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ULTRARIGID TANGENTS OF SUB-RIEMANNIAN
NILPOTENT GROUPS

by Enrico LE DONNE,
Alessandro OTTAZZI & Ben WARHURST (*)

Abstract. — We show that the tangent cone at the identity is not a complete
quasiconformal invariant for sub-Riemannian nilpotent groups. Namely, we show
that there exists a nilpotent Lie group equipped with left invariant sub-Riemannian
metric that is not locally quasiconformally equivalent to its tangent cone at the
identity. In particular, such spaces are not locally bi-Lipschitz homeomorphic. The
result is based on the study of Carnot groups that are rigid in the sense that their
only quasiconformal maps are the translations and the dilations.
Résumé. — Nous montrons que pour les groupes nilpotents sous-riemanniens,

le cône tangent en l’identité n’est pas un invariant quasi-conforme complet. À sa-
voir, nous montrons qu’il existe un groupe de Lie nilpotent muni d’une métrique
sous-riemannienne invariante à gauche qui n’est pas localement quasi-conformément
équivalent à son cône tangent en l’identité. En particulier, ces espaces ne sont pas
localement bi-Lipschitziens. Le résultat repose sur l’étude des groupes de Carnot
qui sont rigides dans le sens que leurs seules applications quasi-conformes sont les
translations et les dilatations.

1. Overture

1.1. Overview of the results

By means of a result [2] of Margulis and Mostow, if two equiregular
sub-Riemannian manifolds are quasiconformally equivalent, then almost
everywhere they have isomorphic tangent cones. In particular, the tangent
cone is a quasiconformal invariant. Their work extends a result [7] of Pansu,

Keywords: Sub-Riemannian geometry, metric tangents, Gromov-Hausdorff convergence,
nilpotent groups, Carnot groups, quasiconformal maps.
Math. classification: 53C17, 30L10, 22E25, 26A16.
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B.W. was supported by Università di Milano Bicocca and Universität Bern.
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for which two Carnot groups are quasiconformally equivalent only if they
are isomorphic.
The main goal of this paper is to show that the converse of the theorem

of Margulis and Mostow fails in a strong sense. We show the following
statement.

Theorem 1.1. — There exists a nilpotent Lie group equipped with left
invariant sub-Riemannian metric that is not locally quasiconformally equiv-
alent to its tangent cone.

Note that the theorem above holds in particular for locally bi-Lipschitz
maps. We recall that the tangent cone of an equiregular sub-Riemannian
manifold is a Carnot group, and it coincides with the nilpotentisation of
its sub-Riemannian structure [4]. In order to establish the result, we shall
study groups with the property that whenever they are quasiconformally
equivalent to some other group, they are in fact isomorphic to it, see The-
orem 4.2. With this purpose in mind, we consider Carnot groups whose
quasiconformal maps are only translations and dilations. We shall refer to
groups with this property as ultrarigid groups. In order to show that some
group is ultrarigid, we prove the following algebraic characterization.

Theorem 1.2. — Let G be a Carnot group. Then the following are
equivalent:
[1.2.1] For any U ⊂ G open and any quasiconformal embedding f : U →

G, one has that f is the restriction of the composition of a left
translation and a dilation;

[1.2.2] Every strata preserving automorphism of Lie(G) is a dilation.

The class of groups defined by [1.2.2] was considered by Pansu in [7].
He showed that there exist infinitely many 2-step Carnot groups with this
property, although his proof does not provide explicit examples. We exhibit
two examples of groups satisfying [1.2.2]. The first one is a 2-step stratified
nilpotent Lie group, whereas the latter has step 3 and it is not in the class
studied by Pansu. Finally, we point out that, in the case of 2-step Carnot
groups, the nontrivial implication [1.2.2] ⇒ [1.2.1] of Theorem 1.2 was
proved by Capogna and Cowling, see [1].

1.2. State of the art

Given a metric space (X, d) and a base point x ∈ X, one can con-
sider the blow-down spaces and the blow-up spaces of X at x. Namely,

ANNALES DE L’INSTITUT FOURIER



ULTRARIGID TANGENTS 2267

a pointed metric space ((Z, ρ), z) is a blow-up (resp. a blow-down) of X
at x if there exists a sequence of positive real numbers λj with λj → ∞
(resp. λj → 0), as j → ∞, such that ((X,λjd), x) Gromov-Hausdorff con-
verges to ((Z, ρ), z). Such blow-down spaces and blow-up spaces are not
unique and do not always exist. Whenever the limit exists for any sequence
λj →∞ (resp. λj → 0) and does not depend on the sequence, the blow-up
(resp. blow-down) space is called the tangent cone (resp. asymptotic cone).
In many situations a map between metric spaces induces a map between
blow-down or blow-up spaces. A key fact is that the induced map has often
more geometric structure than the initial map.
We recall two examples of blow-down and blow-up spaces, which are

well known in sub-Riemannian geometry and in Geometric Group The-
ory, respectively. Let M , M ′ be two manifolds endowed with some sub-
Riemannian distances induced by equiregular horizontal distributions. In
such a setting, the blow-up spaces do not depend on the scaling sequences
and are stratified nilpotent Lie groups, see [4]. Let f : M →M ′ be a quasi-
conformal homeomorphism. According to [2], for almost every p ∈ M , the
map f blows up at p to a strata preserving group isomorphism between
the blow-up space at p and the one at f(p). Regarding the large scale ge-
ometry of groups, let Γ be a finitely generated nilpotent group. Endow Γ
with any word distance induced by a finite generating set. The unfamiliar
reader might just think that Γ is a connected, simply connected nilpo-
tent Lie group endowed with a Riemannian left invariant distance. By [6],
the blow-down space of Γ is unique and is a stratified nilpotent Lie group
endowed with a left invariant Carnot-Carathéodory distance, induced by
a norm on the first stratum. Likewise the general framework, any quasi-
isometry blows down to a bi-Lipschitz homeomorphism of the blow-down
spaces. Consequently, such blow-down spaces are isomorphic.
Once a map is given at the blow-up or at the blow-down level, it is then

natural to ask if we can integrate back to a map between the initial spaces.
Namely, if we are given two sub-Riemannian manifolds with isomorphic
blow-up spaces at a point (resp. two finitely generated nilpotent groups with
isomorphic blow-down spaces), to what extent we may conclude that the
two manifolds are quasiconformally equivalent (resp. the nilpotent groups
are quasi-isometric)?

The fact that the blow-down space is not a complete quasi-isometric
invariants was proved by Shalom [8], using group cohomology. Namely, he
shows that quasi-isometric nilpotent groups have same Betti numbers. Then
he exhibits an example due to Benoist of two nilpotent groups with same
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blow-down space and different Betti numbers. We summarize the result of
Shalom as the following statement.

Theorem 1.3 (Shalom, [8, page 152]). — There exist two finitely gen-
erated nilpotent groups Γ and Λ that have the same blow-down space, but
they are not quasi-isometric equivalent.

Although blow-down spaces capture the asymptotic geometry, Shalom’s
result shows that they do not capture the whole large scale geometry. Sim-
ilarly, for general sub-Riemannian manifolds, blow-up spaces capture only
the infinitesimal geometry and not the local geometry. To see this, one can
consider an example(1) of a sub-Riemannian manifold M whose blow-up
space is not constant on a full measure set. Indeed, fix p ∈M and let G be
the blow-up of M at p. We claim that no neighborhood of p is quasicon-
formally equivalent to an open set in G. Since G is a cone, it is isometric
to its blow-up space. Hence, the blow-up of M at p is isomorphic to the
blow-up of G at the identity. Assume by contradiction that there exists
a quasiconformal embedding f : U ⊂ M → G. Then by [2] almost every
blow-up space in U needs to be isomorphic to G. Since this is not the case,
such a quasiconformal map does not exist.
We conclude that a necessary condition for a sub-Riemannian manifold

M to be quasiconformally equivalent to a Carnot group G is that the blow-
up space of M is G at almost every point. It is then natural to ask what
happens when the manifold has the same blow-up space at every point.
Here the work of Pansu, Margulis, and Mostow fails to give an answer.
One needs to find a different strategy.
A natural example of a manifold with constant blow-up spaces is provided

by a Lie group G endowed with a left invariant sub-Riemannian distance.
In this case, the isometry group of G acts transitively on G. Therefore the
blow-up space is the same at every point of G. In this article, we provide a
nilpotent Lie group of dimension 16 that is not locally quasiconformal (and
hence not locally bi-Lipschitz) equivalent to its blow-up. In particular, we
have the following consequence.

Corollary 1.4. — There exist two sub-Riemannian nilpotent Lie
groups H and G, that have the same blow-up space at every point, but
they are not (locally) quasiconformally equivalent.

(1)The existence of sub-Riemannian manifolds whose blow-up space varies continuously
was noticed by Pansu. An explicit 11-dimensional example has being given by Varchenko
in [10].
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We conclude our survey section by recalling some positive results: blow-
up spaces of Riemannian manifolds and contact 3-manifolds do capture the
local geometry. Indeed, every point p in a Riemannian n-manifold M has
a neighborhood that is bi-Lipschitz equivalent to an open set in Rn, which
is the blow-up of M at p. The same phenomenon appears for contact 3-
manifolds. By Darboux’s Theorem, every point in a contact manifold has
a neighborhood that is contactomorphic to an open set of the standard
contact structure. We can see this as a metric statement. Indeed, every
contact manifold can be endowed with a sub-Riemannian structure, which
is unique up to bi-Lipschitz equivalence. Now, Darboux’s Theorem implies
that every point p in a sub-Riemannian 3-manifold M has a neighbor-
hood that is bi-Lipschitz equivalent to an open set in the sub-Riemannian
standard contact structure. The latter is the sub-Riemannian Heisenberg
group. Since the Heisenberg group is dilation invariant, we also have that
the sub-Riemannian Heisenberg group is the blow-up at any point of any
sub-Riemannian 3-manifold. We can therefore conclude that every nilpo-
tent Lie group G of dimension 3 has the property that, when it is endowed
with a left invariant sub-Riemannian metric, any element of G has a neigh-
borhood that is bi-Lipschitz homeomorphic to an open set in the blow-up
space of G.
We remark that in the setting of Riemannian groups or of 3-dimensional

contact groups, the blow-up spaces may not preserve the algebraic structure
of the original space. Examples in the Riemannian setting are easy to find,
because there are diffeomorphic Lie groups that are not isomorphic. On the
other hand, the sub-Riemannian roto-translation group is not isomorphic
to its blow-up space, which is the Heisenberg group.

1.3. Structure of the paper

The article is organized as follows. In Section 2 we fix notation and
state the results of the literature that are the building blocks of our work.
In Section 3 we restate Theorem 1.2, which characterizes ultrarigidity in
purely Lie theoretic terms. Then we give two examples of ultrarigid Carnot
groups. In Section 4 we establish our main results. To begin we prove The-
orem 4.2, which is a rigidity type theorem for sub-Riemannian nilpotent
Lie groups with ultrarigid tangent cone. Secondly, we exhibit two exam-
ple of a sub-Riemannian nilpotent Lie group with ultrarigid tangent cone.
This together with Theorem 4.2 imply Theorem 1.1 and Corollary 1.4. In
Section 5 we recall the definition of Tanaka prolongation of a stratified
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nilpotent Lie algebra and state a result of Tanaka. We then use this to
prove Theorem 1.2.

2. Notation and preliminaries

2.1. Carnot Groups

Let G be a stratified nilpotent Lie group with identity eG or e if no confu-
sion arises. This means that its Lie algebra g admits an s-step stratification

g = V1 ⊕ · · · ⊕ Vs,

where [Vj , V1] = Vj+1, for 1 6 j 6 s, and with Vs 6= {0} and Vs+1 = {0}.
To avoid degeneracies, we assume g to have at least dimension two, which
is reasonable for our purposes.
Given a point p ∈ G we denote by τp the left translation by p. An

element X in the Lie algebra g can be considered as a tangent vector at
the identity. Such a vector induces the left invariant vector field given by
(τp)∗|e(X) at a point p ∈ G. This vector field will still be denoted by X,
unless confusion might arise. The set of all left invariant vector fields with
the bracket operation is isomorphic to g and it inherits the stratification of
g. The sub-bundle H ⊆ TG where Hp = (τp)∗|e(V1) is called the horizontal
distribution. A scalar product 〈 , 〉 on V1 defines a left invariant scalar
product on each Hp by setting

〈v, w〉p = 〈(τp−1)∗|p(v), (τp−1)∗|p(w)〉(2.1)

for all v, w ∈ Hp. The left invariant scalar product gives rise to a left
invariant sub-Riemannian metric d on G, the definition of which we shall
give later in the more general setting of sub-Riemannian manifolds. We call
(G, d) a Carnot group, which we simply denote by G if no ambiguity arises.
We denote by Aut0(g) the Lie group of strata preserving automorphisms

of g. The Lie algebra of Aut0(g) is the space of strata preserving derivations
of g, which we denote by g0. In general, for any stratified nilpotent Lie alge-
bra, there are distinguished elements of Aut0(g), which are called dilations
(or better algebra-dilations). For each λ ∈ R, the dilation δλ is defined
linearly by setting δλ(X) := λjX, for every X ∈ Vj and every j = 1, . . . , s.
The subset {δλ |λ ∈ R \ {0}} is called the algebra-dilation group. The set
of dilations with positive factor constitutes a one parameter subgroup of
Aut0(g), whose Lie algebra is generated by the derivation D ∈ g0 defined
by D(X) := jX, for every X ∈ Vj and every j = 1, . . . , s. In particular,

ANNALES DE L’INSTITUT FOURIER
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for every t ∈ R, we have δet = etD. Since any (algebra-)dilation δλ is an
algebra homomorphism and the Lie group G is simply connected, the dila-
tion induces a unique homomorphism on the group, which we still denote
by δλ and call group-dilation or dilation on the group level. Since G is
nilpotent and simply connected, the exponential map is a diffeomorphism.
Thus, group-dilations δλ can be defined as δλ(p) = exp ◦ δλ ◦ exp−1(p), for
all λ ∈ R and p ∈ G.
The group generated by the left translations and the group-dilations will

play an important role in our considerations. We refer to this group as the
translation-dilation group, and denote it by

TD(G) := {τp ◦ δλ : p ∈ G, λ ∈ R \ {0}} .

2.2. Sub-Riemannian manifolds

Throughout the paper, we shall write smooth when referring to C∞ func-
tions, maps or vector fields. A sub-Riemannian, or Carnot-Carathéodory
manifold, is a triple (M,H, g), where M is a differentiable manifold, H is
a bracket generating tangent sub-bundle of M , and g is a smooth section
of the positive definite quadratic forms on H.

Let m be dimHp, which is independent on p ∈ M . Recall that being
bracket generating means that, for every p ∈ M , there exists vector fields
X1, . . . , Xm in M , such that Hp = span{X1(p), . . . , Xm(p)}, and for some
integer s(p) > 1,

TpM = span
{

[Xi1 , [Xi2 , [. . . , [Xik−1 , Xik ] . . . ]]](p) : k = 1, . . . , s(p),
ij ∈ {1, . . . ,m}, j = 1, . . . , k

}
The bundle H is called the horizontal distribution. The Carathéodory-

Chow-Rashevsky Theorem shows that the bracket generating property im-
plies that any two points in M can be joined by a horizontal path, i.e., an
absolutely continuous path whose tangents belong to the horizontal distri-
bution. It follows that a sub-Riemannian manifold carries a natural metric,
called the sub-Riemannian or Carnot-Carathéodory metric, defined by set-
ting

d(p, q) := inf
∫ 1

0

√
gγ(t)(γ̇(t), γ̇(t))dt,

where the infimum is taken along all horizontal curves γ : [0, 1]→M such
that γ(0) = p and γ(1) = q.

TOME 64 (2014), FASCICULE 6
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For Carnot groups, the tensor g is given by the left invariant scalar prod-
uct (2.1). Moreover, left translations are isometries, and d is homogeneous
with respect to the group-dilations, that is, d(δλ(p), δλ(q)) = |λ|d(p, q) for
all p, q ∈ G and all λ ∈ R.
The horizontal bundle induces a filtration of each TpM as follows: Set

L0 = {0}, let L1 denote the set of all smooth sections of H defined on a
neighborhood of p, and by induction define Li+1 = Li + [L1, Li], for i > 0.
It then follows that

L0(p) ⊂ L1(p) ⊆ · · · ⊆ Ls(p)(p) = TpM

and [Li, Lj ](p) ⊆ Li+j(p). If Vi(p) := Li(p)/Li−1(p), then the nilpotentisa-
tion of TpM is the vector space

g(p) = V1(p)⊕ · · · ⊕ Vs(p)(p).

Since, for any X ∈ Li and Y ∈ Lj , one has that

[X + Li−1, Y + Lj−1] = [X,Y ] + Li+j−1,

the Lie bracket of vector fields induces a well defined bracket on g(p) thus
defining a stratified nilpotent Lie algebra of step s(p). Since g(p) is nilpo-
tent, by the theory of nilpotent Lie groups, there exists a unique connected,
simply connected Lie group Gp whose Lie algebra is g(p). We might denote
this group by exp(g(p)). The group Gp together with the sub-Riemannian
metric dp induced by 〈 , 〉p, forms a Carnot group, which is called the tan-
gent cone at p. Indeed, by a theorem of Mitchell [4], the pointed metric
spaces (M,λd, p) Gromov-Hausdorff converge, as λ → ∞, to the pointed
metric space (Gp, dp, e). In other words, any blow-up space of (M,d) at p
is isometric to the Carnot group Gp.
A sub-Riemannian manifold is called equiregular(2) if the functions p 7→

dimVi(p) are constant for all i. Note that in this case the function p 7→ s(p)
is automatically constant. The important consequence of equiregularity
is that the Hausdorff dimension of M , with respect to d, is the natural
number Q =

∑s(p)
i=1 i dim gi(p). Moreover, on any compact subset of M ,

the Q-dimensional Hausdorff measure is commensurate with any Lebesgue
measure, see [4].
If the nilpotentisations are independent of p and thus isomorphic to a

fixed Lie algebra g, then (M,H) is said to be strongly regular and g is called
the symbol algebra of (M,H). Clearly the tangent cones are all isomorphic
to G = exp(g) in this case.

(2) In Mitchell’s and Margulis-Mostow’s works, one finds the term ‘generic’ instead of
‘equiregular’.
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2.3. Contact and quasiconformal maps

Let (M,H) and (M ′,H′) be manifolds with horizontal distributions. Let
U ⊆M be an open set. A local C1 diffeomorphism f : U →M ′ is called a
contact map if f∗(Hp) = H′f(p). In particular, left translations and dilations
are contact maps of a Carnot group to itself.
Let (M,d) and (M ′, d′) be metric spaces and let U ⊆M be an open set.

Let f : U → M ′ be a (topological) embedding. For p ∈ M and for small
t ∈ R, we define the distortion function by

Hf (p, t) := sup{d′(f(p), f(q))|d(p, q) 6 t}
inf{d′(f(p), f(q))|d(p, q) > t} .

Definition 2.1. — We say that f is K-quasiconformal for some K > 1
if

lim sup
t→0

Hf (p, t) 6 K,

for all p ∈M .

In particular, left translations and dilations are 1-quasiconformal maps
of a Carnot group to itself.
Quasiconformal maps between Carnot groups (G, d) and (G′, d′) are

Pansu differentiable almost everywhere with respect to any Haar measure,
see [7, Théorème 2]. One such Haar measure is the Q-dimensional Hausdorff
measure, where Q =

∑s
i=1 idimVi is the homogeneous dimension.

We recall that a continuous map f : G → G′ is Pansu differentiable at
p ∈ G if the limit

Df(p)(q) = lim
t→0+

δ−1
t ◦ τ−1

f(p) ◦ f ◦ τp ◦ δt(q)

is uniform on compact sets and equals a homomorphism Df(p) : G→ G′.
We call Df(p) the Pansu derivative of f at p. The Pansu differential is
the Lie algebra homomorphism df(p) : g → g′ such that Df(p) ◦ exp =
exp ◦ df(p). Note that Df(p) and df(p) commute with dilating and so in
particular, df(p) is a strata preserving Lie algebra homomorphism.
The following results will be important for our purposes.

Theorem 2.2 (L. Capogna & M. Cowling, [1]). — All 1-quasiconformal
maps between Carnot groups are smooth.

Furthermore, by [1, Corollary 7.2] we also have the following Lemma.

Lemma 2.3. — If f is a quasiconformal embedding such that df(p) =
δλ(p) for almost all points p in its domain of definition, then f is 1-quasi-
conformal and therefore smooth.

TOME 64 (2014), FASCICULE 6
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2.4. Quasiconformal equivalence

The Pansu differential of a quasiconformal map is a graded group iso-
morphism. Consequently, we have the following fact.

Theorem 2.4 (P. Pansu, [7]). — Two Carnot groups are quasiconfor-
mally equivalent if and only if they are isomorphic as groups.

In particular, when f is an embedding of an open set U ⊂ G into G
itself, we have that df(p) ∈ Aut0(g), for almost every p ∈ U . Furthermore,
the set of smooth contact maps of G into itself coincides with the set of
smooth Pansu differentiable maps of G to itself, see [11].

Theorem 2.4 was later generalized by Margulis and Mostow.

Theorem 2.5 (G. Margulis & G. Mostow, [2, 3]). — Let (M,H, g) and
(M ′,H′, g′) be equiregular sub-Riemannian manifolds. Any quasiconformal
embedding f : U ⊆ M → M ′ of an open set U of M induces, at almost
every point p ∈ U , an isomorphism

Df(p) : Gp → G′f(p),

between the tangent cones of M and M ′.

One might wonder if the converse of the Margulis-Mostow Theorem holds
true. Alas, we show that it is not the case. Indeed, we exhibit two sub-
Riemannian manifolds that at every point have the same fixed Carnot
group as tangent cone. Then we prove that they are not quasiconformally
equivalent. In fact, we find such examples among the class of nilpotent Lie
groups.

3. Ultrarigid groups

3.1. Definition of ultrarigidity

In this section we present a class of groups that we shall consider in
proving the main theorem. Such groups have the property of having very
few quasiconformal maps. Notice that left translations and group-dilations
are always present. In fact, we are interested in the case when these are the
only quasiconformal maps. Theorem 1.2 gives an algebraic characterization
of such a situation and will be proved in Section 5. Because of Theorem 1.2,
the notion of ultrarigid group may be defined in two equivalent manners.
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Definition 3.1. — A Carnot group G is said to be ultrarigid if one of
the two equivalent properties [1.2.1] and [1.2.2] of Theorem 1.2 holds.

Remark 3.2. — Property [1.2.2] has been considered by Pierre Pansu.
He proved that there exist uncountably many groups with such property,
see [7, Proposition 13.1]. This existence result of Pansu does not yield
an example which suits our purpose. It is important to recall that Pansu
mainly considered more general groups. Namely, we call Pansu-rigid those
Carnot groups G for which any strata-preserving automorphism of Lie(G)
is a similarity, i.e., the composition of a dilation and an isometry. One of the
main steps in proving Mostow rigidity for quaternionic hyperbolic spaces
is to show that the boundary at infinity of such spaces are Pansu-rigid, see
[7, Proposition 10.1]. Clearly, any ultrarigid group is Pansu-rigid.

Remark 3.3. — For Carnot groups of step 2, the nontrivial part of The-
orem 1.2 has been proved by Capogna and Cowling, see [1, Corollary 7.4].

3.2. Examples of ultrarigid groups

In this section we present two examples of ultrarigid groups. The ultra-
rigidity can be verified by explicit computation of the strata preserving
automorphisms using the MAPLE LieAlgebras package.

In Section 4.2 we shall need an example of an ultrarigid group whose
structure can be deformed to a nonstratified nilpotent Lie group. The fol-
lowing Lie algebra determines an ultrarigid group having this flexibility.

Example 3.4. — Consider the sixteen dimensional Lie algebra with basis
{ei | i = 1, . . . , 16} and bracket relations:

[e1, e2] = e11, [e1, e3] = e13, [e1, e4] = e14,

[e1, e5] = e15, [e1, e6] = e16, [e2, e3] = e13,

[e2, e5] = e12, [e2, e6] = e14, [e3, e5] = e12,

[e3, e6] = e13, [e3, e7] = e14, [e4, e5] = e12,

[e4, e6] = e13, [e4, e8] = e14, [e5, e6] = e13,

[e5, e8] = e12, [e5, e9] = e14, [e6, e8] = e12,

[e6, e9] = e13, [e6, e10] = e14, [e7, e8] = e14,

[e7, e9] = e12, [e7, e10] = e13, [e8, e9] = e13.

[e8, e10] = e14, [e9, e10] = −e12
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We note that this is a 2-step Carnot algebra with stratification V1 =
span{e1, . . . , e10} and V2 = span{e11, . . . , e16}. It can be deformed to a non-
stratified nilpotent Lie algebra by adding the additional bracket [e1, e11] =
e14.

Example 3.5. — Our second example is the seventeen dimensional group
corresponding to the Lie algebra obtained by extending the previous exam-
ple by adding the additional bracket [e1, e11] = e17. The strata are as fol-
lows: V1 = span{e1, . . . , e10}, V2 = span{e11, . . . , e16} and V3 = span{e17}.
The significance of this example is that it shows that Theorem 1.2 does
extend the result discussed in Remark 3.3.

4. A counterexample

4.1. A criterion for quasiconformal nonequivalence

In this section we show that sub-Riemannian nilpotent groups with same
tangent cones need not to be quasiconformally equivalent. The main theo-
rem of the section is Theorem 4.2, where ultrarigidity is assumed. Namely,
we deal with a Carnot group G whose only quasiconformal maps are the
elements of TD(G).

We start by showing that, in general, if a nilpotent subgroup H of TD(G)
has codimension one, thenH is in fact G. To this end, let us study the group
structure of TD(G). Composition of functions turns TD(G) into a Lie group
that is isomorphic to a semidirect product GoR. Thus the Lie algebra of
TD(G) is a semidirect product of g with a one dimensional subgroup:

Lie(TD(G)) = goR.

Here the R-factor is generated by the derivation D and the brackets in
Lie(TD(G)) are those of g together with

[D,X] = D(X), ∀X ∈ g.

Lemma 4.1. — Let G 6= R be a Carnot group. Let H < TD(G) be
a Lie subgroup of codimension 1 and assume that H is nilpotent. Then
H = G× {0}.

Proof. — Denote by h, g, and goR the Lie algebras of H, G, and TD(G),
respectively. Thus we have dim h = dim g = n and dim(goR) = n+ 1. Let
V1 be the first layer of g, for which we recall that dimV1 > 2. Hence we get

dim(V1 ∩ h) = dimV1 + dim h− dim(V1 + h) > 2 + n− (n+ 1) = 1.
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Thus there exists X ∈ V1 ∩ h with X 6= 0.
We note that if V1 ⊆ h, then g ⊆ h and so G = H. Now consider the case

V1 \ (V1 ∩ h) 6= ∅ and let Y be a nonzero element in V1 \ (V1 ∩ h). Then,
since h has codimension 1 in goR, we have that goR = span{h, Y }. Thus
there exist Z ∈ h and α ∈ R such that D = Z + αY . Notice that Z 6= 0,
otherwise D = αY ∈ V1, which is not true. Therefore, the element D−αY
is in h \ {0}, and since D preserves strata, there exists Zm ∈ V2 ⊕ · · · ⊕ Vs
such that

(adD−αY )m (X) = X + Zm, ∀m ∈ N.

However, since D−αY and X are both elements of the nilpotent algebra h,
the iterated bracket (adD−αY )m (X) should be eventually 0, which contra-
dicts the fact that X 6= 0. Thus we conclude that V1 \ (V1 ∩ h) 6= ∅ cannot
occur. �

Recall that, unless otherwise said, a Carnot group is always equipped
with a left invariant sub-Riemannian distance with respect to the first
stratum as horizontal distribution.

Theorem 4.2. — Assume G is an ultrarigid Carnot group. Let H be
a connected, simply connected nilpotent Lie group endowed with a left
invariant sub-Riemannian distance. If there exist open sets U ⊂ G, U ′ ⊂
H, and a quasiconformal homeomorphism between U and U ′, then H is
isomorphic to G.

Proof. — Let f : U → U ′ be the quasiconformal homeomorphism. Com-
posing with a suitable translation, we may assume that f(eG) = eH . Then,
for h ∈ H, we consider the quasiconformal map

fh := f−1 ◦ τh ◦ f : Ũ ⊆ G→ G,

which is well defined for h close enough to the identity in H and for some
open set Ũ ⊆ G. By definition of ultrarigidity, we can assume fh is in fact
in TD(G).

We claim that the map h 7→ fh is an injective local homomorphism of
H into TD(G). Therefore, going to the Lie algebra level, we get a (globally
defined) injective local homomorphism of h into Lie(TD(G)). Indeed, the
map is a homomorphism, because

fh ◦ fh′ = f−1 ◦ τh ◦ τh′ ◦ f = f−1 ◦ τhh′ ◦ f = fhh′ , ∀h, h′ ∈ H.

Regarding the injectivity, for h 6=eH , we show that fh6=id. Since f(eG)=eH ,

fh(eG) = (f−1 ◦ τh ◦ f)(eG) = (f−1 ◦ τh)(eH) = f−1(h) 6= eG.

TOME 64 (2014), FASCICULE 6



2278 Enrico LE DONNE, Alessandro OTTAZZI & Ben WARHURST

Therefore h is isomorphic to a subalgebra h0 < Lie(TD)(G)). Since h0 is
nilpotent, by Lemma 4.1, we have that h0 = g× {0}. Thus h is isomorphic
to g and therefore H is isomorphic to G, since they are connected, simply
connected nilpotent Lie groups. �

4.2. Example of a non-Carnot group with ultrarigid tangent

We present here an example of a sub-Riemannian nilpotent Lie group
that demonstrates the validity of Theorem 1.1. Namely, we exhibit a nilpo-
tent Lie group H whose tangent cone is the 16-dimensional group G as in
Example 3.4 such that the pair G, H satisfy the condition of Theorem 4.2.
In turn, this implies Theorem 1.1 and Corollary 1.4.
The nilpotent group is the following. Take G = exp(g) where g is Ex-

ample 3.4, and let H = exp(h) where h is the 16-dimensional nilpotent Lie
algebra with the same bracket relations as g and the additional bracket
[e1, e11] = e14. Note that this additional bracket is of order 3 and so h is
not stratified.
If Xi denotes the left invariant vector field corresponding to ei, then the

horizontal space H ⊂ TH is framed by X1, . . . , X10. For a given point p,
L1 is the set of smooth sections of H defined on a neighbourhood of p, and
L2 = L1 + [L1, L1]. It follows that X1 ∈ L1, X11 ∈ L2 and X14 ∈ L2, hence

[X1, X11] + L2 = X14 + L2 = 0 + L2.

On the other hand, if X,Y ∈ L1 and [X,Y ] = 0 +L1, then [X,Y ] = 0 and
so g(p) = g for all p ∈ H.

5. Equivalence of definitions for ultrarigid groups

In this section we prove Theorem 1.2. Part of our proof uses a theorem
of Tanaka, that provides a characterization of the space of contact maps
on a Carnot group G at the infinitesimal level. In order to state Tanaka’s
theorem, it is convenient to change part of the notation. Throughout this
section we shall denote by g−i the strata Vi of a nilpotent and stratified
Lie algebra g, for every i = 1, . . . , s.
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5.1. Tanaka Prolongation

The Tanaka prolongation of g is the graded Lie algebra Prol(g) given by
the direct sum

Prol(g) :=
⊕
k∈Z

gk,

where gk = {0} for k < −s and for each k > 0, gk is inductively defined by

gk :=
{
u ∈

⊕
`<0

g`+k ⊗ g∗` | u([X,Y ]) = [u(X), Y ] + [X,u(Y )]
}
.

Clearly, for k = 0 we get the strata preserving derivations. If u ∈ gk, where
k > 0, then the condition in the definition becomes the Jacobi identity upon
setting [u,X] = u(X) when X ∈ g. Furthermore, if u ∈ gk and u′ ∈ g`,
where k, ` > 0, then [u, u′] ∈ gk+` is defined inductively according to the
Jacobi identity, that is

[u, u′](X) = [u, [u′, X]]− [u′, [u,X]].

In [9], Tanaka shows that Prol(g) determines the structure of the contact
vector fields on the group G. A contact vector field is defined as the infin-
itesimal generator of a local flow of contact maps, and the space of these
vector fields forms a Lie algebra with the usual bracket of vector fields. We
recall that D denotes the standard dilation defined in Section 2.1, and we
rephrase the result of Tanaka with the following statement.

Theorem 5.1 (N. Tanaka, [9]). — Let U ⊂ G be an open set. Denote
by C(U) the Lie algebra of smooth contact vector fields on U . If Prol(g)
is finite dimensional, then there exists a Lie algebra isomorphism between
Prol(g) and C(U). In particular, if Prol(g) = g⊕ g0 and g0 = RD, one may
choose this isomorphism to be the linear map ρ defined by the assignments

(5.1) ρ(D)φ(p) = d

dt
φ(exp(e−tD exp−1(p)))|t=0,

(5.2) ρ(X)φ(p) = d

dt
φ(exp(−tX)p)|t=0,

where p ∈ U , φ is a smooth function on U and X varies in g.

The interested reader can consult [9, 12] for a thorough overview, and [5]
for a basic introduction.

Remark 5.2. — Since G is simply connected, then in the case Prol(g)
is finite dimensional, every V ∈ C(U) uniquely extends to an element of
C(G), see [9, page 34].
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Remark 5.3. — We notice that Prol(g) is finite dimensional if and only if
gk = {0} for some k > 0. In fact, we have that gk = {0} implies gk+l = {0}
for every l > 0.

We note that if Aut0(g) consists only of dilations, then g0 is exactly the
span of D and thus one dimensional. The following lemma implies that in
this case the only contact flows are dilations. We would like to thank M.
Reimann for bringing this fact to our attention.

Lemma 5.4. — Let g be a nonabelian nilpotent and stratified Lie alge-
bra such that g0 is one dimensional. Then the prolongation of g is g⊕ g0.

Proof. — We need to show that g1 = {0}. Set u ∈ g1. Then u(gj) ⊂ gj+1
for every j = −s, . . . ,−1 and u([X,Y ]) = [u(X), Y ] + [X,u(Y )] for all
X,Y ∈ g. Since g0 has dimension one, then g0 = span{D}. In particular,
if X ∈ g−1, then u(X) = c(X)D, where c : g−1 → R is linear. In order to
show that u = 0, it is enough to prove that c(X) = 0 for all X ∈ g−1.
Let z(g) denote the centre of g, and let Z ∈ z(g) ∩ g−k 6= ∅. Then for all

X ∈ g−1

0 = u([X,Z]) = [u(X), Z] + [X,u(Z)] = −c(X)kZ + [X,u(Z)],

whence
[X,u(Z)] = c(X)kZ.

By induction, it is easy to show that

[X,uj(Z)] = c(X)
j−1∑
l=0

(k − l)uj−1(Z) = c(X)j(2k − j + 1)
2 uj−1(Z),

which in the case j = k gives

(5.3) [X,uk(Z)] = c(X)k(k + 1)
2 uk−1(Z).

Furthermore, iterating (5.3) gives

(5.4) adkX uk(Z) = Akc(X)kZ,

where Ak is a positive constant depending on k only. Notice that since
uk(Z) ∈ g0, we have uk−1(Z) ∈ g−1, and it follows that

[X,uk(Z)] = [X,u(uk−1(Z))] = −c(uk−1(Z))X,

for all X ∈ g−1. We conclude that for k > 2, the left hand side of (5.4) is
zero. It follows that since g is nonabelian, then c(X) = 0 since we can set
k = s > 2, and choose a nonzero Z ∈ z(g) ∩ g−s. �

ANNALES DE L’INSTITUT FOURIER



ULTRARIGID TANGENTS 2281

5.2. Proof of Theorem 1.2

[1.2.1] ⇒ [1.2.2]. Every element α ∈ Aut0(g) lifts to an automorphism
of G which is also a contact map. Therefore by hypothesis this contact
map is an element of TD(G), and since it is an automorphism it must be
a group-dilation. We conclude that α is an algebra-dilation.

[1.2.2]⇒ [1.2.1]. Let f : U → G be a quasiconformal embedding. Then f
is Pansu differentiable at almost every p ∈ U . Therefore df(p) = δλ(p) for
almost every p ∈ U and by Lemma 2.3, f is 1-quasiconformal and smooth.
In particular f is a smooth contact map.
After normalizing with left translations if necessary, we can assume that

e ∈ U and f(e) = e. Moreover f∗W ∈ C(f(U)) for every W ∈ C(U). By
Remark 5.2, f∗ induces a Lie algebra isomorphism of C(U), which we also
denote by f∗. It then follows that ρ−1f∗ρ is an automorphism of g ⊕ g0.
This automorphism has some extra properties that we show in the following
lemma.

Lemma 5.5. — The automorphism α := ρ−1f∗ρ preserves g and g0.
Moreover, α|g ∈ Aut0(g).

Proof. — By (5.1) we see that ρ(D)(e) = 0, whereas by (5.2) we have
that ρ(X)(e) 6= 0 for every X ∈ g. Since f(e) = e, we conclude that g0 is
preserved. Since D is surjective, it follows that [g ⊕ g0, g ⊕ g0] = g which
implies α(g) = g.
In order to show that α|g preserves the strata, it is enough to prove that

it preserves g−1. Since f is contact, this is true if the equation

(5.5) f∗ρ(X) = ρ(f∗|eX),

holds for every X ∈ g−1. To show (5.5), we first observe that the flow
of f∗ρ(X) through p is ft(p) = f(exp(−tX)f−1(p)) and in particular
ft(e) = f(exp(−tX)). Since f(e) = e, we have that f∗|e = df(e) on g−1.
By hypothesis, df(e) = δλ for some λ ∈ R \ {0}, and it follows that

d

dt
ft(e) = −f∗|e(X) = −λX.

Hence (5.5) is valid when evaluated at the identity. The equality at all
points follows from the fact that both f∗ρ(X) and ρ(f∗|eX) are right in-
variant vector fields, see (5.2). �

We now conclude the proof of Theorem 1.2. Since ρ−1f∗ρ|g ∈ Aut0(g),
it follows that ρ−1f∗ρ|g = δλ for some λ ∈ R \ {0}. If F (p) = δ1/λ ◦ f , then
F (e) = e, and by (5.5), we see that ρ−1F∗ρ|g = I. In particular F∗ρ(X) =
ρ(X) for every X ∈ g. Thus, F∗ preserves each right invariant vector field,
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and so F commutes with the left translations. Hence F (pq) = pF (q), and
putting q = e shows that F is the identity. Therefore f = δλ and the proof
of Theorem 1.2 is complete.
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