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LYAPUNOV EXPONENTS OF RANK 2-VARIATIONS
OF HODGE STRUCTURES AND MODULAR

EMBEDDINGS

by André KAPPES (*)

Abstract. — If the monodromy representation of a VHS over a hyperbolic
curve stabilizes a rank two subspace, there is a single non-negative Lyapunov expo-
nent associated with it. We derive an explicit formula using only the representation
in the case when the monodromy is discrete.
Résumé. — Si la représentation de monodromie d’une variation de structures

de Hodge sur une courbe hyperbolique stabilise un sous-espace de rang 2, elle
possède un seul exposant de Lyapunov non-negative. Nous deduisons une formule
explicite pour cet exposant dans le cas où la monodromie est discrète en employant
seulement la représentation.

1. Introduction

The Lyapunov exponents of a dynamical cocycle are usually hard to
come by. The action of the Teichmüller geodesic flow on the relative coho-
mology bundle over the moduli space of curvesMg is a striking exception,
since much information can be obtained from a formula for the sum of the
non-negative Lyapunov exponents originally discovered by Kontsevich and
Zorich [18] (see also [11], [8]). It exploits a link between algebraic geome-
try and dynamical systems and expresses the sum as integrals over certain
characteristic classes ofMg.
Variants of this result are known to hold for subsets invariant under

the flow such as Teichmüller curves, which are algebraic curves in Mg

isometrically embedded with respect to the Teichmüller metric. One can

Keywords: Lyapunov exponent, Kontsevich-Zorich cocycle, variations of Hodge
structures.
Math. classification: 32G20, 37D25, 30F35.
(*) The author is partially supported by ERC-StG 257137.



2038 André KAPPES

even replace the Teichmüller flow by the geodesic flow on an arbitrary
hyperbolic curve H /Γ (or more generally a ball quotient, see [17]) and an
analogous formula will hold for the dynamical cocycle coming from the
monodromy action of the fundamental group Γ on the cohomology of a
family of curves φ : X → H /Γ (or more generally on a variation of Hodge
structures (VHS) of weight one).
In this paper, we focus on the situation when there exists a subbundle

of rank two of such a relative cohomology bundle over a curve. It has only
one non-negative Lyapunov exponent. Starting from the Kontsevich-Zorich
formula, we show how to effectively compute this exponent only from the
representation of the fundamental group.

Theorem 1.1. — Let φ : X → C be a family of curves over a non-
compact algebraic curve C = H /Γ, and suppose there exists a rank 2-
submodule V ⊆ H1(X c,R) invariant under the monodromy action ρV of
Γ = π1(C, c) such that ρV (Γ) is a discrete subgroup of SL2(R).

Then the non-negative Lyapunov exponent associated with V is 0 if Γ
acts as a finite group and is otherwise given by

λ = vol(H /ρV (Γ))
vol(H /Γ)

∑
Γ0 6Γ

(∆0 : ρV (Γ0))

where ∆0 is a fixed parabolic subgroup of ρV (Γ) and the sum runs over a
system of representatives of conjugacy classes of maximal parabolic sub-
groups Γ0 of Γ, whose generator is mapped to ∆0 \ {±I}.

If the relative cohomology of the family of curves over a (finite cover of
a) Teichmüller curve has a rank-2 subbundle invariant under the flow and
defined over Q, we can compute the associated Lyapunov exponent from
the monodromy representation of the affine group. We carry this out for
an example, where even a complete splitting into 2-dimensional pieces is
found.

Proposition 1.2. — The Lyapunov spectrum of the Teichmüller curve
generated by the square-tiled surface (X,ω) ∈ ΩM4(2, 2, 2)odd given by

r = (1, 4, 7)(2, 3, 5, 6, 8, 9) and u = (1, 6, 8, 7, 3, 2)(4, 9, 5),

(see Figure 4.2) is 1, 1
3 ,

1
3 ,

1
3 ,−

1
3 ,−

1
3 ,−

1
3 ,−1.

Besides the Kontsevich-Zorich formula, the proof of Theorem 1.1 makes
use of the period map p : H → H from the universal covering of C to the
classifying space of Hodge structures of weight one on a two-dimensional
R-vector space. This map is equivariant for the two actions of Γ and, in case
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ρV (Γ) ⊆ SL2(R) is discrete and not finite, descends to a holomorphic map
p between algebraic curves. The main observation is that the line bundle
is a pullback of the cotangent bundle by p, and that one can compute the
degree of p by looking at the cusps.
From an abstract point of view, Theorem 1.1 deals with pairs (p, ρ) of

a homomorphism ρ : Γ → SL2(R) from a cofinite Fuchsian group Γ and
a holomorphic map p : H → H equivariant for the actions of Γ and ρ(Γ),
which we callmodular embeddings. We show that these are rigid in the sense
that p and ρ almost uniquely determine each other, a fact that has been
remarked in [21] for Teichmüller curves in genus 2. Moreover, we introduce
the notion of (weak) commensurability of two modular embeddings (they
must agree (up to conjugation) on some finite index subgroup). It follows
that the Lyapunov exponent of a modular embedding is a weak commen-
surability invariant. We also investigate the commensurator of a modular
embedding and show that it contains Γ as a subgroup of finite index if ρ
has a non-trivial kernel.
Every rational number in [0, 1] is a Lyapunov exponent of a Teichmüller

curve inMg as can be deduced e.g. from [3, Theorem 4.5], [9, Prop. 2] or [28,
Theorem 1.3]. However the denominator of the rational numbers that can
be reached depends on g. In Proposition 5.7, we combine the discussion of
modular embeddings with Theorem 1.1 to obtain the same result by pulling
back the universal family of elliptic curves via a complicated map. The re-
sulting family will of course not map to a Teichmüller curve in moduli space.

References

Previously, period maps have been used to compute the individual Lya-
punov exponents of Teichmüller curves coming from abelian covers of P1

[28]. In this situation, the period maps are Schwarz triangle maps, the mon-
odromy is a possibly indiscrete triangle group, and the Lyapunov exponents
are quotients of areas of hyperbolic triangles. Other examples, where indi-
vidual Lyapunov exponents have been obtained by computing the degrees
of line bundles, are the Veech-Ward-Bouw-Möller-Teichmüller curves [3],
[29], cyclic covers of P1 [9] and more generally Deligne-Mostow ball quo-
tients [17].
Modular embeddings of H into a product Hk have been studied e. g. in [5]

for the action of a Schwarz triangle group on the left and the direct product
of its Galois conjugates on the right (where k is the degree of the trace field
over Q) or for non-arithmetic Teichmüller curves in [22], [21] for the action
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2040 André KAPPES

of the Veech group and its Galois conjugates. Our definition relates to theirs
(for k = 2) if one considers the (id, ρ)-equivariant embedding H→ H×H,
z 7→ (z, p(z)).

Structure of the paper

The paper is organized as follows. Section 2 contains the necessary back-
ground on Teichmüller curves, variations of Hodge structures and Lyapunov
exponents. Section 3 contains the proof of Theorem 1.1. In Section 4, we
discuss an algorithmic approach to the computation of Lyapunov expo-
nents and present two examples, the one stated above being among them.
Finally, in Section 5, we discuss various properties of modular embeddings.

Acknowledgements

This paper grew out of the author’s Ph.D. thesis [16]. The author thanks
his advisors Gabi Weitze-Schmithüsen, Frank Herrlich and Martin Möller
for their support and the helpful discussions that led to his thesis and this
paper. He also thanks Alex Wright for his comments on an earlier version
of this paper.

2. Background

In this section, we recall the concept of a variation of Hodge structures,
the definition of the period map and the Kontsevich-Zorich formula and
then specialize to the case of Teichmüller curves.

2.1. Variations of Hodge structures

Let C be a smooth algebraic curve over C, embedded in a projective
curve C. A family φ : X → C of smooth curves defines a Z-local system
V = R1φ∗ Z on C, whose associated holomorphic vector bundle comes with
a holomorphic subbundle V1,0 ⊂ V⊗ZOC , inducing the Hodge decompo-
sition of the cohomology in each fiber X c = φ−1(c). This object, which
is actually the family of Jacobians associated with φ, has been abstractly
studied under the name variation of Hodge structures of weight 1; these
consist of a K-local system V on C (K a noetherian subring of R) and
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a holomorphic subbundle V1,0 ⊂ V⊗K OC inducing a Hodge structure in
each fiber.
Important for the study of variations of Hodge structures is the pres-

ence of a polarization, which in our case is the intersection pairing on
(co-)homology. It is defined as a locally constant alternating bilinear form
Q : V⊗V→ K such that its C-linear extension satisfies the Riemann bilin-
ear relations Q(V1,0,V1,0) = 0 and iQ(v, v) > 0 for non-zero v ∈ V1,0. The
norm ‖ · ‖ associated with the positive definite hermitian form i

2Q(v, w) on
V1,0 on VR by

‖v‖ = i
2Q(v1,0, v1,0)

(where v1,0 denotes the projection of v ∈ VR to V1,0) is called Hodge norm.
In the following, we write VHS for “polarized variation of Hodge structures
of weight 1”.
By a local monodromy of V about a puncture c ∈ C \C, we shall under-

stand the action of a small loop about c on the fiber Vc of a nearby point c.
If K is a number field, then by a Theorem of Borel, these transformations
are always quasi-unipotent. If they are unipotent, then there is a canoni-
cal extension due to Deligne of V⊗K OC to a vector bundle V on C. The
extension of the (1, 0)-part inside V will be denoted V1,0.
The (global) monodromy is the linear representation of π1(C, c) on Vc

associated with the local system V (and uniquely determined up to conju-
gation).
A standard reference for variations of Hodge structures is [4].

2.1.1. Decomposition of a VHS

By the work of Deligne, the category of C-VHS on a quasiprojective base
is semisimple. More precisely [6], if V is a VHS on a smooth quasiprojective
algebraic variety X over C, then

V∼=
⊕
i

Vi⊗Wi(2.1)

where Vi are irreducible local systems, Vi � Vj for i 6= j and Wi are com-
plex vector spaces. Moreover, each Vi carries a VHS unique up to shifting
of the bigrading, such that (2.1) is an isomorphism of VHS.

2.1.2. The period map and the period domain

Let x ∈ C be a base point and let V be a VHS on C. The underlying local
system corresponds to the monodromy action of π1(C, x) on the fiber Vx

TOME 64 (2014), FASCICULE 5



2042 André KAPPES

by continuation of local sections along paths. The distinguished subspace
V1,0
x of the Hodge filtration will be moved by this action; this movement

is recorded by the period map p : C̃ → Per(Vx), which is a holomorphic
map from the universal cover u : C̃ → C to the period domain Per(Vx),
the classifying space of polarized Hodge structures that can be put on Vx.

The period map can be described in the following way: On C̃, the local
system can be globally trivialized by the constant sheaf V of fiber Vx and
the inclusion u∗V1,0 → V yields for every point z ∈ C̃ a Hodge structure
on Vz ∼=Vx, thus a point p(z) ∈ Per(Vx). The fact that u∗ V1,0 → V is
an inclusion of sheaves with π1(C, x)-action, corresponds to the map p
being equivariant with respect to the action of π1(C, x) on C̃ by deck
transformations and on Per(Vx) by the monodromy action.

In the case of an R-VHS of weight 1 and rank 2k, Per(Vx)∼=Hk, the Siegel
upper halfspace of dimension k and the monodromy is a representation of
π1(C, x) into Sp2k(R).
A VHS V on a curve C is called uniformizing if its period map is biholo-

morphic. In this case, (V1,0)⊗ 2∼= Ω1
C

(logS) where S = C \ C is the finite
set of cusps. This isomorphism is given by the Kodaira-Spencer map, the
only graded piece of the Gauß-Manin connection.
In particular, there is a tautological uniformizing VHS on each period

domain and each VHS is equal to the pullback of a tautological VHS on its
period domain via the period map. We sketch this for a rank 2-VHS, i. e.
k = 1.
Suppose we are given a holomorphic map p : C̃ → H from the universal

cover of a curve C, together with a group homomorphism ρ : π1(C, x) →
Sp2(R) = SL2(R). The trivial bundle C̃ × R2 → C̃ acquires a π1-action by

(z, v) 7→ (γ(z), ρ(γ)(v)), γ ∈ π1(C, x), ρ(γ) =
(
a b
c d

)
and hence gives rise to an R-local system V on C since the transition
matrices are constant. In the same way, the trivial line bundle C̃ ×C→ C̃

is acted upon by π1(C, x) by

(z, λ) 7→ (γ(z), (cz + d)−1λ)

and the inclusion

C̃ × C→ C̃ × C2, (z, λ) 7→ (z, λ(p(z), 1)T )

is π1-equivariant and hence descends to an inclusion of vector bundles
V1,0 → V⊗ROC on C. Since p(H) ⊆ H, the standard symplectic form
on R2 with matrix

( 0 1
−1 0

)
furnishes a polarization of this VHS. Moreover,

if im(ρ) ⊆ SL2(Z), then the lattice C̃ × Z2 ⊂ C̃ × R2 is preserved and
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descends to a Z-local system VZ on C. We put V0,1 = V⊗ROC /V1,0. The
quotient of V0,1 by the image of VZ is then a family of elliptic curves.

2.2. Teichmüller curves

We recall the basic definitions for Teichmüller curves and show that they
fit into the above abstract setting with the slight modification that we have
to deal with orbifold fundamental groups. Good surveys on this subject are
e.g. [21], [23], [15] or [14].

It is well-known that every Teichmüller curve inMg arises as the compo-
sition of a Teichmüller embedding j : H→ T g with the natural projection
T g →Mg, and that a Teichmüller embedding is in turn determined by a
pair (X, q) of a compact Riemann surface X with a non-zero quadratic dif-
ferential q. Using a canonical double covering construction one can confine
oneself to q = ω2, where ω is a holomorphic 1-form. Then the natural atlas
on X \ div(ω) obtained by locally integrating ω has only translations as
transition maps, and we call the pair (X,ω) a translation surface. Let ΩMg

be the moduli space of translation surfaces. It is stratified by the number
of zeros of ω. For a partition (κ1, . . . , κr) of 2g − 2, let ΩMg(κ1, . . . , κr)
denote the moduli space of translation surfaces (X,ω), where ω has r zeros
with multiplicities κ1, . . . , κr.

A homeomorphism f : X → X is called affine if it acts as an affine linear
map in the charts of the translation structure. This is the case if and only
if its action on H1(X,R) preserves the subspace spanned by Reω, Imω.
The group of all orientation-preserving affine homeomorphisms is denoted
by Aff(X,ω).
Taking the derivative of an affine map induces a group homomorphism

D : Aff(X,ω)→SL2(R),

whose image is called the Veech group SL(X,ω) and whose kernel is the
group of translations Trans(X,ω). The Veech group is a nonuniform discrete
subgroup of SL2(R) and a lattice if and only if the Teichmüller embedding
associated with (X,ω) leads to a Teichmüller curve. In this case, we call
the associated surface (X,ω) a Veech surface and say that the Teichmüller
curve is generated by (X,ω).
The affine group acts naturally as a subgroup of the mapping class group

MCGg on the Teichmüller disk, respectively as a group of orientation pre-
serving isometries on H = SO(2)\ SL2(R) by the representation D, and the
Teichmüller embedding is equivariant for these two actions. This action

TOME 64 (2014), FASCICULE 5
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need not be free, but the kernel Aut(X,ω) of affine biholomorphisms of
X is always finite. If (X,ω) generates the Teichmüller curve C, the curve
H /Aff(X,ω) is the normalization of C and Aff(X,ω) is the orbifold fun-
damental group. In particular, if we view the inclusion  : H /Aff(X,ω)→
Mg = T g /MCGg as an inclusion of orbifolds or stacks, we can pull back
the universal family overMg to obtain a canonical family of curves over a
Teichmüller curve. However, to avoid the notion of stacks, we always pass to
a suitable finite index subgroup Γ6Aff(X,ω), where a map to a fine moduli
space and thus a family φ : X → H /Γ exists (see [22, 1.4] for details).

2.2.1. Origamis

An origami, also called square-tiled surface is a translation surface O =
(X,ω) together with a holomorphic map p : O→ E = C /Z⊕iZ such that
p is ramified at most over one point e ∈ E, and such that ω = p∗dz.
Origamis give rise to Veech surfaces, since their Veech groups are com-

mensurable with SL2(Z). If O is primitive, i. e. p does not factor into f ◦ p′
where f : E′ → E is an isogeny between genus 1-surfaces of degree > 1,
then SL(X,ω) is a subgroup of finite index of SL2(Z). The same holds if
we consider instead O∗ = O \p−1(e) and affine maps preserving p−1(e).
An origami of degree d is conveniently described by two permutations

r, u ∈ Sd that prescribe how d unit squares are glued along their edges:
we identify the right (respectively upper) edge of square i with the left
(respectively lower) edge of square r(i) (respectively u(i)). If the subgroup
generated by r and u acts transitively, then the resulting topological space
is connected and the tiling by squares defines a covering map to E, ramified
at most over 0 ∈ E.

More on origamis can be found e.g. in [24] or [31].

2.2.2. Monodromy representation

The monodromy representation of the orbifold fundamental group
Aff(X,ω) of a Teichmüller curve is the representation

ρ : Aff(X,ω)→ Sp(H1(X,Z), i∗), f 7→ (f−1)∗

It respects the algebraic intersection pairing i∗ on cohomology. One can
show that ρ is actually injective and that ρ, restricted to a suitable finite
index subgroup where the family φ : X → H /Γ exists, is the monodromy
representation associated with R1φ∗ Z (see [2] for the proof of both state-
ments).
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In the case of a Teichmüller curve, the equivariance carries over to the
possibly non-free action of Aff(X,ω) on H and on Hk via its monodromy
representation. This is easily seen as follows. The Teichmüller embedding
j : H → T g = T (X) associated with (X,ω) is equivariant with respect to
the action of f ∈ Aff(X,ω) by D(f) on H and by its action as element of
the mapping class group, that sends the marked Riemann surface (Xτ ,mτ )
to (Xτ ,mτ ◦ f−1). The natural map t : T (X)→ Hg is in turn equivariant
with respect to the Torelli morphism MCGg → Sp(2g,Z), f 7→ (f−1)∗. The
period map pφuniv of the pullback family φuniv : X = Xuniv×j H → H of
the universal family of curves Xuniv → T g is now given as the composition
of t ◦ j.
If Γ is a finite-index subgroup preserving a subspaceW ofH1(X,R), then

the associated representation will induce a sub-local systemW of R1φ∗R on
some H /Γ′ for a suitable finite index subgroup Γ′6Γ. Applying Deligne’s
semisimplicity result, we find that W carries a VHS, and R1φ∗R = W⊕W̃
where W̃ is the complement of W. Therefore, we can find a trivialization
of the pullback local system on H, i. e. a basis of H1(X,R) such that with
respect to this basis, the period map pφuniv is given as

z 7→
(
Z1(z) 0

0 Z2(z)

)
∈ Hg,

where Z1 and Z2 are square matrices of dimensions rkW1,0 and rk W̃1,0.
This map is equivariant for all γ ∈ Aff(X,ω) such that ρ(γ) respects the
decomposition W ⊕ W̃ . In particular, the period map

pW : H→ HrkW , z 7→ Z1(z)

associated with the VHS W is Γ-equivariant (and not just Γ′-equivariant).

2.2.3. The VHS of the family of curves over a Teichmüller curve

Using Deligne’s result, Möller characterizes the VHS on a Teichmüller
curve [22] generated by a translation surface (X,ω). After passing to a finite
cover, the VHS on a Teichmüller curve always admits a uniformizing direct
factor L in its VHS, defined over the trace field of SL(X,ω), whose local
system is given by the Fuchsian representation D of Aff(X,ω). Conversely,
he shows that if a family of curves φ : X → C over a curve C has a
uniformizing direct summand L in its R-VHS R1φ∗ R, then C is a finite
cover of a Teichmüller curve.
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2046 André KAPPES

2.3. Lyapunov exponents

Lyapunov exponents are characteristic numbers associated with certain
dynamical systems. In our case of a R-VHS V on a hyperbolic curve C =
H /Γ, they measure the logarithmic growth rate of the Hodge norm of a
vector in Vx when being dragged along a generic (w. r. t. the Haar measure)
geodesic on H /Γ under parallel transport.
For an R-VHS of rank 2k, the Lyapunov spectrum consists of 2k expo-

nents, counted with multiplicity that group symmetrically around 0

λ1 > · · · > λk > 0 > λk+1 = −λk > · · · > λ2k = −λ1.

One usually normalizes the curvature in order that λ1 = 1 (K = −4 in the
case of hyperbolic curves). In the case of a Teichmüller curve, we further
have λ1 = 1 > λ2. In general, virtually all knowledge about individual
exponents stems from using variants of a formula for the sum over the
first half of the spectrum which we refer to as the non-negative Lyapunov
spectrum in the following. This formula is originally due to Kontsevich and
Zorich [18], and was rigorously proved in [3], [8] or [11]. A variant of it can
be stated as follows.

Theorem 2.1. — Let V be an R-VHS of weight 1 and rank 2k on a
(possibly non-compact) curve C = H /Γ. Then the non-negative Lyapunov
exponents λ1, . . . , λk of V satisfy

λ1 + · · ·+ λk = 2 deg(V1,0)
2g(C)− 2 + s

(2.2)

where C is the completion of C, s = |C \ C|, and V1,0 is the Deligne
extension of V1,0 to C.

A generalization of this formula to higher dimensional ball quotients also
exists [17], as well as an explicit formula for the sum of Lyapunov exponents
of the relative cohomology in case the Teichmüller curve is generated by
an origami [8].

Using Theorem 2.1, individual Lyapunov exponents have been computed
e. g. for families of cyclic and abelian coverings of P1 ramified over 4 points
([9], [28]), in genus two [1] and for all known primitive Teichmüller curves
in higher genus [3].
We recall two important properties of the Lyapunov spectrum. First, it

remains unchanged if we pass to a finite index subgroup Γ′ and consider the
Lyapunov spectrum of the pullback VHS on H /Γ′ (see e.g. [17, Proposition
5.6]). Secondly, if the VHS splits up as a direct sum, then its Lyapunov
spectrum is the union of the spectra of its pieces.
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3. Lyapunov exponents of rank 2-VHS

In this section, we derive the main theorem from Theorem 2.1.

Proposition 3.1. — Let ρ : Γ → SL2(R) be a group homomorphism
such that Γ and ∆ = ρ(Γ) are cofinite, torsionfree Fuchsian groups, and
let p : H → H be a non-constant ρ-equivariant holomorphic map. Let
p : H /Γ→ H /∆ be the map induced by p, and let V be the pullback by p
of the universal rank-2 R-VHS on H /∆. Then the non-negative Lyapunov
exponent of V is given by

λ = deg(p) vol(H /∆)
vol(H /Γ) .(3.1)

Proof. — By Theorem 2.1, the Lyapunov exponent is given by

λ = 2 deg(V1,0)
deg(ωB) ,

where B is the completion of H /Γ and where V1,0 is the Deligne extension
to B of the (1, 0)-part of V. Further,

deg(ωB) = −χ(B) = 1
2π4 vol(H /Γ),

by the Gauß-Bonnet formula (where we take the curvature on H to be
normalized to −4). Let C be the completion of H /∆, and let U be the uni-
versal VHS on H /∆, whose Deligne extension of the (1, 0)-part we denote
by U1,0. By universality and the Gauß-Bonnet formula, we have

2 deg(U1,0) = deg(ωC) = 1
2π4 vol(H /∆),

and since p∗ U1,0 = V1,0, the claim follows. �
We remark that Proposition 3.1 is also readily deduced from a reformu-

lation of the Kontsevich-Zorich formula by Wright [28, Theorem 1.2].
For our applications, we need to allow groups that contain torsion ele-

ments or whose action on H has a (usually finite) kernel. In this situation
there might not be a VHS on the quotient, but only on an appropriate
finite cover. (Note that by a theorem of Selberg, any finitely generated
subgroup of a matrix group always has a torsionfree subgroup of finite in-
dex.) However, we still can compute the right-hand side of (3.1). The next
lemma shows that this quantity is independent under passing to a finite
index subgroup.

Lemma 3.2. — Let Γ be a group acting cofinitely and holomorphically
on H. Let ρ : Γ→ SL2(R) be a group homomorphism such that ∆ = ρ(Γ)
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is a cofinite Fuchsian group, and let p : H → H be a non-constant ρ-
equivariant holomorphic map. Let Γ′6Γ be a finite index subgroup. Then
∆′ = ρ(Γ′) has finite index and

deg(p) vol(H /∆)
vol(H /Γ) = deg(p′) vol(H /∆′)

vol(H /Γ′) ,

where p : H /Γ→ H /∆ and p′ : H /Γ′ → H /∆′ are the maps induced by p.

Proof. — We have (∆ : ∆′) = (Γ : ρ−1(∆′)) 6 (Γ : Γ′). The second claim
follows by comparing the degrees of maps in the commutative diagram

H /Γ′ p′−−−−→ H /∆′y y
H /Γ −−−−→

p
H /∆ �

3.1. Computing the degree of p

In this section, we show that in the presence of cusps, the quantities on
the right hand side of (3.1) are explicitly computable only from the group
homomorphism ρ.

Throughout, let ρ : Γ→ ∆ be a homomorphism between non-cocompact,
cofinite Fuchsian groups, let p : H → H be a ρ-equivariant non-constant
holomorphic map, and let p : H /Γ → H /∆ be the map induced by p.
Denote the extension p : B → C to the completions B of H /Γ and C of
H /∆ by the same letter.
In the following, a cusp will, depending on the context, be a point in ∂H,

stabilized by a parabolic in Γ or its equivalence class under the action of Γ,
respectively the point in the completion of B corresponding to this class.

Lemma 3.3. — Let Γ06Γ, respectively ∆06∆ be maximal parabolic
subgroups associated with cusps b ∈ B, respectively c ∈ C. Let γ be a
generator of Γ0 such that ρ(γ) is parabolic and lies in ∆0. Then
a) p maps b to c.
b) The ramification index e(p, b) of p at b is (∆0 : ρ(Γ0)).
c) We have deg(p) =

∑
b∈p−1(c) e(p, b).

Proof. — Let s, respectively t ∈ R∪{∞} be the fixed point of Γ0, re-
spectively ∆0. Without loss of generality, we may assume s = t =∞, and
that Γ0 respectively ∆0 is generated by (z 7→ z+ 1). The canonical projec-
tions uΓ : H → H /Γ respectively u∆ : H → H /∆ factor over H → H /Γ0
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respectively H→ H /∆0, and both H /Γ0 and are H /∆0 isomorphic to D∗

via the map induced by z 7→ exp(2πiz). Under this isomorphism, the image
of s, respectively t is identified with 0 ∈ D. Being equivariant, the map p
descends to p0 : H /Γ0∼=D∗ → D∗∼=H /∆0.

To prove a), it suffices to show that for a sequence in D∗ converging
to 0, the image under p0 converges to 0. Define an = in and let bn =
exp(2πian) in D∗; we have bn → 0. By the Schwarz lemma, p does not
increase hyperbolic distances, thus

dhyp(an, an + 1) > dhyp(p(an), p(an) + λ),

where z 7→ z+λ, (λ ∈ Z \{0}) generates ρ(Γ0). Since dhyp(an, an+1)→ 0 as
n→∞, we also have dhyp(p(an), p(an) +λ)→ 0, whence Im (p(an))→∞,
which means that p0(bn)→ 0.
b) A basis of punctured neighborhoods of b ∈ B is given by the images

of horoballs UR =
{
z ∈ H | Im (z) > R

}
under the projection modulo

Γ. If we choose R big enough, then we can ensure that UR is stabilized
only by elements of Γ0, whence the quotient UR/Γ0 embeds into H /Γ, and
gives rise to a chart UR/Γ0 → D∗. In the same way, we can obtain a chart
UR′/∆0 → D∗ such that in these charts, p takes the form z 7→ zk with
k being the ramification index. Thus the induced map p∗ on fundamental
groups maps a generator of π1(UR/Γ0)∼= Γ0 to the k-th power of a generator
of π1(UR′/∆0)∼= ∆0. This group homomorphism Γ0 → ∆0 must be equal
to ρ, since for both p is equivariant. It follows that k = (∆0 : ρ(Γ0)). �
Note that the degree of p can be 1 without p being an isomorphism.

However, this can happen only when the Fuchsian groups contain torsion
elements.
Proof of Theorem 1.1. — The Lyapunov spectrum does not change, if we

pass to a finite index subgroup Γ′ of Γ. Thus if ρV (Γ) is finite, then ρV (Γ′)
will be trivial for the finite index subgroup Γ′ = Ker(ρV ), and therefore
λ = 0.

We are left with the case when ρV (Γ) is infinite. By Deligne’s semisim-
plicity theorem, the local system V associated with V carries a VHS. We let
pV be its period map. pV cannot be constant, for otherwise every g ∈ ρV (Γ)
would stabilize p(z) ≡ const ∈ H, but this stabilizer is finite since ρV (Γ) is
discrete. Thus we obtain a non-constant holomorphic map p : H→ H that
descends to p : H /Γ → H /ρV (Γ). On the left-hand side, we have a Rie-
mann surface of finite type. We claim that p can be extended continuously
to the compactification B of H /Γ, respectively the possibly only partial
compactification C of H /ρV (Γ), where B and C are obtained by adjoining

TOME 64 (2014), FASCICULE 5



2050 André KAPPES

all cusps. From this we conclude that C is compact and thus H /ρV (Γ) has
finite volume.
To prove the claim, let b ∈ ∂H be a cusp of Γ and let γ be a generator

of its stabilizer. By the Schwarz lemma, it follows that

dH(z, γ(z)) > dH(p(z), p(γ(z)) > `(ρ(γ))

where `(g) = infz∈H dH(z, g(z)) is the translation length. Since the left-
hand side goes to 0 as z approaches the cusp, `(ρ(γ)) = 0, whence ρ(γ)
is either parabolic or elliptic. In the first case, the proof of Lemma 3.3 a)
shows that p is locally given as a holomorphic map D∗ → D∗, which has a
canonical extension to D → D. This is true also for the second case with
the difference that p(b) is now a point in H /ρV (Γ).
The statement of Theorem 1.1 now follows from Proposition 3.1 together

with Lemma 3.3. �

4. Applications

In this section, we describe how to algorithmically obtain the monodromy
representation in the case of origamis in terms of the action of generators
of the affine group. Then we exhibit two principles to split up this represen-
tation into subrepresentations. As an application, we present two examples
where a splitting of the monodromy representation of a Teichmüller curve
into rank 2-subrepresentations is found. We then use the technique from
the previous section to determine the Lyapunov spectrum.

4.1. Algorithmic approach

Given an origami p : O → E, we outline an algorithm for obtaining the
monodromy representation of Aff(O) in terms of its generators. It has been
realized mainly by Myriam Finster, building on work of Gabriela Weitze-
Schmithüsen, Karsten Kremer and others.
To fix notations, let E∗ be E minus the ramification point e of p, and let

O∗ = O \p−1(e). Then p : O∗ → E∗ is a topological covering. We fix an
isomorphism π1(E∗)∼=F2 by choosing the basis x,y of π1(E∗) represented
by a horizontal and a vertical path in E∗. The preimage of x ∪ y under p
is a 4-valent graph G(O∗) homotopy-equivalent to O∗. Moreover, π1(O∗)
injects into π1(E∗); let p∗ be this injection and let its image be denoted by
H = H(O∗).
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We make use of a proposition, which is already implicit in [24]. Let c :
F2 → Aut+(F2) denote the canonical inclusion of the inner automorphisms
of F2 into its orientation-preserving automorphisms and let β : Aut+(F2)→
SL2(Z)∼= Out+(F2) denote the canonical projection.

Proposition 4.1. — Let p : O → E be an origami, and let H =
H(O∗). There is a commutative diagram with exact rows

1 - N(H)/H
c- Stab+(H)/c(H)

β- SL(O∗) - 1
||

1 - Trans(O∗)

∼=6
- Aff(O∗)

ψ ∼=6
D- SL(O∗) - 1

where Stab+(H) is the subset of f ∈ Aut+(F2) such that f(H) = H, and
N(H) is the normalizer of H in F2.

Moreover, the injection p∗ is equivariant for the actions by outer auto-
morphisms of f ∈ Aff(O∗) on π1(O∗) and of ψ(f) · c(H) ∈ Stab+(H)/c(H)
on H.

Note that in general Aff(O) ) Aff(O∗) if O is not a primitive origami.
Also Trans(O∗) = Trans(O) only holds if g(O) > 2.
Proof. — Let u : X̃ → O∗ denote a fixed universal covering, and endow it

with the translation structure obtained by pullback. Then p◦u : X̃ → E∗ is
a universal covering of E∗. Let Gal(X̃/E∗) denote the deck transformations
of p ◦ u. By [24], there is a commutative diagram with exact rows

1 - F2
c- Aut+(F2)

β- SL2(Z) - 1
||

1 - Gal(X̃/E∗)

∼=6

- Aff(X̃)

∼=6
D- SL2(Z) - 1

(4.1)

where the isomorphism Aff(X̃)→ Aut+(F2) stems from the fact that each
affine f : X̃ → X̃ descends to E∗ and induces an orientation preserv-
ing automorphism of F2. Define Affu(X̃) to be the subgroup of affine
automorphisms descending to O via u, and let Transu(X̃) = Affu(X̃) ∩
Gal(X̃/E∗). We claim that we have a commutative diagram with exact
rows

1 - N(H)
c- Stab+(H)

β- SL(O∗) - 1
||

1 - Transu(X̃)

∼=6
- Affu(X̃)

∼=6
D- SL(O∗) - 1

The bottom row is exact by the definition of Transu(X̃) and the fact that
the canonical projection Affu(X̃) → Aff(O∗) is surjective. Again by [24],
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the image of Affu(X̃) in Aut+(F2) is precisely Stab+(H) and the image of
Stab+(H) under β is SL(O∗). Finally, c(F2) ∩ Stab+(H) = c(N(H)).

The first claim of the proposition now follows from the fact that the kernel
of the canonical projection Affu(X̃)→Aff(O∗) is precisely Gal(X̃/O∗)∼=H.

As to the second claim, the description of the isomorphism Aff(X̃) →
Aut+(F2) implies that ψ(f) is the class of f∗, where f is the map induced
by f on E∗. Thus for every path γ ∈ π1(O), ψ(f)(p∗γ) = f∗p∗γ = p∗f∗γ.
Since p∗ is an isomorphism onto its image, it maps the conjugacy class
of f∗γ in π1(O) to the conjugacy class of ψ(f)(p∗γ), which proves the
claim. �
The input of our algorithm is an origami p : O→ E of degree deg p = d

and genus g, given as graph G(O∗).
Step 1: Construct a basis of π1(O∗). Choose a maximal spanning tree T in

G(O∗). The edges t1, . . . , td+1 not in T represent a basis of π1(O∗).
Mapping this basis to H 6F2, we obtain a free system of generators
u1, . . . , ud+1 for H.

Step 2: Compute a system of generators γ1, . . . , γr of Stab+(H) (see [10]).
Step 3: Lift the action of γi on the generators of H to an action on

t1, . . . , td+1. Let wij = γi(uj); this is a word in x, y which can be
decomposed as a word in the generators of π1(O∗) by writing down
all non-tree edges crossed on the path in G(O∗) determined by wij .

Step 4: Find an extended symplectic basis a1, b1, . . . , ag, bg, c1, . . . , cm−1 of
π1(O∗) by surface normalization as in [26]. Here, the ci are loops
about all but one puncture in p−1(e).

Step 5: For each generator γi of Stab+(H), project its action on the gener-
ators of π1(O∗) to GL(H1(O∗,Z)). Then make a base change to the
extended symplectic basis found in Step 4. Discard the basis ele-
ments representing loops around the punctures to obtain the action
of Aff(O∗) on H1(O,Z).

Proposition 4.1 implies the correctness of the above algorithm.
The action of Aff(O∗) on H1(O,Z) is obtained by using the duality of

H1 and H1. Note that if γ acts by A ∈ Sp(2g,Z) w. r. t. a symplectic basis
of H1(O,Z), then (A−1)T is the matrix of the left action of γ on H1(O,Z)
w. r. t. the dual basis. While there is no substantial difference between the
action of Aff(O) on homology and on cohomology, we prefer to work with
cohomology, since it exhibits a better functorial behavior.
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4.2. Splitting principles

We describe two principles for finding subrepresentations of a monodromy
representation.

Given two Veech surfaces (X,ω), (Y, ν), we call a non-constant holomor-
phic map f : X → Y a Veech covering if f∗ν = ω and if the Veech group
of Y minus the ramification points of f is a lattice. Note that this hap-
pens if and only if all branch points are periodic points, i. e. have finite
Aff(Y, ν)-orbits.
A Veech covering p : (X,ω)→(Y, ν) between Veech surfaces induces a

subrepresentation as follows. By [12, Theorem 4.8] the elements of Aff(X,ω)
that descend via p to Y form a finite-index subgroup Aff(X,ω)p of Aff(X,ω).
Let

ϕp : Aff(X,ω)p→Aff(Y, ν)
be the group homomorphism that maps f ∈ Aff(X,ω)p to f ∈ Aff(Y, ν)
such that p ◦ f = f ◦ p. The image of ϕp is the finite-index subgroup
Aff(Y, ν)p of Aff(Y, ν) of affine diffeomorphisms, that lift to (X,ω).

Proposition 4.2. — Let p : (X,ω)→(Y, ν) be a Veech covering be-
tween Veech surfaces and let ρ : Aff(X,ω)→Sp(H1(X,Z)) be the mon-
odromy representation of (X,ω). Then the image U of H1(Y,Z) under

p∗ : H1(Y,Z)→H1(X,Z)

is an Aff(X,ω)p-invariant symplectic subspace of H1(X,Z) polarized by
deg(p) ·QX .
The map p∗ is equivariant for the action of Aff(X,ω)p on U and Aff(Y, ν)p

on H1(Y,Z).

Proof. — Let f ∈ Aff(X,ω)p and f ∈ Aff(Y, ν) such that p ◦ f = f ◦ p.
Then for every c ∈ H1(Y,Z)

(f−1)∗(p∗(c)) = (p ◦ f−1)∗(c) = (f−1 ◦ p)∗(c) = p∗((f−1)∗(c)) ,

proving (f−1)∗(Im(p∗)) ⊂ Im(p∗). The computation also shows that p∗ is
equivariant. Finally, p∗ is a symplectic map and QX(p∗c1, p∗c2) = deg p ·
QY (c1, c2). �

We note that the uniformizing subrepresentation of an origami is induced
by the Veech covering p : O→ E.
Secondly, the group Aut(X,ω) of affine biholomorphisms acts onH1(X,R)

and H1(X,C) and we can use representation theory of finite groups to
decompose these vector spaces into a direct sum K[Aut(X,w)]-modules
(with K = R or C). This technique has been successfully applied in [20].
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Proposition 4.3. — Let (X,ω) be a Veech surface and let G6
Aut(X,ω). The action of Aff(X,ω) on H1(X,K), restricted to the nor-
malizer N(G) of G in Aff(X,ω), permutes the isotypic components of the
decomposition of H1(X,K) into G-modules and there is a finite index sub-
group Γ6Aff(X,ω) such that every isotypic component is Γ-invariant.

Proof. — As Aut(X,ω) is normal in Aff(X,ω), the normalizer N(G) of
G in Aff(X,ω) has finite index in Aff(X,ω). For all g ∈ G, and f ∈ N(G),
there exists g̃ ∈ G, such that gf = fg̃. Therefore for all irreducible K[G]-
submodules V of H1(X,K), we have

(g∗)−1 ◦ (f∗)−1(V ) = ((gf)∗)−1(V ) = ((fg̃)∗)−1(V ) = (f∗)−1(V ),

which shows that (f−1)∗(V ) is another irreducible K[G]-module inside
H1(X,K). Hence every f ∈ N(G) induces a permutation of the isotypic
components of the representation ofG. Thus there is a finite index subgroup
Γ6N(G) that leaves every isotypic component invariant. �

Remark 4.4. — In both cases, the subrepresentations carry a VHS. This
follows directly from Deligne’s semisimplicity theorem.

There can be invariant subspaces not directly related to these two con-
structions due to hidden symmetries of the Jacobian (e. g. endomorphisms
of Hecke type as discussed in [7]).

4.3. Examples

The examples discussed in the following are both origamis and stem
from intermediate covers of the characteristic origami S̃t3 discussed in [13].
We remain rather brief here; a complete discussion including all matrix
computations is found in [16].
We note that in our examples the individual Lyapunov exponents can

also be obtained from the formula for their sum, combined with knowledge
on intermediate coverings.

In the following, denote T = ( 1 1
0 1 ) and S =

( 0 −1
1 0

)
.

First example

Let L2,2 be the origami given by

r = (1 2)(3), u = (1 3)(2),

where the permutation r (u) is the monodromy the horizontal (vertical)
generator of π1(E∗). It is the smallest origami of genus 2. Its affine group
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Figure 4.1. The origami L2,2 and a maximal spanning tree of G(L2,2
∗)

SL(L2,2) is isomorphic to the index 3 subgroup ΓΘ of SL2(Z) generated by
S, T 2. It follows that SL(L2,2) is isomorphic to the orientation preserving
subgroup of the ∆(2,∞,∞)-triangle group of the hyperbolic triangle with
vertices (i,∞, 1). In particular, the stabilizer of 1 is generated by T 2S.
To analyze the action of Aff(L2,2) on H1(L2,2,Z), let t1, . . . , t4 be the

basis of π1(L2,2
∗) associated with the non-tree edges of a maximal spanning

tree as in Figure 4.1. Then

a1 = t1, b1 = −t2, a2 = t3, b2 = t4 − t1

is a symplectic basis of H1(L2,2,Z). Let further

h = t3 + t2 = a2 − b1 and v = t1 + t4 = 2a1 + b2

be the sum of all horizontal, respectively vertical cycles. The action of
Aff(L2,2) on H1(L2,2,Z) splits over Q into two 2-dimensional representa-
tions. The uniformizing representation is spanned by the image of h and v
in H1(L2,2,Z) under a 7→ i(·, a), where i(·, ·) denotes the symplectic inter-
section form on homology. The representation ρL2,2,2 : Aff(L2,2)→ SL2(Z),
complementary to the uniformizing representation, is given by

T 2 7→ T, S 7→ S−1

with respect to the basis

a∗1 − 2b∗2, b∗1 + a∗2.

Proposition 4.5. — The non-negative Lyapunov exponent associated
with ρL2,2,2 is 1/3.

Proof. — Let p : H → H denote the period map of the VHS associated
with ρL2,2,2. Since T 2 7→ T , while T 2S 7→ TS−1, an element of order 3,
the preimage of the cusp i∞ of SL2(Z) under p is only the cusp i∞. By
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Lemma 3.3, deg p = 1. By Proposition 3.1 and Lemma 3.2,

λ = vol(H / SL2(Z))
vol(H /ΓΘ) = 1/3. �

Note that this matches Bainbridge’s result on Lyapunov exponents of
invariant measures on ΩM2 [1].

1

2 3
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7
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×
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Figure 4.2. The origami M

S̃t3

N3

M T ·M S−1T−1 ·M

L2↪2 T · L2↪2 S−1T−1 · L2↪2

E

Figure 4.3. Intermediate covers of S̃t3. SL2(Z)-orbits of L2,2, M and
a third origami N3 with 27 squares and Veech group SL2(Z). Arrows
indicate Veech covering maps
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Second example

The second example is the origami M (see Figure 4.2) given by

r = (1, 4, 7)(2, 3, 5, 6, 8, 9) and u = (1, 6, 8, 7, 3, 2)(4, 9, 5),

and belongs to ΩM4(2, 2, 2)odd. Here, “odd” refers to the connected com-
ponent of surfaces of odd spin structure with respect to the classification
of connected components of strata in [19]. The affine group of M is also
equal to ΓΘ. The monodromy representation ρM : Aff(M) → H1(M,Z)
restricted to Γ(2)6SL(M) splits over Q into four symplectic subrepresen-
tations, each of rank 2. Apart from the uniformizing representation ρ1,
there are two representations ρ2, ρ3 that are induced from coverings to
genus 2-origamis. Figure 4.3 shows the poset of intermediate covers of S̃t3.

Let us denote ρM,4 the representation complementary to ρM,1 ⊕ ρM,2 ⊕
ρM,3. It already splits off over SL(M), and is given by

ρM,4(T 2) = T−1S =
(
−1 −1
1 0

)
, ρM,4(S) = S−1.

Proposition 4.6. — The non-negative Lyapunov spectrum of M is

1, 1
3 ,

1
3 ,

1
3 .

Proof. — By Proposition 4.2, each of the coverings to the genus
2-origamis induces a rank 4-subspace invariant under some finite index sub-
group Γ (we can take Γ = Γ(2)) of Aff(M). The pullback of the uniformizing
representation is the uniformizing representation upstairs. Furthermore a
computation shows that the pullbacks of the non-uniformizing representa-
tions are distinct, whence two rank 2-representations ρM,2 and ρM,3. Both
being pulled back from origamis in ΩM2(2), they have Lyapunov exponent
1/3. As in the first example, the third Lyapunov exponent can be shown
to be also 1/3. �

Remark 4.7. — The representation, although not induced via a Veech
covering from genus 2, is not very far from the representation ρL2,2,2. More
precisely, ρL2,2,2 is taken to ρM,4 by the orientation-reversing outer auto-
morphism

α : (T 2, S) 7→ (T−2S−1, S)

of ΓΘ, i. e. ρL2,2,2 ◦ α = ρM,4.
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5. Modular embeddings of rank 2

As we have seen in Section 2, a variation of Hodge structures can equally
well be described as a group homomorphism ρ plus the ρ-equivariant period
map. In this section, we study these objects from an abstract point of view
and we exhibit rigidity properties.
In the following, let G = PSL2(R).

Definition 5.1. — A modular embedding (of rank 2 and weight 1) is a
pair (p, ρ), where

(i) ρ : Γ→ G is a group homomorphism from a lattice Γ6G.
(ii) p : H→ H is a ρ-equivariant holomorphic map.

Definition 5.2. — For a modular embedding (p, ρ), denote by dom(ρ)
the domain and by im(ρ) the image of ρ. We call a modular embedding
discrete if im(ρ) is a discrete subgroup of G , and cofinite if im(ρ) acts
discretely and cofinitely on H. If im(ρ) acts cofinitely, then p descends to
a holomorphic map between the quotients, which we denote by p.

Note also that we allow Γ to contain torsion elements in order to handle
the orbifold case.

Remark 5.3. — As in the proof of Theorem 1.1, one shows that if a
modular embedding is discrete, then it is either constant (i. e. p is constant)
or cofinite.

Examples of modular embeddings come from Teichmüller curves. Apart
from the examples given above, there are prominent ones inM2 discovered
in [21]. Here, SL(X,ω) injects into SL2(oD) for some order oD in a totally
real quadratic number field Q(

√
D). The VHS splits into two sub-VHS of

rank 2, and the period map of the non-uniformizing sub-VHS, together with
the representation of SL(X,ω)∼= Aff(X,ω) given by Galois conjugation give
rise to a modular embedding. Other examples related to these are the
twisted Teichmüller curves studied in [27].

5.1. Rigidity

In this section, we gather results on how much the two data ρ and p of
a modular embedding determine each other.
If p is non-constant, it is easy to see that the representation of a mod-

ular embedding (p, ρ) is uniquely determined by p. Conversely, the period
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map is also uniquely determined by the representation. This has already
been remarked by McMullen [21, Section 10], and can in fact be general-
ized to ball quotients [17, Theorem 5.4]. We recall the arguments for the
convenience of the reader.

Proposition 5.4. — Given a non-trivial group homomorphism ρ : Γ→
G from a cofinite Fuchsian group Γ, there exists at most one map p : H→ H
such that (p, ρ) is a modular embedding.

Proof. — We work in the unit disk model and use arguments displayed
in [25, Section 2]. Since Γ is a lattice, it is of divergence type. Therefore
the set of points E in ∂ D = S1, which can be approximated by a sequence
(γk(x0))k ⊂ Γ (for some x0 ∈ D) that stays in an angular sector, is of full
Lebesgue-measure in R∪{∞}. For a holomorphic map p : D → D define
p∗(ζ) of a point of approximation ζ ∈ E by limk p(γk(x0)) for a sequence
γk(x0)→ ζ. This is well-defined for almost all ζ and p∗(ζ) ∈ ∂ D for almost
all ζ by [25, Lemma 2.2].
Now suppose we are given two ρ-equivariant maps pi, i = 1, 2. Pick a

point x0 ∈ D. If p1 is constant then ρ(Γ) lies in the stabilizer of p1(x0).
By equivariance, p2(y) is stabilized by ρ(Γ) for any y ∈ D. Since ρ is non-
trivial, p1 = p2. Thus we are left with the case that p1, p2 are non-constant.
Then for all k

dD(p1(x0), p2(x0)) = dD(p1(γkx0), p2(γkx0))

and since pi(γkx0)→ ∂ D, this means that p∗1(ζ) = p∗2(ζ) for ζ in a set of full
measure of ∂ D. Thus (p1 − p2)∗ = p∗1 − p∗2 ≡ 0 and therefore p1 = p2. �
If (p, ρ) is cofinite, then it determines a map p : H / dom(ρ)→ H / im(ρ).

Conversely, a map p between the quotients gives rise to a modular embed-
ding as the following lemma shows. Thus there are in some sense many
modular embeddings.

Lemma 5.5. — Let p̄ : H /Γ → H /∆ be a non-constant holomorphic
map between finite-area Riemann surfaces. Denote u∆ : H → H /∆ the
canonical projection, and let z ∈ p̄(H /Γ). If ∆ ⊂ G acts freely on H, then
p̄ lifts to a holomorphic map p : H→ H, unique up to the choice of a point
z̃ ∈ u−1(z), and there is a unique group homomorphism

ρ : Γ→ ∆

such that p is ρ-equivariant.
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We suspect that this statement is well-known, but we are not aware of a
source. We supply a proof for the convenience of the reader.

Proof. — The first claim follows from u∆ being a covering map. As to
the second claim, note that ∆ acts freely and transitively on u−1

∆ (z) = ∆ · z̃.
Let y ∈ p̄−1(z), and let ỹ ∈ u−1

Γ (y) with p(ỹ) = z̃. (This fixes p.) For any
γ ∈ Γ, there is by assumption a unique δγ,ỹ ∈ ∆ such that

p(γỹ) = δγ,ỹp(ỹ).

Thus we can define a map ρ : Γ → ∆, ρ(γ) = δγ,ỹ. To check that ρ is a
group homomorphism, we first show that if c : [0, 1]→ H is a path starting
at ỹ, then p(γc(t)) = δγ,ỹp(c(t)) for all t. We know that for each t there is
δγ,c(t) such that p(γc(t)) = δγ,c(t)p(c(t)). On the other hand, we claim that
the assignment t → δγ,c(t) is locally constant, and hence constant since
[0, 1] is connected: Each x̃ ∈ H has a neighborhood U such that for all
w̃ ∈ U , p(γw̃) = δ′p(w̃) only holds for δ′ = δγ,x̃. Indeed, it suffices to take
U = p−1(V ), where V is a neighborhood of p(x̃) such that δV ∩ V = ∅ for
all δ ∈ ∆, δ 6= id.
This shows that p(γγ′ỹ) = δγ,ỹp(γ′ỹ) for γ, γ′ ∈ Γ: we take c to be a

path connecting ỹ and γ′ỹ. Thus we have

p(γγ′ỹ) = δγ,ỹp(γ′ỹ) = δγ,ỹδγ′,ỹp(ỹ) = δγγ′,ỹp(ỹ)

by uniqueness. The uniqueness of ρ follows directly from the construction.
�

Remark 5.6. — Given a modular embedding, we can consider the case
when one of the two items is an isomorphism. If p = A ∈ G is a Möbius
transformation, then clearly ρ is conjugation by A. Conversely, suppose ρ
is an isomorphism. If (p, ρ) is cofinite, then after passing to a finite index
subgroup, we can suppose that Γ is torsionfree and that g(H /Γ) > 1.
Then p : H /Γ → H /ρ(Γ) must have degree 1 by the Riemann-Hurwitz
formula, and hence p is an isomorphism. If (p, ρ) is not cofinite, it may well
happen however that ρ is an isomorphism without p being one. Examples
are provided by Teichmüller curves in g = 2 for non-square discriminants
where ρ is induced by Galois conjugation, but p is not an isometry (see [21,
Theorem 4.2]).

Using the previous lemma, we can now pick up the discussion from the
introduction and show that every rational number in [0, 1] is the Lyapunov
exponent of a family of elliptic curves.

ANNALES DE L’INSTITUT FOURIER



LYAPUNOV EXPONENTS OF RANK 2-VHS 2061

Proposition 5.7. — For any rational number 0 6 λ 6 1, there is a
family of elliptic curves φ : X → H /∆ such that λ is in the Lyapunov
spectrum of its VHS.

Proof. — Let Γ(2) = ker(SL2(Z) → SL2(Z /(2))) and let PΓ(2) be its
projection to PSL2(R). We construct a holomorphic map

p : X → H /PΓ(2)∼=P1 \{0, 1,∞}

of degree d from a Riemann surfaceX by specifying a monodromy. The map
p should be ramified over the cusps and over r interior points x1, . . . , xr in
such a way that the associated covering is connected and |p−1(xi)| = ti.
We can surely find such a monodromy

σ : π1(P1 \{0, 1,∞, x1, . . . , xr})→ Sd,

since the fundamental group is free of rank r+ 2 (to guarantee connected-
ness, we can take p to be totally ramified over ∞).

Next we choose a lattice ∆6PSL2(R) such that X ∼=H /∆. Since PΓ(2)
is torsionfree, we obtain a group homomorphism ρ : ∆→ PΓ(2) by Lemma
5.5. We can lift this homomorphism to ρ̃ : ∆→ Γ(2)+, where Γ(2)+ is the
group generated by ( 1 2

0 1 ) and ( 1 0
2 1 ), an index 2 subgroup in Γ(2): for a ∈ ∆

we let ρ̃(a) be the unique lift of ρ(a) to SL2(R) that is in Γ(2)+.
Let p be the lift of p. The pair (p, ρ̃) is then a modular embedding,

and the associated VHS is the VHS of a family φ : X → H /∆ of elliptic
curves. In fact, φ is the pullback via p of the universal family over H. By
Proposition 3.1, its sole non-negative Lyapunov exponent is given by

λ = deg(p) vol(H /Γ(2))
vol(H /∆) = deg(p)χ(H /Γ(2))

χ(H /∆) .

We have χ(H /Γ(2)) = −1 and χ(H /∆) and d = deg(p) are related by the
Riemann-Hurwitz formula

−χ(H /∆) = 2g(H /∆)− 2 + s(∆) = d+
r∑
i=1

d− ti = d(r + 1)−
r∑
i=1

ti,

where s(∆) is the number of cusps of ∆. Therefore,

λ =
(
r + 1−

∑
i ti
d

)−1
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where ti ∈ {1, . . . , d}. For fixed r, d, the possible values of λ−1 are{
r + 1− l

d
| l = r, r + 1, . . . , rd

}
.

Letting r and d vary, we can thus obtain every rational number > 1. Hence
every λ ∈ Q∩(0, 1] can be realized as Lyapunov exponent. Finally, λ = 0
is the Lyapunov exponent of a constant family of elliptic curves. �

5.2. Commensurability and Lyapunov exponents

We define (weak) commensurability of two modular embeddings and
show that the Lyapunov exponent of a modular embedding is a weak com-
mensurability invariant. Further, we define the commensurator Comm(p, ρ)
of a modular embedding in analogy to the usual commensurator. If ρ has
a non-trivial kernel, we show that dom(ρ) is of finite-index in Comm(p, ρ).

Definition 5.8. — Two period data (pi, ρi), i = 1, 2 are commensurable
if there exists Γ′6G, which is a subgroup of finite index in Γi = dom(ρi)
for i = 1, 2, such that ρ1 = ρ2 on Γ′.

As is easily seen, commensurability is an equivalence relation. Note that
by Proposition 5.4, p1 = p2 for commensurable period data.
There is a left action of G×G on modular embeddings. For (g, h) ∈ G×G

and a modular embedding (p, ρ),

g(p, ρ)h−1 := (g ◦ p ◦ h−1, cg ◦ ρ ◦ ch−1),

where cg : G → G, g̃ 7→ gg̃g−1 is the action of an element g ∈ G by
conjugation.

Definition 5.9. — We call two modular embeddings (pi, ρi), (i = 1, 2)
weakly commensurable if they become commensurable under this action,
i. e. if there exist (g, h) ∈ G×G and Γ′, a subgroup of finite index in both
Γ1 and hΓ2h

−1, such that ρ1 = cg ◦ ρ2 ◦ ch−1 on Γ′.

Example 5.10. — Clearly, the two modular embeddings from Section
4 are not commensurable, since otherwise they would agree on 〈T 2m〉 for
some m ∈ N, but ρL2,2,2(T 2) is parabolic whereas ρM,4(T 2) is elliptic.
Moreover, for no two matrices (g, h) ∈ SL2(Z)2 is g(pL2,2,2, ρL2,2,2)h−1

commensurable with (pM,4, ρM,4), since conjugation by h cannot exchange
the cusps, as they are of different width, and conjugation by g preserves
the type (parabolic, respectively elliptic) of the image of a parabolic.
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It remains to decide whether the two modular embeddings are not weakly
commensurable, and more generally whether (pM,4, ρM,4) is (weakly) com-
mensurable to a non-uniformizing representation of an arithmetic
Teichmüller curve in ΩM2(2) (i. e. one generated by a square-tiled sur-
face). However, we can exclude that ρM,4 is weakly commensurable to
a non-uniformizing representation of an arithmetic Teichmüller curve in
ΩM2(1, 1). This is a consequence of the following discussion and the fact
that such curves have non-negative Lyapunov spectrum 1, 1

2 .

Definition 5.11. — If (p, ρ) is a cofinite modular embedding, we define
its Lyapunov exponent to be

λ(p, ρ) = deg(p) vol(H / im(ρ))
vol(H / dom(ρ)) .

This definition is justified by Theorem 1.1 in that if ρ admits a lift to
SL2(R) and if dom(ρ) acts freely, we obtain a VHS with Lyapunov exponent
λ(p, ρ).

Proposition 5.12. — The Lyapunov exponent of a modular embed-
ding is a weak commensurability invariant.

Proof. — The value of λ(p, ρ) clearly remains unchanged under the G×
G-action and under passage to a finite-index subgroup by Lemma 3.2. �

Definition 5.13. — For a modular embedding, we define the commen-
surator

Comm(p, ρ) :=
{

(g, h) ∈ G×G | (p, ρ), g(p, ρ)h−1 are commensurable
}
.

Remark 5.14. — Comm(p, ρ) is a group containing Γ = dom(ρ) via
γ 7→ (γ, ρ(γ)). Moreover, for two modular embeddings (pi, ρi), i = 1, 2 that
are commensurable, we have Comm(p1, ρ1) = Comm(p2, ρ2).

Further, Comm(p, ρ) maps into the commensurator

Comm(dom(ρ)) =
{
h ∈ G | hdom(ρ)h−1,dom(ρ) are commensurable

}
by (g, h) 7→ h, and this map is injective if p is not constant. If p is not
constant, we can therefore consider Comm(p, ρ) as a subgroup of G. In
fact, it maps into Gp =

{
h ∈ G | ∃g ∈ G : g ◦ p = p ◦ h

}
by rigidity.

As in the case of the usual commensurator, we have the following di-
chotomy. This is proved verbatim as in e.g. [30, Prop. 6.2.3].
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Proposition 5.15. — Comm(p, ρ) is either dense in G or Γ6
Comm(p, ρ) is a subgroup of finite index.

Proposition 5.16. — Suppose we are given a modular embedding (p, ρ)
such that p is non-constant and ρ has a nontrivial kernel. Then Γ6
Comm(p, ρ) is of finite index.

Proof. — Assume Comm(p, ρ) is dense in G. We claim that Gp = G. For
let h ∈ G, and let hn ∈ Comm(p, ρ) be a sequence such that hn → h for
n → ∞ in the Hausdorff topology of G. For each hn there is gn ∈ G such
that gn ◦ p = p ◦ hn. We claim that (gn)n converges to g ∈ G. We show
that gn is a Cauchy sequence, i. e. for all ε > 0 there is n0 such that for
all n,m > n0 and z ∈ H, dH(gnz, gmz) < ε. It suffices to show this only
for all z in some open subset of H, e. g. in p(H). Then by the Schwarz-Pick
lemma,

dH(gnz, gmz) = dH(gnp(w), gmp(w)) 6 dH(hnw, hmw)→ 0

uniformly in w ∈ H. Thus gn → g, and gp(z) = limn gn(p(z)) =
limn p(hn(z)) = p(limn hn(z)) = p(hz) by continuity of p, and h ∈ Gp.
If Gp = G, then ρ admits an extension ρ′ : G → G by definition of Gp.

But then ker(ρ′) is a nontrivial, proper normal subgroup of G, contradicting
the fact that G is simple. �

Remark 5.17. — In both our examples of Section 4, there is a nontrivial
kernel. Thus we can apply Proposition 5.16. Since in both cases, deg(p) = 1
and the image group is SL2(Z), which is finitely maximal (i. e. it is not prop-
erly contained in a bigger Fuchsian group), we find that the commensurator
of (ρL2,2,2, pL2,2,2), respectively (ρM,4, pM,4) coincides with ΓΘ.

BIBLIOGRAPHY

[1] M. Bainbridge, “Euler characteristics of Teichmüller curves in genus two”, Geom.
Topol. 11 (2007), p. 1887-2073.

[2] O. Bauer, Familien von Jacobivarietäten über Origamikurven, Universitätsverlag,
Karlsruhe, 2009.

[3] I. Bouw & M. Möller, “Teichmüller curves, triangle groups, and Lyapunov expo-
nents”, Ann. of Math. (2) 172 (2010), no. 1, p. 139-185.

[4] J. Carlson, S. Müller-Stach & C. Peters, Period mappings and period domains,
Cambridge Studies in Advanced Mathematics, vol. 85, Cambridge University Press,
Cambridge, 2003, xvi+430 pages.

[5] P. Cohen & J. Wolfart, “Modular embeddings for some nonarithmetic Fuchsian
groups”, Acta Arith. 56 (1990), no. 2, p. 93-110.

[6] P. Deligne, “Un théorèeme de finitude pour la monodromie”, in Discrete groups in
geometry and analysis (New Haven, Conn., 1984), Progr. Math., vol. 67, Birkhäuser
Boston, Boston, MA, 1987, p. 1-19.

ANNALES DE L’INSTITUT FOURIER



LYAPUNOV EXPONENTS OF RANK 2-VHS 2065

[7] J. S. Ellenberg, “Endomorphism algebras of Jacobians”, Adv. Math. 162 (2001),
no. 2, p. 243-271.

[8] A. Eskin, M. Kontsevich & A. Zorich, “Sum of Lyapunov exponents of the Hodge
bundle with respect to the Teichmüller geodesic flow”, to appear in Publications
de l’IHES (2014) vol. 120, issue 1, arXiv: math.AG/1112.5872, 2010.

[9] A. Eskin, M. Kontsevich & A. Zorich, “Lyapunov spectrum of square-tiled cyclic
covers”, J. Mod. Dyn. 5 (2011), no. 2, p. 319-353.

[10] M. Finster, Stabilisatorgruppen in Aut(Fz) und Veechgruppen von Überlagerun-
gen, diploma thesis, Universität Karlsruhe, Fakultät für Mathematik, 2008.

[11] G. Forni, “Deviation of ergodic averages for area-preserving flows on surfaces of
higher genus”, Ann. of Math. (2) 155 (2002), no. 1, p. 1-103.

[12] E. Gutkin & C. Judge, “Affine mappings of translation surfaces: geometry and
arithmetic”, Duke Math. J. 103 (2000), no. 2, p. 191-213.

[13] F. Herrlich, “Teichmüller curves defined by characteristic origamis”, in The ge-
ometry of Riemann surfaces and abelian varieties, Contemp. Math., vol. 397, Amer.
Math. Soc., Providence, RI, 2006, p. 133-144.

[14] F. Herrlich & G. Schmithüsen, “On the boundary of Teichmüller disks in Teich-
müller and in Schottky space”, in Handbook of Teichmüller theory. Vol. I, IRMA
Lect. Math. Theor. Phys., vol. 11, Eur. Math. Soc., Zürich, 2007, p. 293-349.

[15] P. Hubert & T. A. Schmidt, “An introduction to Veech surfaces”, in Handbook
of dynamical systems. Vol. 1B, Elsevier B. V., Amsterdam, 2006, p. 501-526.

[16] A. Kappes, “Monodromy Representations and Lyapunov Exponents of Origamis”,
PhD Thesis, Karlsruhe Institute of Technology, 2011.

[17] A. Kappes & M. Möller, “Lyapunov spectrum of ball quotients with ap-
plications to commensurability questions”, 2012, to appear in Duke Math. J.,
arXiv:math/1207.5433.

[18] M. Kontsevich & A. Zorich, “Lyapunov exponents and Hodge theory”, 1997,
arXiv:hep-th/9701164.

[19] M. Kontsevich & A. Zorich, “Connected components of the moduli spaces of
Abelian differentials with prescribed singularities”, Invent. Math. 153 (2003), no. 3,
p. 631-678.

[20] C. Matheus, J.-C. Yoccoz & D. Zmiaikou, “Homology of origamis with symme-
tries”, to appear in Annales de l’Institut Fourier, Volume 64, 2014, arXiv:1207.2423,
2012.

[21] C. McMullen, “Billiards and Teichmüller curves on Hilbert modular surfaces”, J.
Amer. Math. Soc. 16 (2003), no. 4, p. 857-885.

[22] M. Möller, “Variations of Hodge structures of a Teichmüller curve”, J. Amer.
Math. Soc. 19 (2006), no. 2, p. 327-344 (electronic).

[23] ———, “Teichmüller curves, mainly from the point of view of algebraic geometry”,
in Moduli spaces of Riemann surfaces, IAS/Park City Math. Ser., vol. 20, Amer.
Math. Soc., Providence, RI, 2013, p. 267-318.

[24] G. Schmithüsen, “An algorithm for finding the Veech group of an origami”, Ex-
periment. Math. 13 (2004), no. 4, p. 459-472.

[25] H. Shiga, “On holomorphic mappings of complex manifolds with ball model”, J.
Math. Soc. Japan 56 (2004), no. 4, p. 1087-1107.

[26] J. Stillwell, Classical topology and combinatorial group theory, Graduate texts
in mathematics ; 72, Springer, New York, 1980.

[27] C. Weiss, “Twisted Teichmüller curves”, 2012, Ph.D. Thesis, J. W. Goethe-
Universität Frankfurt.

[28] A. Wright, “Schwarz triangle mappings and Teichmüller curves: Abelian square-
tiled surfaces”, J. Mod. Dyn. 3 (2012), no. 1, p. 405-426.

TOME 64 (2014), FASCICULE 5



2066 André KAPPES

[29] ———, “Schwarz triangle mappings and Teichmüller curves: The Veech-Ward-
Bouw-Möller-Teichmüller curves”, Geom. Funct. Anal. 23 (2013), no. 2, p. 776-809.

[30] R. J. Zimmer, Ergodic theory and semisimple groups, Monographs in Mathematics,
vol. 81, Birkhäuser Verlag, Basel, 1984, x+209 pages.

[31] D. Zmiaikou, “Origamis and permutation groups”, PhD Thesis, University Paris-
Sud 11, Orsay, 2011.

Manuscrit reçu le 13 mars 2013,
accepté le 25 mai 2013.

André KAPPES
Goethe-Universität Frankfurt am Main
Institut für Mathematik
Robert-Mayer-Str. 6–8
Frankfurt am Main (Germany)
kappes@math.uni-frankfurt.de

ANNALES DE L’INSTITUT FOURIER

mailto:kappes@math.uni-frankfurt.de

	1. Introduction
	References
	Structure of the paper
	Acknowledgements

	2. Background
	2.1. Variations of Hodge structures
	2.1.1. Decomposition of a VHS
	2.1.2. The period map and the period domain

	2.2. Teichmüller curves
	2.2.1. Origamis
	2.2.2. Monodromy representation
	2.2.3. The VHS of the family of curves over a Teichmüller curve

	2.3. Lyapunov exponents

	3. Lyapunov exponents of rank 2-VHS
	3.1. Computing the degree of p

	4. Applications
	4.1. Algorithmic approach
	4.2. Splitting principles
	4.3. Examples
	First example
	Second example


	5. Modular embeddings of rank 2
	5.1. Rigidity
	5.2. Commensurability and Lyapunov exponents

	Bibliography

