some Cartier divisor M on C. In particular K
X̃C

is ν-trivial. Yet K
X̃C

is ν-ample, so ν is an isomorphism. �

ANNALES DE L’INSTITUT FOURIER



TWISTED COTANGENT SHEAVES 2471

3. The twisted cotangent sheaf

The setup of the proof of Theorem 1.1 is analogous to that of [18,
Thm. 3.1]:

Setup 3.1. — Let X be a normal projective variety of dimension n,
and let A be an ample Cartier divisor on X. Let H be a polarisation on X.
Denote by TX := Ω∗X the tangent sheaf of X, and let

0 = F0 ( F1 ( · · · ( Fk = TX

be the Harder-Narasimhan filtration of TX with respect to H. Then for ev-
ery i ∈ {1, . . . , k}, the graded pieces Gi := Fi/Fi−1 are semistable torsion-
free sheaves and if µH(Gi) denotes the slope, we have a strictly decreasing
sequence

(3.1) µH(G1) > µH(G2) > · · · > µH(Gk).

Since twisting with a Cartier divisor does not change the stability properties
of a torsion-free sheaf, the Harder-Narasimhan filtration of TX ⊗A∗ is

0 = F0 ⊗A∗ ( F1 ⊗A∗ ( · · · ( Fk ⊗A∗ = TX ⊗A∗

with graded pieces Gi ⊗A∗ and slopes

µH(Gi ⊗A∗) = µH(Gi)−A ·Hn−1.

Since stability is invariant under replacing the polarisation H by some
positive multiple, we can suppose that the polarisation H is very ample
and

C := D1 ∩ · · · ∩Dn−1

with Di ∈ |H| is a MR-general curve.

Suppose now that ΩX ⊗ A is not generically ample with respect to the
polarisation H, i.e. suppose that we have µH(F1 ⊗A∗) > 0.
Fix a l ∈ {1, . . . , k} such that µH(Gl ⊗ A∗) > 0. By the Mehta-

Ramanathan theorem [25, Thm. 6.1] the Harder-Narasimhan filtration com-
mutes with restriction to C, so for i ∈ {1, . . . , l}, the vector bundles
(Gi ⊗ A∗)|C are semistable with non-negative slope, hence nef. Since A
is ample, the vector bundles (Gi)|C are ample. Thus Fl|C is ample and we
have

(3.2) µH(Fl ⊗A∗) =
l∑

i=1

rkGi

rkFl
µH(Gi ⊗A∗) > 0.

Note that by (3.1) we have equality if and only if l = 1 and µH(F1 ⊗
A∗) = 0. We know by standard arguments in stability theory [26, p. 61ff]

TOME 64 (2014), FASCICULE 6



2472 Andreas HÖRING

that Fl is integrable, moreover the MR-general curve C does not meet the
singular locus of the foliation. Thus we can apply the Bogomolov-McQuillan
theorem [8, Thm. 0.1], [20, Thm. 1] to see that the closure of a Fl-leaf
through a generic point of C is algebraic and rationally connected. Since C
moves in a covering family the general Fl-leaf is algebraic with rationally
connected closure.
We set r := rkFl. If C(X) denotes the Chow variety of X, we get a

rational map X 99K C(X) that sends a general point x ∈ X to the closure
of the unique leaf through x. Let Y be the normalisation of the closure of
the image, and let X ′ be the normalisation of the universal family over Y .
By construction the natural map µ : X ′ → X is birational and the fibration
ϕ : X ′ → Y is equidimensional of dimension r, the general fibre being the
normalisation of the closure of a general Fl-leaf. The restriction of µ to
every ϕ-fibre is finite, so µ∗A is ϕ-ample.

Let F be a general ϕ-fibre. The following lemma describes F :

Lemma 3.2. — In the situation of Setup 3.1, the polarised variety
(F,OF (µ∗A)) is isomorphic to one of the following varieties:

a) (Pr,OPr (1)); or
b) (Qr,OQr (1)) where Qr ⊂ Pr+1 is a normal quadric hypersurface;

or
c) (P(V ),OP(V )(1)) where V is an ample vector bundle on P1; or
d) F has a cone structure over P1 (cf. Definition 2.4).

If (F,OF (µ∗A)) 6' (Pr,OPr (1)), we have l = 1 and µH(F1 ⊗A∗) = 0.

Proof. — Note that for every 0 < ε � 1 the Q-twisted cotangent sheaf
ΩX〈(1 − ε)A〉 is not generically nef (cf. [24, Ch. 6.2] for the definition of
Q-twists). If µH(Fl ⊗A∗) > 0 the same holds for ΩX〈(1 + ε)A〉.
Let σ : X̃ → X ′ be a desingularisation, and F̃ a general fibre of the

induced fibration ϕ ◦ σ. Then by [18, Thm. 3.1] (or rather its proof) we
have

κ
(
F̃ ,K

F̃
+ j(σ∗µ∗A)|

F̃

)
= −∞

for every j ∈ Q such that 0 6 j < r. Moreover if µH(Fl ⊗A∗) > 0 we also
have κ(F̃ ,K

F̃
+ r(σ∗µ∗A)|

F̃
) = −∞. The statement is now an immediate

consequence of (3.2) and Lemma 2.5. �

The next propositions determine the structure of the fibre spaceX ′ → Y :

Proposition 3.3. — Suppose that we are in the situation of Setup 3.1.
a) Suppose that (F,OF (µ∗A)) is a linear projective space. Then we

have X ′ ' P(V ) where V := ϕ∗(OX′(µ∗A)).

ANNALES DE L’INSTITUT FOURIER
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b) Suppose that (F,OF (µ∗A)) is a Pr−1-bundle or has a cone struc-
ture. Then there exists a normal projective variety Ỹ of dimension
n − r + 1 and a vector bundle Ṽ on Ỹ such that X̃ := P(Ṽ ) → Ỹ

admits a birational morphism µ̃ : X̃ → X such that O
X̃

(µ̃∗A) '
OP(Ṽ )(1).

Proof. — Statement a) is shown in [3, Prop. 4.10] which improves [19,
Prop. 3.5].

For the proof of statement b) note that the Pr−1-bundle structure (resp.
cone structure) on the general Fl-leaf defines an algebraically integrable
foliation F ′ ⊂ Fl of rank r − 1. As in Setup 3.1 we define Ỹ to be the
normalisation of the closure of the locus in C(X) parametrising the general
F ′-leaf, and X̃ as the normalisation of the universal family over Ỹ . By
construction the general fibre F̃ is isomorphic to Pr−1 and µ̃∗A restricted
to F̃ is the hyperplane divisor. Thus we can again apply [3, Prop. 4.10]. �

Proposition 3.4. — Suppose that we are in the situation of Setup 3.1,
and suppose that (F,OF (µ∗A)) is a quadric. Then Y is a point, so X itself
is a quadric.

Proof. — We will argue by contradiction and suppose that Y has positive
dimension. Let C ⊂ X be a MR-general curve, then C does not meet the
image of the µ-exceptional locus so we can identify it to a curve in X ′.
Denote by XC the normalisation of the fibre product X ′ ×Y C ⊂ X ′ × C,
and let pX′ : XC → X ′ be the natural map to the first factor. The fibration
X ′ ×Y C → C admits a natural section

C → X ′ ×Y C ⊂ X ′ × C, c 7→ (c, c),

by the universal property of the normalisation we get a section of pC : XC →
C which we denote by s : C → XC . By [20, Rem. 19] the normal variety
XC is smooth in an analytic neighbourhood U ⊂ XC of s(C) and

TXC/C |U ' (p∗X′µ∗F1)|U .

Since µH(F1 ⊗A∗) = 0 by Lemma 3.2 we have

(3.3)
(
KXC /C + rp∗X′µ

∗A
)
· s(C) = (KF1 + rA) · C = 0.

By Lemma 2.6 the fibration pC : XC → C is a quadric bundle, i.e. the
divisor KXC/C is Q-Cartier and there exists a line bundle M on C such
that

KXC/C + rp∗X′µ
∗A ' p∗CM.

By (3.3) we have p∗CM · s(C) = 0, so M is numerically trivial. This shows
that −KXC/C is nef and big. Yet this is impossible by [4, Thm. 5.1]. �

TOME 64 (2014), FASCICULE 6



2474 Andreas HÖRING

We can summarise the results of this section as follows:

Theorem 3.5. — Let X be a normal projective variety of dimension n,
and let A be an ample Cartier divisor on X. Let H be a polarisation on X.
If the twisted cotangent sheaf ΩX⊗A is not generically ample with respect
to H, one of the following holds:

a) There exists a normal projective variety Y of dimension at most
n− 1 and a vector bundle V on Y such that X ′ := P(V ) admits a
birational morphism µ : X ′ → X such that OX′(µ∗A) ' OP(V )(1);
or

b) (X,OX(A)) ' (Qn,OQn(1)) where Qn ⊂ Pn+1 is a (not necessarily
smooth) quadric hypersurface.

4. Proof of the main results

So far all our considerations were valid for an arbitrary polarisation H.
However it is easy to see that the first part of Theorem 1.1 is not valid
for an arbitrary polarisation (cf. [18, Sect. 1.B]). The following lemma will
turn out to be crucial for the proof of Theorem 1.1:

Lemma 4.1. — Let B be a projective manifold of dimension m > 1, and
let V be a nef vector bundle of rank d+1 > 2 on B. Let π : P(V )→ B be the
projectivisation of V , and let ζ be the first Chern class of the tautological
bundle OP(V )(1). Then we have(

KP(V )/B + dζ
)
· ζm+d−1 > 0.

Remark. — If V is globally generated, the statement is quite straightfor-
ward: intersecting d general elements of the free linear system |OP(V )(1)| we
obtain a projective manifold Z ⊂ X such that the induced map π|Z : Z → B

is birational. By the adjunction formula we have(
KP(V )/B + dζ

)
|Z ' KZ/B

which is an effective divisor since B is smooth. Thus we have(
KP(V )/B + dζ

)
· ζm+d−1 = KZ/B · (ζ|Z)m−1 > 0.

Proof. — By the canonical bundle formula we have KP(V )/B + dζ =
π∗ detV − ζ. If m = 1 the statement immediately follows from the equality
ζd+1 = π∗ detV · ζd.

ANNALES DE L’INSTITUT FOURIER
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Suppose now that m > 2. For k ∈ N we denote by s(1k)(V ) the Schur
polynomial of degree k associated to the partition λi = 1 for i = 1, . . . , k
(cf. [24, Ch. 8.3] for the relevant definitions). By [24, Ex. 8.3.5] we have

π∗ detV · ζm+d−1 = s(1)(V ) · s(1m−1)(V )

and
ζm+d = s(1m)(V ).

Yet by the Littlewood-Richardson rule [15, Lemma 14.5.3] we have

s(1)(V ) · s(1m−1)(V ) = s(1m)(V ) + s(2,1m−2,0)(V ),

where s(2,1m−2,0)(V ) is the Schur polynomial of degree m corresponding to
the partition λ1 = 2, λm = 0 and λi = 1 for all other i. Thus we see that(

KP(V )/B + dζ
)
· ζm+d−1 = s(2,1m−2,0)(V )

which is non-negative by [24, Thm. 8.3.9]. �

Proof of Theorem 1.1. — Suppose that (X,OX(A)) is not isomorphic
to (Pn,OPn(1)). Arguing by contradiction we suppose that ΩX ⊗ A is not
generically nef with respect to the polarisation A. Then the first piece
F1 ⊂ TX of the Harder-Narasimhan-filtration of TX satisfies

(4.1) µA(F1 ⊗A∗) > 0.

Thus we are in the situation of Setup 3.1, in particular F1 defines an
algebraic foliation of rank r := rkF1. By Lemma 3.2 the general fibre
(F,OF (µ∗A)) of the graph X ′ → Y is a linear projective space. Thus we
know by Proposition 3.3, a) that X ′ is a projectivised bundle P(V ) where
V := ϕ∗(OX′(µ∗A)).
Let η : B → Y be a desingularisation, then we have X ′ ×Y B ' P(VB)

where VB := η∗V . Denote by ν : P(VB) → X the birational morphism
obtained by composing µ with the natural map P(VB)→ X ′. By Lemma 4.1
we have

(4.2) (KP(VB)/B + rν∗A) · (ν∗A)n−1 > 0.

The slope µA

(
F1 ⊗A∗

)
is a positive multiple of the intersection product

(−KF1 − rA) ·An−1.

Since A is ample we can represent (a positive multiple of) An−1 by a MR-
curve C that does not meet the image of ν-exceptional locus. Thus there
exists an open neighbourhood C ⊂ U ⊂ X such that KF1 |U = KP(VB)/B |U .
In particular we have

(KP(VB)/B + rν∗A) · (ν∗A)n−1 = (KF1 + rA) ·An−1.

TOME 64 (2014), FASCICULE 6



2476 Andreas HÖRING

Yet this shows that (4.1) contradicts (4.2). This shows the first part of the
statement, the second part is a special case of Theorem 3.5. �

As mentioned in the introduction, the proof of Theorem 1.3 is essentially
a combination of arguments and results due to Araujo and Druel [3, 4].
The new ingredient is Theorem 1.1 and some modifications due to our
more general setting.

Proof of Theorem 1.3. — Let G ⊂ F be a torsion-free subsheaf. By
Theorem 1.1 the twisted cotangent sheaf ΩX ⊗ A is generically nef with
respect to A, so we have

µA(G ⊗A∗) 6 0,

and by hypothesis µA(F ⊗ A∗) = 0. Thus F is semistable with respect to
the polarisation A and

detF ·An−1 = rAn > 0.

Thus the restriction F|C to a MR-general curve C is semistable with am-
ple determinant, hence it is ample. In particular the Bogomolov-McQuillan
theorem applies and the general F-leaf is algebraic with rationally con-
nected closure. Let Y be the normalisation of the closure in C(X) of the
locus parametrising the closure of the general F-leaves, and let X ′ be the
normalisation of the universal family over Y . By construction the natural
map µ : X ′ → X is birational and the fibration ϕ : X ′ → Y is equidimen-
sional of dimension r, the general fibre F being the normalisation of the
closure of a general F-leaf.
Step 1: Description of X ′. As in the situation of Setup 3.1 we could now

use Lemma 3.2 to describe F , but the log-leaf structure of Araujo-Druel
gives a more precise information: by [3, Rem. 3.11] there exists an effective
Weil Q-divisor ∆ such that

KX′/Y + ∆ ∼Q µ
∗KF ∼Q −rµ∗A.

In particular (F,∆ ∩ F ) is a log Fano variety of dimension r and index r.
Arguing as in [3, Prop. 4.5] we see that (F,OF (µ∗A)) is a linear projective
space, in particular by Proposition 3.3, a) we have X ′ ' P(V ) with V :=
ϕ∗(OX′(µ∗A)). We claim that detV is ample: by [14, Prop. 2] the line
bundle detV is semiample, so it is sufficient to prove that detV ·C > 0 for
every curve C ⊂ Y . If this was not the case the restriction V |C would be
a nef vector bundle with numerically trivial determinant, hence if we set
X ′C := ϕ−1(C) and ϕC := ϕ|X′

C
: X ′C → C, then

(µ∗A)r+1 ·X ′C = ϕ∗C(detV |C) · (A|X′
C

)r = 0.
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Since A is ample this implies that X ′C is contracted by µ onto a subva-
riety of dimension at most r. In particular all the points of the curve C
parametrise the same cycle in X. This contradicts the construction of Y as
a normalisation of a subvariety in the Chow variety C(X).

Step 2: Description of ∆. Note that ∆ is Q-Cartier, since KX′/Y and
µ∗KF are Q-Cartier. We have also seen that ∆ has an irreducible compo-
nent E with coefficient one such that the general fibre of ϕ|E : E → Y is a
projective space of dimension r − 1. We claim that ∆ = E and E → Y is
a Pr−1-bundle.
Proof of the claim. If E → Y is not a Pr−1-bundle there exists a ϕ-fibre

F0 = ϕ−1(0) contained in ∆. The same holds if the support of ∆ is reducible
since E is the unique component of ∆ that surjects onto Y . Arguing by
contradiction we suppose that there exists a ϕ-fibre F0 contained in ∆.
Let C → Y be a general non-constant morphism such that 0 ∈ C, and
set X ′C := X ′ ×Y C. Denote by ν : X ′C → X ′ the natural map to the first
factor, and by ϕC : X ′C → C the Pr-bundle structure. Note that we have
X ′C ' P(VC) where VC := (ϕC)∗(OX′

C
(ν∗µ∗A)), moreover by construction

ν∗∆ = ∆′ + F0

with ∆′ an effective Q-divisor. Since we have

(KX′
C

/C + ν∗∆) ∼Q ν
∗µ∗KF ∼Q −rν∗µ∗A,

and KX′
C

/C = ϕ∗C detVC − (r + 1)ν∗µ∗A, we obtain

∆′ ∼Q ν
∗µ∗A− ϕ∗C detVC − F0.

However by [3, Lemma 4.12,b)] no multiple of ν∗µ∗A−ϕ∗C detVC −F0 has
a global section, a contradiction.
Step 3: The µ-exceptional locus. Since X is not necessarily Q-factorial

the µ-exceptional locus might have irreducible components of codimension
at least two. We claim that this is not the case, in fact the µ-exceptional
locus is equal to the divisor E = ∆: let C be a curve in X ′ such that µ(C)
is a point. Then we have µ∗A · C = 0, so E · C = −KX′/Y · C. Since µ is
finite on the ϕ-fibres and detV is ample we have ϕ∗ detV ·C > 0. Therefore
we have

E · C = −KX′/Y · C = (ϕ∗ detV ∗ + (r + 1)µ∗A) · C < 0,

hence C is contained in E.
Set nowW := (ϕ|E)∗(OE(µ∗A)), thenW is a nef vector bundle of rank r.

We have already seen that

E ∈ |OP(V )(1)⊗ ϕ∗ detV ∗|,
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so pushing down the exact sequence

0→ OX′(−E + µ∗A)→ OX′(µ∗A)→ OE(µ∗A)→ 0

to Y we obtain an exact sequence

(4.3) 0→ detV → V →W → 0

and detW ' OW . Thus W is a nef vector bundle with trivial determi-
nant, moreover we have a morphism µE : E → X such that OP(W )(1) '
OE(µ∗EA). By Lemma 4.2 below this implies that W ' O⊕d

Y . Since
OP(V )(1) ' OX′(µ∗A) is semiample we know by [14, Cor. 4] that the ex-
act sequence (4.3) splits, thus X is a generalised cone in the sense of [7,
1.1.8]. �

Lemma 4.2. — Let Y be a normal projective variety, and let W be a
nef vector bundle of rank r on Y such that detW ≡ 0. Set E := P(W ) and
suppose that there exists a (not necessarily surjective) morphism µE : E →
X to a normal projective variety X, and an ample Cartier divisor A on X
such that OP(W )(1) ' OE(µ∗EA). Then we have W ' O⊕r

Y , in particular
E ' Y × Pr−1.

Proof. — Using the projection formula we see that we can suppose with-
out loss of generality that Y is smooth. Since W is nef with numerically
trivial determinant, it is numerically flat. In particular all the Chern classes
ci(W ) vanish [10, Cor. 1.19], so by the usual relations for the tautological
divisor [16, App. A, Sect. 3] we see that

OP(W )(1)r ≡ 0 in H2r(E,R),

i.e. the numerical dimension of OP(W )(1) is r−1. By hypothesis OP(W )(1) '
OE(µ∗EA) is semiample, so some positive multiple induces a fibration
τ : E → G onto some normal projective variety G of dimension r−1. By the
rigidity lemma one sees easily that µE factors through τ , in particular there
exists an ample Cartier divisor AG on G such that OP(W )(1) ' OE(τ∗AG).
Any fibre of the natural map P(W ) → Y is a Pr−1 mapping surjectively
onto G. Since we have

1 = OP(W )(1)r−1 · Pr−1 = deg(Pr−1 → G) ·Ar−1
G > 1,

we see that G ' Pr−1 and OG(AG) ' OPr−1(1). In particular we obtain

h0(Y,W ) = h0(E,OP(W )(1)
)

= h0(Pr−1,OPr−1(1)
)

= r.

Since W is numerically flat of rank r, this immediately implies that W is
trivial. �
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